(* ========================================================================= *)
(* Elementary topology in Euclidean space.                                   *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2008                       *)
(*              (c) Copyright, Valentina Bruno 2010                          *)
(* ========================================================================= *)

needs "Library/card.ml";;
needs "Multivariate/determinants.ml";;

(* ------------------------------------------------------------------------- *)
(* General notion of a topology.                                             *)
(* ------------------------------------------------------------------------- *)

let istopology = new_definition
 `istopology L <=>
        {} IN L /\
        (!s t. s IN L /\ t IN L ==> (s INTER t) IN L) /\
        (!k. k SUBSET L ==> (UNIONS k) IN L)`;;
let topology_tybij_th = 
prove (`?t:(A->bool)->bool. istopology t`,
EXISTS_TAC `UNIV:(A->bool)->bool` THEN REWRITE_TAC[istopology; IN_UNIV]);;
let topology_tybij = new_type_definition "topology" ("topology","open_in") topology_tybij_th;;
let ISTOPOLOGY_OPEN_IN = 
prove (`istopology(open_in top)`,
MESON_TAC[topology_tybij]);;
let TOPOLOGY_EQ = 
prove (`!top1 top2. top1 = top2 <=> !s. open_in top1 s <=> open_in top2 s`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM FUN_EQ_THM] THEN REWRITE_TAC[ETA_AX] THEN MESON_TAC[topology_tybij]);;
(* ------------------------------------------------------------------------- *) (* Infer the "universe" from union of all sets in the topology. *) (* ------------------------------------------------------------------------- *)
let topspace = new_definition
 `topspace top = UNIONS {s | open_in top s}`;;
(* ------------------------------------------------------------------------- *) (* Main properties of open sets. *) (* ------------------------------------------------------------------------- *)
let OPEN_IN_CLAUSES = 
prove (`!top:(A)topology. open_in top {} /\ (!s t. open_in top s /\ open_in top t ==> open_in top (s INTER t)) /\ (!k. (!s. s IN k ==> open_in top s) ==> open_in top (UNIONS k))`,
SIMP_TAC[IN; SUBSET; SIMP_RULE[istopology; IN; SUBSET] ISTOPOLOGY_OPEN_IN]);;
let OPEN_IN_SUBSET = 
prove (`!top s. open_in top s ==> s SUBSET (topspace top)`,
REWRITE_TAC[topspace] THEN SET_TAC[]);;
let OPEN_IN_EMPTY = 
prove (`!top. open_in top {}`,
REWRITE_TAC[OPEN_IN_CLAUSES]);;
let OPEN_IN_INTER = 
prove (`!top s t. open_in top s /\ open_in top t ==> open_in top (s INTER t)`,
REWRITE_TAC[OPEN_IN_CLAUSES]);;
let OPEN_IN_UNIONS = 
prove (`!top k. (!s. s IN k ==> open_in top s) ==> open_in top (UNIONS k)`,
REWRITE_TAC[OPEN_IN_CLAUSES]);;
let OPEN_IN_UNION = 
prove (`!top s t. open_in top s /\ open_in top t ==> open_in top (s UNION t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM UNIONS_2] THEN MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]);;
let OPEN_IN_TOPSPACE = 
prove (`!top. open_in top (topspace top)`,
SIMP_TAC[topspace; OPEN_IN_UNIONS; IN_ELIM_THM]);;
let OPEN_IN_INTERS = 
prove (`!top s:(A->bool)->bool. FINITE s /\ ~(s = {}) /\ (!t. t IN s ==> open_in top t) ==> open_in top (INTERS s)`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[INTERS_INSERT; IMP_IMP; NOT_INSERT_EMPTY; FORALL_IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`s:A->bool`; `f:(A->bool)->bool`] THEN ASM_CASES_TAC `f:(A->bool)->bool = {}` THEN ASM_SIMP_TAC[INTERS_0; INTER_UNIV] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC OPEN_IN_INTER THEN ASM_SIMP_TAC[]);;
let OPEN_IN_SUBOPEN = 
prove (`!top s:A->bool. open_in top s <=> !x. x IN s ==> ?t. open_in top t /\ x IN t /\ t SUBSET s`,
REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[SUBSET_REFL]; ALL_TAC] THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[GSYM FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_UNIONS) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Closed sets. *) (* ------------------------------------------------------------------------- *)
let closed_in = new_definition
 `closed_in top s <=>
        s SUBSET (topspace top) /\ open_in top (topspace top DIFF s)`;;
let CLOSED_IN_SUBSET = 
prove (`!top s. closed_in top s ==> s SUBSET (topspace top)`,
MESON_TAC[closed_in]);;
let CLOSED_IN_EMPTY = 
prove (`!top. closed_in top {}`,
let CLOSED_IN_TOPSPACE = 
prove (`!top. closed_in top (topspace top)`,
let CLOSED_IN_UNION = 
prove (`!top s t. closed_in top s /\ closed_in top t ==> closed_in top (s UNION t)`,
SIMP_TAC[closed_in; UNION_SUBSET; OPEN_IN_INTER; SET_RULE `u DIFF (s UNION t) = (u DIFF s) INTER (u DIFF t)`]);;
let CLOSED_IN_INTERS = 
prove (`!top k:(A->bool)->bool. ~(k = {}) /\ (!s. s IN k ==> closed_in top s) ==> closed_in top (INTERS k)`,
REPEAT GEN_TAC THEN REWRITE_TAC[closed_in] THEN REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `topspace top DIFF INTERS k :A->bool = UNIONS {topspace top DIFF s | s IN k}` SUBST1_TAC THENL [ALL_TAC; MATCH_MP_TAC OPEN_IN_UNIONS THEN ASM SET_TAC[]] THEN GEN_REWRITE_TAC I [EXTENSION] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[IN_UNIONS; IN_INTERS; IN_DIFF; EXISTS_IN_IMAGE] THEN MESON_TAC[]);;
let CLOSED_IN_INTER = 
prove (`!top s t. closed_in top s /\ closed_in top t ==> closed_in top (s INTER t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_2] THEN MATCH_MP_TAC CLOSED_IN_INTERS THEN ASM SET_TAC[]);;
let OPEN_IN_CLOSED_IN_EQ = 
prove (`!top s. open_in top s <=> s SUBSET topspace top /\ closed_in top (topspace top DIFF s)`,
REWRITE_TAC[closed_in; SET_RULE `(u DIFF s) SUBSET u`] THEN REWRITE_TAC[SET_RULE `u DIFF (u DIFF s) = u INTER s`] THEN MESON_TAC[OPEN_IN_SUBSET; SET_RULE `s SUBSET t ==> t INTER s = s`]);;
let OPEN_IN_CLOSED_IN = 
prove (`!s. s SUBSET topspace top ==> (open_in top s <=> closed_in top (topspace top DIFF s))`,
SIMP_TAC[OPEN_IN_CLOSED_IN_EQ]);;
let OPEN_IN_DIFF = 
prove (`!top s t:A->bool. open_in top s /\ closed_in top t ==> open_in top (s DIFF t)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `s DIFF t :A->bool = s INTER (topspace top DIFF t)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN SET_TAC[]; MATCH_MP_TAC OPEN_IN_INTER THEN ASM_MESON_TAC[closed_in]]);;
let CLOSED_IN_DIFF = 
prove (`!top s t:A->bool. closed_in top s /\ open_in top t ==> closed_in top (s DIFF t)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `s DIFF t :A->bool = s INTER (topspace top DIFF t)` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN SET_TAC[]; MATCH_MP_TAC CLOSED_IN_INTER THEN ASM_MESON_TAC[OPEN_IN_CLOSED_IN_EQ]]);;
let CLOSED_IN_UNIONS = 
prove (`!top s. FINITE s /\ (!t. t IN s ==> closed_in top t) ==> closed_in top (UNIONS s)`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_INSERT; UNIONS_0; CLOSED_IN_EMPTY; IN_INSERT] THEN MESON_TAC[CLOSED_IN_UNION]);;
(* ------------------------------------------------------------------------- *) (* Subspace topology. *) (* ------------------------------------------------------------------------- *)
let subtopology = new_definition
 `subtopology top u = topology {s INTER u | open_in top s}`;;
let ISTOPLOGY_SUBTOPOLOGY = 
prove (`!top u:A->bool. istopology {s INTER u | open_in top s}`,
REWRITE_TAC[istopology; SET_RULE `{s INTER u | open_in top s} = IMAGE (\s. s INTER u) {s | open_in top s}`] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SUBSET_IMAGE; IN_IMAGE; IN_ELIM_THM; SUBSET] THEN REPEAT GEN_TAC THEN REPEAT CONJ_TAC THENL [EXISTS_TAC `{}:A->bool` THEN REWRITE_TAC[OPEN_IN_EMPTY; INTER_EMPTY]; SIMP_TAC[SET_RULE `(s INTER u) INTER t INTER u = (s INTER t) INTER u`] THEN ASM_MESON_TAC[OPEN_IN_INTER]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:(A->bool)->bool`; `g:(A->bool)->bool`] THEN STRIP_TAC THEN EXISTS_TAC `UNIONS g :A->bool` THEN ASM_SIMP_TAC[OPEN_IN_UNIONS; INTER_UNIONS] THEN SET_TAC[]]);;
let OPEN_IN_SUBTOPOLOGY = 
prove (`!top u s. open_in (subtopology top u) s <=> ?t. open_in top t /\ s = t INTER u`,
REWRITE_TAC[subtopology] THEN SIMP_TAC[REWRITE_RULE[CONJUNCT2 topology_tybij] ISTOPLOGY_SUBTOPOLOGY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM]);;
let TOPSPACE_SUBTOPOLOGY = 
prove (`!top u. topspace(subtopology top u) = topspace top INTER u`,
REWRITE_TAC[topspace; OPEN_IN_SUBTOPOLOGY; INTER_UNIONS] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM]);;
let CLOSED_IN_SUBTOPOLOGY = 
prove (`!top u s. closed_in (subtopology top u) s <=> ?t:A->bool. closed_in top t /\ s = t INTER u`,
REWRITE_TAC[closed_in; TOPSPACE_SUBTOPOLOGY] THEN REWRITE_TAC[SUBSET_INTER; OPEN_IN_SUBTOPOLOGY; RIGHT_AND_EXISTS_THM] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `topspace top DIFF t :A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_TOPSPACE; OPEN_IN_DIFF; CLOSED_IN_DIFF; OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]);;
let OPEN_IN_SUBTOPOLOGY_EMPTY = 
prove (`!top s. open_in (subtopology top {}) s <=> s = {}`,
REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; INTER_EMPTY] THEN MESON_TAC[OPEN_IN_EMPTY]);;
let CLOSED_IN_SUBTOPOLOGY_EMPTY = 
prove (`!top s. closed_in (subtopology top {}) s <=> s = {}`,
REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY; INTER_EMPTY] THEN MESON_TAC[CLOSED_IN_EMPTY]);;
let OPEN_IN_SUBTOPOLOGY_REFL = 
prove (`!top u:A->bool. open_in (subtopology top u) u <=> u SUBSET topspace top`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s INTER t SUBSET u`) THEN ASM_SIMP_TAC[OPEN_IN_SUBSET]; DISCH_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN REWRITE_TAC[OPEN_IN_TOPSPACE] THEN ASM SET_TAC[]]);;
let CLOSED_IN_SUBTOPOLOGY_REFL = 
prove (`!top u:A->bool. closed_in (subtopology top u) u <=> u SUBSET topspace top`,
REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET u ==> s INTER t SUBSET u`) THEN ASM_SIMP_TAC[CLOSED_IN_SUBSET]; DISCH_TAC THEN EXISTS_TAC `topspace top:A->bool` THEN REWRITE_TAC[CLOSED_IN_TOPSPACE] THEN ASM SET_TAC[]]);;
let SUBTOPOLOGY_SUPERSET = 
prove (`!top s:A->bool. topspace top SUBSET s ==> subtopology top s = top`,
REPEAT GEN_TAC THEN SIMP_TAC[TOPOLOGY_EQ; OPEN_IN_SUBTOPOLOGY] THEN DISCH_TAC THEN X_GEN_TAC `u:A->bool` THEN EQ_TAC THENL [DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP OPEN_IN_SUBSET th)) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]; DISCH_TAC THEN EXISTS_TAC `u:A->bool` THEN FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN ASM SET_TAC[]]);;
let SUBTOPOLOGY_TOPSPACE = 
prove (`!top. subtopology top (topspace top) = top`,
let SUBTOPOLOGY_UNIV = 
prove (`!top. subtopology top UNIV = top`,
let OPEN_IN_IMP_SUBSET = 
prove (`!top s t. open_in (subtopology top s) t ==> t SUBSET s`,
REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN SET_TAC[]);;
let CLOSED_IN_IMP_SUBSET = 
prove (`!top s t. closed_in (subtopology top s) t ==> t SUBSET s`,
REWRITE_TAC[closed_in; TOPSPACE_SUBTOPOLOGY] THEN SET_TAC[]);;
let OPEN_IN_SUBTOPOLOGY_UNION = 
prove (`!top s t u:A->bool. open_in (subtopology top t) s /\ open_in (subtopology top u) s ==> open_in (subtopology top (t UNION u)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s':A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t':A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `s' INTER t':A->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN ASM SET_TAC[]);;
let CLOSED_IN_SUBTOPOLOGY_UNION = 
prove (`!top s t u:A->bool. closed_in (subtopology top t) s /\ closed_in (subtopology top u) s ==> closed_in (subtopology top (t UNION u)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s':A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t':A->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `s' INTER t':A->bool` THEN ASM_SIMP_TAC[CLOSED_IN_INTER] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* The universal Euclidean versions are what we use most of the time. *) (* ------------------------------------------------------------------------- *)
let open_def = new_definition
  `open s <=> !x. x IN s ==> ?e. &0 < e /\ !x'. dist(x',x) < e ==> x' IN s`;;
let closed = new_definition
  `closed(s:real^N->bool) <=> open(UNIV DIFF s)`;;
let euclidean = new_definition
 `euclidean = topology open`;;
let OPEN_EMPTY = 
prove (`open {}`,
REWRITE_TAC[open_def; NOT_IN_EMPTY]);;
let OPEN_UNIV = 
prove (`open(:real^N)`,
REWRITE_TAC[open_def; IN_UNIV] THEN MESON_TAC[REAL_LT_01]);;
let OPEN_INTER = 
prove (`!s t. open s /\ open t ==> open (s INTER t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[open_def; AND_FORALL_THM; IN_INTER] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `d1:real`) (X_CHOOSE_TAC `d2:real`)) THEN MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN ASM_MESON_TAC[REAL_LT_TRANS]);;
let OPEN_UNIONS = 
prove (`(!s. s IN f ==> open s) ==> open(UNIONS f)`,
REWRITE_TAC[open_def; IN_UNIONS] THEN MESON_TAC[]);;
let OPEN_EXISTS_IN = 
prove (`!P Q:A->real^N->bool. (!a. P a ==> open {x | Q a x}) ==> open {x | ?a. P a /\ Q a x}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `open(UNIONS {{x | Q (a:A) (x:real^N)} | P a})` MP_TAC THENL [MATCH_MP_TAC OPEN_UNIONS THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[]]);;
let OPEN_EXISTS = 
prove (`!Q:A->real^N->bool. (!a. open {x | Q a x}) ==> open {x | ?a. Q a x}`,
MP_TAC(ISPEC `\x:A. T` OPEN_EXISTS_IN) THEN REWRITE_TAC[]);;
let OPEN_IN = 
prove (`!s:real^N->bool. open s <=> open_in euclidean s`,
GEN_TAC THEN REWRITE_TAC[euclidean] THEN CONV_TAC SYM_CONV THEN AP_THM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 topology_tybij)] THEN REWRITE_TAC[REWRITE_RULE[IN] istopology] THEN REWRITE_TAC[OPEN_EMPTY; OPEN_INTER; SUBSET] THEN MESON_TAC[IN; OPEN_UNIONS]);;
let TOPSPACE_EUCLIDEAN = 
prove (`topspace euclidean = (:real^N)`,
REWRITE_TAC[topspace; EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[OPEN_UNIV; IN_UNIV; OPEN_IN]);;
let TOPSPACE_EUCLIDEAN_SUBTOPOLOGY = 
prove (`!s. topspace (subtopology euclidean s) = s`,
let OPEN_IN_REFL = 
prove (`!s:real^N->bool. open_in (subtopology euclidean s) s`,
let CLOSED_IN_REFL = 
prove (`!s:real^N->bool. closed_in (subtopology euclidean s) s`,
let CLOSED_IN = 
prove (`!s:real^N->bool. closed s <=> closed_in euclidean s`,
REWRITE_TAC[closed; closed_in; TOPSPACE_EUCLIDEAN; OPEN_IN; SUBSET_UNIV]);;
let OPEN_UNION = 
prove (`!s t. open s /\ open t ==> open(s UNION t)`,
REWRITE_TAC[OPEN_IN; OPEN_IN_UNION]);;
let OPEN_SUBOPEN = 
prove (`!s. open s <=> !x. x IN s ==> ?t. open t /\ x IN t /\ t SUBSET s`,
REWRITE_TAC[OPEN_IN; GSYM OPEN_IN_SUBOPEN]);;
let CLOSED_EMPTY = 
prove (`closed {}`,
REWRITE_TAC[CLOSED_IN; CLOSED_IN_EMPTY]);;
let CLOSED_UNIV = 
prove (`closed(UNIV:real^N->bool)`,
let CLOSED_UNION = 
prove (`!s t. closed s /\ closed t ==> closed(s UNION t)`,
REWRITE_TAC[CLOSED_IN; CLOSED_IN_UNION]);;
let CLOSED_INTER = 
prove (`!s t. closed s /\ closed t ==> closed(s INTER t)`,
REWRITE_TAC[CLOSED_IN; CLOSED_IN_INTER]);;
let CLOSED_INTERS = 
prove (`!f. (!s:real^N->bool. s IN f ==> closed s) ==> closed(INTERS f)`,
REWRITE_TAC[CLOSED_IN] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THEN ASM_SIMP_TAC[CLOSED_IN_INTERS; INTERS_0] THEN REWRITE_TAC[GSYM TOPSPACE_EUCLIDEAN; CLOSED_IN_TOPSPACE]);;
let CLOSED_FORALL_IN = 
prove (`!P Q:A->real^N->bool. (!a. P a ==> closed {x | Q a x}) ==> closed {x | !a. P a ==> Q a x}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `closed(INTERS {{x | Q (a:A) (x:real^N)} | P a})` MP_TAC THENL [MATCH_MP_TAC CLOSED_INTERS THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[INTERS_GSPEC] THEN SET_TAC[]]);;
let CLOSED_FORALL = 
prove (`!Q:A->real^N->bool. (!a. closed {x | Q a x}) ==> closed {x | !a. Q a x}`,
MP_TAC(ISPEC `\x:A. T` CLOSED_FORALL_IN) THEN REWRITE_TAC[]);;
let OPEN_CLOSED = 
prove (`!s:real^N->bool. open s <=> closed(UNIV DIFF s)`,
let OPEN_DIFF = 
prove (`!s t. open s /\ closed t ==> open(s DIFF t)`,
REWRITE_TAC[OPEN_IN; CLOSED_IN; OPEN_IN_DIFF]);;
let CLOSED_DIFF = 
prove (`!s t. closed s /\ open t ==> closed(s DIFF t)`,
REWRITE_TAC[OPEN_IN; CLOSED_IN; CLOSED_IN_DIFF]);;
let OPEN_INTERS = 
prove (`!s. FINITE s /\ (!t. t IN s ==> open t) ==> open(INTERS s)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[INTERS_INSERT; INTERS_0; OPEN_UNIV; IN_INSERT] THEN MESON_TAC[OPEN_INTER]);;
let CLOSED_UNIONS = 
prove (`!s. FINITE s /\ (!t. t IN s ==> closed t) ==> closed(UNIONS s)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_INSERT; UNIONS_0; CLOSED_EMPTY; IN_INSERT] THEN MESON_TAC[CLOSED_UNION]);;
(* ------------------------------------------------------------------------- *) (* Open and closed balls and spheres. *) (* ------------------------------------------------------------------------- *)
let ball = new_definition
  `ball(x,e) = { y | dist(x,y) < e}`;;
let cball = new_definition
  `cball(x,e) = { y | dist(x,y) <= e}`;;
let sphere = new_definition
  `sphere(x,e) = { y | dist(x,y) = e}`;;
let IN_BALL = 
prove (`!x y e. y IN ball(x,e) <=> dist(x,y) < e`,
REWRITE_TAC[ball; IN_ELIM_THM]);;
let IN_CBALL = 
prove (`!x y e. y IN cball(x,e) <=> dist(x,y) <= e`,
REWRITE_TAC[cball; IN_ELIM_THM]);;
let IN_SPHERE = 
prove (`!x y e. y IN sphere(x,e) <=> dist(x,y) = e`,
REWRITE_TAC[sphere; IN_ELIM_THM]);;
let IN_BALL_0 = 
prove (`!x e. x IN ball(vec 0,e) <=> norm(x) < e`,
REWRITE_TAC[IN_BALL; dist; VECTOR_SUB_LZERO; NORM_NEG]);;
let IN_CBALL_0 = 
prove (`!x e. x IN cball(vec 0,e) <=> norm(x) <= e`,
REWRITE_TAC[IN_CBALL; dist; VECTOR_SUB_LZERO; NORM_NEG]);;
let IN_SPHERE_0 = 
prove (`!x e. x IN sphere(vec 0,e) <=> norm(x) = e`,
REWRITE_TAC[IN_SPHERE; dist; VECTOR_SUB_LZERO; NORM_NEG]);;
let BALL_TRIVIAL = 
prove (`!x. ball(x,&0) = {}`,
REWRITE_TAC[EXTENSION; IN_BALL; IN_SING; NOT_IN_EMPTY] THEN NORM_ARITH_TAC);;
let CBALL_TRIVIAL = 
prove (`!x. cball(x,&0) = {x}`,
REWRITE_TAC[EXTENSION; IN_CBALL; IN_SING; NOT_IN_EMPTY] THEN NORM_ARITH_TAC);;
let CENTRE_IN_CBALL = 
prove (`!x e. x IN cball(x,e) <=> &0 <= e`,
MESON_TAC[IN_CBALL; DIST_REFL]);;
let BALL_SUBSET_CBALL = 
prove (`!x e. ball(x,e) SUBSET cball(x,e)`,
REWRITE_TAC[IN_BALL; IN_CBALL; SUBSET] THEN REAL_ARITH_TAC);;
let SPHERE_SUBSET_CBALL = 
prove (`!x e. sphere(x,e) SUBSET cball(x,e)`,
REWRITE_TAC[IN_SPHERE; IN_CBALL; SUBSET] THEN REAL_ARITH_TAC);;
let SUBSET_BALL = 
prove (`!x d e. d <= e ==> ball(x,d) SUBSET ball(x,e)`,
REWRITE_TAC[SUBSET; IN_BALL] THEN MESON_TAC[REAL_LTE_TRANS]);;
let SUBSET_CBALL = 
prove (`!x d e. d <= e ==> cball(x,d) SUBSET cball(x,e)`,
REWRITE_TAC[SUBSET; IN_CBALL] THEN MESON_TAC[REAL_LE_TRANS]);;
let BALL_MAX_UNION = 
prove (`!a r s. ball(a,max r s) = ball(a,r) UNION ball(a,s)`,
REWRITE_TAC[IN_BALL; IN_UNION; EXTENSION] THEN REAL_ARITH_TAC);;
let BALL_MIN_INTER = 
prove (`!a r s. ball(a,min r s) = ball(a,r) INTER ball(a,s)`,
REWRITE_TAC[IN_BALL; IN_INTER; EXTENSION] THEN REAL_ARITH_TAC);;
let BALL_TRANSLATION = 
prove (`!a x r. ball(a + x,r) = IMAGE (\y. a + y) (ball(x,r))`,
REWRITE_TAC[ball] THEN GEOM_TRANSLATE_TAC[]);;
let CBALL_TRANSLATION = 
prove (`!a x r. cball(a + x,r) = IMAGE (\y. a + y) (cball(x,r))`,
REWRITE_TAC[cball] THEN GEOM_TRANSLATE_TAC[]);;
let SPHERE_TRANSLATION = 
prove (`!a x r. sphere(a + x,r) = IMAGE (\y. a + y) (sphere(x,r))`,
REWRITE_TAC[sphere] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [BALL_TRANSLATION; CBALL_TRANSLATION; SPHERE_TRANSLATION];;
let BALL_LINEAR_IMAGE = 
prove (`!f:real^M->real^N x r. linear f /\ (!y. ?x. f x = y) /\ (!x. norm(f x) = norm x) ==> ball(f x,r) = IMAGE f (ball(x,r))`,
REWRITE_TAC[ball] THEN GEOM_TRANSFORM_TAC[]);;
let CBALL_LINEAR_IMAGE = 
prove (`!f:real^M->real^N x r. linear f /\ (!y. ?x. f x = y) /\ (!x. norm(f x) = norm x) ==> cball(f x,r) = IMAGE f (cball(x,r))`,
REWRITE_TAC[cball] THEN GEOM_TRANSFORM_TAC[]);;
let SPHERE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N x r. linear f /\ (!y. ?x. f x = y) /\ (!x. norm(f x) = norm x) ==> sphere(f x,r) = IMAGE f (sphere(x,r))`,
REWRITE_TAC[sphere] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [BALL_LINEAR_IMAGE; CBALL_LINEAR_IMAGE; SPHERE_LINEAR_IMAGE];;
let BALL_SCALING = 
prove (`!c. &0 < c ==> !x r. ball(c % x,c * r) = IMAGE (\x. c % x) (ball(x,r))`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SURJECTIVE_SCALING; REAL_LT_IMP_NZ]; ALL_TAC] THEN REWRITE_TAC[IN_BALL; DIST_MUL] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < c ==> abs c = c`; REAL_LT_LMUL_EQ]);;
let CBALL_SCALING = 
prove (`!c. &0 < c ==> !x r. cball(c % x,c * r) = IMAGE (\x. c % x) (cball(x,r))`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SURJECTIVE_SCALING; REAL_LT_IMP_NZ]; ALL_TAC] THEN REWRITE_TAC[IN_CBALL; DIST_MUL] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < c ==> abs c = c`; REAL_LE_LMUL_EQ]);;
add_scaling_theorems [BALL_SCALING; CBALL_SCALING];;
let CBALL_DIFF_BALL = 
prove (`!a r. cball(a,r) DIFF ball(a,r) = sphere(a,r)`,
REWRITE_TAC[ball; cball; sphere; EXTENSION; IN_DIFF; IN_ELIM_THM] THEN REAL_ARITH_TAC);;
let BALL_UNION_SPHERE = 
prove (`!a r. ball(a,r) UNION sphere(a,r) = cball(a,r)`,
REWRITE_TAC[ball; cball; sphere; EXTENSION; IN_UNION; IN_ELIM_THM] THEN REAL_ARITH_TAC);;
let SPHERE_UNION_BALL = 
prove (`!a r. sphere(a,r) UNION ball(a,r) = cball(a,r)`,
REWRITE_TAC[ball; cball; sphere; EXTENSION; IN_UNION; IN_ELIM_THM] THEN REAL_ARITH_TAC);;
let CBALL_DIFF_SPHERE = 
prove (`!a r. cball(a,r) DIFF sphere(a,r) = ball(a,r)`,
REWRITE_TAC[EXTENSION; IN_DIFF; IN_SPHERE; IN_BALL; IN_CBALL] THEN REAL_ARITH_TAC);;
let OPEN_BALL = 
prove (`!x e. open(ball(x,e))`,
REWRITE_TAC[open_def; ball; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN MESON_TAC[REAL_SUB_LT; REAL_LT_SUB_LADD; REAL_ADD_SYM; REAL_LET_TRANS; DIST_TRIANGLE_ALT]);;
let CENTRE_IN_BALL = 
prove (`!x e. x IN ball(x,e) <=> &0 < e`,
MESON_TAC[IN_BALL; DIST_REFL]);;
let OPEN_CONTAINS_BALL = 
prove (`!s. open s <=> !x. x IN s ==> ?e. &0 < e /\ ball(x,e) SUBSET s`,
REWRITE_TAC[open_def; SUBSET; IN_BALL] THEN REWRITE_TAC[DIST_SYM]);;
let OPEN_CONTAINS_BALL_EQ = 
prove (`!s. open s ==> (!x. x IN s <=> ?e. &0 < e /\ ball(x,e) SUBSET s)`,
let BALL_EQ_EMPTY = 
prove (`!x e. (ball(x,e) = {}) <=> e <= &0`,
let BALL_EMPTY = 
prove (`!x e. e <= &0 ==> ball(x,e) = {}`,
REWRITE_TAC[BALL_EQ_EMPTY]);;
let OPEN_CONTAINS_CBALL = 
prove (`!s. open s <=> !x. x IN s ==> ?e. &0 < e /\ cball(x,e) SUBSET s`,
GEN_TAC THEN REWRITE_TAC[OPEN_CONTAINS_BALL] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBSET_TRANS; BALL_SUBSET_CBALL]] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[SUBSET; IN_BALL; IN_CBALL] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e / &2` THEN ASM_REWRITE_TAC[REAL_HALF] THEN SUBGOAL_THEN `e / &2 < e` (fun th -> ASM_MESON_TAC[th; REAL_LET_TRANS]) THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN UNDISCH_TAC `&0 < e` THEN REAL_ARITH_TAC);;
let OPEN_CONTAINS_CBALL_EQ = 
prove (`!s. open s ==> (!x. x IN s <=> ?e. &0 < e /\ cball(x,e) SUBSET s)`,
let SPHERE_EQ_EMPTY = 
prove (`!a:real^N r. sphere(a,r) = {} <=> r < &0`,
REWRITE_TAC[sphere; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; CONV_TAC NORM_ARITH] THEN MESON_TAC[VECTOR_CHOOSE_DIST; REAL_NOT_LE]);;
let SPHERE_EMPTY = 
prove (`!a:real^N r. r < &0 ==> sphere(a,r) = {}`,
REWRITE_TAC[SPHERE_EQ_EMPTY]);;
let NEGATIONS_BALL = 
prove (`!r. IMAGE (--) (ball(vec 0:real^N,r)) = ball(vec 0,r)`,
GEN_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_BALL_0; NORM_NEG] THEN MESON_TAC[VECTOR_NEG_NEG]);;
let NEGATIONS_CBALL = 
prove (`!r. IMAGE (--) (cball(vec 0:real^N,r)) = cball(vec 0,r)`,
GEN_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_CBALL_0; NORM_NEG] THEN MESON_TAC[VECTOR_NEG_NEG]);;
let NEGATIONS_SPHERE = 
prove (`!r. IMAGE (--) (sphere(vec 0:real^N,r)) = sphere(vec 0,r)`,
GEN_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_SPHERE_0; NORM_NEG] THEN MESON_TAC[VECTOR_NEG_NEG]);;
(* ------------------------------------------------------------------------- *) (* Basic "localization" results are handy for connectedness. *) (* ------------------------------------------------------------------------- *)
let OPEN_IN_OPEN = 
prove (`!s:real^N->bool u. open_in (subtopology euclidean u) s <=> ?t. open t /\ (s = u INTER t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; GSYM OPEN_IN] THEN REWRITE_TAC[INTER_ACI]);;
let OPEN_IN_INTER_OPEN = 
prove (`!s t u:real^N->bool. open_in (subtopology euclidean u) s /\ open t ==> open_in (subtopology euclidean u) (s INTER t)`,
REWRITE_TAC[OPEN_IN_OPEN] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[INTER_ASSOC] THEN ASM_MESON_TAC[OPEN_INTER]);;
let OPEN_IN_OPEN_INTER = 
prove (`!u s. open s ==> open_in (subtopology euclidean u) (u INTER s)`,
REWRITE_TAC[OPEN_IN_OPEN] THEN MESON_TAC[]);;
let OPEN_OPEN_IN_TRANS = 
prove (`!s t. open s /\ open t /\ t SUBSET s ==> open_in (subtopology euclidean s) t`,
MESON_TAC[OPEN_IN_OPEN_INTER; SET_RULE `t SUBSET s ==> t = s INTER t`]);;
let OPEN_SUBSET = 
prove (`!s t:real^N->bool. s SUBSET t /\ open s ==> open_in (subtopology euclidean t) s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[OPEN_IN_OPEN] THEN EXISTS_TAC `s:real^N->bool` THEN ASM SET_TAC[]);;
let CLOSED_IN_CLOSED = 
prove (`!s:real^N->bool u. closed_in (subtopology euclidean u) s <=> ?t. closed t /\ (s = u INTER t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSED_IN_SUBTOPOLOGY; GSYM CLOSED_IN] THEN REWRITE_TAC[INTER_ACI]);;
let CLOSED_SUBSET_EQ = 
prove (`!u s:real^N->bool. closed s ==> (closed_in (subtopology euclidean u) s <=> s SUBSET u)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]; REWRITE_TAC[CLOSED_IN_CLOSED] THEN EXISTS_TAC `s:real^N->bool` THEN ASM SET_TAC[]]);;
let CLOSED_IN_INTER_CLOSED = 
prove (`!s t u:real^N->bool. closed_in (subtopology euclidean u) s /\ closed t ==> closed_in (subtopology euclidean u) (s INTER t)`,
REWRITE_TAC[CLOSED_IN_CLOSED] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[INTER_ASSOC] THEN ASM_MESON_TAC[CLOSED_INTER]);;
let CLOSED_IN_CLOSED_INTER = 
prove (`!u s. closed s ==> closed_in (subtopology euclidean u) (u INTER s)`,
REWRITE_TAC[CLOSED_IN_CLOSED] THEN MESON_TAC[]);;
let CLOSED_CLOSED_IN_TRANS = 
prove (`!s t. closed s /\ closed t /\ t SUBSET s ==> closed_in (subtopology euclidean s) t`,
MESON_TAC[CLOSED_IN_CLOSED_INTER; SET_RULE `t SUBSET s ==> t = s INTER t`]);;
let CLOSED_SUBSET = 
prove (`!s t:real^N->bool. s SUBSET t /\ closed s ==> closed_in (subtopology euclidean t) s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN EXISTS_TAC `s:real^N->bool` THEN ASM SET_TAC[]);;
let OPEN_IN_SUBSET_TRANS = 
prove (`!s t u:real^N->bool. open_in (subtopology euclidean u) s /\ s SUBSET t /\ t SUBSET u ==> open_in (subtopology euclidean t) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;
let CLOSED_IN_SUBSET_TRANS = 
prove (`!s t u:real^N->bool. closed_in (subtopology euclidean u) s /\ s SUBSET t /\ t SUBSET u ==> closed_in (subtopology euclidean t) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_CLOSED; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;
let open_in = 
prove (`!u s:real^N->bool. open_in (subtopology euclidean u) s <=> s SUBSET u /\ !x. x IN s ==> ?e. &0 < e /\ !x'. x' IN u /\ dist(x',x) < e ==> x' IN s`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY; GSYM OPEN_IN] THEN EQ_TAC THENL [REWRITE_TAC[open_def] THEN ASM SET_TAC[INTER_SUBSET; IN_INTER]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `d:real^N->real`) THEN EXISTS_TAC `UNIONS {b | ?x:real^N. (b = ball(x,d x)) /\ x IN s}` THEN CONJ_TAC THENL [MATCH_MP_TAC OPEN_UNIONS THEN ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; OPEN_BALL]; GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTER; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET; DIST_REFL; DIST_SYM; IN_BALL]]);;
let OPEN_IN_CONTAINS_BALL = 
prove (`!s t:real^N->bool. open_in (subtopology euclidean t) s <=> s SUBSET t /\ !x. x IN s ==> ?e. &0 < e /\ ball(x,e) INTER t SUBSET s`,
REWRITE_TAC[open_in; INTER; SUBSET; IN_ELIM_THM; IN_BALL] THEN MESON_TAC[DIST_SYM]);;
let OPEN_IN_CONTAINS_CBALL = 
prove (`!s t:real^N->bool. open_in (subtopology euclidean t) s <=> s SUBSET t /\ !x. x IN s ==> ?e. &0 < e /\ cball(x,e) INTER t SUBSET s`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_CONTAINS_BALL] THEN AP_TERM_TAC THEN REWRITE_TAC[IN_BALL; IN_INTER; SUBSET; IN_CBALL] THEN MESON_TAC[REAL_ARITH `&0 < e ==> &0 < e / &2 /\ (x <= e / &2 ==> x < e)`; REAL_LT_IMP_LE]);;
(* ------------------------------------------------------------------------- *) (* These "transitivity" results are handy too. *) (* ------------------------------------------------------------------------- *)
let OPEN_IN_TRANS = 
prove (`!s t u. open_in (subtopology euclidean t) s /\ open_in (subtopology euclidean u) t ==> open_in (subtopology euclidean u) s`,
let OPEN_IN_OPEN_TRANS = 
prove (`!s t. open_in (subtopology euclidean t) s /\ open t ==> open s`,
REWRITE_TAC[ONCE_REWRITE_RULE[GSYM SUBTOPOLOGY_UNIV] OPEN_IN] THEN REWRITE_TAC[OPEN_IN_TRANS]);;
let CLOSED_IN_TRANS = 
prove (`!s t u. closed_in (subtopology euclidean t) s /\ closed_in (subtopology euclidean u) t ==> closed_in (subtopology euclidean u) s`,
let CLOSED_IN_CLOSED_TRANS = 
prove (`!s t. closed_in (subtopology euclidean t) s /\ closed t ==> closed s`,
REWRITE_TAC[ONCE_REWRITE_RULE[GSYM SUBTOPOLOGY_UNIV] CLOSED_IN] THEN REWRITE_TAC[CLOSED_IN_TRANS]);;
let OPEN_IN_SUBTOPOLOGY_INTER_SUBSET = 
prove (`!s u v. open_in (subtopology euclidean u) (u INTER s) /\ v SUBSET u ==> open_in (subtopology euclidean v) (v INTER s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;
let OPEN_IN_OPEN_EQ = 
prove (`!s t. open s ==> (open_in (subtopology euclidean s) t <=> open t /\ t SUBSET s)`,
let CLOSED_IN_CLOSED_EQ = 
prove (`!s t. closed s ==> (closed_in (subtopology euclidean s) t <=> closed t /\ t SUBSET s)`,
(* ------------------------------------------------------------------------- *) (* Also some invariance theorems for relative topology. *) (* ------------------------------------------------------------------------- *)
let OPEN_IN_TRANSLATION_EQ = 
prove (`!a s t. open_in (subtopology euclidean (IMAGE (\x. a + x) t)) (IMAGE (\x. a + x) s) <=> open_in (subtopology euclidean t) s`,
REWRITE_TAC[open_in] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [OPEN_IN_TRANSLATION_EQ];;
let CLOSED_IN_TRANSLATION_EQ = 
prove (`!a s t. closed_in (subtopology euclidean (IMAGE (\x. a + x) t)) (IMAGE (\x. a + x) s) <=> closed_in (subtopology euclidean t) s`,
REWRITE_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [CLOSED_IN_TRANSLATION_EQ];;
let OPEN_IN_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s t. linear f /\ (!x y. f x = f y ==> x = y) ==> (open_in (subtopology euclidean (IMAGE f t)) (IMAGE f s) <=> open_in (subtopology euclidean t) s)`,
REWRITE_TAC[open_in; FORALL_IN_IMAGE; IMP_CONJ; SUBSET] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `(!x y. f x = f y ==> x = y) ==> (!x s. f x IN IMAGE f s <=> x IN s)`)) THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_BOUNDED_POS) THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_BOUNDED_BELOW_POS) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B2:real` THEN STRIP_TAC THEN X_GEN_TAC `B1:real` THEN STRIP_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:real^M` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN FIRST_ASSUM(ASSUME_TAC o GSYM o MATCH_MP LINEAR_SUB) THEN ASM_REWRITE_TAC[dist; IMP_IMP] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THENL [EXISTS_TAC `e / B1:real`; EXISTS_TAC `e * B2:real`] THEN ASM_SIMP_TAC[REAL_LT_MUL; REAL_LT_DIV] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC(REAL_ARITH `norm(f x) <= B1 * norm(x) /\ norm(x) * B1 < e ==> norm(f x) < e`) THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ]; MATCH_MP_TAC(REAL_ARITH `norm x <= norm (f x :real^N) / B2 /\ norm(f x) / B2 < e ==> norm x < e`) THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_LDIV_EQ]]);;
add_linear_invariants [OPEN_IN_INJECTIVE_LINEAR_IMAGE];;
let CLOSED_IN_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s t. linear f /\ (!x y. f x = f y ==> x = y) ==> (closed_in (subtopology euclidean (IMAGE f t)) (IMAGE f s) <=> closed_in (subtopology euclidean t) s)`,
REWRITE_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [CLOSED_IN_INJECTIVE_LINEAR_IMAGE];; (* ------------------------------------------------------------------------- *) (* Connectedness. *) (* ------------------------------------------------------------------------- *)
let connected = new_definition
  `connected s <=>
      ~(?e1 e2. open e1 /\ open e2 /\ s SUBSET (e1 UNION e2) /\
                (e1 INTER e2 INTER s = {}) /\
                ~(e1 INTER s = {}) /\ ~(e2 INTER s = {}))`;;
let CONNECTED_CLOSED = 
prove (`!s:real^N->bool. connected s <=> ~(?e1 e2. closed e1 /\ closed e2 /\ s SUBSET (e1 UNION e2) /\ (e1 INTER e2 INTER s = {}) /\ ~(e1 INTER s = {}) /\ ~(e2 INTER s = {}))`,
GEN_TAC THEN REWRITE_TAC[connected] THEN AP_TERM_TAC THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N->bool`; `v:real^N->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(:real^N) DIFF v`; `(:real^N) DIFF u`] THEN ASM_REWRITE_TAC[GSYM closed; GSYM OPEN_CLOSED] THEN ASM SET_TAC[]);;
let CONNECTED_OPEN_IN = 
prove (`!s. connected s <=> ~(?e1 e2. open_in (subtopology euclidean s) e1 /\ open_in (subtopology euclidean s) e2 /\ s SUBSET e1 UNION e2 /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`,
GEN_TAC THEN REWRITE_TAC[connected; OPEN_IN_OPEN] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN CONV_TAC(ONCE_DEPTH_CONV UNWIND_CONV) THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN SET_TAC[]);;
let CONNECTED_OPEN_IN_EQ = 
prove (`!s. connected s <=> ~(?e1 e2. open_in (subtopology euclidean s) e1 /\ open_in (subtopology euclidean s) e2 /\ e1 UNION e2 = s /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`,
GEN_TAC THEN REWRITE_TAC[CONNECTED_OPEN_IN] THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN RULE_ASSUM_TAC(REWRITE_RULE[OPEN_IN_CLOSED_IN_EQ; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]) THEN ASM SET_TAC[]);;
let CONNECTED_CLOSED_IN = 
prove (`!s. connected s <=> ~(?e1 e2. closed_in (subtopology euclidean s) e1 /\ closed_in (subtopology euclidean s) e2 /\ s SUBSET e1 UNION e2 /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`,
GEN_TAC THEN REWRITE_TAC[CONNECTED_CLOSED; CLOSED_IN_CLOSED] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN CONV_TAC(ONCE_DEPTH_CONV UNWIND_CONV) THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN SET_TAC[]);;
let CONNECTED_CLOSED_IN_EQ = 
prove (`!s. connected s <=> ~(?e1 e2. closed_in (subtopology euclidean s) e1 /\ closed_in (subtopology euclidean s) e2 /\ e1 UNION e2 = s /\ e1 INTER e2 = {} /\ ~(e1 = {}) /\ ~(e2 = {}))`,
GEN_TAC THEN REWRITE_TAC[CONNECTED_CLOSED_IN] THEN AP_TERM_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN RULE_ASSUM_TAC(REWRITE_RULE[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]) THEN ASM SET_TAC[]);;
let CONNECTED_CLOPEN = 
prove (`!s. connected s <=> !t. open_in (subtopology euclidean s) t /\ closed_in (subtopology euclidean s) t ==> t = {} \/ t = s`,
GEN_TAC THEN REWRITE_TAC[connected; OPEN_IN_OPEN; CLOSED_IN_CLOSED] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o BINDER_CONV) [GSYM EXISTS_DIFF] THEN ONCE_REWRITE_TAC[TAUT `(~a <=> b) <=> (a <=> ~b)`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; GSYM CONJ_ASSOC; DE_MORGAN_THM] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> b /\ a /\ c /\ d`] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[GSYM closed] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[TAUT `(a /\ b) /\ (c /\ d) /\ e <=> a /\ c /\ b /\ d /\ e`] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);;
let CONNECTED_CLOSED_SET = 
prove (`!s:real^N->bool. closed s ==> (connected s <=> ~(?e1 e2. closed e1 /\ closed e2 /\ ~(e1 = {}) /\ ~(e2 = {}) /\ e1 UNION e2 = s /\ e1 INTER e2 = {}))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[CONNECTED_CLOSED; CONTRAPOS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[] THEN SET_TAC[]; REWRITE_TAC[CONNECTED_CLOSED_IN; CONTRAPOS_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[CLOSED_IN_CLOSED; LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP] THEN MAP_EVERY X_GEN_TAC [`e1:real^N->bool`; `e2:real^N->bool`; `u:real^N->bool`; `v:real^N->bool`] THEN STRIP_TAC THEN MAP_EVERY (C UNDISCH_THEN SUBST_ALL_TAC) [`e1:real^N->bool = s INTER u`; `e2:real^N->bool = s INTER v`] THEN MAP_EVERY EXISTS_TAC [`s INTER u:real^N->bool`; `s INTER v:real^N->bool`] THEN ASM_SIMP_TAC[CLOSED_INTER] THEN ASM SET_TAC[]]);;
let CONNECTED_OPEN_SET = 
prove (`!s:real^N->bool. open s ==> (connected s <=> ~(?e1 e2. open e1 /\ open e2 /\ ~(e1 = {}) /\ ~(e2 = {}) /\ e1 UNION e2 = s /\ e1 INTER e2 = {}))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[connected; CONTRAPOS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN SIMP_TAC[] THEN SET_TAC[]; REWRITE_TAC[CONNECTED_OPEN_IN; CONTRAPOS_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[OPEN_IN_OPEN; LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP] THEN MAP_EVERY X_GEN_TAC [`e1:real^N->bool`; `e2:real^N->bool`; `u:real^N->bool`; `v:real^N->bool`] THEN STRIP_TAC THEN MAP_EVERY (C UNDISCH_THEN SUBST_ALL_TAC) [`e1:real^N->bool = s INTER u`; `e2:real^N->bool = s INTER v`] THEN MAP_EVERY EXISTS_TAC [`s INTER u:real^N->bool`; `s INTER v:real^N->bool`] THEN ASM_SIMP_TAC[OPEN_INTER] THEN ASM SET_TAC[]]);;
let CONNECTED_EMPTY = 
prove (`connected {}`,
REWRITE_TAC[connected; INTER_EMPTY]);;
let CONNECTED_SING = 
prove (`!a. connected{a}`,
REWRITE_TAC[connected] THEN SET_TAC[]);;
let CONNECTED_UNIONS = 
prove (`!P:(real^N->bool)->bool. (!s. s IN P ==> connected s) /\ ~(INTERS P = {}) ==> connected(UNIONS P)`,
GEN_TAC THEN REWRITE_TAC[connected; NOT_EXISTS_THM] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`e1:real^N->bool`; `e2:real^N->bool`] THEN STRIP_TAC THEN UNDISCH_TAC `~(INTERS P :real^N->bool = {})` THEN PURE_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTERS] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(a:real^N) IN e1 \/ a IN e2` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; UNDISCH_TAC `~(e2 INTER UNIONS P:real^N->bool = {})`; UNDISCH_TAC `~(e1 INTER UNIONS P:real^N->bool = {})`] THEN PURE_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER; IN_UNIONS] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `!t:real^N->bool. t IN P ==> a IN t` THEN DISCH_THEN(MP_TAC o SPEC `s:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`e1:real^N->bool`; `e2:real^N->bool`]) THEN ASM SET_TAC[]);;
let CONNECTED_UNION = 
prove (`!s t:real^N->bool. connected s /\ connected t /\ ~(s INTER t = {}) ==> connected (s UNION t)`,
REWRITE_TAC[GSYM UNIONS_2; GSYM INTERS_2] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_UNIONS THEN ASM SET_TAC[]);;
let CONNECTED_DIFF_OPEN_FROM_CLOSED = 
prove (`!s t u:real^N->bool. s SUBSET t /\ t SUBSET u /\ open s /\ closed t /\ connected u /\ connected(t DIFF s) ==> connected(u DIFF s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[connected; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`v:real^N->bool`; `w:real^N->bool`] THEN STRIP_TAC THEN UNDISCH_TAC `connected(t DIFF s:real^N->bool)` THEN SIMP_TAC[connected] THEN MAP_EVERY EXISTS_TAC [`v:real^N->bool`; `w:real^N->bool`] THEN ASM_REWRITE_TAC[] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`v:real^N->bool`; `w:real^N->bool`] THEN MATCH_MP_TAC(MESON[] `(!v w. P v w ==> P w v) /\ (!w v. P v w /\ Q w ==> F) ==> !w v. P v w ==> ~(Q v) /\ ~(Q w)`) THEN CONJ_TAC THENL [SIMP_TAC[CONJ_ACI; INTER_ACI; UNION_ACI]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connected]) THEN SIMP_TAC[] THEN MAP_EVERY EXISTS_TAC [`v UNION s:real^N->bool`; `w DIFF t:real^N->bool`] THEN ASM_SIMP_TAC[OPEN_UNION; OPEN_DIFF] THEN ASM SET_TAC[]);;
let CONNECTED_DISJOINT_UNIONS_OPEN_UNIQUE = 
prove (`!f:(real^N->bool)->bool f'. pairwise DISJOINT f /\ pairwise DISJOINT f' /\ (!s. s IN f ==> open s /\ connected s /\ ~(s = {})) /\ (!s. s IN f' ==> open s /\ connected s /\ ~(s = {})) /\ UNIONS f = UNIONS f' ==> f = f'`,
GEN_REWRITE_TAC (funpow 2 BINDER_CONV o RAND_CONV) [EXTENSION] THEN MATCH_MP_TAC(MESON[] `(!s t. P s t ==> P t s) /\ (!s t x. P s t /\ x IN s ==> x IN t) ==> (!s t. P s t ==> (!x. x IN s <=> x IN t))`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `s:real^N->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `?t a:real^N. t IN f' /\ a IN s /\ a IN t` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `s:real^N->bool = t` (fun th -> ASM_REWRITE_TAC[th]) THEN REWRITE_TAC[EXTENSION] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`s:real^N->bool`; `t:real^N->bool`; `f:(real^N->bool)->bool`; `f':(real^N->bool)->bool`] THEN MATCH_MP_TAC(MESON[] `(!f f' s t. P f f' s t ==> P f' f t s) /\ (!f f' s t x. P f f' s t /\ x IN s ==> x IN t) ==> (!f' f t s. P f f' s t ==> (!x. x IN s <=> x IN t))`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REPLICATE_TAC 4 GEN_TAC THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN UNDISCH_TAC `!s:real^N->bool. s IN f ==> open s /\ connected s /\ ~(s = {})` THEN DISCH_THEN(MP_TAC o SPEC `s:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_CASES_TAC `(b:real^N) IN t` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `connected(s:real^N->bool)` THEN REWRITE_TAC[connected] THEN MAP_EVERY EXISTS_TAC [`t:real^N->bool`; `UNIONS(f' DELETE (t:real^N->bool))`] THEN REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[]; MATCH_MP_TAC OPEN_UNIONS THEN ASM_SIMP_TAC[IN_DELETE]; REWRITE_TAC[GSYM UNIONS_INSERT] THEN ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `t INTER u = {} ==> t INTER u INTER s = {}`) THEN REWRITE_TAC[INTER_UNIONS; EMPTY_UNIONS; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_DELETE; GSYM DISJOINT] THEN ASM_MESON_TAC[pairwise]; ASM SET_TAC[]; ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Sort of induction principle for connected sets. *) (* ------------------------------------------------------------------------- *)
let CONNECTED_INDUCTION = 
prove (`!P Q s:real^N->bool. connected s /\ (!t a. open_in (subtopology euclidean s) t /\ a IN t ==> ?z. z IN t /\ P z) /\ (!a. a IN s ==> ?t. open_in (subtopology euclidean s) t /\ a IN t /\ !x y. x IN t /\ y IN t /\ P x /\ P y /\ Q x ==> Q y) ==> !a b. a IN s /\ b IN s /\ P a /\ P b /\ Q a ==> Q b`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_OPEN_IN]) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`{b:real^N | ?t. open_in (subtopology euclidean s) t /\ b IN t /\ !x. x IN t /\ P x ==> Q x}`; `{b:real^N | ?t. open_in (subtopology euclidean s) t /\ b IN t /\ !x. x IN t /\ P x ==> ~(Q x)}`] THEN REPEAT CONJ_TAC THENL [ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `c:real^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `c:real^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN X_GEN_TAC `c:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N`) THEN ASM SET_TAC[]; REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM] THEN X_GEN_TAC `c:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`t INTER u:real^N->bool`; `c:real^N`]) THEN ASM_SIMP_TAC[OPEN_IN_INTER] THEN ASM SET_TAC[]; ASM SET_TAC[]; ASM SET_TAC[]]);;
let CONNECTED_EQUIVALENCE_RELATION_GEN = 
prove (`!P R s:real^N->bool. connected s /\ (!x y. R x y ==> R y x) /\ (!x y z. R x y /\ R y z ==> R x z) /\ (!t a. open_in (subtopology euclidean s) t /\ a IN t ==> ?z. z IN t /\ P z) /\ (!a. a IN s ==> ?t. open_in (subtopology euclidean s) t /\ a IN t /\ !x y. x IN t /\ y IN t /\ P x /\ P y ==> R x y) ==> !a b. a IN s /\ b IN s /\ P a /\ P b ==> R a b`,
REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!a:real^N. a IN s /\ P a ==> !b c. b IN s /\ c IN s /\ P b /\ P c /\ R a b ==> R a c` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONNECTED_INDUCTION THEN ASM_MESON_TAC[]);;
let CONNECTED_INDUCTION_SIMPLE = 
prove (`!P s:real^N->bool. connected s /\ (!a. a IN s ==> ?t. open_in (subtopology euclidean s) t /\ a IN t /\ !x y. x IN t /\ y IN t /\ P x ==> P y) ==> !a b. a IN s /\ b IN s /\ P a ==> P b`,
MP_TAC(ISPEC `\x:real^N. T` CONNECTED_INDUCTION) THEN REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MESON_TAC[]);;
let CONNECTED_EQUIVALENCE_RELATION = 
prove (`!R s:real^N->bool. connected s /\ (!x y. R x y ==> R y x) /\ (!x y z. R x y /\ R y z ==> R x z) /\ (!a. a IN s ==> ?t. open_in (subtopology euclidean s) t /\ a IN t /\ !x. x IN t ==> R a x) ==> !a b. a IN s /\ b IN s ==> R a b`,
REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!a:real^N. a IN s ==> !b c. b IN s /\ c IN s /\ R a b ==> R a c` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONNECTED_INDUCTION_SIMPLE THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Limit points. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("limit_point_of",(12,"right"));;
let limit_point_of = new_definition
 `x limit_point_of s <=>
        !t. x IN t /\ open t ==> ?y. ~(y = x) /\ y IN s /\ y IN t`;;
let LIMPT_SUBSET = 
prove (`!x s t. x limit_point_of s /\ s SUBSET t ==> x limit_point_of t`,
REWRITE_TAC[limit_point_of; SUBSET] THEN MESON_TAC[]);;
let LIMPT_APPROACHABLE = 
prove (`!x s. x limit_point_of s <=> !e. &0 < e ==> ?x'. x' IN s /\ ~(x' = x) /\ dist(x',x) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[limit_point_of] THEN MESON_TAC[open_def; DIST_SYM; OPEN_BALL; CENTRE_IN_BALL; IN_BALL]);;
let LIMPT_APPROACHABLE_LE = 
prove (`!x s. x limit_point_of s <=> !e. &0 < e ==> ?x'. x' IN s /\ ~(x' = x) /\ dist(x',x) <= e`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN MATCH_MP_TAC(TAUT `(~a <=> ~b) ==> (a <=> b)`) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> c ==> ~(a /\ b)`; APPROACHABLE_LT_LE]);;
let LIMPT_UNIV = 
prove (`!x:real^N. x limit_point_of UNIV`,
GEN_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE; IN_UNIV] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN SUBGOAL_THEN `?c:real^N. norm(c) = e / &2` CHOOSE_TAC THENL [ASM_SIMP_TAC[VECTOR_CHOOSE_SIZE; REAL_HALF; REAL_LT_IMP_LE]; ALL_TAC] THEN EXISTS_TAC `x + c:real^N` THEN REWRITE_TAC[dist; VECTOR_EQ_ADDR] THEN ASM_REWRITE_TAC[VECTOR_ADD_SUB] THEN SUBGOAL_THEN `&0 < e / &2 /\ e / &2 < e` (fun th -> ASM_MESON_TAC[th; NORM_0; REAL_LT_REFL]) THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN UNDISCH_TAC `&0 < e` THEN REAL_ARITH_TAC);;
let CLOSED_LIMPT = 
prove (`!s. closed s <=> !x. x limit_point_of s ==> x IN s`,
REWRITE_TAC[closed] THEN ONCE_REWRITE_TAC[OPEN_SUBOPEN] THEN REWRITE_TAC[limit_point_of; IN_DIFF; IN_UNIV; SUBSET] THEN MESON_TAC[]);;
let LIMPT_EMPTY = 
prove (`!x. ~(x limit_point_of {})`,
REWRITE_TAC[LIMPT_APPROACHABLE; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LT_01]);;
let NO_LIMIT_POINT_IMP_CLOSED = 
prove (`!s. ~(?x. x limit_point_of s) ==> closed s`,
MESON_TAC[CLOSED_LIMPT]);;
let CLOSED_POSITIVE_ORTHANT = 
prove (`closed {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> &0 <= x$i}`,
REWRITE_TAC[CLOSED_LIMPT; LIMPT_APPROACHABLE] THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `--(x:real^N $ i)`) THEN ASM_REWRITE_TAC[REAL_LT_RNEG; REAL_ADD_LID; NOT_EXISTS_THM] THEN X_GEN_TAC `y:real^N` THEN MATCH_MP_TAC(TAUT `(a ==> ~c) ==> ~(a /\ b /\ c)`) THEN DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH `!b. abs x <= b /\ b <= a ==> ~(a + x < &0)`) THEN EXISTS_TAC `abs((y - x :real^N)$i)` THEN ASM_SIMP_TAC[dist; COMPONENT_LE_NORM] THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; REAL_ARITH `x < &0 /\ &0 <= y ==> abs(x) <= abs(y - x)`]);;
let FINITE_SET_AVOID = 
prove (`!a:real^N s. FINITE s ==> ?d. &0 < d /\ !x. x IN s /\ ~(x = a) ==> d <= dist(a,x)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_IN_EMPTY] THEN CONJ_TAC THENL [MESON_TAC[REAL_LT_01]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `s:real^N->bool`] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `x:real^N = a` THEN REWRITE_TAC[IN_INSERT] THENL [ASM_MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `min d (dist(a:real^N,x))` THEN ASM_REWRITE_TAC[REAL_LT_MIN; GSYM DIST_NZ; REAL_MIN_LE] THEN ASM_MESON_TAC[REAL_LE_REFL]);;
let LIMIT_POINT_FINITE = 
prove (`!s a. FINITE s ==> ~(a limit_point_of s)`,
REWRITE_TAC[LIMPT_APPROACHABLE; GSYM REAL_NOT_LE] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM; REAL_NOT_LE; REAL_NOT_LT; TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN MESON_TAC[FINITE_SET_AVOID; DIST_SYM]);;
let LIMPT_SING = 
prove (`!x y:real^N. ~(x limit_point_of {y})`,
let LIMIT_POINT_UNION = 
prove (`!s t x:real^N. x limit_point_of (s UNION t) <=> x limit_point_of s \/ x limit_point_of t`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[LIMPT_SUBSET; SUBSET_UNION]] THEN REWRITE_TAC[LIMPT_APPROACHABLE; IN_UNION] THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(~a ==> b) ==> a \/ b`) THEN REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN X_GEN_TAC `d:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `min d e`) THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);;
let LIMPT_INSERT = 
prove (`!s x y:real^N. x limit_point_of (y INSERT s) <=> x limit_point_of s`,
ONCE_REWRITE_TAC[SET_RULE `y INSERT s = {y} UNION s`] THEN REWRITE_TAC[LIMIT_POINT_UNION] THEN SIMP_TAC[FINITE_SING; LIMIT_POINT_FINITE]);;
let LIMPT_OF_LIMPTS = 
prove (`!x:real^N s. x limit_point_of {y | y limit_point_of s} ==> x limit_point_of s`,
REWRITE_TAC[LIMPT_APPROACHABLE; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `dist(y:real^N,x)`) THEN ASM_SIMP_TAC[DIST_POS_LT] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN NORM_ARITH_TAC);;
let CLOSED_LIMPTS = 
prove (`!s. closed {x:real^N | x limit_point_of s}`,
let DISCRETE_IMP_CLOSED = 
prove (`!s:real^N->bool e. &0 < e /\ (!x y. x IN s /\ y IN s /\ norm(y - x) < e ==> y = x) ==> closed s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x:real^N. ~(x limit_point_of s)` (fun th -> MESON_TAC[th; CLOSED_LIMPT]) THEN GEN_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `e / &2`) THEN REWRITE_TAC[REAL_HALF; ASSUME `&0 < e`] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `min (e / &2) (dist(x:real^N,y))`) THEN ASM_SIMP_TAC[REAL_LT_MIN; DIST_POS_LT; REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `z:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`y:real^N`; `z:real^N`]) THEN ASM_REWRITE_TAC[] THEN ASM_NORM_ARITH_TAC);;
let LIMPT_OF_UNIV = 
prove (`!x. x limit_point_of (:real^N)`,
GEN_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE; IN_UNIV] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`x:real^N`; `e / &2`] VECTOR_CHOOSE_DIST) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN POP_ASSUM MP_TAC THEN CONV_TAC NORM_ARITH);;
let LIMPT_OF_OPEN_IN = 
prove (`!s t x:real^N. open_in (subtopology euclidean s) t /\ x limit_point_of s /\ x IN t ==> x limit_point_of t`,
REWRITE_TAC[open_in; SUBSET; LIMPT_APPROACHABLE] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `min d e / &2`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let LIMPT_OF_OPEN = 
prove (`!s x:real^N. open s /\ x IN s ==> x limit_point_of s`,
REWRITE_TAC[OPEN_IN] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN MESON_TAC[LIMPT_OF_OPEN_IN; LIMPT_OF_UNIV]);;
let OPEN_IN_SING = 
prove (`!s a. open_in (subtopology euclidean s) {a} <=> a IN s /\ ~(a limit_point_of s)`,
REWRITE_TAC[open_in; LIMPT_APPROACHABLE; SING_SUBSET; IN_SING] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Interior of a set. *) (* ------------------------------------------------------------------------- *)
let interior = new_definition
  `interior s = {x | ?t. open t /\ x IN t /\ t SUBSET s}`;;
let INTERIOR_EQ = 
prove (`!s. (interior s = s) <=> open s`,
GEN_TAC THEN REWRITE_TAC[EXTENSION; interior; IN_ELIM_THM] THEN GEN_REWRITE_TAC RAND_CONV [OPEN_SUBOPEN] THEN MESON_TAC[SUBSET]);;
let INTERIOR_OPEN = 
prove (`!s. open s ==> (interior s = s)`,
MESON_TAC[INTERIOR_EQ]);;
let INTERIOR_EMPTY = 
prove (`interior {} = {}`,
SIMP_TAC[INTERIOR_OPEN; OPEN_EMPTY]);;
let INTERIOR_UNIV = 
prove (`interior(:real^N) = (:real^N)`,
SIMP_TAC[INTERIOR_OPEN; OPEN_UNIV]);;
let OPEN_INTERIOR = 
prove (`!s. open(interior s)`,
GEN_TAC THEN REWRITE_TAC[interior] THEN GEN_REWRITE_TAC I [OPEN_SUBOPEN] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let INTERIOR_INTERIOR = 
prove (`!s. interior(interior s) = interior s`,
MESON_TAC[INTERIOR_EQ; OPEN_INTERIOR]);;
let INTERIOR_SUBSET = 
prove (`!s. (interior s) SUBSET s`,
REWRITE_TAC[SUBSET; interior; IN_ELIM_THM] THEN MESON_TAC[]);;
let SUBSET_INTERIOR = 
prove (`!s t. s SUBSET t ==> (interior s) SUBSET (interior t)`,
REWRITE_TAC[interior; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let INTERIOR_MAXIMAL = 
prove (`!s t. t SUBSET s /\ open t ==> t SUBSET (interior s)`,
REWRITE_TAC[interior; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]);;
let INTERIOR_MAXIMAL_EQ = 
prove (`!s t:real^N->bool. open s ==> (s SUBSET interior t <=> s SUBSET t)`,
let INTERIOR_UNIQUE = 
prove (`!s t. t SUBSET s /\ open t /\ (!t'. t' SUBSET s /\ open t' ==> t' SUBSET t) ==> (interior s = t)`,
let IN_INTERIOR = 
prove (`!x s. x IN interior s <=> ?e. &0 < e /\ ball(x,e) SUBSET s`,
REWRITE_TAC[interior; IN_ELIM_THM] THEN MESON_TAC[OPEN_CONTAINS_BALL; SUBSET_TRANS; CENTRE_IN_BALL; OPEN_BALL]);;
let OPEN_SUBSET_INTERIOR = 
prove (`!s t. open s ==> (s SUBSET interior t <=> s SUBSET t)`,
let INTERIOR_INTER = 
prove (`!s t:real^N->bool. interior(s INTER t) = interior s INTER interior t`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET_INTER] THEN CONJ_TAC THEN MATCH_MP_TAC SUBSET_INTERIOR THEN REWRITE_TAC[INTER_SUBSET]; MATCH_MP_TAC INTERIOR_MAXIMAL THEN SIMP_TAC[OPEN_INTER; OPEN_INTERIOR] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t SUBSET t' ==> s INTER t SUBSET s' INTER t'`) THEN REWRITE_TAC[INTERIOR_SUBSET]]);;
let INTERIOR_FINITE_INTERS = 
prove (`!s:(real^N->bool)->bool. FINITE s ==> interior(INTERS s) = INTERS(IMAGE interior s)`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[INTERS_0; INTERS_INSERT; INTERIOR_UNIV; IMAGE_CLAUSES] THEN SIMP_TAC[INTERIOR_INTER]);;
let INTERIOR_INTERS_SUBSET = 
prove (`!f. interior(INTERS f) SUBSET INTERS (IMAGE interior f)`,
REWRITE_TAC[SUBSET; IN_INTERIOR; IN_INTERS; FORALL_IN_IMAGE] THEN MESON_TAC[]);;
let UNION_INTERIOR_SUBSET = 
prove (`!s t:real^N->bool. interior s UNION interior t SUBSET interior(s UNION t)`,
SIMP_TAC[INTERIOR_MAXIMAL_EQ; OPEN_UNION; OPEN_INTERIOR] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t SUBSET t' ==> (s UNION t) SUBSET (s' UNION t')`) THEN REWRITE_TAC[INTERIOR_SUBSET]);;
let INTERIOR_EQ_EMPTY = 
prove (`!s:real^N->bool. interior s = {} <=> !t. open t /\ t SUBSET s ==> t = {}`,
let INTERIOR_EQ_EMPTY_ALT = 
prove (`!s:real^N->bool. interior s = {} <=> !t. open t /\ ~(t = {}) ==> ~(t DIFF s = {})`,
GEN_TAC THEN REWRITE_TAC[INTERIOR_EQ_EMPTY] THEN SET_TAC[]);;
let INTERIOR_LIMIT_POINT = 
prove (`!s x:real^N. x IN interior s ==> x limit_point_of s`,
REPEAT GEN_TAC THEN REWRITE_TAC[IN_INTERIOR; IN_ELIM_THM; SUBSET; IN_BALL] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `d:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`x:real^N`; `min d e / &2`] VECTOR_CHOOSE_DIST) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; CONV_TAC (RAND_CONV SYM_CONV) THEN REWRITE_TAC[GSYM DIST_EQ_0]; ONCE_REWRITE_TAC[DIST_SYM]] THEN ASM_REAL_ARITH_TAC);;
let INTERIOR_SING = 
prove (`!a:real^N. interior {a} = {}`,
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[INTERIOR_LIMIT_POINT; LIMPT_SING]);;
let INTERIOR_CLOSED_UNION_EMPTY_INTERIOR = 
prove (`!s t:real^N->bool. closed(s) /\ interior(t) = {} ==> interior(s UNION t) = interior(s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_INTERIOR; SUBSET_UNION] THEN REWRITE_TAC[SUBSET; IN_INTERIOR; IN_INTER; IN_UNION] THEN X_GEN_TAC `x:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `(y:real^N) limit_point_of s` (fun th -> ASM_MESON_TAC[CLOSED_LIMPT; th]) THEN REWRITE_TAC[IN_INTERIOR; NOT_IN_EMPTY; LIMPT_APPROACHABLE] THEN X_GEN_TAC `d:real` THEN DISCH_TAC THEN SUBGOAL_THEN `?z:real^N. ~(z IN t) /\ ~(z = y) /\ dist(z,y) < d /\ dist(x,z) < e` (fun th -> ASM_MESON_TAC[th; IN_BALL]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_BALL]) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN REWRITE_TAC[IN_INTERIOR; NOT_IN_EMPTY; NOT_EXISTS_THM] THEN ABBREV_TAC `k = min d (e - dist(x:real^N,y))` THEN SUBGOAL_THEN `&0 < k` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `?w:real^N. dist(y,w) = k / &2` CHOOSE_TAC THENL [ASM_SIMP_TAC[VECTOR_CHOOSE_DIST; REAL_HALF; REAL_LT_IMP_LE]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPECL [`w:real^N`; `k / &4`]) THEN ASM_SIMP_TAC[SUBSET; NOT_FORALL_THM; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; NOT_IMP; IN_BALL] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN ASM_NORM_ARITH_TAC);;
let INTERIOR_UNION_EQ_EMPTY = 
prove (`!s t:real^N->bool. closed s \/ closed t ==> (interior(s UNION t) = {} <=> interior s = {} /\ interior t = {})`,
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[SUBSET_UNION; SUBSET_INTERIOR; SUBSET_EMPTY]; ASM_MESON_TAC[UNION_COMM; INTERIOR_CLOSED_UNION_EMPTY_INTERIOR]]);;
let INTERIOR_UNIONS_OPEN_SUBSETS = 
prove (`!s:real^N->bool. UNIONS {t | open t /\ t SUBSET s} = interior s`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC INTERIOR_UNIQUE THEN SIMP_TAC[OPEN_UNIONS; IN_ELIM_THM] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Closure of a set. *) (* ------------------------------------------------------------------------- *)
let closure = new_definition
  `closure s = s UNION {x | x limit_point_of s}`;;
let CLOSURE_INTERIOR = 
prove (`!s:real^N->bool. closure s = UNIV DIFF (interior (UNIV DIFF s))`,
REWRITE_TAC[EXTENSION; closure; IN_UNION; IN_DIFF; IN_UNIV; interior; IN_ELIM_THM; limit_point_of; SUBSET] THEN MESON_TAC[]);;
let INTERIOR_CLOSURE = 
prove (`!s:real^N->bool. interior s = UNIV DIFF (closure (UNIV DIFF s))`,
let lemma = prove(`!s t. UNIV DIFF (UNIV DIFF t) = t`,SET_TAC[]) in
  REWRITE_TAC[CLOSURE_INTERIOR; lemma]);;
let CLOSED_CLOSURE = 
prove (`!s. closed(closure s)`,
let lemma = prove(`UNIV DIFF (UNIV DIFF s) = s`,SET_TAC[]) in
  REWRITE_TAC[closed; CLOSURE_INTERIOR; lemma; OPEN_INTERIOR]);;
let CLOSURE_HULL = 
prove (`!s. closure s = closed hull s`,
GEN_TAC THEN MATCH_MP_TAC(GSYM HULL_UNIQUE) THEN REWRITE_TAC[CLOSED_CLOSURE; SUBSET] THEN REWRITE_TAC[closure; IN_UNION; IN_ELIM_THM; CLOSED_LIMPT] THEN MESON_TAC[limit_point_of]);;
let CLOSURE_EQ = 
prove (`!s. (closure s = s) <=> closed s`,
let CLOSURE_CLOSED = 
prove (`!s. closed s ==> (closure s = s)`,
MESON_TAC[CLOSURE_EQ]);;
let CLOSURE_CLOSURE = 
prove (`!s. closure(closure s) = closure s`,
REWRITE_TAC[CLOSURE_HULL; HULL_HULL]);;
let CLOSURE_SUBSET = 
prove (`!s. s SUBSET (closure s)`,
REWRITE_TAC[CLOSURE_HULL; HULL_SUBSET]);;
let SUBSET_CLOSURE = 
prove (`!s t. s SUBSET t ==> (closure s) SUBSET (closure t)`,
REWRITE_TAC[CLOSURE_HULL; HULL_MONO]);;
let CLOSURE_UNION = 
prove (`!s t:real^N->bool. closure(s UNION t) = closure s UNION closure t`,
REWRITE_TAC[LIMIT_POINT_UNION; closure] THEN SET_TAC[]);;
let CLOSURE_INTER_SUBSET = 
prove (`!s t. closure(s INTER t) SUBSET closure(s) INTER closure(t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET_INTER] THEN CONJ_TAC THEN MATCH_MP_TAC SUBSET_CLOSURE THEN SET_TAC[]);;
let CLOSURE_INTERS_SUBSET = 
prove (`!f. closure(INTERS f) SUBSET INTERS(IMAGE closure f)`,
REWRITE_TAC[SET_RULE `s SUBSET INTERS f <=> !t. t IN f ==> s SUBSET t`] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_CLOSURE THEN ASM SET_TAC[]);;
let CLOSURE_MINIMAL = 
prove (`!s t. s SUBSET t /\ closed t ==> (closure s) SUBSET t`,
REWRITE_TAC[HULL_MINIMAL; CLOSURE_HULL]);;
let CLOSURE_MINIMAL_EQ = 
prove (`!s t:real^N->bool. closed t ==> (closure s SUBSET t <=> s SUBSET t)`,
let CLOSURE_UNIQUE = 
prove (`!s t. s SUBSET t /\ closed t /\ (!t'. s SUBSET t' /\ closed t' ==> t SUBSET t') ==> (closure s = t)`,
REWRITE_TAC[CLOSURE_HULL; HULL_UNIQUE]);;
let CLOSURE_EMPTY = 
prove (`closure {} = {}`,
let CLOSURE_UNIV = 
prove (`closure(:real^N) = (:real^N)`,
let CLOSURE_UNIONS = 
prove (`!f. FINITE f ==> closure(UNIONS f) = UNIONS {closure s | s IN f}`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; UNIONS_INSERT; SET_RULE `{f x | x IN {}} = {}`; SET_RULE `{f x | x IN a INSERT s} = (f a) INSERT {f x | x IN s}`] THEN SIMP_TAC[CLOSURE_EMPTY; CLOSURE_UNION]);;
let CLOSURE_EQ_EMPTY = 
prove (`!s. closure s = {} <=> s = {}`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[CLOSURE_EMPTY] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> t = {} ==> s = {}`) THEN REWRITE_TAC[CLOSURE_SUBSET]);;
let CLOSURE_SUBSET_EQ = 
prove (`!s:real^N->bool. closure s SUBSET s <=> closed s`,
GEN_TAC THEN REWRITE_TAC[GSYM CLOSURE_EQ] THEN MP_TAC(ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN SET_TAC[]);;
let OPEN_INTER_CLOSURE_EQ_EMPTY = 
prove (`!s t:real^N->bool. open s ==> (s INTER (closure t) = {} <=> s INTER t = {})`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [MP_TAC(ISPEC `t:real^N->bool` CLOSURE_SUBSET) THEN SET_TAC[]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[CLOSURE_INTERIOR] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> s INTER (UNIV DIFF t) = {}`) THEN ASM_SIMP_TAC[OPEN_SUBSET_INTERIOR] THEN ASM SET_TAC[]);;
let OPEN_INTER_CLOSURE_SUBSET = 
prove (`!s t:real^N->bool. open s ==> (s INTER (closure t)) SUBSET closure(s INTER t)`,
REPEAT STRIP_TAC THEN SIMP_TAC[SUBSET; IN_INTER; closure; IN_UNION; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISJ2_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [open_def]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMPT_APPROACHABLE]) THEN DISCH_THEN(MP_TAC o SPEC `min d e`) THEN ASM_REWRITE_TAC[REAL_LT_MIN; IN_INTER] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);;
let CLOSURE_OPEN_INTER_SUPERSET = 
prove (`!s t:real^N->bool. open s /\ s SUBSET closure t ==> closure(s INTER t) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET_CLOSURE; INTER_SUBSET] THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN REWRITE_TAC[CLOSED_CLOSURE] THEN W(MP_TAC o PART_MATCH (rand o rand) OPEN_INTER_CLOSURE_SUBSET o rand o snd) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN ASM SET_TAC[]);;
let CLOSURE_COMPLEMENT = 
prove (`!s:real^N->bool. closure(UNIV DIFF s) = UNIV DIFF interior(s)`,
REWRITE_TAC[SET_RULE `s = UNIV DIFF t <=> UNIV DIFF s = t`] THEN REWRITE_TAC[GSYM INTERIOR_CLOSURE]);;
let INTERIOR_COMPLEMENT = 
prove (`!s:real^N->bool. interior(UNIV DIFF s) = UNIV DIFF closure(s)`,
REWRITE_TAC[SET_RULE `s = UNIV DIFF t <=> UNIV DIFF s = t`] THEN REWRITE_TAC[GSYM CLOSURE_INTERIOR]);;
let CONNECTED_INTERMEDIATE_CLOSURE = 
prove (`!s t:real^N->bool. connected s /\ s SUBSET t /\ t SUBSET closure s ==> connected t`,
REPEAT GEN_TAC THEN REWRITE_TAC[connected; NOT_EXISTS_THM] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`u:real^N->bool`; `v:real^N->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:real^N->bool`; `v:real^N->bool`]) THEN ASM_REWRITE_TAC[] THEN ASSUME_TAC(ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN REPLICATE_TAC 2 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN REWRITE_TAC[GSYM DE_MORGAN_THM] THEN STRIP_TAC THENL [SUBGOAL_THEN `(closure s) SUBSET ((:real^N) DIFF u)` MP_TAC THENL [MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[GSYM OPEN_CLOSED]; ALL_TAC]; SUBGOAL_THEN `(closure s) SUBSET ((:real^N) DIFF v)` MP_TAC THENL [MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[GSYM OPEN_CLOSED]; ALL_TAC]] THEN ASM SET_TAC[]);;
let CONNECTED_CLOSURE = 
prove (`!s:real^N->bool. connected s ==> connected(closure s)`,
let CONNECTED_UNION_STRONG = 
prove (`!s t:real^N->bool. connected s /\ connected t /\ ~(closure s INTER t = {}) ==> connected(s UNION t)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `p:real^N`) THEN SUBGOAL_THEN `s UNION t = ((p:real^N) INSERT s) UNION t` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CONNECTED_UNION THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC CONNECTED_INTERMEDIATE_CLOSURE THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]; ASM SET_TAC[]]);;
let INTERIOR_DIFF = 
prove (`!s t. interior(s DIFF t) = interior(s) DIFF closure(t)`,
ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s INTER (UNIV DIFF t)`] THEN REWRITE_TAC[INTERIOR_INTER; CLOSURE_INTERIOR] THEN SET_TAC[]);;
let LIMPT_OF_CLOSURE = 
prove (`!x:real^N s. x limit_point_of closure s <=> x limit_point_of s`,
REWRITE_TAC[closure; IN_UNION; IN_ELIM_THM; LIMIT_POINT_UNION] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(q ==> p) ==> (p \/ q <=> p)`) THEN REWRITE_TAC[LIMPT_OF_LIMPTS]);;
let CLOSED_IN_LIMPT = 
prove (`!s t. closed_in (subtopology euclidean t) s <=> s SUBSET t /\ !x:real^N. x limit_point_of s /\ x IN t ==> x IN s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_SIMP_TAC[IN_INTER] THEN ASM_MESON_TAC[CLOSED_LIMPT; LIMPT_SUBSET; INTER_SUBSET]; STRIP_TAC THEN EXISTS_TAC `closure s :real^N->bool` THEN REWRITE_TAC[CLOSED_CLOSURE] THEN REWRITE_TAC[closure] THEN ASM SET_TAC[]]);;
let INTERIOR_CLOSURE_IDEMP = 
prove (`!s:real^N->bool. interior(closure(interior(closure s))) = interior(closure s)`,
let CLOSURE_INTERIOR_IDEMP = 
prove (`!s:real^N->bool. closure(interior(closure(interior s))) = closure(interior s)`,
GEN_TAC THEN ONCE_REWRITE_TAC[SET_RULE `s = t <=> UNIV DIFF s = UNIV DIFF t`] THEN REWRITE_TAC[GSYM INTERIOR_COMPLEMENT; GSYM CLOSURE_COMPLEMENT] THEN REWRITE_TAC[INTERIOR_CLOSURE_IDEMP]);;
let NOWHERE_DENSE_UNION = 
prove (`!s t:real^N->bool. interior(closure(s UNION t)) = {} <=> interior(closure s) = {} /\ interior(closure t) = {}`,
let NOWHERE_DENSE = 
prove (`!s:real^N->bool. interior(closure s) = {} <=> !t. open t /\ ~(t = {}) ==> ?u. open u /\ ~(u = {}) /\ u SUBSET t /\ u INTER s = {}`,
GEN_TAC THEN REWRITE_TAC[INTERIOR_EQ_EMPTY_ALT] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THENL [EXISTS_TAC `t DIFF closure s:real^N->bool` THEN ASM_SIMP_TAC[OPEN_DIFF; CLOSED_CLOSURE] THEN MP_TAC(ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN SET_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `t:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`u:real^N->bool`; `s:real^N->bool`] OPEN_INTER_CLOSURE_EQ_EMPTY) THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Frontier (aka boundary). *) (* ------------------------------------------------------------------------- *)
let frontier = new_definition
  `frontier s = (closure s) DIFF (interior s)`;;
let FRONTIER_CLOSED = 
prove (`!s. closed(frontier s)`,
SIMP_TAC[frontier; CLOSED_DIFF; CLOSED_CLOSURE; OPEN_INTERIOR]);;
let FRONTIER_CLOSURES = 
prove (`!s:real^N->bool. frontier s = (closure s) INTER (closure(UNIV DIFF s))`,
let lemma = prove(`s DIFF (UNIV DIFF t) = s INTER t`,SET_TAC[]) in
  REWRITE_TAC[frontier; INTERIOR_CLOSURE; lemma]);;
let FRONTIER_STRADDLE = 
prove (`!a:real^N s. a IN frontier s <=> !e. &0 < e ==> (?x. x IN s /\ dist(a,x) < e) /\ (?x. ~(x IN s) /\ dist(a,x) < e)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FRONTIER_CLOSURES; IN_INTER] THEN REWRITE_TAC[closure; IN_UNION; IN_ELIM_THM; limit_point_of; IN_UNIV; IN_DIFF] THEN ASM_MESON_TAC[IN_BALL; SUBSET; OPEN_CONTAINS_BALL; CENTRE_IN_BALL; OPEN_BALL; DIST_REFL]);;
let FRONTIER_SUBSET_CLOSED = 
prove (`!s. closed s ==> (frontier s) SUBSET s`,
MESON_TAC[frontier; CLOSURE_CLOSED; SUBSET_DIFF]);;
let FRONTIER_EMPTY = 
prove (`frontier {} = {}`,
REWRITE_TAC[frontier; CLOSURE_EMPTY; EMPTY_DIFF]);;
let FRONTIER_UNIV = 
prove (`frontier(:real^N) = {}`,
REWRITE_TAC[frontier; CLOSURE_UNIV; INTERIOR_UNIV] THEN SET_TAC[]);;
let FRONTIER_SUBSET_EQ = 
prove (`!s:real^N->bool. (frontier s) SUBSET s <=> closed s`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FRONTIER_SUBSET_CLOSED] THEN REWRITE_TAC[frontier] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `s DIFF t SUBSET u ==> t SUBSET u ==> s SUBSET u`)) THEN REWRITE_TAC[INTERIOR_SUBSET; CLOSURE_SUBSET_EQ]);;
let FRONTIER_COMPLEMENT = 
prove (`!s:real^N->bool. frontier(UNIV DIFF s) = frontier s`,
REWRITE_TAC[frontier; CLOSURE_COMPLEMENT; INTERIOR_COMPLEMENT] THEN SET_TAC[]);;
let FRONTIER_DISJOINT_EQ = 
prove (`!s. (frontier s) INTER s = {} <=> open s`,
ONCE_REWRITE_TAC[GSYM FRONTIER_COMPLEMENT; OPEN_CLOSED] THEN REWRITE_TAC[GSYM FRONTIER_SUBSET_EQ] THEN SET_TAC[]);;
let FRONTIER_INTER_SUBSET = 
prove (`!s t. frontier(s INTER t) SUBSET frontier(s) UNION frontier(t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[frontier; INTERIOR_INTER] THEN MATCH_MP_TAC(SET_RULE `cst SUBSET cs INTER ct ==> cst DIFF (s INTER t) SUBSET (cs DIFF s) UNION (ct DIFF t)`) THEN REWRITE_TAC[CLOSURE_INTER_SUBSET]);;
let FRONTIER_UNION_SUBSET = 
prove (`!s t:real^N->bool. frontier(s UNION t) SUBSET frontier s UNION frontier t`,
ONCE_REWRITE_TAC[GSYM FRONTIER_COMPLEMENT] THEN REWRITE_TAC[SET_RULE `u DIFF (s UNION t) = (u DIFF s) INTER (u DIFF t)`] THEN REWRITE_TAC[FRONTIER_INTER_SUBSET]);;
let FRONTIER_INTERIORS = 
prove (`!s. frontier s = (:real^N) DIFF interior(s) DIFF interior((:real^N) DIFF s)`,
REWRITE_TAC[frontier; CLOSURE_INTERIOR] THEN SET_TAC[]);;
let FRONTIER_FRONTIER_SUBSET = 
prove (`!s:real^N->bool. frontier(frontier s) SUBSET frontier s`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [frontier] THEN SIMP_TAC[CLOSURE_CLOSED; FRONTIER_CLOSED] THEN SET_TAC[]);;
let INTERIOR_FRONTIER = 
prove (`!s:real^N->bool. interior(frontier s) = interior(closure s) DIFF closure(interior s)`,
ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s INTER (UNIV DIFF t)`] THEN REWRITE_TAC[GSYM INTERIOR_COMPLEMENT; GSYM INTERIOR_INTER; frontier] THEN GEN_TAC THEN AP_TERM_TAC THEN SET_TAC[]);;
let INTERIOR_FRONTIER_EMPTY = 
prove (`!s:real^N->bool. open s \/ closed s ==> interior(frontier s) = {}`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[INTERIOR_FRONTIER] THEN ASM_SIMP_TAC[CLOSURE_CLOSED; INTERIOR_OPEN] THEN REWRITE_TAC[SET_RULE `s DIFF t = {} <=> s SUBSET t`] THEN REWRITE_TAC[INTERIOR_SUBSET; CLOSURE_SUBSET]);;
let FRONTIER_FRONTIER_FRONTIER = 
prove (`!s:real^N->bool. frontier(frontier(frontier s)) = frontier(frontier s)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [frontier] THEN SIMP_TAC[CLOSURE_CLOSED; FRONTIER_CLOSED; INTERIOR_FRONTIER_EMPTY] THEN SET_TAC[]);;
let CONNECTED_INTER_FRONTIER = 
prove (`!s t:real^N->bool. connected s /\ ~(s INTER t = {}) /\ ~(s DIFF t = {}) ==> ~(s INTER frontier t = {})`,
REWRITE_TAC[FRONTIER_INTERIORS] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_OPEN_IN]) THEN REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`s INTER interior t:real^N->bool`; `s INTER (interior((:real^N) DIFF t))`] THEN SIMP_TAC[OPEN_IN_OPEN_INTER; OPEN_INTERIOR] THEN MAP_EVERY (MP_TAC o C ISPEC INTERIOR_SUBSET) [`t:real^N->bool`; `(:real^N) DIFF t`] THEN ASM SET_TAC[]);;
let INTERIOR_CLOSED_EQ_EMPTY_AS_FRONTIER = 
prove (`!s:real^N->bool. closed s /\ interior s = {} <=> ?t. open t /\ s = frontier t`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL [EXISTS_TAC `(:real^N) DIFF s` THEN ASM_SIMP_TAC[OPEN_DIFF; OPEN_UNIV; FRONTIER_COMPLEMENT] THEN ASM_SIMP_TAC[frontier; CLOSURE_CLOSED; DIFF_EMPTY]; ASM_SIMP_TAC[FRONTIER_CLOSED; INTERIOR_FRONTIER_EMPTY]]);;
let FRONTIER_UNION = 
prove (`!s t:real^N->bool. closure s INTER closure t = {} ==> frontier(s UNION t) = frontier(s) UNION frontier(t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[FRONTIER_UNION_SUBSET] THEN GEN_REWRITE_TAC RAND_CONV [frontier] THEN REWRITE_TAC[CLOSURE_UNION] THEN MATCH_MP_TAC(SET_RULE `(fs SUBSET cs /\ ft SUBSET ct) /\ k INTER fs = {} /\ k INTER ft = {} ==> (fs UNION ft) SUBSET (cs UNION ct) DIFF k`) THEN CONJ_TAC THENL [REWRITE_TAC[frontier] THEN SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[UNION_COMM] THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[INTER_COMM])] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s INTER t = {} ==> s' SUBSET s /\ s' INTER u INTER (UNIV DIFF t) = {} ==> u INTER s' = {}`)) THEN REWRITE_TAC[frontier; SUBSET_DIFF; GSYM INTERIOR_COMPLEMENT] THEN REWRITE_TAC[GSYM INTERIOR_INTER; SET_RULE `(s UNION t) INTER (UNIV DIFF t) = s DIFF t`] THEN MATCH_MP_TAC(SET_RULE `ti SUBSET si ==> (c DIFF si) INTER ti = {}`) THEN SIMP_TAC[SUBSET_INTERIOR; SUBSET_DIFF]);;
let CLOSURE_UNION_FRONTIER = 
prove (`!s:real^N->bool. closure s = s UNION frontier s`,
GEN_TAC THEN REWRITE_TAC[frontier] THEN MP_TAC(ISPEC `s:real^N->bool` INTERIOR_SUBSET) THEN MP_TAC(ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* A variant of nets (slightly non-standard but good for our purposes). *) (* ------------------------------------------------------------------------- *) let net_tybij = new_type_definition "net" ("mk_net","netord") (prove (`?g:A->A->bool. !x y. (!z. g z x ==> g z y) \/ (!z. g z y ==> g z x)`, EXISTS_TAC `\x:A y:A. F` THEN REWRITE_TAC[]));;
let NET = 
prove (`!n x y. (!z. netord n z x ==> netord n z y) \/ (!z. netord n z y ==> netord n z x)`,
REWRITE_TAC[net_tybij; ETA_AX]);;
let OLDNET = 
prove (`!n x y. netord n x x /\ netord n y y ==> ?z. netord n z z /\ !w. netord n w z ==> netord n w x /\ netord n w y`,
MESON_TAC[NET]);;
let NET_DILEMMA = 
prove (`!net. (?a. (?x. netord net x a) /\ (!x. netord net x a ==> P x)) /\ (?b. (?x. netord net x b) /\ (!x. netord net x b ==> Q x)) ==> ?c. (?x. netord net x c) /\ (!x. netord net x c ==> P x /\ Q x)`,
MESON_TAC[NET]);;
(* ------------------------------------------------------------------------- *) (* Common nets and the "within" modifier for nets. *) (* ------------------------------------------------------------------------- *) parse_as_infix("within",(14,"right"));; parse_as_infix("in_direction",(14,"right"));;
let at = new_definition
  `at a = mk_net(\x y. &0 < dist(x,a) /\ dist(x,a) <= dist(y,a))`;;
let at_infinity = new_definition
  `at_infinity = mk_net(\x y. norm(x) >= norm(y))`;;
let sequentially = new_definition
  `sequentially = mk_net(\m:num n. m >= n)`;;
let within = new_definition
  `net within s = mk_net(\x y. netord net x y /\ x IN s)`;;
let in_direction = new_definition
  `a in_direction v = (at a) within {b | ?c. &0 <= c /\ (b - a = c % v)}`;;
(* ------------------------------------------------------------------------- *) (* Prove that they are all nets. *) (* ------------------------------------------------------------------------- *) let NET_PROVE_TAC[def] = REWRITE_TAC[GSYM FUN_EQ_THM; def] THEN REWRITE_TAC[ETA_AX] THEN ASM_SIMP_TAC[GSYM(CONJUNCT2 net_tybij)];;
let AT = 
prove (`!a:real^N x y. netord(at a) x y <=> &0 < dist(x,a) /\ dist(x,a) <= dist(y,a)`,
GEN_TAC THEN NET_PROVE_TAC[at] THEN MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS; REAL_LET_TRANS]);;
let AT_INFINITY = 
prove (`!x y. netord at_infinity x y <=> norm(x) >= norm(y)`,
NET_PROVE_TAC[at_infinity] THEN REWRITE_TAC[real_ge; REAL_LE_REFL] THEN MESON_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;
let SEQUENTIALLY = 
prove (`!m n. netord sequentially m n <=> m >= n`,
NET_PROVE_TAC[sequentially] THEN REWRITE_TAC[GE; LE_REFL] THEN MESON_TAC[LE_CASES; LE_REFL; LE_TRANS]);;
let WITHIN = 
prove (`!n s x y. netord(n within s) x y <=> netord n x y /\ x IN s`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[within; GSYM FUN_EQ_THM] THEN REWRITE_TAC[GSYM(CONJUNCT2 net_tybij); ETA_AX] THEN MESON_TAC[NET]);;
let IN_DIRECTION = 
prove (`!a v x y. netord(a in_direction v) x y <=> &0 < dist(x,a) /\ dist(x,a) <= dist(y,a) /\ ?c. &0 <= c /\ (x - a = c % v)`,
let WITHIN_UNIV = 
prove (`!x:real^N. at x within UNIV = at x`,
REWRITE_TAC[within; at; IN_UNIV] THEN REWRITE_TAC[ETA_AX; net_tybij]);;
let WITHIN_WITHIN = 
prove (`!net s t. (net within s) within t = net within (s INTER t)`,
ONCE_REWRITE_TAC[within] THEN REWRITE_TAC[WITHIN; IN_INTER; GSYM CONJ_ASSOC]);;
(* ------------------------------------------------------------------------- *) (* Identify trivial limits, where we can't approach arbitrarily closely. *) (* ------------------------------------------------------------------------- *)
let trivial_limit = new_definition
  `trivial_limit net <=>
     (!a:A b. a = b) \/
     ?a:A b. ~(a = b) /\ !x. ~(netord(net) x a) /\ ~(netord(net) x b)`;;
let TRIVIAL_LIMIT_WITHIN = 
prove (`!a:real^N. trivial_limit (at a within s) <=> ~(a limit_point_of s)`,
REWRITE_TAC[trivial_limit; LIMPT_APPROACHABLE_LE; WITHIN; AT; DIST_NZ] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [MESON_TAC[REAL_LT_01; REAL_LT_REFL; VECTOR_CHOOSE_DIST; DIST_REFL; REAL_LT_IMP_LE]; DISCH_THEN(X_CHOOSE_THEN `b:real^N` (X_CHOOSE_THEN `c:real^N` STRIP_ASSUME_TAC)) THEN SUBGOAL_THEN `&0 < dist(a,b:real^N) \/ &0 < dist(a,c:real^N)` MP_TAC THEN ASM_MESON_TAC[DIST_TRIANGLE; DIST_SYM; GSYM DIST_NZ; GSYM DIST_EQ_0; REAL_ARITH `x <= &0 + &0 ==> ~(&0 < x)`]]; REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN DISJ2_TAC THEN EXISTS_TAC `a:real^N` THEN SUBGOAL_THEN `?b:real^N. dist(a,b) = e` MP_TAC THENL [ASM_SIMP_TAC[VECTOR_CHOOSE_DIST; REAL_LT_IMP_LE]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[REAL_NOT_LE; DIST_REFL; DIST_NZ; DIST_SYM]]);;
let TRIVIAL_LIMIT_AT = 
prove (`!a. ~(trivial_limit (at a))`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[TRIVIAL_LIMIT_WITHIN; LIMPT_UNIV]);;
let TRIVIAL_LIMIT_AT_INFINITY = 
prove (`~(trivial_limit at_infinity)`,
let TRIVIAL_LIMIT_SEQUENTIALLY = 
prove (`~(trivial_limit sequentially)`,
REWRITE_TAC[trivial_limit; SEQUENTIALLY] THEN MESON_TAC[GE_REFL; NOT_SUC]);;
let LIM_WITHIN_CLOSED_TRIVIAL = 
prove (`!a s. closed s /\ ~(a IN s) ==> trivial_limit (at a within s)`,
REWRITE_TAC[TRIVIAL_LIMIT_WITHIN] THEN MESON_TAC[CLOSED_LIMPT]);;
let NONTRIVIAL_LIMIT_WITHIN = 
prove (`!net s. trivial_limit net ==> trivial_limit(net within s)`,
REWRITE_TAC[trivial_limit; WITHIN] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Some property holds "sufficiently close" to the limit point. *) (* ------------------------------------------------------------------------- *)
let eventually = new_definition
 `eventually p net <=>
        trivial_limit net \/
        ?y. (?x. netord net x y) /\ (!x. netord net x y ==> p x)`;;
let EVENTUALLY_HAPPENS = 
prove (`!net p. eventually p net ==> trivial_limit net \/ ?x. p x`,
REWRITE_TAC[eventually] THEN MESON_TAC[]);;
let EVENTUALLY_WITHIN_LE = 
prove (`!s a:real^M p. eventually p (at a within s) <=> ?d. &0 < d /\ !x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) <= d ==> p(x)`,
REWRITE_TAC[eventually; AT; WITHIN; TRIVIAL_LIMIT_WITHIN] THEN REWRITE_TAC[LIMPT_APPROACHABLE_LE; DIST_NZ] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[REAL_LTE_TRANS]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(TAUT `(a ==> b) ==> ~a \/ b`) THEN DISCH_TAC THEN SUBGOAL_THEN `?b:real^M. dist(a,b) = d` MP_TAC THENL [ASM_SIMP_TAC[VECTOR_CHOOSE_DIST; REAL_LT_IMP_LE]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^M` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[REAL_NOT_LE; DIST_REFL; DIST_NZ; DIST_SYM]);;
let EVENTUALLY_WITHIN = 
prove (`!s a:real^M p. eventually p (at a within s) <=> ?d. &0 < d /\ !x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) < d ==> p(x)`,
REWRITE_TAC[EVENTUALLY_WITHIN_LE] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN REWRITE_TAC[APPROACHABLE_LT_LE]);;
let EVENTUALLY_AT = 
prove (`!a p. eventually p (at a) <=> ?d. &0 < d /\ !x. &0 < dist(x,a) /\ dist(x,a) < d ==> p(x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[EVENTUALLY_WITHIN; IN_UNIV]);;
let EVENTUALLY_SEQUENTIALLY = 
prove (`!p. eventually p sequentially <=> ?N. !n. N <= n ==> p n`,
REWRITE_TAC[eventually; SEQUENTIALLY; GE; LE_REFL; TRIVIAL_LIMIT_SEQUENTIALLY] THEN MESON_TAC[LE_REFL]);;
let EVENTUALLY_AT_INFINITY = 
prove (`!p. eventually p at_infinity <=> ?b. !x. norm(x) >= b ==> p x`,
REWRITE_TAC[eventually; AT_INFINITY; TRIVIAL_LIMIT_AT_INFINITY] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[REAL_LE_REFL]; ALL_TAC] THEN MESON_TAC[real_ge; REAL_LE_REFL; VECTOR_CHOOSE_SIZE; REAL_ARITH `&0 <= b \/ (!x. x >= &0 ==> x >= b)`]);;
let ALWAYS_EVENTUALLY = 
prove (`(!x. p x) ==> eventually p net`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[eventually; trivial_limit] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Combining theorems for "eventually". *) (* ------------------------------------------------------------------------- *)
let EVENTUALLY_AND = 
prove (`!net:(A net) p q. eventually (\x. p x /\ q x) net <=> eventually p net /\ eventually q net`,
REPEAT GEN_TAC THEN REWRITE_TAC[eventually] THEN ASM_CASES_TAC `trivial_limit(net:(A net))` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN SIMP_TAC[NET_DILEMMA] THEN MESON_TAC[]);;
let EVENTUALLY_MONO = 
prove (`!net:(A net) p q. (!x. p x ==> q x) /\ eventually p net ==> eventually q net`,
REWRITE_TAC[eventually] THEN MESON_TAC[]);;
let EVENTUALLY_MP = 
prove (`!net:(A net) p q. eventually (\x. p x ==> q x) net /\ eventually p net ==> eventually q net`,
REWRITE_TAC[GSYM EVENTUALLY_AND] THEN REWRITE_TAC[eventually] THEN MESON_TAC[]);;
let EVENTUALLY_FALSE = 
prove (`!net. eventually (\x. F) net <=> trivial_limit net`,
REWRITE_TAC[eventually] THEN MESON_TAC[]);;
let EVENTUALLY_TRUE = 
prove (`!net. eventually (\x. T) net <=> T`,
REWRITE_TAC[eventually; trivial_limit] THEN MESON_TAC[]);;
let NOT_EVENTUALLY = 
prove (`!net p. (!x. ~(p x)) /\ ~(trivial_limit net) ==> ~(eventually p net)`,
REWRITE_TAC[eventually] THEN MESON_TAC[]);;
let EVENTUALLY_FORALL = 
prove (`!net:(A net) p s:B->bool. FINITE s /\ ~(s = {}) ==> (eventually (\x. !a. a IN s ==> p a x) net <=> !a. a IN s ==> eventually (p a) net)`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[FORALL_IN_INSERT; EVENTUALLY_AND; ETA_AX] THEN MAP_EVERY X_GEN_TAC [`b:B`; `t:B->bool`] THEN ASM_CASES_TAC `t:B->bool = {}` THEN ASM_SIMP_TAC[NOT_IN_EMPTY; EVENTUALLY_TRUE]);;
let FORALL_EVENTUALLY = 
prove (`!net:(A net) p s:B->bool. FINITE s /\ ~(s = {}) ==> ((!a. a IN s ==> eventually (p a) net) <=> eventually (\x. !a. a IN s ==> p a x) net)`,
SIMP_TAC[EVENTUALLY_FORALL]);;
(* ------------------------------------------------------------------------- *) (* Limits, defined as vacuously true when the limit is trivial. *) (* ------------------------------------------------------------------------- *) parse_as_infix("-->",(12,"right"));;
let tendsto = new_definition
  `(f --> l) net <=> !e. &0 < e ==> eventually (\x. dist(f(x),l) < e) net`;;
let lim = new_definition
 `lim net f = @l. (f --> l) net`;;
let LIM = 
prove (`(f --> l) net <=> trivial_limit net \/ !e. &0 < e ==> ?y. (?x. netord(net) x y) /\ !x. netord(net) x y ==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; eventually] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Show that they yield usual definitions in the various cases. *) (* ------------------------------------------------------------------------- *)
let LIM_WITHIN_LE = 
prove (`!f:real^M->real^N l a s. (f --> l)(at a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) <= d ==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_WITHIN_LE]);;
let LIM_WITHIN = 
prove (`!f:real^M->real^N l a s. (f --> l) (at a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) < d ==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_WITHIN] THEN MESON_TAC[]);;
let LIM_AT = 
prove (`!f l:real^N a:real^M. (f --> l) (at a) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < dist(x,a) /\ dist(x,a) < d ==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_AT] THEN MESON_TAC[]);;
let LIM_AT_INFINITY = 
prove (`!f l. (f --> l) at_infinity <=> !e. &0 < e ==> ?b. !x. norm(x) >= b ==> dist(f(x),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_AT_INFINITY] THEN MESON_TAC[]);;
let LIM_SEQUENTIALLY = 
prove (`!s l. (s --> l) sequentially <=> !e. &0 < e ==> ?N. !n. N <= n ==> dist(s(n),l) < e`,
REWRITE_TAC[tendsto; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[]);;
let LIM_EVENTUALLY = 
prove (`!net f l. eventually (\x. f x = l) net ==> (f --> l) net`,
REWRITE_TAC[eventually; LIM] THEN MESON_TAC[DIST_REFL]);;
(* ------------------------------------------------------------------------- *) (* The expected monotonicity property. *) (* ------------------------------------------------------------------------- *)
let LIM_WITHIN_EMPTY = 
prove (`!f l x. (f --> l) (at x within {})`,
REWRITE_TAC[LIM_WITHIN; NOT_IN_EMPTY] THEN MESON_TAC[REAL_LT_01]);;
let LIM_WITHIN_SUBSET = 
prove (`!f l a s. (f --> l) (at a within s) /\ t SUBSET s ==> (f --> l) (at a within t)`,
REWRITE_TAC[LIM_WITHIN; SUBSET] THEN MESON_TAC[]);;
let LIM_UNION = 
prove (`!f x l s t. (f --> l) (at x within s) /\ (f --> l) (at x within t) ==> (f --> l) (at x within (s UNION t))`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM_WITHIN; IN_UNION] THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_SIMP_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `d1:real`) (X_CHOOSE_TAC `d2:real`)) THEN EXISTS_TAC `min d1 d2` THEN ASM_MESON_TAC[REAL_LT_MIN]);;
let LIM_UNION_UNIV = 
prove (`!f x l s t. (f --> l) (at x within s) /\ (f --> l) (at x within t) /\ s UNION t = (:real^N) ==> (f --> l) (at x)`,
MESON_TAC[LIM_UNION; WITHIN_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Composition of limits. *) (* ------------------------------------------------------------------------- *)
let LIM_COMPOSE_WITHIN = 
prove (`!net f:real^M->real^N g:real^N->real^P s y z. (f --> y) net /\ eventually (\w. f w IN s /\ (f w = y ==> g y = z)) net /\ (g --> z) (at y within s) ==> ((g o f) --> z) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto; CONJ_ASSOC] THEN ONCE_REWRITE_TAC[LEFT_AND_FORALL_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EVENTUALLY_WITHIN; GSYM DIST_NZ; o_DEF] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM_MESON_TAC[DIST_REFL]);;
let LIM_COMPOSE_AT = 
prove (`!net f:real^M->real^N g:real^N->real^P y z. (f --> y) net /\ eventually (\w. f w = y ==> g y = z) net /\ (g --> z) (at y) ==> ((g o f) --> z) net`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`net:(real^M)net`; `f:real^M->real^N`; `g:real^N->real^P`; `(:real^N)`; `y:real^N`; `z:real^P`] LIM_COMPOSE_WITHIN) THEN ASM_REWRITE_TAC[IN_UNIV; WITHIN_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Interrelations between restricted and unrestricted limits. *) (* ------------------------------------------------------------------------- *)
let LIM_AT_WITHIN = 
prove (`!f l a s. (f --> l)(at a) ==> (f --> l)(at a within s)`,
REWRITE_TAC[LIM_AT; LIM_WITHIN] THEN MESON_TAC[]);;
let LIM_WITHIN_OPEN = 
prove (`!f l a:real^M s. a IN s /\ open s ==> ((f --> l)(at a within s) <=> (f --> l)(at a))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[LIM_AT_WITHIN] THEN REWRITE_TAC[LIM_AT; LIM_WITHIN] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:real^M` o GEN_REWRITE_RULE I [open_def]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LT_TRANS]);;
(* ------------------------------------------------------------------------- *) (* More limit point characterizations. *) (* ------------------------------------------------------------------------- *)
let LIMPT_SEQUENTIAL_INJ = 
prove (`!x:real^N s. x limit_point_of s <=> ?f. (!n. f(n) IN (s DELETE x)) /\ (!m n. f m = f n <=> m = n) /\ (f --> x) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE; LIM_SEQUENTIALLY; IN_DELETE] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[GE; LE_REFL]] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:real->real^N` THEN DISCH_TAC THEN (STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION) `(z 0 = y (&1)) /\ (!n. z (SUC n):real^N = y(min (inv(&2 pow (SUC n))) (dist(z n,x))))` THEN EXISTS_TAC `z:num->real^N` THEN SUBGOAL_THEN `!n. z(n) IN s /\ ~(z n:real^N = x) /\ dist(z n,x) < inv(&2 pow n)` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[REAL_LT_01] THEN FIRST_X_ASSUM(MP_TAC o SPEC `min (inv(&2 pow (SUC n))) (dist(z n:real^N,x))`) THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_LT_INV_EQ; REAL_LT_POW2; DIST_POS_LT]; ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[EQ_SYM_EQ] THEN SUBGOAL_THEN `!m n:num. m < n ==> dist(z n:real^N,x) < dist(z m,x)` (fun th -> MESON_TAC[th; REAL_LT_REFL; LT_REFL]) THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN CONJ_TAC THENL [REAL_ARITH_TAC; GEN_TAC THEN ASM_REWRITE_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `min (inv(&2 pow (SUC n))) (dist(z n:real^N,x))`) THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_LT_INV_EQ; REAL_LT_POW2; DIST_POS_LT]; X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`inv(&2)`; `e:real`] REAL_ARCH_POW_INV) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[REAL_POW_INV] THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REAL_LT_TRANS)) THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `inv(&2 pow n)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_LT_POW2] THEN MATCH_MP_TAC REAL_POW_MONO THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC]]);;
let LIMPT_SEQUENTIAL = 
prove (`!x:real^N s. x limit_point_of s <=> ?f. (!n. f(n) IN (s DELETE x)) /\ (f --> x) sequentially`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[LIMPT_SEQUENTIAL_INJ] THEN MESON_TAC[]; REWRITE_TAC[LIMPT_APPROACHABLE; LIM_SEQUENTIALLY; IN_DELETE] THEN MESON_TAC[GE; LE_REFL]]);;
let [LIMPT_INFINITE_OPEN; LIMPT_INFINITE_BALL; LIMPT_INFINITE_CBALL] = (CONJUNCTS o prove) (`(!s x:real^N. x limit_point_of s <=> !t. x IN t /\ open t ==> INFINITE(s INTER t)) /\ (!s x:real^N. x limit_point_of s <=> !e. &0 < e ==> INFINITE(s INTER ball(x,e))) /\ (!s x:real^N. x limit_point_of s <=> !e. &0 < e ==> INFINITE(s INTER cball(x,e)))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (r ==> s) /\ (s ==> q) /\ (p ==> r) ==> (p <=> q) /\ (p <=> r) /\ (p <=> s)`) THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[limit_point_of; INFINITE; SET_RULE `(?y. ~(y = x) /\ y IN s /\ y IN t) <=> ~(s INTER t SUBSET {x})`] THEN MESON_TAC[FINITE_SUBSET; FINITE_SING]; MESON_TAC[INFINITE_SUPERSET; BALL_SUBSET_CBALL; SET_RULE `t SUBSET u ==> s INTER t SUBSET s INTER u`]; MESON_TAC[INFINITE_SUPERSET; OPEN_CONTAINS_CBALL; SET_RULE `t SUBSET u ==> s INTER t SUBSET s INTER u`]; REWRITE_TAC[LIMPT_SEQUENTIAL_INJ; IN_DELETE; FORALL_AND_THM] THEN DISCH_THEN(X_CHOOSE_THEN `f:num->real^N` STRIP_ASSUME_TAC) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_SEQUENTIALLY]) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[DIST_SYM] IN_BALL)] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `IMAGE (f:num->real^N) (from N)` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_FROM; IN_INTER] THEN ASM_MESON_TAC[INFINITE_IMAGE_INJ; INFINITE_FROM]]);;
let INFINITE_OPEN_IN = 
prove (`!u s:real^N->bool. open_in (subtopology euclidean u) s /\ (?x. x IN s /\ x limit_point_of u) ==> INFINITE s`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:real^N->bool` o GEN_REWRITE_RULE I [LIMPT_INFINITE_OPEN]) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Condensation points. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("condensation_point_of",(12,"right"));;
let condensation_point_of = new_definition
 `x condensation_point_of s <=>
        !t. x IN t /\ open t ==> ~COUNTABLE(s INTER t)`;;
let CONDENSATION_POINT_IMP_LIMPT = 
prove (`!x s. x condensation_point_of s ==> x limit_point_of s`,
REWRITE_TAC[condensation_point_of; LIMPT_INFINITE_OPEN; INFINITE] THEN MESON_TAC[FINITE_IMP_COUNTABLE]);;
let CONDENSATION_POINT_INFINITE_BALL,CONDENSATION_POINT_INFINITE_CBALL = (CONJ_PAIR o prove) (`(!s x:real^N. x condensation_point_of s <=> !e. &0 < e ==> ~COUNTABLE(s INTER ball(x,e))) /\ (!s x:real^N. x condensation_point_of s <=> !e. &0 < e ==> ~COUNTABLE(s INTER cball(x,e)))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> r) /\ (r ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN REWRITE_TAC[condensation_point_of] THEN REPEAT CONJ_TAC THENL [MESON_TAC[OPEN_BALL; CENTRE_IN_BALL]; MESON_TAC[BALL_SUBSET_CBALL; COUNTABLE_SUBSET; SET_RULE `t SUBSET u ==> s INTER t SUBSET s INTER u`]; MESON_TAC[COUNTABLE_SUBSET; OPEN_CONTAINS_CBALL; SET_RULE `t SUBSET u ==> s INTER t SUBSET s INTER u`]]);;
let LIMPT_OF_CONDENSATION_POINTS = 
prove (`!x:real^N s. x limit_point_of {y | y condensation_point_of s} ==> x condensation_point_of s`,
REWRITE_TAC[LIMPT_APPROACHABLE; CONDENSATION_POINT_INFINITE_BALL] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN SIMP_TAC[SUBSET; IN_INTER; IN_BALL] THEN REPEAT(POP_ASSUM MP_TAC) THEN NORM_ARITH_TAC);;
let CLOSED_CONDENSATION_POINTS = 
prove (`!s:real^N->bool. closed {x | x condensation_point_of s}`,
(* ------------------------------------------------------------------------- *) (* Basic arithmetical combining theorems for limits. *) (* ------------------------------------------------------------------------- *)
let LIM_LINEAR = 
prove (`!net:(A)net h f l. (f --> l) net /\ linear h ==> ((\x. h(f x)) --> h l) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN ASM_CASES_TAC `trivial_limit (net:(A)net)` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o MATCH_MP LINEAR_BOUNDED_POS) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / B`) THEN ASM_SIMP_TAC[REAL_LT_DIV; dist; GSYM LINEAR_SUB; REAL_LT_RDIV_EQ] THEN ASM_MESON_TAC[REAL_LET_TRANS; REAL_MUL_SYM]);;
let LIM_CONST = 
prove (`!net a:real^N. ((\x. a) --> a) net`,
SIMP_TAC[LIM; DIST_REFL; trivial_limit] THEN MESON_TAC[]);;
let LIM_CMUL = 
prove (`!f l c. (f --> l) net ==> ((\x. c % f x) --> c % l) net`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_LINEAR THEN ASM_REWRITE_TAC[REWRITE_RULE[ETA_AX] (MATCH_MP LINEAR_COMPOSE_CMUL LINEAR_ID)]);;
let LIM_CMUL_EQ = 
prove (`!net f l c. ~(c = &0) ==> (((\x. c % f x) --> c % l) net <=> (f --> l) net)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[LIM_CMUL] THEN DISCH_THEN(MP_TAC o SPEC `inv c:real` o MATCH_MP LIM_CMUL) THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; ETA_AX]);;
let LIM_NEG = 
prove (`!net f l:real^N. (f --> l) net ==> ((\x. --(f x)) --> --l) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM; dist] THEN REWRITE_TAC[VECTOR_ARITH `--x - --y = --(x - y:real^N)`; NORM_NEG]);;
let LIM_NEG_EQ = 
prove (`!net f l:real^N. ((\x. --(f x)) --> --l) net <=> (f --> l) net`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_NEG) THEN REWRITE_TAC[VECTOR_NEG_NEG; ETA_AX]);;
let LIM_ADD = 
prove (`!net:(A)net f g l m. (f --> l) net /\ (g --> m) net ==> ((\x. f(x) + g(x)) --> l + m) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN ASM_CASES_TAC `trivial_limit (net:(A)net)` THEN ASM_REWRITE_TAC[AND_FORALL_THM] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(MP_TAC o MATCH_MP NET_DILEMMA) THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[REAL_HALF; DIST_TRIANGLE_ADD; REAL_LT_ADD2; REAL_LET_TRANS]);;
let LIM_ABS = 
prove (`!net:(A)net f:A->real^N l. (f --> l) net ==> ((\x. lambda i. (abs(f(x)$i))) --> (lambda i. abs(l$i)):real^N) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN ASM_CASES_TAC `trivial_limit (net:(A)net)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(NORM_ARITH `norm(x - y) <= norm(a - b) ==> dist(a,b) < e ==> dist(x,y) < e`) THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN SIMP_TAC[LAMBDA_BETA; VECTOR_SUB_COMPONENT] THEN REAL_ARITH_TAC);;
let LIM_SUB = 
prove (`!net:(A)net f g l m. (f --> l) net /\ (g --> m) net ==> ((\x. f(x) - g(x)) --> l - m) net`,
REWRITE_TAC[real_sub; VECTOR_SUB] THEN ASM_SIMP_TAC[LIM_ADD; LIM_NEG]);;
let LIM_MAX = 
prove (`!net:(A)net f g l:real^N m:real^N. (f --> l) net /\ (g --> m) net ==> ((\x. lambda i. max (f(x)$i) (g(x)$i)) --> (lambda i. max (l$i) (m$i)):real^N) net`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LIM_ADD) THEN FIRST_ASSUM(MP_TAC o MATCH_MP LIM_SUB) THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_ABS) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_ADD) THEN DISCH_THEN(MP_TAC o SPEC `inv(&2)` o MATCH_MP LIM_CMUL) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN BINOP_TAC THEN SIMP_TAC[FUN_EQ_THM; CART_EQ; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT; LAMBDA_BETA] THEN REAL_ARITH_TAC);;
let LIM_MIN = 
prove (`!net:(A)net f g l:real^N m:real^N. (f --> l) net /\ (g --> m) net ==> ((\x. lambda i. min (f(x)$i) (g(x)$i)) --> (lambda i. min (l$i) (m$i)):real^N) net`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP LIM_NEG)) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_NEG o MATCH_MP LIM_MAX) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN BINOP_TAC THEN SIMP_TAC[FUN_EQ_THM; CART_EQ; LAMBDA_BETA; VECTOR_NEG_COMPONENT] THEN REAL_ARITH_TAC);;
let LIM_NORM = 
prove (`!net f:A->real^N l. (f --> l) net ==> ((\x. lift(norm(f x))) --> lift(norm l)) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto; DIST_LIFT] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN NORM_ARITH_TAC);;
let LIM_NULL = 
prove (`!net f l. (f --> l) net <=> ((\x. f(x) - l) --> vec 0) net`,
REWRITE_TAC[LIM; dist; VECTOR_SUB_RZERO]);;
let LIM_NULL_NORM = 
prove (`!net f. (f --> vec 0) net <=> ((\x. lift(norm(f x))) --> vec 0) net`,
REWRITE_TAC[LIM; dist; VECTOR_SUB_RZERO; REAL_ABS_NORM; NORM_LIFT]);;
let LIM_NULL_CMUL_EQ = 
prove (`!net f c. ~(c = &0) ==> (((\x. c % f x) --> vec 0) net <=> (f --> vec 0) net)`,
let LIM_NULL_COMPARISON = 
prove (`!net f g. eventually (\x. norm(f x) <= g x) net /\ ((\x. lift(g x)) --> vec 0) net ==> (f --> vec 0) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto; RIGHT_AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO; NORM_LIFT] THEN REAL_ARITH_TAC);;
let LIM_COMPONENT = 
prove (`!net f i l:real^N. (f --> l) net /\ 1 <= i /\ i <= dimindex(:N) ==> ((\a. lift(f(a)$i)) --> lift(l$i)) net`,
REWRITE_TAC[LIM; dist; GSYM LIFT_SUB; NORM_LIFT] THEN SIMP_TAC[GSYM VECTOR_SUB_COMPONENT] THEN MESON_TAC[COMPONENT_LE_NORM; REAL_LET_TRANS]);;
let LIM_TRANSFORM_BOUND = 
prove (`!f g. eventually (\n. norm(f n) <= norm(g n)) net /\ (g --> vec 0) net ==> (f --> vec 0) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto; RIGHT_AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO] THEN REAL_ARITH_TAC);;
let LIM_NULL_CMUL_BOUNDED = 
prove (`!f g:A->real^N B. eventually (\a. g a = vec 0 \/ abs(f a) <= B) net /\ (g --> vec 0) net ==> ((\n. f n % g n) --> vec 0) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / (abs B + &1)`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_ARITH `&0 < abs x + &1`] THEN UNDISCH_TAC `eventually (\a. g a:real^N = vec 0 \/ abs(f a) <= B) (net:(A net))` THEN REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO; o_THM; NORM_LIFT; NORM_MUL] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `(g:A->real^N) x = vec 0` THEN ASM_REWRITE_TAC[NORM_0; REAL_MUL_RZERO] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `B * e / (abs B + &1)` THEN ASM_SIMP_TAC[REAL_LE_MUL2; REAL_ABS_POS; NORM_POS_LE; REAL_LT_IMP_LE] THEN REWRITE_TAC[REAL_ARITH `c * (a / b) = (c * a) / b`] THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < abs x + &1`] THEN MATCH_MP_TAC(REAL_ARITH `e * B <= e * abs B /\ &0 < e ==> B * e < e * (abs B + &1)`) THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN REAL_ARITH_TAC);;
let LIM_NULL_VMUL_BOUNDED = 
prove (`!f g:A->real^N B. ((lift o f) --> vec 0) net /\ eventually (\a. f a = &0 \/ norm(g a) <= B) net ==> ((\n. f n % g n) --> vec 0) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / (abs B + &1)`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_ARITH `&0 < abs x + &1`] THEN UNDISCH_TAC `eventually(\a. f a = &0 \/ norm((g:A->real^N) a) <= B) net` THEN REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO; o_THM; NORM_LIFT; NORM_MUL] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[] THEN ASM_CASES_TAC `(f:A->real) x = &0` THEN ASM_REWRITE_TAC[REAL_ABS_NUM; REAL_MUL_LZERO] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `e / (abs B + &1) * B` THEN ASM_SIMP_TAC[REAL_LE_MUL2; REAL_ABS_POS; NORM_POS_LE; REAL_LT_IMP_LE] THEN REWRITE_TAC[REAL_ARITH `(a / b) * c = (a * c) / b`] THEN SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 < abs x + &1`] THEN MATCH_MP_TAC(REAL_ARITH `e * B <= e * abs B /\ &0 < e ==> e * B < e * (abs B + &1)`) THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN REAL_ARITH_TAC);;
let LIM_VSUM = 
prove (`!f:A->B->real^N s. FINITE s /\ (!i. i IN s ==> ((f i) --> (l i)) net) ==> ((\x. vsum s (\i. f i x)) --> vsum s l) net`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES; LIM_CONST; LIM_ADD; IN_INSERT; ETA_AX]);;
(* ------------------------------------------------------------------------- *) (* Deducing things about the limit from the elements. *) (* ------------------------------------------------------------------------- *)
let LIM_IN_CLOSED_SET = 
prove (`!net f:A->real^N s l. closed s /\ eventually (\x. f(x) IN s) net /\ ~(trivial_limit net) /\ (f --> l) net ==> l IN s`,
REWRITE_TAC[closed] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `~(x IN (UNIV DIFF s)) ==> x IN s`) THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `l:real^N` o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN ASM_REWRITE_TAC[SUBSET; IN_BALL; IN_DIFF; IN_UNION] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real` o GEN_REWRITE_RULE I [tendsto]) THEN UNDISCH_TAC `eventually (\x. (f:A->real^N) x IN s) net` THEN ASM_REWRITE_TAC[GSYM EVENTUALLY_AND; TAUT `a ==> ~b <=> ~(a /\ b)`] THEN MATCH_MP_TAC NOT_EVENTUALLY THEN ASM_MESON_TAC[DIST_SYM]);;
(* ------------------------------------------------------------------------- *) (* Need to prove closed(cball(x,e)) before deducing this as a corollary. *) (* ------------------------------------------------------------------------- *)
let LIM_NORM_UBOUND = 
prove (`!net:(A)net f (l:real^N) b. ~(trivial_limit net) /\ (f --> l) net /\ eventually (\x. norm(f x) <= b) net ==> norm(l) <= b`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[LIM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[eventually] THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN DISCH_TAC THEN SUBGOAL_THEN `?x:A. dist(f(x):real^N,l) < norm(l:real^N) - b /\ norm(f x) <= b` (CHOOSE_THEN MP_TAC) THENL [ASM_MESON_TAC[NET]; ALL_TAC] THEN REWRITE_TAC[REAL_NOT_LT; REAL_LE_SUB_RADD; DE_MORGAN_THM; dist] THEN NORM_ARITH_TAC);;
let LIM_NORM_LBOUND = 
prove (`!net:(A)net f (l:real^N) b. ~(trivial_limit net) /\ (f --> l) net /\ eventually (\x. b <= norm(f x)) net ==> b <= norm(l)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[LIM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[eventually] THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN DISCH_TAC THEN SUBGOAL_THEN `?x:A. dist(f(x):real^N,l) < b - norm(l:real^N) /\ b <= norm(f x)` (CHOOSE_THEN MP_TAC) THENL [ASM_MESON_TAC[NET]; ALL_TAC] THEN REWRITE_TAC[REAL_NOT_LT; REAL_LE_SUB_RADD; DE_MORGAN_THM; dist] THEN NORM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Uniqueness of the limit, when nontrivial. *) (* ------------------------------------------------------------------------- *)
let LIM_UNIQUE = 
prove (`!net:(A)net f l:real^N l'. ~(trivial_limit net) /\ (f --> l) net /\ (f --> l') net ==> (l = l')`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(ASSUME_TAC o REWRITE_RULE[VECTOR_SUB_REFL] o MATCH_MP LIM_SUB) THEN SUBGOAL_THEN `!e. &0 < e ==> norm(l:real^N - l') <= e` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC LIM_NORM_UBOUND THEN MAP_EVERY EXISTS_TAC [`net:(A)net`; `\x:A. vec 0 : real^N`] THEN ASM_SIMP_TAC[NORM_0; REAL_LT_IMP_LE; eventually] THEN ASM_MESON_TAC[trivial_limit]; ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DIST_NZ; dist] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `norm(l - l':real^N) / &2`) THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN UNDISCH_TAC `&0 < norm(l - l':real^N)` THEN REAL_ARITH_TAC]);;
let TENDSTO_LIM = 
prove (`!net f l. ~(trivial_limit net) /\ (f --> l) net ==> lim net f = l`,
REWRITE_TAC[lim] THEN MESON_TAC[LIM_UNIQUE]);;
let LIM_CONST_EQ = 
prove (`!net:(A net) c d:real^N. ((\x. c) --> d) net <=> trivial_limit net \/ c = d`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THENL [ASM_REWRITE_TAC[LIM]; ALL_TAC] THEN EQ_TAC THEN SIMP_TAC[LIM_CONST] THEN DISCH_TAC THEN MATCH_MP_TAC(SPEC `net:A net` LIM_UNIQUE) THEN EXISTS_TAC `(\x. c):A->real^N` THEN ASM_REWRITE_TAC[LIM_CONST]);;
(* ------------------------------------------------------------------------- *) (* Some unwieldy but occasionally useful theorems about uniform limits. *) (* ------------------------------------------------------------------------- *)
let UNIFORM_LIM_ADD = 
prove (`!net:(A)net P f g l m. (!e. &0 < e ==> eventually (\x. !n:B. P n ==> norm(f n x - l n) < e) net) /\ (!e. &0 < e ==> eventually (\x. !n. P n ==> norm(g n x - m n) < e) net) ==> !e. &0 < e ==> eventually (\x. !n. P n ==> norm((f n x + g n x) - (l n + m n)) < e) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN GEN_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:B` THEN ASM_CASES_TAC `(P:B->bool) n` THEN ASM_REWRITE_TAC[] THEN CONV_TAC NORM_ARITH);;
let UNIFORM_LIM_SUB = 
prove (`!net:(A)net P f g l m. (!e. &0 < e ==> eventually (\x. !n:B. P n ==> norm(f n x - l n) < e) net) /\ (!e. &0 < e ==> eventually (\x. !n. P n ==> norm(g n x - m n) < e) net) ==> !e. &0 < e ==> eventually (\x. !n. P n ==> norm((f n x - g n x) - (l n - m n)) < e) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN GEN_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:B` THEN ASM_CASES_TAC `(P:B->bool) n` THEN ASM_REWRITE_TAC[] THEN CONV_TAC NORM_ARITH);;
(* ------------------------------------------------------------------------- *) (* Limit under bilinear function, uniform version first. *) (* ------------------------------------------------------------------------- *)
let UNIFORM_LIM_BILINEAR = 
prove (`!net:(A)net P (h:real^M->real^N->real^P) f g l m b1 b2. bilinear h /\ eventually (\x. !n. P n ==> norm(l n) <= b1) net /\ eventually (\x. !n. P n ==> norm(m n) <= b2) net /\ (!e. &0 < e ==> eventually (\x. !n:B. P n ==> norm(f n x - l n) < e) net) /\ (!e. &0 < e ==> eventually (\x. !n. P n ==> norm(g n x - m n) < e) net) ==> !e. &0 < e ==> eventually (\x. !n. P n ==> norm(h (f n x) (g n x) - h (l n) (m n)) < e) net`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o MATCH_MP BILINEAR_BOUNDED_POS) THEN REWRITE_TAC[AND_FORALL_THM; RIGHT_AND_FORALL_THM] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `min (abs b2 + &1) (e / &2 / (B * (abs b1 + abs b2 + &2)))`) THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; REAL_LT_MUL; REAL_LT_MIN; REAL_ARITH `&0 < abs x + &1`; REAL_ARITH `&0 < abs x + abs y + &2`] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:B` THEN ASM_CASES_TAC `(P:B->bool) n` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[VECTOR_ARITH `h a b - h c d :real^N = (h a b - h a d) + (h a d - h c d)`] THEN ASM_SIMP_TAC[GSYM BILINEAR_LSUB; GSYM BILINEAR_RSUB] THEN MATCH_MP_TAC NORM_TRIANGLE_LT THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[REAL_LE_ADD2; REAL_LET_TRANS] `(!x y. norm(h x y:real^P) <= B * norm x * norm y) ==> B * norm a * norm b + B * norm c * norm d < e ==> norm(h a b) + norm(h c d) < e`)) THEN MATCH_MP_TAC(REAL_ARITH `x * B < e / &2 /\ y * B < e / &2 ==> B * x + B * y < e`) THEN CONJ_TAC THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THENL [ONCE_REWRITE_TAC[REAL_MUL_SYM]; ALL_TAC] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `e / &2 / (B * (abs b1 + abs b2 + &2)) * (abs b1 + abs b2 + &1)` THEN (CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[REAL_ARITH `a <= b2 ==> a <= abs b1 + abs b2 + &1`] THEN ASM_MESON_TAC[NORM_ARITH `norm(f - l:real^P) < abs b2 + &1 /\ norm(l) <= b1 ==> norm(f) <= abs b1 + abs b2 + &1`]; ONCE_REWRITE_TAC[real_div] THEN ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_HALF; GSYM REAL_MUL_ASSOC; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `B * inv x * y < B <=> B * y / x < B * &1`] THEN ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_LT_LMUL_EQ; REAL_LT_LDIV_EQ; REAL_ARITH `&0 < abs x + abs y + &2`] THEN REAL_ARITH_TAC]));;
let LIM_BILINEAR = 
prove (`!net:(A)net (h:real^M->real^N->real^P) f g l m. (f --> l) net /\ (g --> m) net /\ bilinear h ==> ((\x. h (f x) (g x)) --> (h l m)) net`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`net:(A)net`; `\x:one. T`; `h:real^M->real^N->real^P`; `\n:one. (f:A->real^M)`; `\n:one. (g:A->real^N)`; `\n:one. (l:real^M)`; `\n:one. (m:real^N)`; `norm(l:real^M)`; `norm(m:real^N)`] UNIFORM_LIM_BILINEAR) THEN ASM_REWRITE_TAC[REAL_LE_REFL; EVENTUALLY_TRUE] THEN ASM_REWRITE_TAC[GSYM dist; GSYM tendsto]);;
(* ------------------------------------------------------------------------- *) (* These are special for limits out of the same vector space. *) (* ------------------------------------------------------------------------- *)
let LIM_WITHIN_ID = 
prove (`!a s. ((\x. x) --> a) (at a within s)`,
REWRITE_TAC[LIM_WITHIN] THEN MESON_TAC[]);;
let LIM_AT_ID = 
prove (`!a. ((\x. x) --> a) (at a)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[LIM_WITHIN_ID]);;
let LIM_AT_ZERO = 
prove (`!f:real^M->real^N l a. (f --> l) (at a) <=> ((\x. f(a + x)) --> l) (at(vec 0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM_AT] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `&0 < d` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `x:real^M` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `a + x:real^M`) THEN REWRITE_TAC[dist; VECTOR_ADD_SUB; VECTOR_SUB_RZERO]; FIRST_X_ASSUM(MP_TAC o SPEC `x - a:real^M`) THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO; VECTOR_SUB_ADD2]]);;
(* ------------------------------------------------------------------------- *) (* It's also sometimes useful to extract the limit point from the net. *) (* ------------------------------------------------------------------------- *)
let netlimit = new_definition
  `netlimit net = @a. !x. ~(netord net x a)`;;
let NETLIMIT_WITHIN = 
prove (`!a:real^N s. ~(trivial_limit (at a within s)) ==> (netlimit (at a within s) = a)`,
REWRITE_TAC[trivial_limit; netlimit; AT; WITHIN; DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN SUBGOAL_THEN `!x:real^N. ~(&0 < dist(x,a) /\ dist(x,a) <= dist(a,a) /\ x IN s)` ASSUME_TAC THENL [ASM_MESON_TAC[DIST_REFL; REAL_NOT_LT]; ASM_MESON_TAC[]]);;
let NETLIMIT_AT = 
prove (`!a. netlimit(at a) = a`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN MATCH_MP_TAC NETLIMIT_WITHIN THEN SIMP_TAC[TRIVIAL_LIMIT_AT; WITHIN_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Transformation of limit. *) (* ------------------------------------------------------------------------- *)
let LIM_TRANSFORM = 
prove (`!net f g l. ((\x. f x - g x) --> vec 0) net /\ (f --> l) net ==> (g --> l) net`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_SUB) THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_NEG) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN BINOP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC);;
let LIM_TRANSFORM_EVENTUALLY = 
prove (`!net f g l. eventually (\x. f x = g x) net /\ (f --> l) net ==> (g --> l) net`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o MATCH_MP LIM_EVENTUALLY) MP_TAC) THEN MESON_TAC[LIM_TRANSFORM]);;
let LIM_TRANSFORM_WITHIN = 
prove (`!f g x s d. &0 < d /\ (!x'. x' IN s /\ &0 < dist(x',x) /\ dist(x',x) < d ==> f(x') = g(x')) /\ (f --> l) (at x within s) ==> (g --> l) (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM) THEN REWRITE_TAC[LIM_WITHIN] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `d:real` THEN ASM_SIMP_TAC[VECTOR_SUB_REFL; DIST_REFL]);;
let LIM_TRANSFORM_AT = 
prove (`!f g x d. &0 < d /\ (!x'. &0 < dist(x',x) /\ dist(x',x) < d ==> f(x') = g(x')) /\ (f --> l) (at x) ==> (g --> l) (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN MESON_TAC[LIM_TRANSFORM_WITHIN]);;
let LIM_TRANSFORM_EQ = 
prove (`!net f:A->real^N g l. ((\x. f x - g x) --> vec 0) net ==> ((f --> l) net <=> (g --> l) net)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN MATCH_MP_TAC LIM_TRANSFORM THENL [EXISTS_TAC `f:A->real^N` THEN ASM_REWRITE_TAC[]; EXISTS_TAC `g:A->real^N` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM LIM_NEG_EQ] THEN ASM_REWRITE_TAC[VECTOR_NEG_SUB; VECTOR_NEG_0]]);;
let LIM_TRANSFORM_WITHIN_SET = 
prove (`!f a s t. eventually (\x. x IN s <=> x IN t) (at a) ==> ((f --> l) (at a within s) <=> (f --> l) (at a within t))`,
REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_AT; LIM_WITHIN] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Common case assuming being away from some crucial point like 0. *) (* ------------------------------------------------------------------------- *)
let LIM_TRANSFORM_AWAY_WITHIN = 
prove (`!f:real^M->real^N g a b s. ~(a = b) /\ (!x. x IN s /\ ~(x = a) /\ ~(x = b) ==> f(x) = g(x)) /\ (f --> l) (at a within s) ==> (g --> l) (at a within s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM_WITHIN THEN MAP_EVERY EXISTS_TAC [`f:real^M->real^N`; `dist(a:real^M,b)`] THEN ASM_REWRITE_TAC[GSYM DIST_NZ] THEN X_GEN_TAC `y:real^M` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[DIST_SYM; REAL_LT_REFL]);;
let LIM_TRANSFORM_AWAY_AT = 
prove (`!f:real^M->real^N g a b. ~(a = b) /\ (!x. ~(x = a) /\ ~(x = b) ==> f(x) = g(x)) /\ (f --> l) (at a) ==> (g --> l) (at a)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN MESON_TAC[LIM_TRANSFORM_AWAY_WITHIN]);;
(* ------------------------------------------------------------------------- *) (* Alternatively, within an open set. *) (* ------------------------------------------------------------------------- *)
let LIM_TRANSFORM_WITHIN_OPEN = 
prove (`!f g:real^M->real^N s a. open s /\ a IN s /\ (!x. x IN s /\ ~(x = a) ==> f x = g x) /\ (f --> l) (at a) ==> (g --> l) (at a)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM_AT THEN EXISTS_TAC `f:real^M->real^N` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN DISCH_THEN(MP_TAC o SPEC `a:real^M`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[SUBSET; IN_BALL] THEN ASM_MESON_TAC[DIST_NZ; DIST_SYM]);;
(* ------------------------------------------------------------------------- *) (* Another quite common idiom of an explicit conditional in a sequence. *) (* ------------------------------------------------------------------------- *)
let LIM_CASES_FINITE_SEQUENTIALLY = 
prove (`!f g l. FINITE {n | P n} ==> (((\n. if P n then f n else g n) --> l) sequentially <=> (g --> l) sequentially)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN FIRST_ASSUM(MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN SIMP_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `N + 1` THEN ASM_MESON_TAC[ARITH_RULE `~(x <= n /\ n + 1 <= x)`]);;
let LIM_CASES_COFINITE_SEQUENTIALLY = 
prove (`!f g l. FINITE {n | ~P n} ==> (((\n. if P n then f n else g n) --> l) sequentially <=> (f --> l) sequentially)`,
ONCE_REWRITE_TAC[TAUT `(if p then x else y) = (if ~p then y else x)`] THEN REWRITE_TAC[LIM_CASES_FINITE_SEQUENTIALLY]);;
let LIM_CASES_SEQUENTIALLY = 
prove (`!f g l m. (((\n. if m <= n then f n else g n) --> l) sequentially <=> (f --> l) sequentially) /\ (((\n. if m < n then f n else g n) --> l) sequentially <=> (f --> l) sequentially) /\ (((\n. if n <= m then f n else g n) --> l) sequentially <=> (g --> l) sequentially) /\ (((\n. if n < m then f n else g n) --> l) sequentially <=> (g --> l) sequentially)`,
(* ------------------------------------------------------------------------- *) (* A congruence rule allowing us to transform limits assuming not at point. *) (* ------------------------------------------------------------------------- *)
let LIM_CONG_WITHIN = 
prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) --> l) (at a within s) <=> ((g --> l) (at a within s)))`,
REWRITE_TAC[LIM_WITHIN; GSYM DIST_NZ] THEN SIMP_TAC[]);;
let LIM_CONG_AT = 
prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) --> l) (at a) <=> ((g --> l) (at a)))`,
REWRITE_TAC[LIM_AT; GSYM DIST_NZ] THEN SIMP_TAC[]);;
extend_basic_congs [LIM_CONG_WITHIN; LIM_CONG_AT];; (* ------------------------------------------------------------------------- *) (* Useful lemmas on closure and set of possible sequential limits. *) (* ------------------------------------------------------------------------- *)
let CLOSURE_SEQUENTIAL = 
prove (`!s l:real^N. l IN closure(s) <=> ?x. (!n. x(n) IN s) /\ (x --> l) sequentially`,
REWRITE_TAC[closure; IN_UNION; LIMPT_SEQUENTIAL; IN_ELIM_THM; IN_DELETE] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `((b ==> c) /\ (~a /\ c ==> b)) /\ (a ==> c) ==> (a \/ b <=> c)`) THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_TAC THEN EXISTS_TAC `\n:num. l:real^N` THEN ASM_REWRITE_TAC[LIM_CONST]);;
let CLOSED_CONTAINS_SEQUENTIAL_LIMIT = 
prove (`!s x l:real^N. closed s /\ (!n. x n IN s) /\ (x --> l) sequentially ==> l IN s`,
let CLOSED_SEQUENTIAL_LIMITS = 
prove (`!s. closed s <=> !x l. (!n. x(n) IN s) /\ (x --> l) sequentially ==> l IN s`,
let CLOSURE_APPROACHABLE = 
prove (`!x s. x IN closure(s) <=> !e. &0 < e ==> ?y. y IN s /\ dist(y,x) < e`,
REWRITE_TAC[closure; LIMPT_APPROACHABLE; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[DIST_REFL]);;
let CLOSED_APPROACHABLE = 
prove (`!x s. closed s ==> ((!e. &0 < e ==> ?y. y IN s /\ dist(y,x) < e) <=> x IN s)`,
let IN_CLOSURE_DELETE = 
prove (`!s x:real^N. x IN closure(s DELETE x) <=> x limit_point_of s`,
(* ------------------------------------------------------------------------- *) (* Some other lemmas about sequences. *) (* ------------------------------------------------------------------------- *)
let SEQ_OFFSET = 
prove (`!f l k. (f --> l) sequentially ==> ((\i. f(i + k)) --> l) sequentially`,
REWRITE_TAC[LIM_SEQUENTIALLY] THEN MESON_TAC[ARITH_RULE `N <= n ==> N <= n + k:num`]);;
let SEQ_OFFSET_NEG = 
prove (`!f l k. (f --> l) sequentially ==> ((\i. f(i - k)) --> l) sequentially`,
REWRITE_TAC[LIM_SEQUENTIALLY] THEN MESON_TAC[ARITH_RULE `N + k <= n ==> N <= n - k:num`]);;
let SEQ_OFFSET_REV = 
prove (`!f l k. ((\i. f(i + k)) --> l) sequentially ==> (f --> l) sequentially`,
REWRITE_TAC[LIM_SEQUENTIALLY] THEN MESON_TAC[ARITH_RULE `N + k <= n ==> N <= n - k /\ (n - k) + k = n:num`]);;
let SEQ_HARMONIC = 
prove (`((\n. lift(inv(&n))) --> vec 0) sequentially`,
REWRITE_TAC[LIM_SEQUENTIALLY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [REAL_ARCH_INV]) THEN EXISTS_TAC `N:num` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO; NORM_LIFT] THEN ASM_REWRITE_TAC[REAL_ABS_INV; REAL_ABS_NUM] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE; LT_NZ]);;
(* ------------------------------------------------------------------------- *) (* More properties of closed balls. *) (* ------------------------------------------------------------------------- *)
let CLOSED_CBALL = 
prove (`!x:real^N e. closed(cball(x,e))`,
REWRITE_TAC[CLOSED_SEQUENTIAL_LIMITS; IN_CBALL; dist] THEN GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `s:num->real^N` THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN EXISTS_TAC `\n. x - (s:num->real^N) n` THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_SEQUENTIALLY] THEN ASM_SIMP_TAC[LIM_SUB; LIM_CONST; SEQUENTIALLY] THEN MESON_TAC[GE_REFL]);;
let IN_INTERIOR_CBALL = 
prove (`!x s. x IN interior s <=> ?e. &0 < e /\ cball(x,e) SUBSET s`,
let LIMPT_BALL = 
prove (`!x:real^N y e. y limit_point_of ball(x,e) <=> &0 < e /\ y IN cball(x,e)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 < e` THENL [ALL_TAC; ASM_MESON_TAC[LIMPT_EMPTY; REAL_NOT_LT; BALL_EQ_EMPTY]] THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [MESON_TAC[CLOSED_CBALL; CLOSED_LIMPT; LIMPT_SUBSET; BALL_SUBSET_CBALL]; REWRITE_TAC[IN_CBALL; LIMPT_APPROACHABLE; IN_BALL]] THEN DISCH_TAC THEN X_GEN_TAC `d:real` THEN DISCH_TAC THEN ASM_CASES_TAC `y:real^N = x` THEN ASM_REWRITE_TAC[DIST_NZ] THENL [MP_TAC(SPECL [`d:real`; `e:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN GEN_MESON_TAC 0 40 1 [VECTOR_CHOOSE_DIST; DIST_SYM; REAL_LT_IMP_LE]; ALL_TAC] THEN MP_TAC(SPECL [`norm(y:real^N - x)`; `d:real`] REAL_DOWN2) THEN RULE_ASSUM_TAC(REWRITE_RULE[DIST_NZ; dist]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(y:real^N) - (k / dist(y,x)) % (y - x)` THEN REWRITE_TAC[dist; VECTOR_ARITH `(y - c % z) - y = --c % z`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_NEG] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN REWRITE_TAC[VECTOR_ARITH `x - (y - k % (y - x)) = (&1 - k) % (x - y)`] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < k ==> &0 < abs k`; NORM_MUL] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < k /\ k < d ==> abs k < d`] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `norm(x:real^N - y)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LT_RMUL THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[NORM_SUB]] THEN MATCH_MP_TAC(REAL_ARITH `&0 < k /\ k < &1 ==> abs(&1 - k) < &1`) THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_MUL_LZERO; REAL_MUL_LID]);;
let CLOSURE_BALL = 
prove (`!x:real^N e. &0 < e ==> (closure(ball(x,e)) = cball(x,e))`,
SIMP_TAC[EXTENSION; closure; IN_ELIM_THM; IN_UNION; LIMPT_BALL] THEN REWRITE_TAC[IN_BALL; IN_CBALL] THEN REAL_ARITH_TAC);;
let INTERIOR_CBALL = 
prove (`!x:real^N e. interior(cball(x,e)) = ball(x,e)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 <= e` THENL [ALL_TAC; SUBGOAL_THEN `cball(x:real^N,e) = {} /\ ball(x:real^N,e) = {}` (fun th -> REWRITE_TAC[th; INTERIOR_EMPTY]) THEN REWRITE_TAC[IN_BALL; IN_CBALL; EXTENSION; NOT_IN_EMPTY] THEN CONJ_TAC THEN X_GEN_TAC `y:real^N` THEN MP_TAC(ISPECL [`x:real^N`; `y:real^N`] DIST_POS_LE) THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN MATCH_MP_TAC INTERIOR_UNIQUE THEN REWRITE_TAC[BALL_SUBSET_CBALL; OPEN_BALL] THEN X_GEN_TAC `t:real^N->bool` THEN SIMP_TAC[SUBSET; IN_CBALL; IN_BALL; REAL_LT_LE] THEN STRIP_TAC THEN X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:real^N` o GEN_REWRITE_RULE I [open_def]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `z:real^N = x` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `k:real` o MATCH_MP REAL_DOWN) THEN SUBGOAL_THEN `?w:real^N. dist(w,x) = k` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[VECTOR_CHOOSE_DIST; DIST_SYM; REAL_LT_IMP_LE]; ASM_MESON_TAC[REAL_NOT_LE; DIST_REFL; DIST_SYM]]; RULE_ASSUM_TAC(REWRITE_RULE[DIST_NZ]) THEN DISCH_THEN(MP_TAC o SPEC `z + ((d / &2) / dist(z,x)) % (z - x:real^N)`) THEN REWRITE_TAC[dist; VECTOR_ADD_SUB; NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_NUM] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; GSYM dist; REAL_LT_IMP_NZ] THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN ASM_REWRITE_TAC[REAL_ARITH `abs d < d * &2 <=> &0 < d`] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[dist] THEN REWRITE_TAC[VECTOR_ARITH `x - (z + k % (z - x)) = (&1 + k) % (x - z)`] THEN REWRITE_TAC[REAL_NOT_LE; NORM_MUL] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_SIMP_TAC[REAL_LT_RMUL_EQ; GSYM dist] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x ==> &1 < abs(&1 + x)`) THEN ONCE_REWRITE_TAC[DIST_SYM] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH]]);;
let FRONTIER_BALL = 
prove (`!a e. &0 < e ==> frontier(ball(a,e)) = sphere(a,e)`,
SIMP_TAC[frontier; sphere; CLOSURE_BALL; INTERIOR_OPEN; OPEN_BALL; REAL_LT_IMP_LE] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_ELIM_THM; IN_BALL; IN_CBALL] THEN REAL_ARITH_TAC);;
let FRONTIER_CBALL = 
prove (`!a e. frontier(cball(a,e)) = sphere(a,e)`,
SIMP_TAC[frontier; sphere; INTERIOR_CBALL; CLOSED_CBALL; CLOSURE_CLOSED; REAL_LT_IMP_LE] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_ELIM_THM; IN_BALL; IN_CBALL] THEN REAL_ARITH_TAC);;
let CBALL_EQ_EMPTY = 
prove (`!x e. (cball(x,e) = {}) <=> e < &0`,
let CBALL_EMPTY = 
prove (`!x e. e < &0 ==> cball(x,e) = {}`,
REWRITE_TAC[CBALL_EQ_EMPTY]);;
let CBALL_EQ_SING = 
prove (`!x:real^N e. (cball(x,e) = {x}) <=> e = &0`,
REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_CBALL; IN_SING] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[DIST_LE_0]] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `x + (e / &2) % basis 1:real^N` th) THEN MP_TAC(SPEC `x:real^N` th)) THEN REWRITE_TAC[dist; VECTOR_ARITH `x - (x + e):real^N = --e`; VECTOR_ARITH `x + e = x <=> e:real^N = vec 0`] THEN REWRITE_TAC[NORM_NEG; NORM_MUL; VECTOR_MUL_EQ_0; NORM_0; VECTOR_SUB_REFL] THEN SIMP_TAC[NORM_BASIS; BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] THEN REAL_ARITH_TAC);;
let CBALL_SING = 
prove (`!x e. e = &0 ==> cball(x,e) = {x}`,
REWRITE_TAC[CBALL_EQ_SING]);;
let SPHERE_SING = 
prove (`!x e. e = &0 ==> sphere(x,e) = {x}`,
SIMP_TAC[sphere; DIST_EQ_0; SING_GSPEC]);;
let SPHERE_EQ_SING = 
prove (`!a:real^N r x. sphere(a,r) = {x} <=> x = a /\ r = &0`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[SPHERE_SING] THEN ASM_CASES_TAC `r < &0` THEN ASM_SIMP_TAC[SPHERE_EMPTY; NOT_INSERT_EMPTY] THEN ASM_CASES_TAC `r = &0` THEN ASM_SIMP_TAC[SPHERE_SING] THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `!y. (x IN s ==> y IN s /\ ~(y = x)) ==> ~(s = {x})`) THEN EXISTS_TAC `a - (x - a):real^N` THEN REWRITE_TAC[IN_SPHERE] THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NORM_ARITH);;
(* ------------------------------------------------------------------------- *) (* For points in the interior, localization of limits makes no difference. *) (* ------------------------------------------------------------------------- *)
let EVENTUALLY_WITHIN_INTERIOR = 
prove (`!p s x. x IN interior s ==> (eventually p (at x within s) <=> eventually p (at x))`,
REWRITE_TAC[EVENTUALLY_WITHIN; EVENTUALLY_AT; IN_INTERIOR] THEN REPEAT GEN_TAC THEN SIMP_TAC[SUBSET; IN_BALL; LEFT_IMP_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min (d:real) e` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[DIST_SYM]);;
let LIM_WITHIN_INTERIOR = 
prove (`!f l s x. x IN interior s ==> ((f --> l) (at x within s) <=> (f --> l) (at x))`,
SIMP_TAC[tendsto; EVENTUALLY_WITHIN_INTERIOR]);;
let NETLIMIT_WITHIN_INTERIOR = 
prove (`!s x:real^N. x IN interior s ==> netlimit(at x within s) = x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC NETLIMIT_WITHIN THEN REWRITE_TAC[TRIVIAL_LIMIT_WITHIN] THEN FIRST_ASSUM(MP_TAC o MATCH_MP(REWRITE_RULE[OPEN_CONTAINS_BALL] (SPEC_ALL OPEN_INTERIOR))) THEN ASM_MESON_TAC[LIMPT_SUBSET; LIMPT_BALL; CENTRE_IN_CBALL; REAL_LT_IMP_LE; SUBSET_TRANS; INTERIOR_SUBSET]);;
(* ------------------------------------------------------------------------- *) (* A non-singleton connected set is perfect (i.e. has no isolated points). *) (* ------------------------------------------------------------------------- *)
let CONNECTED_IMP_PERFECT = 
prove (`!s x:real^N. connected s /\ ~(?a. s = {a}) /\ x IN s ==> x limit_point_of s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[limit_point_of] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:real^N` o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `{x:real^N}` o GEN_REWRITE_RULE I [CONNECTED_CLOPEN]) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[OPEN_IN_OPEN] THEN EXISTS_TAC `t:real^N->bool` THEN ASM SET_TAC[]; REWRITE_TAC[CLOSED_IN_CLOSED] THEN EXISTS_TAC `cball(x:real^N,e)` THEN REWRITE_TAC[CLOSED_CBALL] THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_SING] THEN ASM_MESON_TAC[CENTRE_IN_CBALL; SUBSET; REAL_LT_IMP_LE]; ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Boundedness. *) (* ------------------------------------------------------------------------- *)
let bounded = new_definition
  `bounded s <=> ?a. !x:real^N. x IN s ==> norm(x) <= a`;;
let BOUNDED_EMPTY = 
prove (`bounded {}`,
REWRITE_TAC[bounded; NOT_IN_EMPTY]);;
let BOUNDED_SUBSET = 
prove (`!s t. bounded t /\ s SUBSET t ==> bounded s`,
MESON_TAC[bounded; SUBSET]);;
let BOUNDED_INTERIOR = 
prove (`!s:real^N->bool. bounded s ==> bounded(interior s)`,
let BOUNDED_CLOSURE = 
prove (`!s:real^N->bool. bounded s ==> bounded(closure s)`,
REWRITE_TAC[bounded; CLOSURE_SEQUENTIAL] THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MESON_TAC[REWRITE_RULE[eventually] LIM_NORM_UBOUND; TRIVIAL_LIMIT_SEQUENTIALLY; trivial_limit]);;
let BOUNDED_CLOSURE_EQ = 
prove (`!s:real^N->bool. bounded(closure s) <=> bounded s`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUNDED_CLOSURE] THEN MESON_TAC[BOUNDED_SUBSET; CLOSURE_SUBSET]);;
let BOUNDED_CBALL = 
prove (`!x:real^N e. bounded(cball(x,e))`,
REPEAT GEN_TAC THEN REWRITE_TAC[bounded] THEN EXISTS_TAC `norm(x:real^N) + e` THEN REWRITE_TAC[IN_CBALL; dist] THEN NORM_ARITH_TAC);;
let BOUNDED_BALL = 
prove (`!x e. bounded(ball(x,e))`,
let FINITE_IMP_BOUNDED = 
prove (`!s:real^N->bool. FINITE s ==> bounded s`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[BOUNDED_EMPTY] THEN REWRITE_TAC[bounded; IN_INSERT] THEN X_GEN_TAC `x:real^N` THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `B:real`) STRIP_ASSUME_TAC) THEN EXISTS_TAC `norm(x:real^N) + abs B` THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[NORM_POS_LE; REAL_ARITH `(y <= b /\ &0 <= x ==> y <= x + abs b) /\ x <= x + abs b`]);;
let BOUNDED_UNION = 
prove (`!s t. bounded (s UNION t) <=> bounded s /\ bounded t`,
REWRITE_TAC[bounded; IN_UNION] THEN MESON_TAC[REAL_LE_MAX]);;
let BOUNDED_UNIONS = 
prove (`!f. FINITE f /\ (!s. s IN f ==> bounded s) ==> bounded(UNIONS f)`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; BOUNDED_EMPTY; IN_INSERT; UNIONS_INSERT] THEN MESON_TAC[BOUNDED_UNION]);;
let BOUNDED_POS = 
prove (`!s. bounded s <=> ?b. &0 < b /\ !x. x IN s ==> norm(x) <= b`,
REWRITE_TAC[bounded] THEN MESON_TAC[REAL_ARITH `&0 < &1 + abs(y) /\ (x <= y ==> x <= &1 + abs(y))`]);;
let BOUNDED_POS_LT = 
prove (`!s. bounded s <=> ?b. &0 < b /\ !x. x IN s ==> norm(x) < b`,
REWRITE_TAC[bounded] THEN MESON_TAC[REAL_LT_IMP_LE; REAL_ARITH `&0 < &1 + abs(y) /\ (x <= y ==> x < &1 + abs(y))`]);;
let BOUNDED_INTER = 
prove (`!s t. bounded s \/ bounded t ==> bounded (s INTER t)`,
let BOUNDED_DIFF = 
prove (`!s t. bounded s ==> bounded (s DIFF t)`,
MESON_TAC[BOUNDED_SUBSET; SUBSET_DIFF]);;
let BOUNDED_INSERT = 
prove (`!x s. bounded(x INSERT s) <=> bounded s`,
ONCE_REWRITE_TAC[SET_RULE `x INSERT s = {x} UNION s`] THEN SIMP_TAC[BOUNDED_UNION; FINITE_IMP_BOUNDED; FINITE_RULES]);;
let BOUNDED_SING = 
prove (`!a. bounded {a}`,
REWRITE_TAC[BOUNDED_INSERT; BOUNDED_EMPTY]);;
let BOUNDED_INTERS = 
prove (`!f:(real^N->bool)->bool. (?s:real^N->bool. s IN f /\ bounded s) ==> bounded(INTERS f)`,
REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] BOUNDED_SUBSET) THEN ASM SET_TAC[]);;
let NOT_BOUNDED_UNIV = 
prove (`~(bounded (:real^N))`,
REWRITE_TAC[BOUNDED_POS; NOT_FORALL_THM; NOT_EXISTS_THM; IN_UNIV; DE_MORGAN_THM; REAL_NOT_LE] THEN X_GEN_TAC `B:real` THEN ASM_CASES_TAC `&0 < B` THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPEC `B + &1` VECTOR_CHOOSE_SIZE) THEN ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> &0 <= B + &1`] THEN MATCH_MP_TAC MONO_EXISTS THEN REAL_ARITH_TAC);;
let COBOUNDED_IMP_UNBOUNDED = 
prove (`!s. bounded((:real^N) DIFF s) ==> ~bounded s`,
GEN_TAC THEN REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`] THEN REWRITE_TAC[GSYM BOUNDED_UNION; SET_RULE `UNIV DIFF s UNION s = UNIV`] THEN REWRITE_TAC[NOT_BOUNDED_UNIV]);;
let BOUNDED_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. bounded s /\ linear f ==> bounded(IMAGE f s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[BOUNDED_POS] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `B1:real`) MP_TAC) THEN DISCH_THEN(X_CHOOSE_TAC `B2:real` o MATCH_MP LINEAR_BOUNDED_POS) THEN EXISTS_TAC `B2 * B1` THEN ASM_SIMP_TAC[REAL_LT_MUL; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `B2 * norm(x:real^M)` THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ]);;
let BOUNDED_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (bounded (IMAGE f s) <=> bounded s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE BOUNDED_LINEAR_IMAGE));;
add_linear_invariants [BOUNDED_LINEAR_IMAGE_EQ];;
let BOUNDED_SCALING = 
prove (`!c s. bounded s ==> bounded (IMAGE (\x. c % x) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC BOUNDED_LINEAR_IMAGE THEN ASM_SIMP_TAC[LINEAR_COMPOSE_CMUL; LINEAR_ID]);;
let BOUNDED_NEGATIONS = 
prove (`!s. bounded s ==> bounded (IMAGE (--) s)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `-- &1` o MATCH_MP BOUNDED_SCALING) THEN REWRITE_TAC[bounded; IN_IMAGE; VECTOR_MUL_LNEG; VECTOR_MUL_LID]);;
let BOUNDED_TRANSLATION = 
prove (`!a:real^N s. bounded s ==> bounded (IMAGE (\x. a + x) s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN EXISTS_TAC `B + norm(a:real^N)` THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [NORM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN NORM_ARITH_TAC);;
let BOUNDED_TRANSLATION_EQ = 
prove (`!a s. bounded (IMAGE (\x:real^N. a + x) s) <=> bounded s`,
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUNDED_TRANSLATION] THEN DISCH_THEN(MP_TAC o SPEC `--a:real^N` o MATCH_MP BOUNDED_TRANSLATION) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID; VECTOR_ARITH `--a + a + x:real^N = x`]);;
add_translation_invariants [BOUNDED_TRANSLATION_EQ];;
let BOUNDED_DIFFS = 
prove (`!s t:real^N->bool. bounded s /\ bounded t ==> bounded {x - y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN REWRITE_TAC[BOUNDED_POS] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `B:real`) (X_CHOOSE_TAC `C:real`)) THEN EXISTS_TAC `B + C:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; REPEAT STRIP_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(NORM_ARITH `norm x <= a /\ norm y <= b ==> norm(x - y) <= a + b`) THEN ASM_SIMP_TAC[]);;
let BOUNDED_SUMS = 
prove (`!s t:real^N->bool. bounded s /\ bounded t ==> bounded {x + y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN REWRITE_TAC[BOUNDED_POS] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `B:real`) (X_CHOOSE_TAC `C:real`)) THEN EXISTS_TAC `B + C:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; REPEAT STRIP_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(NORM_ARITH `norm x <= a /\ norm y <= b ==> norm(x + y) <= a + b`) THEN ASM_SIMP_TAC[]);;
let BOUNDED_SUMS_IMAGE = 
prove (`!f g t. bounded {f x | x IN t} /\ bounded {g x | x IN t} ==> bounded {f x + g x | x IN t}`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_SUMS) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] BOUNDED_SUBSET) THEN SET_TAC[]);;
let BOUNDED_SUMS_IMAGES = 
prove (`!f:A->B->real^N t s. FINITE s /\ (!a. a IN s ==> bounded {f x a | x IN t}) ==> bounded { vsum s (f x) | x IN t}`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES] THEN CONJ_TAC THENL [DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `{vec 0:real^N}` THEN SIMP_TAC[FINITE_IMP_BOUNDED; FINITE_RULES] THEN SET_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC BOUNDED_SUMS_IMAGE THEN ASM_SIMP_TAC[IN_INSERT]);;
let BOUNDED_SUBSET_BALL = 
prove (`!s x:real^N. bounded(s) ==> ?r. &0 < r /\ s SUBSET ball(x,r)`,
REPEAT GEN_TAC THEN REWRITE_TAC[BOUNDED_POS] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `&2 * B + norm(x:real^N)` THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_ARITH `&0 < B /\ &0 <= x ==> &0 < &2 * B + x`] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[IN_BALL] THEN UNDISCH_TAC `&0 < B` THEN NORM_ARITH_TAC);;
let BOUNDED_SUBSET_CBALL = 
prove (`!s x:real^N. bounded(s) ==> ?r. &0 < r /\ s SUBSET cball(x,r)`,
let UNBOUNDED_INTER_COBOUNDED = 
prove (`!s t. ~bounded s /\ bounded((:real^N) DIFF t) ==> ~(s INTER t = {})`,
REWRITE_TAC[SET_RULE `s INTER t = {} <=> s SUBSET (:real^N) DIFF t`] THEN MESON_TAC[BOUNDED_SUBSET]);;
let COBOUNDED_INTER_UNBOUNDED = 
prove (`!s t. bounded((:real^N) DIFF s) /\ ~bounded t ==> ~(s INTER t = {})`,
REWRITE_TAC[SET_RULE `s INTER t = {} <=> t SUBSET (:real^N) DIFF s`] THEN MESON_TAC[BOUNDED_SUBSET]);;
let SUBSPACE_BOUNDED_EQ_TRIVIAL = 
prove (`!s:real^N->bool. subspace s ==> (bounded s <=> s = {vec 0})`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[BOUNDED_SING] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `~(s = {a}) ==> a IN s ==> ?b. b IN s /\ ~(b = a)`)) THEN ASM_SIMP_TAC[SUBSPACE_0] THEN DISCH_THEN(X_CHOOSE_THEN `v:real^N` STRIP_ASSUME_TAC) THEN REWRITE_TAC[bounded; NOT_EXISTS_THM] THEN X_GEN_TAC `B:real` THEN DISCH_THEN(MP_TAC o SPEC `(B + &1) / norm v % v:real^N`) THEN ASM_SIMP_TAC[SUBSPACE_MUL; NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0] THEN REAL_ARITH_TAC);;
let BOUNDED_COMPONENTWISE = 
prove (`!s:real^N->bool. bounded s <=> !i. 1 <= i /\ i <= dimindex(:N) ==> bounded (IMAGE (\x. lift(x$i)) s)`,
GEN_TAC THEN REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; NORM_LIFT] THEN EQ_TAC THENL [ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_LE_TRANS]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN SIMP_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:num->real` THEN DISCH_TAC THEN EXISTS_TAC `sum(1..dimindex(:N)) b` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(1..dimindex(:N)) (\i. &0)` THEN SIMP_TAC[SUM_POS_LE_NUMSEG; REAL_POS] THEN MATCH_MP_TAC SUM_LT_ALL THEN ASM_SIMP_TAC[IN_NUMSEG; FINITE_NUMSEG; NUMSEG_EMPTY] THEN REWRITE_TAC[NOT_LT; DIMINDEX_GE_1]; REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN MATCH_MP_TAC SUM_LE THEN ASM_SIMP_TAC[IN_NUMSEG; FINITE_NUMSEG]]);;
(* ------------------------------------------------------------------------- *) (* Some theorems on sups and infs using the notion "bounded". *) (* ------------------------------------------------------------------------- *)
let BOUNDED_LIFT = 
prove (`!s. bounded(IMAGE lift s) <=> ?a. !x. x IN s ==> abs(x) <= a`,
REWRITE_TAC[bounded; FORALL_LIFT; NORM_LIFT; LIFT_IN_IMAGE_LIFT]);;
let BOUNDED_HAS_SUP = 
prove (`!s. bounded(IMAGE lift s) /\ ~(s = {}) ==> (!x. x IN s ==> x <= sup s) /\ (!b. (!x. x IN s ==> x <= b) ==> sup s <= b)`,
REWRITE_TAC[BOUNDED_LIFT; IMAGE_EQ_EMPTY] THEN MESON_TAC[SUP; REAL_ARITH `abs(x) <= a ==> x <= a`]);;
let SUP_INSERT = 
prove (`!x s. bounded (IMAGE lift s) ==> sup(x INSERT s) = if s = {} then x else max x (sup s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_SUP_UNIQUE THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING] THENL [MESON_TAC[REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[REAL_LE_MAX; REAL_LT_MAX; IN_INSERT] THEN MP_TAC(ISPEC `s:real->bool` BOUNDED_HAS_SUP) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[REAL_LE_REFL; REAL_NOT_LT]);;
let BOUNDED_HAS_INF = 
prove (`!s. bounded(IMAGE lift s) /\ ~(s = {}) ==> (!x. x IN s ==> inf s <= x) /\ (!b. (!x. x IN s ==> b <= x) ==> b <= inf s)`,
REWRITE_TAC[BOUNDED_LIFT; IMAGE_EQ_EMPTY] THEN MESON_TAC[INF; REAL_ARITH `abs(x) <= a ==> --a <= x`]);;
let INF_INSERT = 
prove (`!x s. bounded (IMAGE lift s) ==> inf(x INSERT s) = if s = {} then x else min x (inf s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INF_UNIQUE THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_SING] THENL [MESON_TAC[REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[REAL_MIN_LE; REAL_MIN_LT; IN_INSERT] THEN MP_TAC(ISPEC `s:real->bool` BOUNDED_HAS_INF) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[REAL_LE_REFL; REAL_NOT_LT]);;
(* ------------------------------------------------------------------------- *) (* Subset relation on balls. *) (* ------------------------------------------------------------------------- *)
let SUBSET_BALLS = 
prove (`(!a a':real^N r r'. ball(a,r) SUBSET ball(a',r') <=> dist(a,a') + r <= r' \/ r <= &0) /\ (!a a':real^N r r'. ball(a,r) SUBSET cball(a',r') <=> dist(a,a') + r <= r' \/ r <= &0) /\ (!a a':real^N r r'. cball(a,r) SUBSET ball(a',r') <=> dist(a,a') + r < r' \/ r < &0) /\ (!a a':real^N r r'. cball(a,r) SUBSET cball(a',r') <=> dist(a,a') + r <= r' \/ r < &0)`,
let lemma = prove
   (`(!a':real^N r r'.
       cball(a,r) SUBSET cball(a',r') <=> dist(a,a') + r <= r' \/ r < &0) /\
     (!a':real^N r r'.
       cball(a,r) SUBSET ball(a',r') <=> dist(a,a') + r < r' \/ r < &0)`,
    CONJ_TAC THEN
    (GEOM_ORIGIN_TAC `a':real^N` THEN
    REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET; IN_CBALL; IN_BALL] THEN
    EQ_TAC THENL [REWRITE_TAC[DIST_0]; NORM_ARITH_TAC] THEN
    DISJ_CASES_TAC(REAL_ARITH `r < &0 \/ &0 <= r`) THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN DISJ1_TAC THEN
    ASM_CASES_TAC `a:real^N = vec 0` THENL
     [FIRST_X_ASSUM(MP_TAC o SPEC `r % basis 1:real^N`) THEN
      ASM_SIMP_TAC[DIST_0; NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL];
      FIRST_X_ASSUM(MP_TAC o SPEC `(&1 + r / norm(a)) % a:real^N`) THEN
      SIMP_TAC[dist; VECTOR_ARITH `a - (&1 + x) % a:real^N = --(x % a)`] THEN
      ASM_SIMP_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; NORM_NEG; REAL_POS;
                   REAL_LE_DIV; NORM_POS_LE; REAL_ADD_RDISTRIB; REAL_DIV_RMUL;
               NORM_EQ_0; REAL_ARITH `&0 <= x ==> abs(&1 + x) = &1 + x`]] THEN
    UNDISCH_TAC `&0 <= r` THEN NORM_ARITH_TAC))
  and tac = DISCH_THEN(MP_TAC o MATCH_MP SUBSET_CLOSURE) THEN
            ASM_SIMP_TAC[CLOSED_CBALL; CLOSURE_CLOSED; CLOSURE_BALL] in
  REWRITE_TAC[AND_FORALL_THM] THEN GEOM_ORIGIN_TAC `a':real^N` THEN
  REPEAT STRIP_TAC THEN
  (EQ_TAC THENL
    [ALL_TAC; REWRITE_TAC[SUBSET; IN_BALL; IN_CBALL] THEN NORM_ARITH_TAC]) THEN
  MATCH_MP_TAC(SET_RULE
   `(s = {} <=> q) /\ (s SUBSET t /\ ~(s = {}) /\ ~(t = {}) ==> p)
    ==> s SUBSET t ==> p \/ q`) THEN
  REWRITE_TAC[BALL_EQ_EMPTY; CBALL_EQ_EMPTY; REAL_NOT_LE; REAL_NOT_LT] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THENL
   [tac; tac; ALL_TAC; ALL_TAC] THEN REWRITE_TAC[lemma] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN NORM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Compactness (the definition is the one based on convegent subsequences). *) (* ------------------------------------------------------------------------- *)
let compact = new_definition
  `compact s <=>
        !f:num->real^N.
            (!n. f(n) IN s)
            ==> ?l r. l IN s /\ (!m n:num. m < n ==> r(m) < r(n)) /\
                      ((f o r) --> l) sequentially`;;
let MONOTONE_BIGGER = 
prove (`!r. (!m n. m < n ==> r(m) < r(n)) ==> !n:num. n <= r(n)`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_MESON_TAC[LE_0; ARITH_RULE `n <= m /\ m < p ==> SUC n <= p`; LT]);;
let LIM_SUBSEQUENCE = 
prove (`!s r l. (!m n. m < n ==> r(m) < r(n)) /\ (s --> l) sequentially ==> (s o r --> l) sequentially`,
REWRITE_TAC[LIM_SEQUENTIALLY; o_THM] THEN MESON_TAC[MONOTONE_BIGGER; LE_TRANS]);;
let MONOTONE_SUBSEQUENCE = 
prove (`!s:num->real. ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\ ((!m n. m <= n ==> s(r(m)) <= s(r(n))) \/ (!m n. m <= n ==> s(r(n)) <= s(r(m))))`,
GEN_TAC THEN ASM_CASES_TAC `!n:num. ?p. n < p /\ !m. p <= m ==> s(m) <= s(p)` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP; DE_MORGAN_THM] THEN REWRITE_TAC[RIGHT_OR_EXISTS_THM; SKOLEM_THM; REAL_NOT_LE; REAL_NOT_LT] THENL [ABBREV_TAC `N = 0`; DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC)] THEN DISCH_THEN(X_CHOOSE_THEN `next:num->num` STRIP_ASSUME_TAC) THEN (MP_TAC o prove_recursive_functions_exist num_RECURSION) `(r 0 = next(SUC N)) /\ (!n. r(SUC n) = next(r n))` THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THENL [SUBGOAL_THEN `!m:num n:num. r n <= m ==> s(m) <= s(r n):real` ASSUME_TAC THEN TRY CONJ_TAC THEN TRY DISJ2_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; LE] THEN ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL; LT_IMP_LE; LT_TRANS]; SUBGOAL_THEN `!n. N < (r:num->num) n` ASSUME_TAC THEN TRY(CONJ_TAC THENL [GEN_TAC; DISJ1_TAC THEN GEN_TAC]) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; LE] THEN TRY STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LT_REFL; LT_LE; LTE_TRANS; REAL_LE_REFL; REAL_LT_LE; REAL_LE_TRANS; LT]]);;
let CONVERGENT_BOUNDED_INCREASING = 
prove (`!s:num->real b. (!m n. m <= n ==> s m <= s n) /\ (!n. abs(s n) <= b) ==> ?l. !e. &0 < e ==> ?N. !n. N <= n ==> abs(s n - l) < e`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. ?n. (s:num->real) n = x` REAL_COMPLETE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_ARITH `abs(x) <= b ==> x <= b`]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `l - e`) THEN ASM_MESON_TAC[REAL_ARITH `&0 < e ==> ~(l <= l - e)`; REAL_ARITH `x <= y /\ y <= l /\ ~(x <= l - e) ==> abs(y - l) < e`]);;
let CONVERGENT_BOUNDED_MONOTONE = 
prove (`!s:num->real b. (!n. abs(s n) <= b) /\ ((!m n. m <= n ==> s m <= s n) \/ (!m n. m <= n ==> s n <= s m)) ==> ?l. !e. &0 < e ==> ?N. !n. N <= n ==> abs(s n - l) < e`,
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[CONVERGENT_BOUNDED_INCREASING]; ALL_TAC] THEN MP_TAC(SPEC `\n. --((s:num->real) n)` CONVERGENT_BOUNDED_INCREASING) THEN ASM_REWRITE_TAC[REAL_LE_NEG2; REAL_ABS_NEG] THEN ASM_MESON_TAC[REAL_ARITH `abs(x - --l) = abs(--x - l)`]);;
let COMPACT_REAL_LEMMA = 
prove (`!s b. (!n:num. abs(s n) <= b) ==> ?l r. (!m n:num. m < n ==> r(m) < r(n)) /\ !e. &0 < e ==> ?N. !n. N <= n ==> abs(s(r n) - l) < e`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MP_TAC(SPEC `s:num->real` MONOTONE_SUBSEQUENCE) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC CONVERGENT_BOUNDED_MONOTONE THEN ASM_MESON_TAC[]);;
let COMPACT_LEMMA = 
prove (`!s. bounded s /\ (!n. (x:num->real^N) n IN s) ==> !d. d <= dimindex(:N) ==> ?l:real^N r. (!m n. m < n ==> r m < (r:num->num) n) /\ !e. &0 < e ==> ?N. !n i. 1 <= i /\ i <= d ==> N <= n ==> abs(x(r n)$i - l$i) < e`,
GEN_TAC THEN REWRITE_TAC[bounded] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `b:real`) ASSUME_TAC) THEN INDUCT_TAC THENL [REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= 0 <=> F`; CONJ_ASSOC] THEN DISCH_TAC THEN EXISTS_TAC `\n:num. n` THEN REWRITE_TAC[]; ALL_TAC] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ASM_SIMP_TAC[ARITH_RULE `SUC d <= n ==> d <= n`] THEN STRIP_TAC THEN MP_TAC(SPECL [`\n:num. (x:num->real^N) (r n) $ (SUC d)`; `b:real`] COMPACT_REAL_LEMMA) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_LE_TRANS; COMPONENT_LE_NORM; ARITH_RULE `1 <= SUC n`]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `y:real` (X_CHOOSE_THEN `s:num->num` STRIP_ASSUME_TAC)) THEN MAP_EVERY EXISTS_TAC [`(lambda k. if k = SUC d then y else (l:real^N)$k):real^N`; `(r:num->num) o (s:num->num)`] THEN ASM_SIMP_TAC[o_THM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REPEAT(FIRST_ASSUM(C UNDISCH_THEN (MP_TAC o SPEC `e:real`) o concl)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN FIRST_ASSUM(fun th -> SIMP_TAC[LAMBDA_BETA; MATCH_MP(ARITH_RULE `SUC d <= n ==> !i. 1 <= i /\ i <= SUC d ==> 1 <= i /\ i <= n`) th]) THEN REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY COND_CASES_TAC THEN ASM_MESON_TAC[MONOTONE_BIGGER; LE_TRANS; ARITH_RULE `N1 + N2 <= n ==> N2 <= n:num /\ N1 <= n`; ARITH_RULE `1 <= i /\ i <= d /\ SUC d <= n ==> ~(i = SUC d) /\ 1 <= SUC d /\ d <= n /\ i <= n`]);;
let BOUNDED_CLOSED_IMP_COMPACT = 
prove (`!s:real^N->bool. bounded s /\ closed s ==> compact s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[compact] THEN X_GEN_TAC `x:num->real^N` THEN DISCH_TAC THEN MP_TAC(ISPEC `s:real^N->bool` COMPACT_LEMMA) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(b ==> a) /\ b ==> a /\ b`) THEN REPEAT STRIP_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[CLOSED_SEQUENTIAL_LIMITS]) THEN EXISTS_TAC `(x:num->real^N) o (r:num->num)` THEN ASM_REWRITE_TAC[o_THM]; ALL_TAC] THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2 / &(dimindex(:N))`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; DIMINDEX_NONZERO; REAL_HALF; ARITH_RULE `0 < n <=> ~(n = 0)`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[dist] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(MATCH_MP (REAL_ARITH `a <= b ==> b < e ==> a < e`) (SPEC_ALL NORM_LE_L1)) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum (1..dimindex(:N)) (\k. e / &2 / &(dimindex(:N)))` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE_NUMSEG THEN SIMP_TAC[o_THM; LAMBDA_BETA; vector_sub] THEN ASM_MESON_TAC[REAL_LT_IMP_LE; LE_TRANS]; ASM_SIMP_TAC[SUM_CONST_NUMSEG; ADD_SUB; REAL_DIV_LMUL; REAL_OF_NUM_EQ; DIMINDEX_NONZERO; REAL_LE_REFL; REAL_LT_LDIV_EQ; ARITH; REAL_OF_NUM_LT; REAL_ARITH `x < x * &2 <=> &0 < x`]]);;
(* ------------------------------------------------------------------------- *) (* Completeness. *) (* ------------------------------------------------------------------------- *)
let cauchy = new_definition
  `cauchy (s:num->real^N) <=>
     !e. &0 < e ==> ?N. !m n. m >= N /\ n >= N ==> dist(s m,s n) < e`;;
let complete = new_definition
  `complete s <=>
     !f:num->real^N. (!n. f n IN s) /\ cauchy f
                      ==> ?l. l IN s /\ (f --> l) sequentially`;;
let CAUCHY = 
prove (`!s:num->real^N. cauchy s <=> !e. &0 < e ==> ?N. !n. n >= N ==> dist(s n,s N) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[cauchy; GE] THEN EQ_TAC THENL [MESON_TAC[LE_REFL]; DISCH_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MESON_TAC[DIST_TRIANGLE_HALF_L]);;
let CONVERGENT_IMP_CAUCHY = 
prove (`!s l. (s --> l) sequentially ==> cauchy s`,
REWRITE_TAC[LIM_SEQUENTIALLY; cauchy] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN ASM_MESON_TAC[GE; LE_REFL; DIST_TRIANGLE_HALF_L]);;
let CAUCHY_IMP_BOUNDED = 
prove (`!s:num->real^N. cauchy s ==> bounded {y | ?n. y = s n}`,
REWRITE_TAC[cauchy; bounded; IN_ELIM_THM] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPEC `N:num`)) THEN REWRITE_TAC[GE_REFL] THEN DISCH_TAC THEN SUBGOAL_THEN `!n:num. N <= n ==> norm(s n :real^N) <= norm(s N) + &1` ASSUME_TAC THENL [ASM_MESON_TAC[GE; dist; DIST_SYM; NORM_TRIANGLE_SUB; REAL_ARITH `a <= b + c /\ c < &1 ==> a <= b + &1`]; MP_TAC(ISPECL [`\n:num. norm(s n :real^N)`; `0..N`] UPPER_BOUND_FINITE_SET_REAL) THEN SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0; LEFT_IMP_EXISTS_THM] THEN ASM_MESON_TAC[LE_CASES; REAL_ARITH `x <= a \/ x <= b ==> x <= abs a + abs b`]]);;
let COMPACT_IMP_COMPLETE = 
prove (`!s:real^N->bool. compact s ==> complete s`,
GEN_TAC THEN REWRITE_TAC[complete; compact] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `f:num->real^N` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] LIM_ADD)) THEN DISCH_THEN(MP_TAC o SPEC `\n. (f:num->real^N)(n) - f(r n)`) THEN DISCH_THEN(MP_TAC o SPEC `vec 0: real^N`) THEN ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[VECTOR_ADD_RID; VECTOR_SUB_ADD2; ETA_AX] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cauchy]) THEN REWRITE_TAC[GE; LIM; SEQUENTIALLY; dist; VECTOR_SUB_RZERO] THEN SUBGOAL_THEN `!n:num. n <= r(n)` MP_TAC THENL [INDUCT_TAC; ALL_TAC] THEN ASM_MESON_TAC[ LE_TRANS; LE_REFL; LT; LET_TRANS; LE_0; LE_SUC_LT]);;
let COMPLETE_UNIV = 
prove (`complete(:real^N)`,
REWRITE_TAC[complete; IN_UNIV] THEN X_GEN_TAC `x:num->real^N` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_IMP_BOUNDED) THEN DISCH_THEN(ASSUME_TAC o MATCH_MP BOUNDED_CLOSURE) THEN MP_TAC(ISPEC `closure {y:real^N | ?n:num. y = x n}` COMPACT_IMP_COMPLETE) THEN ASM_SIMP_TAC[BOUNDED_CLOSED_IMP_COMPACT; CLOSED_CLOSURE; complete] THEN DISCH_THEN(MP_TAC o SPEC `x:num->real^N`) THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN ASM_REWRITE_TAC[closure; IN_ELIM_THM; IN_UNION] THEN MESON_TAC[]);;
let COMPLETE_EQ_CLOSED = 
prove (`!s:real^N->bool. complete s <=> closed s`,
GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[complete; CLOSED_LIMPT; LIMPT_SEQUENTIAL] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN GEN_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[CONVERGENT_IMP_CAUCHY; IN_DELETE; LIM_UNIQUE; TRIVIAL_LIMIT_SEQUENTIALLY]; REWRITE_TAC[complete; CLOSED_SEQUENTIAL_LIMITS] THEN DISCH_TAC THEN X_GEN_TAC `f:num->real^N` THEN STRIP_TAC THEN MP_TAC(REWRITE_RULE[complete] COMPLETE_UNIV) THEN DISCH_THEN(MP_TAC o SPEC `f:num->real^N`) THEN ASM_REWRITE_TAC[IN_UNIV] THEN ASM_MESON_TAC[]]);;
let CONVERGENT_EQ_CAUCHY = 
prove (`!s. (?l. (s --> l) sequentially) <=> cauchy s`,
GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM; CONVERGENT_IMP_CAUCHY]; REWRITE_TAC[REWRITE_RULE[complete; IN_UNIV] COMPLETE_UNIV]]);;
let CONVERGENT_IMP_BOUNDED = 
prove (`!s l. (s --> l) sequentially ==> bounded (IMAGE s (:num))`,
REWRITE_TAC[LEFT_FORALL_IMP_THM; CONVERGENT_EQ_CAUCHY] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CAUCHY_IMP_BOUNDED) THEN REWRITE_TAC[IMAGE; IN_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Total boundedness. *) (* ------------------------------------------------------------------------- *)
let COMPACT_IMP_TOTALLY_BOUNDED = 
prove (`!s:real^N->bool. compact s ==> !e. &0 < e ==> ?k. FINITE k /\ k SUBSET s /\ s SUBSET (UNIONS(IMAGE (\x. ball(x,e)) k))`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`; SUBSET] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?x:num->real^N. !n. x(n) IN s /\ !m. m < n ==> ~(dist(x(m),x(n)) < e)` MP_TAC THENL [SUBGOAL_THEN `?x:num->real^N. !n. x(n) = @y. y IN s /\ !m. m < n ==> ~(dist(x(m),y) < e)` MP_TAC THENL [MATCH_MP_TAC(MATCH_MP WF_REC WF_num) THEN SIMP_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:num->real^N` THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(SUBST1_TAC o SPEC `n:num`) THEN STRIP_TAC THEN CONV_TAC SELECT_CONV THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (x:num->real^N) {m | m < n}`) THEN SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG_LT; NOT_FORALL_THM; NOT_IMP] THEN REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_BALL]; ALL_TAC] THEN REWRITE_TAC[compact; NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:num->real^N` THEN REWRITE_TAC[NOT_IMP; FORALL_AND_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP CONVERGENT_IMP_CAUCHY) THEN REWRITE_TAC[cauchy] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[o_THM; NOT_EXISTS_THM; NOT_IMP; NOT_FORALL_THM; NOT_IMP] THEN X_GEN_TAC `N:num` THEN MAP_EVERY EXISTS_TAC [`N:num`; `SUC N`] THEN CONJ_TAC THENL [ARITH_TAC; ASM_MESON_TAC[LT]]);;
(* ------------------------------------------------------------------------- *) (* Heine-Borel theorem (following Burkill & Burkill vol. 2) *) (* ------------------------------------------------------------------------- *)
let HEINE_BOREL_LEMMA = 
prove (`!s:real^N->bool. compact s ==> !t. s SUBSET (UNIONS t) /\ (!b. b IN t ==> open b) ==> ?e. &0 < e /\ !x. x IN s ==> ?b. b IN t /\ ball(x,e) SUBSET b`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `&1 / (&n + &1)`) THEN SIMP_TAC[REAL_LT_DIV; REAL_LT_01; REAL_ARITH `x <= y ==> x < y + &1`; FORALL_AND_THM; REAL_POS; NOT_FORALL_THM; NOT_IMP; SKOLEM_THM; compact] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`l:real^N`; `r:num->num`] THEN STRIP_TAC THEN SUBGOAL_THEN `?b:real^N->bool. l IN b /\ b IN t` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; IN_UNIONS]; ALL_TAC] THEN SUBGOAL_THEN `?e. &0 < e /\ !z:real^N. dist(z,l) < e ==> z IN b` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[open_def]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_SEQUENTIALLY]) THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN SUBGOAL_THEN `&0 < e / &2` (fun th -> REWRITE_TAC[th; o_THM] THEN MP_TAC(GEN_REWRITE_RULE I [REAL_ARCH_INV] th)) THENL [ASM_REWRITE_TAC[REAL_HALF]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `N2:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(r:num->num)(N1 + N2)`; `b:real^N->bool`]) THEN ASM_REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC DIST_TRIANGLE_HALF_R THEN EXISTS_TAC `(f:num->real^N)(r(N1 + N2:num))` THEN CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM MATCH_MP_TAC THEN ARITH_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_BALL]) THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> x < a ==> x < b`) THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(&N1)` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN REWRITE_TAC[real_div; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN ASM_MESON_TAC[ARITH_RULE `(~(n = 0) ==> 0 < n)`; LE_ADD; MONOTONE_BIGGER; LT_IMP_LE; LE_TRANS]);;
let COMPACT_IMP_HEINE_BOREL = 
prove (`!s. compact (s:real^N->bool) ==> !f. (!t. t IN f ==> open t) /\ s SUBSET (UNIONS f) ==> ?f'. f' SUBSET f /\ FINITE f' /\ s SUBSET (UNIONS f')`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `f:(real^N->bool)->bool` o MATCH_MP HEINE_BOREL_LEMMA) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; SUBSET; IN_BALL] THEN DISCH_THEN(X_CHOOSE_TAC `B:real^N->real^N->bool`) THEN FIRST_ASSUM(MP_TAC o SPEC `e:real` o MATCH_MP COMPACT_IMP_TOTALLY_BOUNDED) THEN ASM_REWRITE_TAC[UNIONS_IMAGE; SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[IN_UNIONS; IN_BALL] THEN DISCH_THEN(X_CHOOSE_THEN `k:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (B:real^N->real^N->bool) k` THEN ASM_SIMP_TAC[FINITE_IMAGE; SUBSET; IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN ASM_MESON_TAC[IN_BALL]);;
(* ------------------------------------------------------------------------- *) (* Bolzano-Weierstrass property. *) (* ------------------------------------------------------------------------- *)
let HEINE_BOREL_IMP_BOLZANO_WEIERSTRASS = 
prove (`!s:real^N->bool. (!f. (!t. t IN f ==> open t) /\ s SUBSET (UNIONS f) ==> ?f'. f' SUBSET f /\ FINITE f' /\ s SUBSET (UNIONS f')) ==> !t. INFINITE t /\ t SUBSET s ==> ?x. x IN s /\ x limit_point_of t`,
REWRITE_TAC[RIGHT_IMP_FORALL_THM; limit_point_of] THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> b /\ c ==> d <=> c ==> ~d ==> a ==> ~b`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; RIGHT_AND_FORALL_THM] THEN DISCH_TAC THEN REWRITE_TAC[SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `f:real^N->real^N->bool`) THEN DISCH_THEN(MP_TAC o SPEC `{t:real^N->bool | ?x:real^N. x IN s /\ (t = f x)}`) THEN REWRITE_TAC[INFINITE; SUBSET; IN_ELIM_THM; IN_UNIONS; NOT_IMP] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{x:real^N | x IN t /\ (f(x):real^N->bool) IN g}` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_IMAGE_INJ_GENERAL THEN ASM_MESON_TAC[SUBSET]; SIMP_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `u:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `(u:real^N) IN s` ASSUME_TAC THEN ASM_MESON_TAC[SUBSET]]);;
(* ------------------------------------------------------------------------- *) (* Complete the chain of compactness variants. *) (* ------------------------------------------------------------------------- *)
let BOLZANO_WEIERSTRASS_IMP_BOUNDED = 
prove (`!s:real^N->bool. (!t. INFINITE t /\ t SUBSET s ==> ?x. x IN s /\ x limit_point_of t) ==> bounded s`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN SIMP_TAC[compact; bounded] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; SKOLEM_THM; NOT_IMP] THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_THEN(X_CHOOSE_TAC `beyond:real->real^N`) THEN (MP_TAC o prove_recursive_functions_exist num_RECURSION) `(f(0) = beyond(&0)) /\ (!n. f(SUC n) = beyond(norm(f n) + &1):real^N)` THEN DISCH_THEN(X_CHOOSE_THEN `x:num->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (x:num->real^N) UNIV` THEN SUBGOAL_THEN `!m n. m < n ==> norm((x:num->real^N) m) + &1 < norm(x n)` ASSUME_TAC THENL [GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT] THEN ASM_MESON_TAC[REAL_LT_TRANS; REAL_ARITH `b < b + &1`]; ALL_TAC] THEN SUBGOAL_THEN `!m n. ~(m = n) ==> &1 < dist((x:num->real^N) m,x n)` ASSUME_TAC THENL [REPEAT GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPECL [`m:num`; `n:num`] LT_CASES) THEN ASM_MESON_TAC[dist; LT_CASES; NORM_TRIANGLE_SUB; NORM_SUB; REAL_ARITH `x + &1 < y /\ y <= x + d ==> &1 < d`]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[INFINITE_IMAGE_INJ; num_INFINITE; DIST_REFL; REAL_ARITH `~(&1 < &0)`]; REWRITE_TAC[SUBSET; IN_IMAGE; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN INDUCT_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `l:real^N` THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN REWRITE_TAC[IN_IMAGE; IN_UNIV; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `&1 / &2`) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `dist((x:num->real^N) k,l)`) THEN ASM_SIMP_TAC[DIST_POS_LT] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `m:num = k` THEN ASM_MESON_TAC[DIST_TRIANGLE_HALF_L; REAL_LT_TRANS; REAL_LT_REFL]);;
let SEQUENCE_INFINITE_LEMMA = 
prove (`!f l. (!n. ~(f(n) = l)) /\ (f --> l) sequentially ==> INFINITE {y:real^N | ?n. y = f n}`,
REWRITE_TAC[INFINITE] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `IMAGE (\y:real^N. dist(y,l)) {y | ?n:num. y = f n}` INF_FINITE) THEN ASM_SIMP_TAC[GSYM MEMBER_NOT_EMPTY; IN_IMAGE; FINITE_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[LIM_SEQUENTIALLY; LE_REFL; REAL_NOT_LE; DIST_POS_LT]);;
let LIMPT_OF_SEQUENCE_SUBSEQUENCE = 
prove (`!f:num->real^N l. l limit_point_of (IMAGE f (:num)) ==> ?r. (!m n. m < n ==> r(m) < r(n)) /\ ((f o r) --> l) sequentially`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMPT_APPROACHABLE]) THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `inf((inv(&n + &1)) INSERT IMAGE (\k. dist((f:num->real^N) k,l)) {k | k IN 0..n /\ ~(f k = l)})`) THEN SIMP_TAC[REAL_LT_INF_FINITE; FINITE_INSERT; NOT_INSERT_EMPTY; FINITE_RESTRICT; FINITE_NUMSEG; FINITE_IMAGE] THEN REWRITE_TAC[FORALL_IN_INSERT; EXISTS_IN_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN SIMP_TAC[FORALL_AND_THM; FORALL_IN_GSPEC; GSYM DIST_NZ; SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `nn:num->num` STRIP_ASSUME_TAC) THEN (MP_TAC o prove_recursive_functions_exist num_RECURSION) `r 0 = nn 0 /\ (!n. r (SUC n) = nn(r n))` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN REWRITE_TAC[LT_TRANS] THEN X_GEN_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(r:num->num) n`; `(nn:num->num)(r(n:num))`]) THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_0; REAL_LT_REFL] THEN ARITH_TAC; DISCH_THEN(ASSUME_TAC o MATCH_MP MONOTONE_BIGGER)] THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN X_GEN_TAC `e:real` THEN GEN_REWRITE_TAC LAND_CONV [REAL_ARCH_INV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[CONJUNCT1 LE] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN DISCH_TAC THEN ASM_REWRITE_TAC[o_THM] THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `inv(&((r:num->num) n) + &1)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; LE_1; REAL_OF_NUM_ADD] THEN MATCH_MP_TAC(ARITH_RULE `N <= SUC n /\ n <= r n ==> N <= r n + 1`) THEN ASM_REWRITE_TAC[]);;
let SEQUENCE_UNIQUE_LIMPT = 
prove (`!f l l':real^N. (f --> l) sequentially /\ l' limit_point_of {y | ?n. y = f n} ==> l' = l`,
REWRITE_TAC[SET_RULE `{y | ?n. y = f n} = IMAGE f (:num)`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP LIMPT_OF_SEQUENCE_SUBSEQUENCE) THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN EXISTS_TAC `(f:num->real^N) o (r:num->num)` THEN ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LIM_SUBSEQUENCE]);;
let BOLZANO_WEIERSTRASS_IMP_CLOSED = 
prove (`!s:real^N->bool. (!t. INFINITE t /\ t SUBSET s ==> ?x. x IN s /\ x limit_point_of t) ==> closed s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSED_SEQUENTIAL_LIMITS] THEN MAP_EVERY X_GEN_TAC [`f:num->real^N`; `l:real^N`] THEN DISCH_TAC THEN MAP_EVERY (MP_TAC o ISPECL [`f:num->real^N`; `l:real^N`]) [SEQUENCE_UNIQUE_LIMPT; SEQUENCE_INFINITE_LEMMA] THEN MATCH_MP_TAC(TAUT `(~d ==> a /\ ~(b /\ c)) ==> (a ==> b) ==> c ==> d`) THEN DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[]; STRIP_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `{y:real^N | ?n:num. y = f n}`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM]; ABBREV_TAC `t = {y:real^N | ?n:num. y = f n}`] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Hence express everything as an equivalence. *) (* ------------------------------------------------------------------------- *)
let COMPACT_EQ_HEINE_BOREL = 
prove (`!s:real^N->bool. compact s <=> !f. (!t. t IN f ==> open t) /\ s SUBSET (UNIONS f) ==> ?f'. f' SUBSET f /\ FINITE f' /\ s SUBSET (UNIONS f')`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[COMPACT_IMP_HEINE_BOREL] THEN DISCH_THEN(MP_TAC o MATCH_MP HEINE_BOREL_IMP_BOLZANO_WEIERSTRASS) THEN DISCH_TAC THEN MATCH_MP_TAC BOUNDED_CLOSED_IMP_COMPACT THEN ASM_SIMP_TAC[BOLZANO_WEIERSTRASS_IMP_BOUNDED; BOLZANO_WEIERSTRASS_IMP_CLOSED]);;
let COMPACT_EQ_BOLZANO_WEIERSTRASS = 
prove (`!s:real^N->bool. compact s <=> !t. INFINITE t /\ t SUBSET s ==> ?x. x IN s /\ x limit_point_of t`,
let COMPACT_EQ_BOUNDED_CLOSED = 
prove (`!s:real^N->bool. compact s <=> bounded s /\ closed s`,
let COMPACT_IMP_BOUNDED = 
prove (`!s. compact s ==> bounded s`,
let COMPACT_IMP_CLOSED = 
prove (`!s. compact s ==> closed s`,
let COMPACT_SEQUENCE_WITH_LIMIT = 
prove (`!f l:real^N. (f --> l) sequentially ==> compact (l INSERT IMAGE f (:num))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN REWRITE_TAC[BOUNDED_INSERT] THEN CONJ_TAC THENL [ASM_MESON_TAC[CONVERGENT_IMP_BOUNDED]; SIMP_TAC[CLOSED_LIMPT; LIMPT_INSERT; IN_INSERT] THEN REWRITE_TAC[IMAGE; IN_UNIV] THEN REPEAT STRIP_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC SEQUENCE_UNIQUE_LIMPT THEN ASM_MESON_TAC[]]);;
let CLOSED_IN_COMPACT = 
prove (`!s t:real^N->bool. compact s /\ closed_in (subtopology euclidean s) t ==> compact t`,
(* ------------------------------------------------------------------------- *) (* A version of Heine-Borel for subtopology. *) (* ------------------------------------------------------------------------- *)
let COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY = 
prove (`!s:real^N->bool. compact s <=> (!f. (!t. t IN f ==> open_in(subtopology euclidean s) t) /\ s SUBSET UNIONS f ==> ?f'. f' SUBSET f /\ FINITE f' /\ s SUBSET UNIONS f')`,
GEN_TAC THEN REWRITE_TAC[COMPACT_EQ_HEINE_BOREL] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `f:(real^N->bool)->bool` THENL [REWRITE_TAC[OPEN_IN_OPEN] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `m:(real^N->bool)->(real^N->bool)`) ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (m:(real^N->bool)->(real^N->bool)) f`) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f':(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (\t:real^N->bool. s INTER t) f'` THEN ASM_SIMP_TAC[FINITE_IMAGE; UNIONS_IMAGE; SUBSET; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET_IMAGE]) THEN STRIP_TAC THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_MESON_TAC[SUBSET]; DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `{s INTER t:real^N->bool | t IN f}`) THEN REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; OPEN_IN_OPEN; UNIONS_IMAGE] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE; UNIONS_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* More easy lemmas. *) (* ------------------------------------------------------------------------- *)
let COMPACT_CLOSURE = 
prove (`!s. compact(closure s) <=> bounded s`,
let BOLZANO_WEIERSTRASS_CONTRAPOS = 
prove (`!s t:real^N->bool. compact s /\ t SUBSET s /\ (!x. x IN s ==> ~(x limit_point_of t)) ==> FINITE t`,
REWRITE_TAC[COMPACT_EQ_BOLZANO_WEIERSTRASS; INFINITE] THEN MESON_TAC[]);;
let DISCRETE_BOUNDED_IMP_FINITE = 
prove (`!s:real^N->bool e. &0 < e /\ (!x y. x IN s /\ y IN s /\ norm(y - x) < e ==> y = x) /\ bounded s ==> FINITE s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `compact(s:real^N->bool)` MP_TAC THENL [ASM_REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN ASM_MESON_TAC[DISCRETE_IMP_CLOSED]; DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_HEINE_BOREL)] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (\x:real^N. ball(x,e)) s`) THEN REWRITE_TAC[FORALL_IN_IMAGE; OPEN_BALL; UNIONS_IMAGE; IN_ELIM_THM] THEN ANTS_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[CENTRE_IN_BALL]; ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`]] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `s:real^N->bool = t` (fun th -> ASM_REWRITE_TAC[th]) THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [UNIONS_IMAGE]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N` o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_BALL; dist] THEN ASM_MESON_TAC[SUBSET]);;
let BOLZANO_WEIERSTRASS = 
prove (`!s:real^N->bool. bounded s /\ INFINITE s ==> ?x. x limit_point_of s`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP NO_LIMIT_POINT_IMP_CLOSED) THEN STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` COMPACT_EQ_BOLZANO_WEIERSTRASS) THEN ASM_REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN DISCH_THEN(MP_TAC o SPEC `s:real^N->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* In particular, some common special cases. *) (* ------------------------------------------------------------------------- *)
let COMPACT_EMPTY = 
prove (`compact {}`,
REWRITE_TAC[compact; NOT_IN_EMPTY]);;
let COMPACT_UNION = 
prove (`!s t. compact s /\ compact t ==> compact (s UNION t)`,
let COMPACT_INTER = 
prove (`!s t. compact s /\ compact t ==> compact (s INTER t)`,
let COMPACT_INTER_CLOSED = 
prove (`!s t. compact s /\ closed t ==> compact (s INTER t)`,
let CLOSED_INTER_COMPACT = 
prove (`!s t. closed s /\ compact t ==> compact (s INTER t)`,
let COMPACT_INTERS = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> compact s) /\ ~(f = {}) ==> compact(INTERS f)`,
SIMP_TAC[COMPACT_EQ_BOUNDED_CLOSED; CLOSED_INTERS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC BOUNDED_INTERS THEN ASM SET_TAC[]);;
let FINITE_IMP_CLOSED = 
prove (`!s. FINITE s ==> closed s`,
let FINITE_IMP_CLOSED_IN = 
prove (`!s t. FINITE s /\ s SUBSET t ==> closed_in (subtopology euclidean t) s`,
let FINITE_IMP_COMPACT = 
prove (`!s. FINITE s ==> compact s`,
let COMPACT_SING = 
prove (`!a. compact {a}`,
let COMPACT_INSERT = 
prove (`!a s. compact s ==> compact(a INSERT s)`,
ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN SIMP_TAC[COMPACT_UNION; COMPACT_SING]);;
let CLOSED_SING = 
prove (`!a. closed {a}`,
let CLOSED_IN_SING = 
prove (`!u x:real^N. closed_in (subtopology euclidean u) {x} <=> x IN u`,
SIMP_TAC[CLOSED_SUBSET_EQ; CLOSED_SING] THEN SET_TAC[]);;
let CLOSURE_SING = 
prove (`!x:real^N. closure {x} = {x}`,
let CLOSED_INSERT = 
prove (`!a s. closed s ==> closed(a INSERT s)`,
ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN SIMP_TAC[CLOSED_UNION; CLOSED_SING]);;
let COMPACT_CBALL = 
prove (`!x e. compact(cball(x,e))`,
let COMPACT_FRONTIER_BOUNDED = 
prove (`!s. bounded s ==> compact(frontier s)`,
let COMPACT_FRONTIER = 
prove (`!s. compact s ==> compact (frontier s)`,
let BOUNDED_FRONTIER = 
prove (`!s:real^N->bool. bounded s ==> bounded(frontier s)`,
let FRONTIER_SUBSET_COMPACT = 
prove (`!s. compact s ==> frontier s SUBSET s`,
let OPEN_DELETE = 
prove (`!s x. open s ==> open(s DELETE x)`,
let lemma = prove(`s DELETE x = s DIFF {x}`,SET_TAC[]) in
  SIMP_TAC[lemma; OPEN_DIFF; CLOSED_SING]);;
let OPEN_IN_DELETE = 
prove (`!u s a:real^N. open_in (subtopology euclidean u) s ==> open_in (subtopology euclidean u) (s DELETE a)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THENL [ONCE_REWRITE_TAC[SET_RULE `s DELETE a = s DIFF {a}`] THEN MATCH_MP_TAC OPEN_IN_DIFF THEN ASM_REWRITE_TAC[CLOSED_IN_SING] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ASM SET_TAC[]; ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> s DELETE a = s`]]);;
let CLOSED_INTERS_COMPACT = 
prove (`!s:real^N->bool. closed s <=> !e. compact(cball(vec 0,e) INTER s)`,
GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[COMPACT_EQ_BOUNDED_CLOSED; CLOSED_INTER; CLOSED_CBALL; BOUNDED_INTER; BOUNDED_CBALL]; ALL_TAC] THEN STRIP_TAC THEN REWRITE_TAC[CLOSED_LIMPT] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `norm(x:real^N) + &1`) THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_IMP_CLOSED) THEN REWRITE_TAC[CLOSED_LIMPT] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN REWRITE_TAC[IN_INTER] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `min e (&1 / &2)`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `y:real^N` THEN SIMP_TAC[IN_INTER; IN_CBALL] THEN NORM_ARITH_TAC);;
let COMPACT_UNIONS = 
prove (`!s. FINITE s /\ (!t. t IN s ==> compact t) ==> compact(UNIONS s)`,
let COMPACT_DIFF = 
prove (`!s t. compact s /\ open t ==> compact(s DIFF t)`,
ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s INTER (UNIV DIFF t)`] THEN SIMP_TAC[COMPACT_INTER_CLOSED; GSYM OPEN_CLOSED]);;
let COMPACT_SPHERE = 
prove (`!a:real^N r. compact(sphere(a,r))`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FRONTIER_CBALL] THEN MATCH_MP_TAC COMPACT_FRONTIER THEN REWRITE_TAC[COMPACT_CBALL]);;
let BOUNDED_SPHERE = 
prove (`!a:real^N r. bounded(sphere(a,r))`,
let CLOSED_SPHERE = 
prove (`!a r. closed(sphere(a,r))`,
let FRONTIER_SING = 
prove (`!a:real^N. frontier {a} = {a}`,
REWRITE_TAC[frontier; CLOSURE_SING; INTERIOR_SING; DIFF_EMPTY]);;
(* ------------------------------------------------------------------------- *) (* Finite intersection property. I could make it an equivalence in fact. *) (* ------------------------------------------------------------------------- *)
let COMPACT_IMP_FIP = 
prove (`!s:real^N->bool f. compact s /\ (!t. t IN f ==> closed t) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(s INTER (INTERS f') = {})) ==> ~(s INTER (INTERS f) = {})`,
let lemma = prove(`(s = UNIV DIFF t) <=> (UNIV DIFF s = t)`,SET_TAC[]) in
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL]) THEN
  DISCH_THEN(MP_TAC o SPEC `IMAGE (\t:real^N->bool. UNIV DIFF t) f`) THEN
  ASM_SIMP_TAC[FORALL_IN_IMAGE] THEN
  DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN
  ASM_SIMP_TAC[OPEN_DIFF; CLOSED_DIFF; OPEN_UNIV; CLOSED_UNIV; NOT_IMP] THEN
  CONJ_TAC THENL
   [UNDISCH_TAC `(s:real^N->bool) INTER INTERS f = {}` THEN
    ONCE_REWRITE_TAC[SUBSET; EXTENSION] THEN
    REWRITE_TAC[IN_UNIONS; EXISTS_IN_IMAGE] THEN SET_TAC[];
    DISCH_THEN(X_CHOOSE_THEN `g:(real^N->bool)->bool` MP_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (\t:real^N->bool. UNIV DIFF t) g`) THEN
    ASM_CASES_TAC `FINITE(g:(real^N->bool)->bool)` THEN
    ASM_SIMP_TAC[FINITE_IMAGE] THEN ONCE_REWRITE_TAC[SUBSET; EXTENSION] THEN
    REWRITE_TAC[FORALL_IN_IMAGE; IN_INTER; IN_INTERS; IN_IMAGE; IN_DIFF;
                IN_UNIV; NOT_IN_EMPTY; lemma; UNWIND_THM1; IN_UNIONS] THEN
    SET_TAC[]]);;
let CLOSED_FIP = 
prove (`!f. (!t:real^N->bool. t IN f ==> closed t) /\ (?t. t IN f /\ bounded t) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(INTERS f' = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) ASSUME_TAC) THEN MATCH_MP_TAC(SET_RULE `!s. ~(s INTER f = {}) ==> ~(f = {})`) THEN EXISTS_TAC `s:real^N->bool` THEN MATCH_MP_TAC COMPACT_IMP_FIP THEN ASM_SIMP_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC COMPACT_IMP_FIP THEN ASM_SIMP_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_INSERT] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN ASM SET_TAC[]);;
let COMPACT_FIP = 
prove (`!f. (!t:real^N->bool. t IN f ==> compact t) /\ (!f'. FINITE f' /\ f' SUBSET f ==> ~(INTERS f' = {})) ==> ~(INTERS f = {})`,
GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THEN ASM_REWRITE_TAC[INTERS_0; UNIV_NOT_EMPTY] THEN MATCH_MP_TAC CLOSED_FIP THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; COMPACT_IMP_BOUNDED]);;
(* ------------------------------------------------------------------------- *) (* Bounded closed nest property (proof does not use Heine-Borel). *) (* ------------------------------------------------------------------------- *)
let BOUNDED_CLOSED_NEST = 
prove (`!s. (!n. closed(s n)) /\ (!n. ~(s n = {})) /\ (!m n. m <= n ==> s(n) SUBSET s(m)) /\ bounded(s 0) ==> ?a:real^N. !n:num. a IN s(n)`,
GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; SKOLEM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:num->real^N`) STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `compact(s 0:real^N->bool)` MP_TAC THENL [ASM_MESON_TAC[BOUNDED_CLOSED_IMP_COMPACT]; ALL_TAC] THEN REWRITE_TAC[compact] THEN DISCH_THEN(MP_TAC o SPEC `a:num->real^N`) THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET; LE_0]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^N` THEN REWRITE_TAC[LIM_SEQUENTIALLY; o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN GEN_REWRITE_TAC I [TAUT `p <=> ~(~p)`] THEN GEN_REWRITE_TAC RAND_CONV [NOT_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN MP_TAC(ISPECL [`l:real^N`; `(s:num->real^N->bool) N`] CLOSED_APPROACHABLE) THEN ASM_MESON_TAC[SUBSET; LE_REFL; LE_TRANS; LE_CASES; MONOTONE_BIGGER]);;
(* ------------------------------------------------------------------------- *) (* Decreasing case does not even need compactness, just completeness. *) (* ------------------------------------------------------------------------- *)
let DECREASING_CLOSED_NEST = 
prove (`!s. (!n. closed(s n)) /\ (!n. ~(s n = {})) /\ (!m n. m <= n ==> s(n) SUBSET s(m)) /\ (!e. &0 < e ==> ?n. !x y. x IN s(n) /\ y IN s(n) ==> dist(x,y) < e) ==> ?a:real^N. !n:num. a IN s(n)`,
GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; SKOLEM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:num->real^N`) STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?l:real^N. (a --> l) sequentially` MP_TAC THENL [ASM_MESON_TAC[cauchy; GE; SUBSET; LE_TRANS; LE_REFL; complete; COMPLETE_UNIV; IN_UNIV]; ASM_MESON_TAC[LIM_SEQUENTIALLY; CLOSED_APPROACHABLE; SUBSET; LE_REFL; LE_TRANS; LE_CASES]]);;
(* ------------------------------------------------------------------------- *) (* Strengthen it to the intersection actually being a singleton. *) (* ------------------------------------------------------------------------- *)
let DECREASING_CLOSED_NEST_SING = 
prove (`!s. (!n. closed(s n)) /\ (!n. ~(s n = {})) /\ (!m n. m <= n ==> s(n) SUBSET s(m)) /\ (!e. &0 < e ==> ?n. !x y. x IN s(n) /\ y IN s(n) ==> dist(x,y) < e) ==> ?a:real^N. INTERS {t | ?n:num. t = s n} = {a}`,
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DECREASING_CLOSED_NEST) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN REWRITE_TAC[EXTENSION; IN_INTERS; IN_SING; IN_ELIM_THM] THEN ASM_MESON_TAC[DIST_POS_LT; REAL_LT_REFL; SUBSET; LE_CASES]);;
(* ------------------------------------------------------------------------- *) (* A version for a more general chain, not indexed by N. *) (* ------------------------------------------------------------------------- *)
let BOUNDED_CLOSED_CHAIN = 
prove (`!f b:real^N->bool. (!s. s IN f ==> closed s /\ ~(s = {})) /\ (!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s) /\ b IN f /\ bounded b ==> ~(INTERS f = {})`,
REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `~(b INTER (INTERS f):real^N->bool = {})` MP_TAC THENL [ALL_TAC; SET_TAC[]] THEN MATCH_MP_TAC COMPACT_IMP_FIP THEN ASM_SIMP_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN X_GEN_TAC `u:(real^N->bool)->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `?s:real^N->bool. s IN f /\ !t. t IN u ==> s SUBSET t` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN UNDISCH_TAC `(u:(real^N->bool)->bool) SUBSET f` THEN UNDISCH_TAC `FINITE(u:(real^N->bool)->bool)` THEN SPEC_TAC(`u:(real^N->bool)->bool`,`u:(real^N->bool)->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:(real^N->bool)->bool`] THEN REWRITE_TAC[INSERT_SUBSET] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s:real^N->bool`; `t:real^N->bool`]) THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Analogous things directly for compactness. *) (* ------------------------------------------------------------------------- *)
let COMPACT_CHAIN = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> compact s /\ ~(s = {})) /\ (!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s) ==> ~(INTERS f = {})`,
GEN_TAC THEN REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN STRIP_TAC THEN ASM_CASES_TAC `f:(real^N->bool)->bool = {}` THENL [ASM_REWRITE_TAC[INTERS_0] THEN SET_TAC[]; MATCH_MP_TAC BOUNDED_CLOSED_CHAIN THEN ASM SET_TAC[]]);;
let COMPACT_NEST = 
prove (`!s. (!n. compact(s n) /\ ~(s n = {})) /\ (!m n. m <= n ==> s n SUBSET s m) ==> ~(INTERS {s n | n IN (:num)} = {})`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC COMPACT_CHAIN THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; IN_UNIV; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC WLOG_LE THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Cauchy-type criteria for *uniform* convergence. *) (* ------------------------------------------------------------------------- *)
let UNIFORMLY_CONVERGENT_EQ_CAUCHY = 
prove (`!P s:num->A->real^N. (?l. !e. &0 < e ==> ?N. !n x. N <= n /\ P x ==> dist(s n x,l x) < e) <=> (!e. &0 < e ==> ?N. !m n x. N <= m /\ N <= n /\ P x ==> dist(s m x,s n x) < e)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `l:A->real^N`) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MESON_TAC[DIST_TRIANGLE_HALF_L]; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `!x:A. P x ==> cauchy (\n. s n x :real^N)` MP_TAC THENL [REWRITE_TAC[cauchy; GE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM CONVERGENT_EQ_CAUCHY; LIM_SEQUENTIALLY] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:A->real^N` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`n:num`; `x:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `N + M:num`; `x:A`]) THEN ASM_REWRITE_TAC[LE_ADD] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN FIRST_X_ASSUM(MP_TAC o SPEC `M + N:num`) THEN REWRITE_TAC[LE_ADD] THEN ASM_MESON_TAC[DIST_TRIANGLE_HALF_L; DIST_SYM]);;
let UNIFORMLY_CAUCHY_IMP_UNIFORMLY_CONVERGENT = 
prove (`!P (s:num->A->real^N) l. (!e. &0 < e ==> ?N. !m n x. N <= m /\ N <= n /\ P x ==> dist(s m x,s n x) < e) /\ (!x. P x ==> !e. &0 < e ==> ?N. !n. N <= n ==> dist(s n x,l x) < e) ==> (!e. &0 < e ==> ?N. !n x. N <= n /\ P x ==> dist(s n x,l x) < e)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM UNIFORMLY_CONVERGENT_EQ_CAUCHY] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `l':A->real^N`) ASSUME_TAC) THEN SUBGOAL_THEN `!x. P x ==> (l:A->real^N) x = l' x` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN EXISTS_TAC `\n. (s:num->A->real^N) n x` THEN REWRITE_TAC[LIM_SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Define continuity over a net to take in restrictions of the set. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("continuous",(12,"right"));;
let continuous = new_definition
  `f continuous net <=> (f --> f(netlimit net)) net`;;
let CONTINUOUS_TRIVIAL_LIMIT = 
prove (`!f net. trivial_limit net ==> f continuous net`,
SIMP_TAC[continuous; LIM]);;
let CONTINUOUS_WITHIN = 
prove (`!f x:real^M. f continuous (at x within s) <=> (f --> f(x)) (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous] THEN ASM_CASES_TAC `trivial_limit(at (x:real^M) within s)` THENL [ASM_REWRITE_TAC[LIM]; ASM_SIMP_TAC[NETLIMIT_WITHIN]]);;
let CONTINUOUS_AT = 
prove (`!f (x:real^N). f continuous (at x) <=> (f --> f(x)) (at x)`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[CONTINUOUS_WITHIN; IN_UNIV]);;
let CONTINUOUS_AT_WITHIN = 
prove (`!f:real^M->real^N x s. f continuous (at x) ==> f continuous (at x within s)`,
let CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL = 
prove (`!a s. closed s /\ ~(a IN s) ==> f continuous (at a within s)`,
ASM_SIMP_TAC[continuous; LIM; LIM_WITHIN_CLOSED_TRIVIAL]);;
let CONTINUOUS_TRANSFORM_WITHIN = 
prove (`!f g:real^M->real^N s x d. &0 < d /\ x IN s /\ (!x'. x' IN s /\ dist(x',x) < d ==> f(x') = g(x')) /\ f continuous (at x within s) ==> g continuous (at x within s)`,
REWRITE_TAC[CONTINUOUS_WITHIN] THEN MESON_TAC[LIM_TRANSFORM_WITHIN; DIST_REFL]);;
let CONTINUOUS_TRANSFORM_AT = 
prove (`!f g:real^M->real^N x d. &0 < d /\ (!x'. dist(x',x) < d ==> f(x') = g(x')) /\ f continuous (at x) ==> g continuous (at x)`,
REWRITE_TAC[CONTINUOUS_AT] THEN MESON_TAC[LIM_TRANSFORM_AT; DIST_REFL]);;
(* ------------------------------------------------------------------------- *) (* Derive the epsilon-delta forms, which we often use as "definitions" *) (* ------------------------------------------------------------------------- *)
let continuous_within = 
prove (`f continuous (at x within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x'. x' IN s /\ dist(x',x) < d ==> dist(f(x'),f(x)) < e`,
REWRITE_TAC[CONTINUOUS_WITHIN; LIM_WITHIN] THEN REWRITE_TAC[GSYM DIST_NZ] THEN MESON_TAC[DIST_REFL]);;
let continuous_at = 
prove (`f continuous (at x) <=> !e. &0 < e ==> ?d. &0 < d /\ !x'. dist(x',x) < d ==> dist(f(x'),f(x)) < e`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[continuous_within; IN_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Versions in terms of open balls. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHIN_BALL = 
prove (`!f s x. f continuous (at x within s) <=> !e. &0 < e ==> ?d. &0 < d /\ IMAGE f (ball(x,d) INTER s) SUBSET ball(f x,e)`,
let CONTINUOUS_AT_BALL = 
prove (`!f x. f continuous (at x) <=> !e. &0 < e ==> ?d. &0 < d /\ IMAGE f (ball(x,d)) SUBSET ball(f x,e)`,
SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_BALL; continuous_at] THEN MESON_TAC[DIST_SYM]);;
(* ------------------------------------------------------------------------- *) (* For setwise continuity, just start from the epsilon-delta definitions. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("continuous_on",(12,"right"));; parse_as_infix ("uniformly_continuous_on",(12,"right"));;
let continuous_on = new_definition
  `f continuous_on s <=>
        !x. x IN s ==> !e. &0 < e
                           ==> ?d. &0 < d /\
                                   !x'. x' IN s /\ dist(x',x) < d
                                        ==> dist(f(x'),f(x)) < e`;;
let uniformly_continuous_on = new_definition
  `f uniformly_continuous_on s <=>
        !e. &0 < e
            ==> ?d. &0 < d /\
                    !x x'. x IN s /\ x' IN s /\ dist(x',x) < d
                           ==> dist(f(x'),f(x)) < e`;;
(* ------------------------------------------------------------------------- *) (* Some simple consequential lemmas. *) (* ------------------------------------------------------------------------- *)
let UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS = 
prove (`!f s. f uniformly_continuous_on s ==> f continuous_on s`,
REWRITE_TAC[uniformly_continuous_on; continuous_on] THEN MESON_TAC[]);;
let CONTINUOUS_AT_IMP_CONTINUOUS_ON = 
prove (`!f s. (!x. x IN s ==> f continuous (at x)) ==> f continuous_on s`,
REWRITE_TAC[continuous_at; continuous_on] THEN MESON_TAC[]);;
let CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN = 
prove (`!f s. f continuous_on s <=> !x. x IN s ==> f continuous (at x within s)`,
let CONTINUOUS_ON = 
prove (`!f (s:real^N->bool). f continuous_on s <=> !x. x IN s ==> (f --> f(x)) (at x within s)`,
let CONTINUOUS_ON_EQ_CONTINUOUS_AT = 
prove (`!f:real^M->real^N s. open s ==> (f continuous_on s <=> (!x. x IN s ==> f continuous (at x)))`,
let CONTINUOUS_WITHIN_SUBSET = 
prove (`!f s t x. f continuous (at x within s) /\ t SUBSET s ==> f continuous (at x within t)`,
REWRITE_TAC[CONTINUOUS_WITHIN] THEN MESON_TAC[LIM_WITHIN_SUBSET]);;
let CONTINUOUS_ON_SUBSET = 
prove (`!f s t. f continuous_on s /\ t SUBSET s ==> f continuous_on t`,
REWRITE_TAC[CONTINUOUS_ON] THEN MESON_TAC[SUBSET; LIM_WITHIN_SUBSET]);;
let UNIFORMLY_CONTINUOUS_ON_SUBSET = 
prove (`!f s t. f uniformly_continuous_on s /\ t SUBSET s ==> f uniformly_continuous_on t`,
REWRITE_TAC[uniformly_continuous_on] THEN MESON_TAC[SUBSET; LIM_WITHIN_SUBSET]);;
let CONTINUOUS_ON_INTERIOR = 
prove (`!f:real^M->real^N s x. f continuous_on s /\ x IN interior(s) ==> f continuous at x`,
REWRITE_TAC[interior; IN_ELIM_THM] THEN MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; CONTINUOUS_ON_SUBSET]);;
let CONTINUOUS_ON_EQ = 
prove (`!f g s. (!x. x IN s ==> f(x) = g(x)) /\ f continuous_on s ==> g continuous_on s`,
SIMP_TAC[continuous_on; IMP_CONJ]);;
let UNIFORMLY_CONTINUOUS_ON_EQ = 
prove (`!f g s. (!x. x IN s ==> f x = g x) /\ f uniformly_continuous_on s ==> g uniformly_continuous_on s`,
let CONTINUOUS_ON_SING = 
prove (`!f:real^M->real^N a. f continuous_on {a}`,
SIMP_TAC[continuous_on; IN_SING; FORALL_UNWIND_THM2; DIST_REFL] THEN MESON_TAC[]);;
let CONTINUOUS_ON_EMPTY = 
prove (`!f:real^M->real^N. f continuous_on {}`,
let CONTINUOUS_ON_NO_LIMPT = 
prove (`!f:real^M->real^N s. ~(?x. x limit_point_of s) ==> f continuous_on s`,
REWRITE_TAC[continuous_on; LIMPT_APPROACHABLE] THEN MESON_TAC[DIST_REFL]);;
let CONTINUOUS_ON_FINITE = 
prove (`!f:real^M->real^N s. FINITE s ==> f continuous_on s`,
let CONTRACTION_IMP_CONTINUOUS_ON = 
prove (`!f:real^M->real^N. (!x y. x IN s /\ y IN s ==> dist(f x,f y) <= dist(x,y)) ==> f continuous_on s`,
SIMP_TAC[continuous_on] THEN MESON_TAC[REAL_LET_TRANS]);;
let ISOMETRY_ON_IMP_CONTINUOUS_ON = 
prove (`!f:real^M->real^N. (!x y. x IN s /\ y IN s ==> dist(f x,f y) = dist(x,y)) ==> f continuous_on s`,
(* ------------------------------------------------------------------------- *) (* Characterization of various kinds of continuity in terms of sequences. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHIN_SEQUENTIALLY = 
prove (`!f a:real^N. f continuous (at a within s) <=> !x. (!n. x(n) IN s) /\ (x --> a) sequentially ==> ((f o x) --> f(a)) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_within] THEN EQ_TAC THENL [REWRITE_TAC[LIM_SEQUENTIALLY; o_THM] THEN MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `&1 / (&n + &1)`) THEN SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; REAL_OF_NUM_LE; REAL_POS; ARITH; REAL_ARITH `&0 <= n ==> &0 < n + &1`; NOT_FORALL_THM; SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[NOT_IMP; FORALL_AND_THM] THEN X_GEN_TAC `y:num->real^N` THEN REWRITE_TAC[LIM_SEQUENTIALLY; o_THM] THEN STRIP_TAC THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[LE_REFL]] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FORALL_POS_MONO_1 THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN X_GEN_TAC `n:num` THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1 / (&m + &1)` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_LE_INV2; real_div; REAL_ARITH `&0 <= x ==> &0 < x + &1`; REAL_POS; REAL_MUL_LID; REAL_LE_RADD; REAL_OF_NUM_LE]);;
let CONTINUOUS_AT_SEQUENTIALLY = 
prove (`!f a:real^N. f continuous (at a) <=> !x. (x --> a) sequentially ==> ((f o x) --> f(a)) sequentially`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[CONTINUOUS_WITHIN_SEQUENTIALLY; IN_UNIV]);;
let CONTINUOUS_ON_SEQUENTIALLY = 
prove (`!f s:real^N->bool. f continuous_on s <=> !x a. a IN s /\ (!n. x(n) IN s) /\ (x --> a) sequentially ==> ((f o x) --> f(a)) sequentially`,
let UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY = 
prove (`!f s:real^N->bool. f uniformly_continuous_on s <=> !x y. (!n. x(n) IN s) /\ (!n. y(n) IN s) /\ ((\n. x(n) - y(n)) --> vec 0) sequentially ==> ((\n. f(x(n)) - f(y(n))) --> vec 0) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[uniformly_continuous_on] THEN REWRITE_TAC[LIM_SEQUENTIALLY; dist; VECTOR_SUB_RZERO] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `&1 / (&n + &1)`) THEN SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; REAL_OF_NUM_LE; REAL_POS; ARITH; REAL_ARITH `&0 <= n ==> &0 < n + &1`; NOT_FORALL_THM; SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:num->real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:num->real^N` THEN REWRITE_TAC[NOT_IMP; FORALL_AND_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN CONJ_TAC THENL [MATCH_MP_TAC FORALL_POS_MONO_1 THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN X_GEN_TAC `n:num` THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1 / (&m + &1)` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[REAL_LE_INV2; real_div; REAL_ARITH `&0 <= x ==> &0 < x + &1`; REAL_POS; REAL_MUL_LID; REAL_LE_RADD; REAL_OF_NUM_LE]; EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `\x:num. x` THEN ASM_REWRITE_TAC[LE_REFL]]);;
let LIM_CONTINUOUS_FUNCTION = 
prove (`!f net g l. f continuous (at l) /\ (g --> l) net ==> ((\x. f(g x)) --> f l) net`,
REWRITE_TAC[tendsto; continuous_at; eventually] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Combination results for pointwise continuity. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_CONST = 
prove (`!net c. (\x. c) continuous net`,
REWRITE_TAC[continuous; LIM_CONST]);;
let CONTINUOUS_CMUL = 
prove (`!f c net. f continuous net ==> (\x. c % f(x)) continuous net`,
REWRITE_TAC[continuous; LIM_CMUL]);;
let CONTINUOUS_NEG = 
prove (`!f net. f continuous net ==> (\x. --(f x)) continuous net`,
REWRITE_TAC[continuous; LIM_NEG]);;
let CONTINUOUS_ADD = 
prove (`!f g net. f continuous net /\ g continuous net ==> (\x. f(x) + g(x)) continuous net`,
REWRITE_TAC[continuous; LIM_ADD]);;
let CONTINUOUS_SUB = 
prove (`!f g net. f continuous net /\ g continuous net ==> (\x. f(x) - g(x)) continuous net`,
REWRITE_TAC[continuous; LIM_SUB]);;
let CONTINUOUS_ABS = 
prove (`!(f:A->real^N) net. f continuous net ==> (\x. (lambda i. abs(f(x)$i)):real^N) continuous net`,
REWRITE_TAC[continuous; LIM_ABS]);;
let CONTINUOUS_MAX = 
prove (`!(f:A->real^N) (g:A->real^N) net. f continuous net /\ g continuous net ==> (\x. (lambda i. max (f(x)$i) (g(x)$i)):real^N) continuous net`,
REWRITE_TAC[continuous; LIM_MAX]);;
let CONTINUOUS_MIN = 
prove (`!(f:A->real^N) (g:A->real^N) net. f continuous net /\ g continuous net ==> (\x. (lambda i. min (f(x)$i) (g(x)$i)):real^N) continuous net`,
REWRITE_TAC[continuous; LIM_MIN]);;
let CONTINUOUS_VSUM = 
prove (`!net f s. FINITE s /\ (!a. a IN s ==> (f a) continuous net) ==> (\x. vsum s (\a. f a x)) continuous net`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; VSUM_CLAUSES; CONTINUOUS_CONST; CONTINUOUS_ADD; ETA_AX]);;
(* ------------------------------------------------------------------------- *) (* Same thing for setwise continuity. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_ON_CONST = 
prove (`!s c. (\x. c) continuous_on s`,
let CONTINUOUS_ON_CMUL = 
prove (`!f c s. f continuous_on s ==> (\x. c % f(x)) continuous_on s`,
let CONTINUOUS_ON_NEG = 
prove (`!f s. f continuous_on s ==> (\x. --(f x)) continuous_on s`,
let CONTINUOUS_ON_ADD = 
prove (`!f g s. f continuous_on s /\ g continuous_on s ==> (\x. f(x) + g(x)) continuous_on s`,
let CONTINUOUS_ON_SUB = 
prove (`!f g s. f continuous_on s /\ g continuous_on s ==> (\x. f(x) - g(x)) continuous_on s`,
let CONTINUOUS_ON_ABS = 
prove (`!f:real^M->real^N s. f continuous_on s ==> (\x. (lambda i. abs(f(x)$i)):real^N) continuous_on s`,
let CONTINUOUS_ON_MAX = 
prove (`!f:real^M->real^N g:real^M->real^N s. f continuous_on s /\ g continuous_on s ==> (\x. (lambda i. max (f(x)$i) (g(x)$i)):real^N) continuous_on s`,
let CONTINUOUS_ON_MIN = 
prove (`!f:real^M->real^N g:real^M->real^N s. f continuous_on s /\ g continuous_on s ==> (\x. (lambda i. min (f(x)$i) (g(x)$i)):real^N) continuous_on s`,
let CONTINUOUS_ON_VSUM = 
prove (`!t f s. FINITE s /\ (!a. a IN s ==> (f a) continuous_on t) ==> (\x. vsum s (\a. f a x)) continuous_on t`,
(* ------------------------------------------------------------------------- *) (* Same thing for uniform continuity, using sequential formulations. *) (* ------------------------------------------------------------------------- *)
let UNIFORMLY_CONTINUOUS_ON_CONST = 
prove (`!s c. (\x. c) uniformly_continuous_on s`,
let LINEAR_UNIFORMLY_CONTINUOUS_ON = 
prove (`!f:real^M->real^N s. linear f ==> f uniformly_continuous_on s`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[uniformly_continuous_on; dist; GSYM LINEAR_SUB] THEN FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o MATCH_MP LINEAR_BOUNDED_POS) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e / B:real` THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^M`] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `B * norm(y - x:real^M)` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LT_RDIV_EQ; REAL_MUL_SYM]);;
let UNIFORMLY_CONTINUOUS_ON_COMPOSE = 
prove (`!f g s. f uniformly_continuous_on s /\ g uniformly_continuous_on (IMAGE f s) ==> (g o f) uniformly_continuous_on s`,
let lemma = prove
   (`(!y. ((?x. (y = f x) /\ P x) /\ Q y ==> R y)) <=>
     (!x. P x /\ Q (f x) ==> R (f x))`,
    MESON_TAC[]) in
  REPEAT GEN_TAC THEN
  REWRITE_TAC[uniformly_continuous_on; o_THM; IN_IMAGE] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[lemma] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[lemma] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  MATCH_MP_TAC MONO_FORALL THEN
  X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[]);;
let BILINEAR_UNIFORMLY_CONTINUOUS_ON_COMPOSE = 
prove (`!f:real^M->real^N g (h:real^N->real^P->real^Q) s. f uniformly_continuous_on s /\ g uniformly_continuous_on s /\ bilinear h /\ bounded(IMAGE f s) /\ bounded(IMAGE g s) ==> (\x. h (f x) (g x)) uniformly_continuous_on s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[uniformly_continuous_on; dist] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN SUBGOAL_THEN `!a b c d. (h:real^N->real^P->real^Q) a b - h c d = h (a - c) b + h c (b - d)` (fun th -> ONCE_REWRITE_TAC[th]) THENL [FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP BILINEAR_LSUB th]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP BILINEAR_RSUB th]) THEN VECTOR_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o MATCH_MP BILINEAR_BOUNDED_POS) THEN UNDISCH_TAC `bounded(IMAGE (g:real^M->real^P) s)` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `B1:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `B2:real` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `(g:real^M->real^P) uniformly_continuous_on s` THEN UNDISCH_TAC `(f:real^M->real^N) uniformly_continuous_on s` THEN REWRITE_TAC[uniformly_continuous_on] THEN DISCH_THEN(MP_TAC o SPEC `e / &2 / &2 / B / B2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; dist] THEN DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `e / &2 / &2 / B / B1`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF; dist] THEN DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d1 d2` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^M`] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^M`; `y:real^M`])) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `B * e / &2 / &2 / B / B2 * B2 + B * B1 * e / &2 / &2 / B / B1` THEN CONJ_TAC THENL [MATCH_MP_TAC(NORM_ARITH `norm(x) <= a /\ norm(y) <= b ==> norm(x + y:real^N) <= a + b`) THEN CONJ_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH lhand th o lhand o snd)) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE]; ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN ASM_REAL_ARITH_TAC]);;
let UNIFORMLY_CONTINUOUS_ON_MUL = 
prove (`!f g:real^M->real^N s. (lift o f) uniformly_continuous_on s /\ g uniformly_continuous_on s /\ bounded(IMAGE (lift o f) s) /\ bounded(IMAGE g s) ==> (\x. f x % g x) uniformly_continuous_on s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o (f:real^M->real)`; `g:real^M->real^N`; `\c (v:real^N). drop c % v`; `s:real^M->bool`] BILINEAR_UNIFORMLY_CONTINUOUS_ON_COMPOSE) THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[bilinear; linear; DROP_ADD; DROP_CMUL] THEN VECTOR_ARITH_TAC);;
let UNIFORMLY_CONTINUOUS_ON_CMUL = 
prove (`!f c s. f uniformly_continuous_on s ==> (\x. c % f(x)) uniformly_continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_CMUL) THEN ASM_SIMP_TAC[VECTOR_SUB_LDISTRIB; VECTOR_MUL_RZERO]);;
let UNIFORMLY_CONTINUOUS_ON_VMUL = 
prove (`!s:real^M->bool c v:real^N. (lift o c) uniformly_continuous_on s ==> (\x. c x % v) uniformly_continuous_on s`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o ISPEC `\x. (drop x % v:real^N)` o MATCH_MP (REWRITE_RULE[IMP_CONJ] UNIFORMLY_CONTINUOUS_ON_COMPOSE)) THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LINEAR_UNIFORMLY_CONTINUOUS_ON THEN MATCH_MP_TAC LINEAR_VMUL_DROP THEN REWRITE_TAC[LINEAR_ID]);;
let UNIFORMLY_CONTINUOUS_ON_NEG = 
prove (`!f s. f uniformly_continuous_on s ==> (\x. --(f x)) uniformly_continuous_on s`,
ONCE_REWRITE_TAC[VECTOR_NEG_MINUS1] THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_CMUL]);;
let UNIFORMLY_CONTINUOUS_ON_ADD = 
prove (`!f g s. f uniformly_continuous_on s /\ g uniformly_continuous_on s ==> (\x. f(x) + g(x)) uniformly_continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY] THEN REWRITE_TAC[AND_FORALL_THM] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_ADD) THEN MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[VECTOR_ADD_LID] THEN AP_THM_TAC THEN BINOP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC);;
let UNIFORMLY_CONTINUOUS_ON_SUB = 
prove (`!f g s. f uniformly_continuous_on s /\ g uniformly_continuous_on s ==> (\x. f(x) - g(x)) uniformly_continuous_on s`,
let UNIFORMLY_CONTINUOUS_ON_VSUM = 
prove (`!t f s. FINITE s /\ (!a. a IN s ==> (f a) uniformly_continuous_on t) ==> (\x. vsum s (\a. f a x)) uniformly_continuous_on t`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; VSUM_CLAUSES; UNIFORMLY_CONTINUOUS_ON_CONST; UNIFORMLY_CONTINUOUS_ON_ADD; ETA_AX]);;
(* ------------------------------------------------------------------------- *) (* Identity function is continuous in every sense. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHIN_ID = 
prove (`!a s. (\x. x) continuous (at a within s)`,
REWRITE_TAC[continuous_within] THEN MESON_TAC[]);;
let CONTINUOUS_AT_ID = 
prove (`!a. (\x. x) continuous (at a)`,
REWRITE_TAC[continuous_at] THEN MESON_TAC[]);;
let CONTINUOUS_ON_ID = 
prove (`!s. (\x. x) continuous_on s`,
REWRITE_TAC[continuous_on] THEN MESON_TAC[]);;
let UNIFORMLY_CONTINUOUS_ON_ID = 
prove (`!s. (\x. x) uniformly_continuous_on s`,
REWRITE_TAC[uniformly_continuous_on] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Continuity of all kinds is preserved under composition. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHIN_COMPOSE = 
prove (`!f g x s. f continuous (at x within s) /\ g continuous (at (f x) within IMAGE f s) ==> (g o f) continuous (at x within s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_within; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);;
let CONTINUOUS_AT_COMPOSE = 
prove (`!f g x. f continuous (at x) /\ g continuous (at (f x)) ==> (g o f) continuous (at x)`,
let CONTINUOUS_ON_COMPOSE = 
prove (`!f g s. f continuous_on s /\ g continuous_on (IMAGE f s) ==> (g o f) continuous_on s`,
(* ------------------------------------------------------------------------- *) (* Continuity in terms of open preimages. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHIN_OPEN = 
prove (`!f:real^M->real^N x u. f continuous (at x within u) <=> !t. open t /\ f(x) IN t ==> ?s. open s /\ x IN s /\ !x'. x' IN s /\ x' IN u ==> f(x') IN t`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_within] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [open_def] THEN DISCH_THEN(MP_TAC o SPEC `(f:real^M->real^N) x`) THEN ASM_MESON_TAC[IN_BALL; DIST_SYM; OPEN_BALL; CENTRE_IN_BALL; DIST_SYM]; DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ball((f:real^M->real^N) x,e)`) THEN ASM_SIMP_TAC[OPEN_BALL; CENTRE_IN_BALL] THEN MESON_TAC[open_def; IN_BALL; REAL_LT_TRANS; DIST_SYM]]);;
let CONTINUOUS_AT_OPEN = 
prove (`!f:real^M->real^N x. f continuous (at x) <=> !t. open t /\ f(x) IN t ==> ?s. open s /\ x IN s /\ !x'. x' IN s ==> f(x') IN t`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_at] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC LAND_CONV [open_def] THEN DISCH_THEN(MP_TAC o SPEC `(f:real^M->real^N) x`) THEN ASM_MESON_TAC[IN_BALL; DIST_SYM; OPEN_BALL; CENTRE_IN_BALL]; DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ball((f:real^M->real^N) x,e)`) THEN ASM_SIMP_TAC[OPEN_BALL; CENTRE_IN_BALL] THEN MESON_TAC[open_def; IN_BALL; REAL_LT_TRANS; DIST_SYM]]);;
let CONTINUOUS_ON_OPEN_GEN = 
prove (`!f:real^M->real^N s t. IMAGE f s SUBSET t ==> (f continuous_on s <=> !u. open_in (subtopology euclidean t) u ==> open_in (subtopology euclidean s) {x | x IN s /\ f x IN u})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_on] THEN EQ_TAC THENL [REWRITE_TAC[open_in; SUBSET; IN_ELIM_THM] THEN DISCH_TAC THEN X_GEN_TAC `u:real^N->bool` THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[DIST_REFL]; ALL_TAC] THEN X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(f:real^M->real^N) x`) THEN ASM SET_TAC[]; DISCH_TAC THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ball((f:real^M->real^N) x,e) INTER t`) THEN ANTS_TAC THENL [ASM_MESON_TAC[OPEN_IN_OPEN; INTER_COMM; OPEN_BALL]; ALL_TAC] THEN REWRITE_TAC[open_in; SUBSET; IN_INTER; IN_ELIM_THM; IN_BALL; IN_IMAGE] THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN ASM_MESON_TAC[DIST_REFL; DIST_SYM]]);;
let CONTINUOUS_ON_OPEN = 
prove (`!f:real^M->real^N s. f continuous_on s <=> !t. open_in (subtopology euclidean (IMAGE f s)) t ==> open_in (subtopology euclidean s) {x | x IN s /\ f(x) IN t}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_OPEN_GEN THEN REWRITE_TAC[SUBSET_REFL]);;
let CONTINUOUS_OPEN_IN_PREIMAGE_GEN = 
prove (`!f:real^M->real^N s t u. f continuous_on s /\ IMAGE f s SUBSET t /\ open_in (subtopology euclidean t) u ==> open_in (subtopology euclidean s) {x | x IN s /\ f x IN u}`,
MESON_TAC[CONTINUOUS_ON_OPEN_GEN]);;
let CONTINUOUS_ON_IMP_OPEN_IN = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ open_in (subtopology euclidean (IMAGE f s)) t ==> open_in (subtopology euclidean s) {x | x IN s /\ f x IN t}`,
MESON_TAC[CONTINUOUS_ON_OPEN]);;
(* ------------------------------------------------------------------------- *) (* Similarly in terms of closed sets. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_ON_CLOSED_GEN = 
prove (`!f:real^M->real^N s t. IMAGE f s SUBSET t ==> (f continuous_on s <=> !u. closed_in (subtopology euclidean t) u ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x IN u})`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP CONTINUOUS_ON_OPEN_GEN th]) THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `u:real^N->bool` THEN FIRST_X_ASSUM(MP_TAC o SPEC `t DIFF u:real^N->bool`) THENL [REWRITE_TAC[closed_in]; REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ]] THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[SUBSET_RESTRICT] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
let CONTINUOUS_ON_CLOSED = 
prove (`!f:real^M->real^N s. f continuous_on s <=> !t. closed_in (subtopology euclidean (IMAGE f s)) t ==> closed_in (subtopology euclidean s) {x | x IN s /\ f(x) IN t}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_CLOSED_GEN THEN REWRITE_TAC[SUBSET_REFL]);;
let CONTINUOUS_CLOSED_IN_PREIMAGE_GEN = 
prove (`!f:real^M->real^N s t u. f continuous_on s /\ IMAGE f s SUBSET t /\ closed_in (subtopology euclidean t) u ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x IN u}`,
let CONTINUOUS_ON_IMP_CLOSED_IN = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ closed_in (subtopology euclidean (IMAGE f s)) t ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x IN t}`,
MESON_TAC[CONTINUOUS_ON_CLOSED]);;
(* ------------------------------------------------------------------------- *) (* Half-global and completely global cases. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_OPEN_IN_PREIMAGE = 
prove (`!f s t. f continuous_on s /\ open t ==> open_in (subtopology euclidean s) {x | x IN s /\ f x IN t}`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `x IN s /\ f x IN t <=> x IN s /\ f x IN (t INTER IMAGE f s)`] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[CONTINUOUS_ON_OPEN]) THEN ONCE_REWRITE_TAC[INTER_COMM] THEN MATCH_MP_TAC OPEN_IN_OPEN_INTER THEN ASM_REWRITE_TAC[]);;
let CONTINUOUS_CLOSED_IN_PREIMAGE = 
prove (`!f s t. f continuous_on s /\ closed t ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x IN t}`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `x IN s /\ f x IN t <=> x IN s /\ f x IN (t INTER IMAGE f s)`] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[CONTINUOUS_ON_CLOSED]) THEN ONCE_REWRITE_TAC[INTER_COMM] THEN MATCH_MP_TAC CLOSED_IN_CLOSED_INTER THEN ASM_REWRITE_TAC[]);;
let CONTINUOUS_OPEN_PREIMAGE = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ open s /\ open t ==> open {x | x IN s /\ f(x) IN t}`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_ON_OPEN]) THEN REWRITE_TAC [OPEN_IN_OPEN] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (f:real^M->real^N) s INTER t`) THEN ANTS_TAC THENL [EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC []; STRIP_TAC THEN SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x IN t} = s INTER t'` SUBST1_TAC THENL [ASM SET_TAC []; ASM_MESON_TAC [OPEN_INTER]]]);;
let CONTINUOUS_CLOSED_PREIMAGE = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ closed s /\ closed t ==> closed {x | x IN s /\ f(x) IN t}`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_ON_CLOSED]) THEN REWRITE_TAC [CLOSED_IN_CLOSED] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (f:real^M->real^N) s INTER t`) THEN ANTS_TAC THENL [EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC []; STRIP_TAC THEN SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x IN t} = s INTER t'` SUBST1_TAC THENL [ASM SET_TAC []; ASM_MESON_TAC [CLOSED_INTER]]]);;
let CONTINUOUS_OPEN_PREIMAGE_UNIV = 
prove (`!f:real^M->real^N s. (!x. f continuous (at x)) /\ open s ==> open {x | f(x) IN s}`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`f:real^M->real^N`; `(:real^M)`; `s:real^N->bool`] CONTINUOUS_OPEN_PREIMAGE) THEN ASM_SIMP_TAC[OPEN_UNIV; IN_UNIV; CONTINUOUS_AT_IMP_CONTINUOUS_ON]);;
let CONTINUOUS_CLOSED_PREIMAGE_UNIV = 
prove (`!f:real^M->real^N s. (!x. f continuous (at x)) /\ closed s ==> closed {x | f(x) IN s}`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`f:real^M->real^N`; `(:real^M)`; `s:real^N->bool`] CONTINUOUS_CLOSED_PREIMAGE) THEN ASM_SIMP_TAC[CLOSED_UNIV; IN_UNIV; CONTINUOUS_AT_IMP_CONTINUOUS_ON]);;
let CONTINUOUS_OPEN_IN_PREIMAGE_EQ = 
prove (`!f:real^M->real^N s. f continuous_on s <=> !t. open t ==> open_in (subtopology euclidean s) {x | x IN s /\ f x IN t}`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[CONTINUOUS_OPEN_IN_PREIMAGE] THEN REWRITE_TAC[CONTINUOUS_ON_OPEN] THEN DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN GEN_REWRITE_TAC LAND_CONV [OPEN_IN_OPEN] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);;
let CONTINUOUS_CLOSED_IN_PREIMAGE_EQ = 
prove (`!f:real^M->real^N s. f continuous_on s <=> !t. closed t ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x IN t}`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[CONTINUOUS_CLOSED_IN_PREIMAGE] THEN REWRITE_TAC[CONTINUOUS_ON_CLOSED] THEN DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN GEN_REWRITE_TAC LAND_CONV [CLOSED_IN_CLOSED] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Quotient maps are occasionally useful. *) (* ------------------------------------------------------------------------- *)
let OPEN_MAP_IMP_QUOTIENT_MAP = 
prove (`!f:real^M->real^N s. f continuous_on s /\ (!t. open_in (subtopology euclidean s) t ==> open_in (subtopology euclidean (IMAGE f s)) (IMAGE f t)) ==> !t. t SUBSET IMAGE f s ==> (open_in (subtopology euclidean s) {x | x IN s /\ f x IN t} <=> open_in (subtopology euclidean (IMAGE f s)) t)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [SUBGOAL_THEN `t = IMAGE f {x | x IN s /\ (f:real^M->real^N) x IN t}` SUBST1_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[]]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_ON_OPEN]) THEN ASM_SIMP_TAC[]]);;
let CLOSED_MAP_IMP_QUOTIENT_MAP = 
prove (`!f:real^M->real^N s. f continuous_on s /\ (!t. closed_in (subtopology euclidean s) t ==> closed_in (subtopology euclidean (IMAGE f s)) (IMAGE f t)) ==> !t. t SUBSET IMAGE f s ==> (open_in (subtopology euclidean s) {x | x IN s /\ f x IN t} <=> open_in (subtopology euclidean (IMAGE f s)) t)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `s DIFF {x | x IN s /\ (f:real^M->real^N) x IN t}`) THEN ANTS_TAC THENL [MATCH_MP_TAC CLOSED_IN_DIFF THEN ASM_SIMP_TAC[CLOSED_IN_SUBTOPOLOGY_REFL; TOPSPACE_EUCLIDEAN; SUBSET_UNIV]; REWRITE_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_ON_OPEN]) THEN ASM_SIMP_TAC[]]);;
let CONTINUOUS_RIGHT_INVERSE_IMP_QUOTIENT_MAP = 
prove (`!f:real^M->real^N g s t. f continuous_on s /\ IMAGE f s SUBSET t /\ g continuous_on t /\ IMAGE g t SUBSET s /\ (!y. y IN t ==> f(g y) = y) ==> (!u. u SUBSET t ==> (open_in (subtopology euclidean s) {x | x IN s /\ f x IN u} <=> open_in (subtopology euclidean t) u))`,
REWRITE_TAC[CONTINUOUS_ON_OPEN] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `(IMAGE (g:real^N->real^M) t) INTER {x | x IN s /\ (f:real^M->real^N) x IN u}`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN REWRITE_TAC[OPEN_IN_OPEN] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]]; DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) s = t` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM SET_TAC[]]);;
let CONTINUOUS_LEFT_INVERSE_IMP_QUOTIENT_MAP = 
prove (`!f:real^M->real^N g s. f continuous_on s /\ g continuous_on (IMAGE f s) /\ (!x. x IN s ==> g(f x) = x) ==> (!u. u SUBSET (IMAGE f s) ==> (open_in (subtopology euclidean s) {x | x IN s /\ f x IN u} <=> open_in (subtopology euclidean (IMAGE f s)) u))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_RIGHT_INVERSE_IMP_QUOTIENT_MAP THEN EXISTS_TAC `g:real^N->real^M` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;
let QUOTIENT_MAP_OPEN_CLOSED = 
prove (`!f:real^M->real^N s t. IMAGE f s SUBSET t ==> ((!u. u SUBSET t ==> (open_in (subtopology euclidean s) {x | x IN s /\ f x IN u} <=> open_in (subtopology euclidean t) u)) <=> (!u. u SUBSET t ==> (closed_in (subtopology euclidean s) {x | x IN s /\ f x IN u} <=> closed_in (subtopology euclidean t) u)))`,
SIMP_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `u:real^N->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t DIFF u:real^N->bool`) THEN ASM_SIMP_TAC[SET_RULE `u SUBSET t ==> t DIFF (t DIFF u) = u`] THEN (ANTS_TAC THENL [SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)]) THEN REWRITE_TAC[SUBSET_RESTRICT] THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* More properties of open and closed maps. *) (* ------------------------------------------------------------------------- *)
let CLOSED_MAP_IMP_OPEN_MAP = 
prove (`!f:real^M->real^N s t. IMAGE f s = t /\ (!u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u)) /\ (!u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean s) {x | x IN s /\ f x IN IMAGE f u}) ==> (!u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) u = t DIFF IMAGE f (s DIFF {x | x IN s /\ f x IN IMAGE f u})` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_REFL] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[OPEN_IN_REFL] THEN ASM_SIMP_TAC[CLOSED_IN_REFL]]);;
let OPEN_MAP_IMP_CLOSED_MAP = 
prove (`!f:real^M->real^N s t. IMAGE f s = t /\ (!u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u)) /\ (!u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x IN IMAGE f u}) ==> (!u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) u = t DIFF IMAGE f (s DIFF {x | x IN s /\ f x IN IMAGE f u})` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC CLOSED_IN_DIFF THEN REWRITE_TAC[CLOSED_IN_REFL] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[CLOSED_IN_REFL] THEN ASM_SIMP_TAC[OPEN_IN_REFL]]);;
let OPEN_MAP_FROM_COMPOSITION_SURJECTIVE = 
prove (`!f:real^M->real^N g:real^N->real^P s t u. f continuous_on s /\ IMAGE f s = t /\ IMAGE g t SUBSET u /\ (!k. open_in (subtopology euclidean s) k ==> open_in (subtopology euclidean u) (IMAGE (g o f) k)) ==> (!k. open_in (subtopology euclidean t) k ==> open_in (subtopology euclidean u) (IMAGE g k))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE g k = IMAGE ((g:real^N->real^P) o (f:real^M->real^N)) {x | x IN s /\ f(x) IN k}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN REWRITE_TAC[IMAGE_o] THEN ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL]]);;
let CLOSED_MAP_FROM_COMPOSITION_SURJECTIVE = 
prove (`!f:real^M->real^N g:real^N->real^P s t u. f continuous_on s /\ IMAGE f s = t /\ IMAGE g t SUBSET u /\ (!k. closed_in (subtopology euclidean s) k ==> closed_in (subtopology euclidean u) (IMAGE (g o f) k)) ==> (!k. closed_in (subtopology euclidean t) k ==> closed_in (subtopology euclidean u) (IMAGE g k))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE g k = IMAGE ((g:real^N->real^P) o (f:real^M->real^N)) {x | x IN s /\ f(x) IN k}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN REWRITE_TAC[IMAGE_o] THEN ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE_GEN THEN EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL]]);;
let OPEN_MAP_FROM_COMPOSITION_INJECTIVE = 
prove (`!f:real^M->real^N g:real^N->real^P s t u. IMAGE f s SUBSET t /\ IMAGE g t SUBSET u /\ g continuous_on t /\ (!x y. x IN t /\ y IN t /\ g x = g y ==> x = y) /\ (!k. open_in (subtopology euclidean s) k ==> open_in (subtopology euclidean u) (IMAGE (g o f) k)) ==> (!k. open_in (subtopology euclidean s) k ==> open_in (subtopology euclidean t) (IMAGE f k))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE f k = {x | x IN t /\ g(x) IN IMAGE ((g:real^N->real^P) o (f:real^M->real^N)) k}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET) THEN REWRITE_TAC[IMAGE_o] THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN EXISTS_TAC `u:real^P->bool` THEN ASM_SIMP_TAC[]]);;
let CLOSED_MAP_FROM_COMPOSITION_INJECTIVE = 
prove (`!f:real^M->real^N g:real^N->real^P s t u. IMAGE f s SUBSET t /\ IMAGE g t SUBSET u /\ g continuous_on t /\ (!x y. x IN t /\ y IN t /\ g x = g y ==> x = y) /\ (!k. closed_in (subtopology euclidean s) k ==> closed_in (subtopology euclidean u) (IMAGE (g o f) k)) ==> (!k. closed_in (subtopology euclidean s) k ==> closed_in (subtopology euclidean t) (IMAGE f k))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE f k = {x | x IN t /\ g(x) IN IMAGE ((g:real^N->real^P) o (f:real^M->real^N)) k}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN REWRITE_TAC[IMAGE_o] THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE_GEN THEN EXISTS_TAC `u:real^P->bool` THEN ASM_SIMP_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Two equivalent characterizations of a proper/perfect map. *) (* ------------------------------------------------------------------------- *)
let PROPER_MAP = 
prove (`!f:real^M->real^N s t. IMAGE f s SUBSET t ==> ((!k. k SUBSET t /\ compact k ==> compact {x | x IN s /\ f x IN k}) <=> (!k. closed_in (subtopology euclidean s) k ==> closed_in (subtopology euclidean t) (IMAGE f k)) /\ (!a. a IN t ==> compact {x | x IN s /\ f x = a}))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[SET_RULE `x = a <=> x IN {a}`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[SING_SUBSET; COMPACT_SING]] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN REWRITE_TAC[CLOSED_IN_LIMPT] THEN CONJ_TAC THENL [ASM SET_TAC[]; X_GEN_TAC `y:real^N`] THEN REWRITE_TAC[LIMPT_SEQUENTIAL_INJ; IN_DELETE] THEN REWRITE_TAC[IN_IMAGE; LEFT_AND_EXISTS_THM; SKOLEM_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; FORALL_AND_THM] THEN ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN REWRITE_TAC[UNWIND_THM2; FUN_EQ_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:num->real^M` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `~(INTERS {{a | a IN k /\ (f:real^M->real^N) a IN (y INSERT IMAGE (\i. f(x(n + i))) (:num))} | n IN (:num)} = {})` MP_TAC THENL [MATCH_MP_TAC COMPACT_FIP THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CLOSED_IN_CLOSED]) THEN DISCH_THEN(X_CHOOSE_THEN `c:real^M->bool` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[SET_RULE `{x | x IN s INTER k /\ P x} = k INTER {x | x IN s /\ P x}`] THEN MATCH_MP_TAC CLOSED_INTER_COMPACT THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_SEQUENCE_WITH_LIMIT THEN FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP SEQ_OFFSET) THEN REWRITE_TAC[ADD_SYM]; REWRITE_TAC[SIMPLE_IMAGE; FORALL_FINITE_SUBSET_IMAGE] THEN X_GEN_TAC `i:num->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o ISPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `m:num`) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; INTERS_IMAGE; IN_ELIM_THM] THEN EXISTS_TAC `(x:num->real^M) m` THEN X_GEN_TAC `p:num` THEN DISCH_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_INSERT; IN_IMAGE; IN_UNIV] THEN DISJ2_TAC THEN EXISTS_TAC `m - p:num` THEN ASM_MESON_TAC[ARITH_RULE `p <= m ==> p + m - p:num = m`]]; REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^M` THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN DISCH_THEN(fun th -> LABEL_TAC "*" th THEN MP_TAC(SPEC `0` th)) THEN REWRITE_TAC[ADD_CLAUSES; IN_INSERT; IN_IMAGE; IN_UNIV] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (DISJ_CASES_THEN MP_TAC)) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `i:num`) THEN REMOVE_THEN "*" (MP_TAC o SPEC `i + 1`) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[IN_INSERT; IN_IMAGE; IN_UNIV] THEN ARITH_TAC]; STRIP_TAC THEN X_GEN_TAC `k:real^N->bool` THEN STRIP_TAC THEN REWRITE_TAC[COMPACT_EQ_HEINE_BOREL] THEN X_GEN_TAC `c:(real^M->bool)->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `!a. a IN k ==> ?g. g SUBSET c /\ FINITE g /\ {x | x IN s /\ (f:real^M->real^N) x = a} SUBSET UNIONS g` MP_TAC THENL [X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN UNDISCH_THEN `!a. a IN t ==> compact {x | x IN s /\ (f:real^M->real^N) x = a}` (MP_TAC o SPEC `a:real^N`) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[COMPACT_EQ_HEINE_BOREL]] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `uu:real^N->(real^M->bool)->bool` THEN DISCH_THEN(LABEL_TAC "*")] THEN SUBGOAL_THEN `!a. a IN k ==> ?v. open v /\ a IN v /\ {x | x IN s /\ (f:real^M->real^N) x IN v} SUBSET UNIONS(uu a)` MP_TAC THENL [REPEAT STRIP_TAC THEN UNDISCH_THEN `!k. closed_in (subtopology euclidean s) k ==> closed_in (subtopology euclidean t) (IMAGE (f:real^M->real^N) k)` (MP_TAC o SPEC `(s:real^M->bool) DIFF UNIONS(uu(a:real^N))`) THEN SIMP_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN ANTS_TAC THENL [CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SET_RULE `s DIFF (s DIFF t) = s INTER t`] THEN MATCH_MP_TAC OPEN_IN_OPEN_INTER THEN MATCH_MP_TAC OPEN_UNIONS THEN ASM SET_TAC[]; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[OPEN_IN_OPEN] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `a:real^N`)) THEN ASM_REWRITE_TAC[] THEN REPEAT ((ANTS_TAC THENL [ASM SET_TAC[]; DISCH_TAC]) ORELSE STRIP_TAC) THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN DISCH_THEN(MP_TAC o SPEC `a:real^N`) THEN ASM SET_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `vv:real^N->(real^N->bool)` THEN DISCH_THEN(LABEL_TAC "+")] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (vv:real^N->(real^N->bool)) k`) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> q /\ p ==> r ==> s`] THEN REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE] THEN X_GEN_TAC `j:real^N->bool` THEN REPEAT STRIP_TAC THEN EXISTS_TAC `UNIONS(IMAGE (uu:real^N->(real^M->bool)->bool) j)` THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[FINITE_UNIONS; FORALL_IN_IMAGE; FINITE_IMAGE] THEN ASM SET_TAC[]; REWRITE_TAC[UNIONS_IMAGE; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN ASM SET_TAC[]]]);;
let PROPER_MAP_FROM_COMPACT = 
prove (`!f:real^M->real^N s k. f continuous_on s /\ IMAGE f s SUBSET t /\ compact s /\ closed_in (subtopology euclidean t) k ==> compact {x | x IN s /\ f x IN k}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_IN_COMPACT THEN EXISTS_TAC `s:real^M->bool` THEN ASM_MESON_TAC[CONTINUOUS_CLOSED_IN_PREIMAGE_GEN]);;
(* ------------------------------------------------------------------------- *) (* Pasting functions together on open sets. *) (* ------------------------------------------------------------------------- *)
let PASTING_LEMMA = 
prove (`!f:A->real^M->real^N g t s k. (!i. i IN k ==> open_in (subtopology euclidean s) (t i) /\ (f i) continuous_on (t i)) /\ (!i j x. i IN k /\ j IN k /\ x IN s INTER t i INTER t j ==> f i x = f j x) /\ (!x. x IN s ==> ?j. j IN k /\ x IN t j /\ g x = f j x) ==> g continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_OPEN_IN_PREIMAGE_EQ] THEN STRIP_TAC THEN X_GEN_TAC `u:real^N->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN s /\ g x IN u} = UNIONS {{x | x IN (t i) /\ ((f:A->real^M->real^N) i x) IN u} | i IN k}` SUBST1_TAC THENL [SUBGOAL_THEN `!i. i IN k ==> ((t:A->real^M->bool) i) SUBSET s` ASSUME_TAC THENL [ASM_MESON_TAC[OPEN_IN_SUBSET; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]; REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]]; MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[OPEN_IN_TRANS]]);;
let PASTING_LEMMA_EXISTS = 
prove (`!f:A->real^M->real^N t s k. s SUBSET UNIONS {t i | i IN k} /\ (!i. i IN k ==> open_in (subtopology euclidean s) (t i) /\ (f i) continuous_on (t i)) /\ (!i j x. i IN k /\ j IN k /\ x IN s INTER t i INTER t j ==> f i x = f j x) ==> ?g. g continuous_on s /\ (!x i. i IN k /\ x IN s INTER t i ==> g x = f i x)`,
REPEAT STRIP_TAC THEN EXISTS_TAC `\x. (f:A->real^M->real^N)(@i. i IN k /\ x IN t i) x` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC PASTING_LEMMA THEN MAP_EVERY EXISTS_TAC [`f:A->real^M->real^N`; `t:A->real^M->bool`; `k:A->bool`] THEN ASM SET_TAC[]);;
let CONTINUOUS_ON_UNION_LOCAL_OPEN = 
prove (`!f:real^M->real^N s. open_in (subtopology euclidean (s UNION t)) s /\ open_in (subtopology euclidean (s UNION t)) t /\ f continuous_on s /\ f continuous_on t ==> f continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\i:(real^M->bool). (f:real^M->real^N)`; `f:real^M->real^N`; `\i:(real^M->bool). i`; `s UNION t:real^M->bool`; `{s:real^M->bool,t}`] PASTING_LEMMA) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION]);;
let CONTINUOUS_ON_UNION_OPEN = 
prove (`!f s t. open s /\ open t /\ f continuous_on s /\ f continuous_on t ==> f continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_UNION_LOCAL_OPEN THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC OPEN_OPEN_IN_TRANS THEN ASM_SIMP_TAC[OPEN_UNION] THEN SET_TAC[]);;
let CONTINUOUS_ON_CASES_LOCAL_OPEN = 
prove (`!P f g:real^M->real^N s t. open_in (subtopology euclidean (s UNION t)) s /\ open_in (subtopology euclidean (s UNION t)) t /\ f continuous_on s /\ g continuous_on t /\ (!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x) ==> (\x. if P x then f x else g x) continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_UNION_LOCAL_OPEN THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_EQ THENL [EXISTS_TAC `f:real^M->real^N`; EXISTS_TAC `g:real^M->real^N`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let CONTINUOUS_ON_CASES_OPEN = 
prove (`!P f g s t. open s /\ open t /\ f continuous_on s /\ g continuous_on t /\ (!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x) ==> (\x. if P x then f x else g x) continuous_on s UNION t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL_OPEN THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC OPEN_OPEN_IN_TRANS THEN ASM_SIMP_TAC[OPEN_UNION] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Likewise on closed sets, with a finiteness assumption. *) (* ------------------------------------------------------------------------- *)
let PASTING_LEMMA_CLOSED = 
prove (`!f:A->real^M->real^N g t s k. FINITE k /\ (!i. i IN k ==> closed_in (subtopology euclidean s) (t i) /\ (f i) continuous_on (t i)) /\ (!i j x. i IN k /\ j IN k /\ x IN s INTER t i INTER t j ==> f i x = f j x) /\ (!x. x IN s ==> ?j. j IN k /\ x IN t j /\ g x = f j x) ==> g continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_CLOSED_IN_PREIMAGE_EQ] THEN STRIP_TAC THEN X_GEN_TAC `u:real^N->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN s /\ g x IN u} = UNIONS {{x | x IN (t i) /\ ((f:A->real^M->real^N) i x) IN u} | i IN k}` SUBST1_TAC THENL [SUBGOAL_THEN `!i. i IN k ==> ((t:A->real^M->bool) i) SUBSET s` ASSUME_TAC THENL [ASM_MESON_TAC[CLOSED_IN_SUBSET; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY]; REWRITE_TAC[UNIONS_GSPEC] THEN ASM SET_TAC[]]; MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[CLOSED_IN_TRANS]]);;
let PASTING_LEMMA_EXISTS_CLOSED = 
prove (`!f:A->real^M->real^N t s k. FINITE k /\ s SUBSET UNIONS {t i | i IN k} /\ (!i. i IN k ==> closed_in (subtopology euclidean s) (t i) /\ (f i) continuous_on (t i)) /\ (!i j x. i IN k /\ j IN k /\ x IN s INTER t i INTER t j ==> f i x = f j x) ==> ?g. g continuous_on s /\ (!x i. i IN k /\ x IN s INTER t i ==> g x = f i x)`,
REPEAT STRIP_TAC THEN EXISTS_TAC `\x. (f:A->real^M->real^N)(@i. i IN k /\ x IN t i) x` THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC PASTING_LEMMA_CLOSED THEN MAP_EVERY EXISTS_TAC [`f:A->real^M->real^N`; `t:A->real^M->bool`; `k:A->bool`] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Closure of halflines, halfspaces and hyperplanes. *) (* ------------------------------------------------------------------------- *)
let LIM_LIFT_DOT = 
prove (`!f:real^M->real^N a. (f --> l) net ==> ((lift o (\y. a dot f(y))) --> lift(a dot l)) net`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = vec 0:real^N` THENL [ASM_REWRITE_TAC[DOT_LZERO; LIFT_NUM; o_DEF; LIM_CONST]; ALL_TAC] THEN REWRITE_TAC[LIM] THEN MATCH_MP_TAC MONO_OR THEN REWRITE_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / norm(a:real^N)`) THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; REAL_LT_RDIV_EQ] THEN REWRITE_TAC[dist; o_THM; GSYM LIFT_SUB; GSYM DOT_RSUB; NORM_LIFT] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN MESON_TAC[NORM_CAUCHY_SCHWARZ_ABS; REAL_MUL_SYM; REAL_LET_TRANS]);;
let CONTINUOUS_AT_LIFT_DOT = 
prove (`!a:real^N x. (lift o (\y. a dot y)) continuous at x`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_AT; o_THM] THEN MATCH_MP_TAC LIM_LIFT_DOT THEN REWRITE_TAC[LIM_AT] THEN MESON_TAC[]);;
let CONTINUOUS_ON_LIFT_DOT = 
prove (`!s. (lift o (\y. a dot y)) continuous_on s`,
let CLOSED_INTERVAL_LEFT = 
prove (`!b:real^N. closed {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> x$i <= b$i}`,
REWRITE_TAC[CLOSED_LIMPT; LIMPT_APPROACHABLE; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(x:real^N)$i - (b:real^N)$i`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `z:real^N` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[dist; REAL_NOT_LT] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs((z - x :real^N)$i)` THEN ASM_SIMP_TAC[COMPONENT_LE_NORM] THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT] THEN ASM_SIMP_TAC[REAL_ARITH `z <= b /\ b < x ==> x - b <= abs(z - x)`]);;
let CLOSED_INTERVAL_RIGHT = 
prove (`!a:real^N. closed {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= x$i}`,
REWRITE_TAC[CLOSED_LIMPT; LIMPT_APPROACHABLE; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(a:real^N)$i - (x:real^N)$i`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `z:real^N` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[dist; REAL_NOT_LT] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs((z - x :real^N)$i)` THEN ASM_SIMP_TAC[COMPONENT_LE_NORM] THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT] THEN ASM_SIMP_TAC[REAL_ARITH `x < a /\ a <= z ==> a - x <= abs(z - x)`]);;
let CLOSED_HALFSPACE_LE = 
prove (`!a:real^N b. closed {x | a dot x <= b}`,
REPEAT GEN_TAC THEN MP_TAC(ISPEC `(:real^N)` CONTINUOUS_ON_LIFT_DOT) THEN REWRITE_TAC[CONTINUOUS_ON_CLOSED; GSYM CLOSED_IN; SUBTOPOLOGY_UNIV] THEN DISCH_THEN(MP_TAC o SPEC `IMAGE lift {r | ?x:real^N. (a dot x = r) /\ r <= b}`) THEN ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_UNIV] THEN REWRITE_TAC[o_DEF] THEN MESON_TAC[LIFT_DROP]] THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN EXISTS_TAC `{x | !i. 1 <= i /\ i <= dimindex(:1) ==> (x:real^1)$i <= (lift b)$i}` THEN REWRITE_TAC[CLOSED_INTERVAL_LEFT] THEN SIMP_TAC[EXTENSION; IN_IMAGE; IN_UNIV; IN_ELIM_THM; IN_INTER; VEC_COMPONENT; DIMINDEX_1; LAMBDA_BETA; o_THM] THEN SIMP_TAC[ARITH_RULE `1 <= i /\ i <= 1 <=> (i = 1)`] THEN REWRITE_TAC[GSYM drop; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN MESON_TAC[LIFT_DROP]);;
let CLOSED_HALFSPACE_GE = 
prove (`!a:real^N b. closed {x | a dot x >= b}`,
REWRITE_TAC[REAL_ARITH `a >= b <=> --a <= --b`] THEN REWRITE_TAC[GSYM DOT_LNEG; CLOSED_HALFSPACE_LE]);;
let CLOSED_HYPERPLANE = 
prove (`!a b. closed {x | a dot x = b}`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN REWRITE_TAC[REAL_ARITH `b <= a dot x <=> a dot x >= b`] THEN REWRITE_TAC[SET_RULE `{x | P x /\ Q x} = {x | P x} INTER {x | Q x}`] THEN SIMP_TAC[CLOSED_INTER; CLOSED_HALFSPACE_LE; CLOSED_HALFSPACE_GE]);;
let CLOSED_STANDARD_HYPERPLANE = 
prove (`!k a. closed {x:real^N | x$k = a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CLOSED_HYPERPLANE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CLOSED_HALFSPACE_COMPONENT_LE = 
prove (`!a k. closed {x:real^N | x$k <= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CLOSED_HALFSPACE_LE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let CLOSED_HALFSPACE_COMPONENT_GE = 
prove (`!a k. closed {x:real^N | x$k >= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CLOSED_HALFSPACE_GE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
(* ------------------------------------------------------------------------- *) (* Openness of halfspaces. *) (* ------------------------------------------------------------------------- *)
let OPEN_HALFSPACE_LT = 
prove (`!a b. open {x | a dot x < b}`,
REWRITE_TAC[GSYM REAL_NOT_LE] THEN REWRITE_TAC[SET_RULE `{x | ~p x} = UNIV DIFF {x | p x}`] THEN REWRITE_TAC[GSYM closed; GSYM real_ge; CLOSED_HALFSPACE_GE]);;
let OPEN_HALFSPACE_COMPONENT_LT = 
prove (`!a k. open {x:real^N | x$k < a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] OPEN_HALFSPACE_LT) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let OPEN_HALFSPACE_GT = 
prove (`!a b. open {x | a dot x > b}`,
REWRITE_TAC[REAL_ARITH `x > y <=> ~(x <= y)`] THEN REWRITE_TAC[SET_RULE `{x | ~p x} = UNIV DIFF {x | p x}`] THEN REWRITE_TAC[GSYM closed; CLOSED_HALFSPACE_LE]);;
let OPEN_HALFSPACE_COMPONENT_GT = 
prove (`!a k. open {x:real^N | x$k > a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] OPEN_HALFSPACE_GT) THEN ASM_SIMP_TAC[DOT_BASIS]);;
let OPEN_POSITIVE_MULTIPLES = 
prove (`!s:real^N->bool. open s ==> open {c % x | &0 < c /\ x IN s}`,
REWRITE_TAC[open_def; FORALL_IN_GSPEC] THEN GEN_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`c:real`; `x:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `c * e:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `inv(c) % y:real^N`) THEN ANTS_TAC THENL [SUBGOAL_THEN `x:real^N = inv c % c % x` SUBST1_TAC THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID; REAL_LT_IMP_NZ]; ASM_SIMP_TAC[DIST_MUL; real_abs; REAL_LT_INV_EQ; REAL_LT_IMP_LE] THEN ONCE_REWRITE_TAC[REAL_ARITH `inv c * x:real = x / c`] THEN ASM_MESON_TAC[REAL_LT_LDIV_EQ; REAL_MUL_SYM]]; DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `c:real` THEN EXISTS_TAC `inv(c) % y:real^N` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; REAL_LT_IMP_NZ] THEN VECTOR_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *) (* Closures and interiors of halfspaces. *) (* ------------------------------------------------------------------------- *)
let INTERIOR_HALFSPACE_LE = 
prove (`!a:real^N b. ~(a = vec 0) ==> interior {x | a dot x <= b} = {x | a dot x < b}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERIOR_UNIQUE THEN SIMP_TAC[OPEN_HALFSPACE_LT; SUBSET; IN_ELIM_THM; REAL_LT_IMP_LE] THEN X_GEN_TAC `s:real^N->bool` THEN STRIP_TAC THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_LT_LE] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[SUBSET; IN_CBALL] THEN DISCH_THEN(MP_TAC o SPEC `x + e / norm(a) % a:real^N`) THEN REWRITE_TAC[NORM_ARITH `dist(x:real^N,x + y) = norm y`] THEN ASM_SIMP_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; REAL_DIV_RMUL; NORM_EQ_0; REAL_ARITH `&0 < x ==> abs x <= x`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x + e / norm(a) % a:real^N`) THEN ASM_REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e ==> ~(b + e <= b)`) THEN ASM_SIMP_TAC[REAL_LT_MUL; REAL_LT_DIV; NORM_POS_LT; DOT_POS_LT]);;
let INTERIOR_HALFSPACE_GE = 
prove (`!a:real^N b. ~(a = vec 0) ==> interior {x | a dot x >= b} = {x | a dot x > b}`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `a >= b <=> --a <= --b`; REAL_ARITH `a > b <=> --a < --b`] THEN ASM_SIMP_TAC[GSYM DOT_LNEG; INTERIOR_HALFSPACE_LE; VECTOR_NEG_EQ_0]);;
let INTERIOR_HALFSPACE_COMPONENT_LE = 
prove (`!a k. interior {x:real^N | x$k <= a} = {x | x$k < a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] INTERIOR_HALFSPACE_LE) THEN ASM_SIMP_TAC[DOT_BASIS; BASIS_NONZERO]);;
let INTERIOR_HALFSPACE_COMPONENT_GE = 
prove (`!a k. interior {x:real^N | x$k >= a} = {x | x$k > a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] INTERIOR_HALFSPACE_GE) THEN ASM_SIMP_TAC[DOT_BASIS; BASIS_NONZERO]);;
let CLOSURE_HALFSPACE_LT = 
prove (`!a:real^N b. ~(a = vec 0) ==> closure {x | a dot x < b} = {x | a dot x <= b}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSURE_INTERIOR] THEN REWRITE_TAC[SET_RULE `UNIV DIFF {x | P x} = {x | ~P x}`] THEN ASM_SIMP_TAC[REAL_ARITH `~(x < b) <=> x >= b`; INTERIOR_HALFSPACE_GE] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN REAL_ARITH_TAC);;
let CLOSURE_HALFSPACE_GT = 
prove (`!a:real^N b. ~(a = vec 0) ==> closure {x | a dot x > b} = {x | a dot x >= b}`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `a >= b <=> --a <= --b`; REAL_ARITH `a > b <=> --a < --b`] THEN ASM_SIMP_TAC[GSYM DOT_LNEG; CLOSURE_HALFSPACE_LT; VECTOR_NEG_EQ_0]);;
let CLOSURE_HALFSPACE_COMPONENT_LT = 
prove (`!a k. closure {x:real^N | x$k < a} = {x | x$k <= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CLOSURE_HALFSPACE_LT) THEN ASM_SIMP_TAC[DOT_BASIS; BASIS_NONZERO]);;
let CLOSURE_HALFSPACE_COMPONENT_GT = 
prove (`!a k. closure {x:real^N | x$k > a} = {x | x$k >= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] CLOSURE_HALFSPACE_GT) THEN ASM_SIMP_TAC[DOT_BASIS; BASIS_NONZERO]);;
let INTERIOR_HYPERPLANE = 
prove (`!a b. ~(a = vec 0) ==> interior {x | a dot x = b} = {}`,
REWRITE_TAC[REAL_ARITH `x = y <=> x <= y /\ x >= y`] THEN REWRITE_TAC[SET_RULE `{x | p x /\ q x} = {x | p x} INTER {x | q x}`] THEN REWRITE_TAC[INTERIOR_INTER] THEN ASM_SIMP_TAC[INTERIOR_HALFSPACE_LE; INTERIOR_HALFSPACE_GE] THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM; NOT_IN_EMPTY] THEN REAL_ARITH_TAC);;
let FRONTIER_HALFSPACE_LE = 
prove (`!a:real^N b. ~(a = vec 0 /\ b = &0) ==> frontier {x | a dot x <= b} = {x | a dot x = b}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_SIMP_TAC[DOT_LZERO] THENL [ASM_CASES_TAC `&0 <= b` THEN ASM_REWRITE_TAC[UNIV_GSPEC; FRONTIER_UNIV; EMPTY_GSPEC; FRONTIER_EMPTY]; ASM_SIMP_TAC[frontier; INTERIOR_HALFSPACE_LE; CLOSURE_CLOSED; CLOSED_HALFSPACE_LE] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_ELIM_THM] THEN REAL_ARITH_TAC]);;
let FRONTIER_HALFSPACE_GE = 
prove (`!a:real^N b. ~(a = vec 0 /\ b = &0) ==> frontier {x | a dot x >= b} = {x | a dot x = b}`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`--a:real^N`; `--b:real`] FRONTIER_HALFSPACE_LE) THEN ASM_REWRITE_TAC[VECTOR_NEG_EQ_0; REAL_NEG_EQ_0; DOT_LNEG] THEN REWRITE_TAC[REAL_LE_NEG2; REAL_EQ_NEG2; real_ge]);;
let FRONTIER_HALFSPACE_LT = 
prove (`!a:real^N b. ~(a = vec 0 /\ b = &0) ==> frontier {x | a dot x < b} = {x | a dot x = b}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_SIMP_TAC[DOT_LZERO] THENL [ASM_CASES_TAC `&0 < b` THEN ASM_REWRITE_TAC[UNIV_GSPEC; FRONTIER_UNIV; EMPTY_GSPEC; FRONTIER_EMPTY]; ASM_SIMP_TAC[frontier; CLOSURE_HALFSPACE_LT; INTERIOR_OPEN; OPEN_HALFSPACE_LT] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_ELIM_THM] THEN REAL_ARITH_TAC]);;
let FRONTIER_HALFSPACE_GT = 
prove (`!a:real^N b. ~(a = vec 0 /\ b = &0) ==> frontier {x | a dot x > b} = {x | a dot x = b}`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`--a:real^N`; `--b:real`] FRONTIER_HALFSPACE_LT) THEN ASM_REWRITE_TAC[VECTOR_NEG_EQ_0; REAL_NEG_EQ_0; DOT_LNEG] THEN REWRITE_TAC[REAL_LT_NEG2; REAL_EQ_NEG2; real_gt]);;
let INTERIOR_STANDARD_HYPERPLANE = 
prove (`!k a. interior {x:real^N | x$k = a} = {}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !x:real^N. x$k = x$i` CHOOSE_TAC THENL [ASM_REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPECL [`basis i:real^N`; `a:real`] INTERIOR_HYPERPLANE) THEN ASM_SIMP_TAC[DOT_BASIS; BASIS_NONZERO]);;
let EMPTY_INTERIOR_LOWDIM = 
prove (`!s:real^N->bool. dim(s) < dimindex(:N) ==> interior s = {}`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LOWDIM_SUBSET_HYPERPLANE) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(SET_RULE `!t u. s SUBSET t /\ t SUBSET u /\ u = {} ==> s = {}`) THEN MAP_EVERY EXISTS_TAC [`interior(span(s):real^N->bool)`; `interior({x:real^N | a dot x = &0})`] THEN ASM_SIMP_TAC[SUBSET_INTERIOR; SPAN_INC; INTERIOR_HYPERPLANE]);;
(* ------------------------------------------------------------------------- *) (* Unboundedness of halfspaces. *) (* ------------------------------------------------------------------------- *)
let UNBOUNDED_HALFSPACE_COMPONENT_LE = 
prove (`!a k. ~bounded {x:real^N | x$k <= a}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?i. 1 <= i /\ i <= dimindex(:N) /\ !z:real^N. z$k = z$i` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_REWRITE_TAC[bounded; FORALL_IN_GSPEC] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` MP_TAC) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN EXISTS_TAC `--(&1 + max (abs B) (abs a)) % basis i:real^N` THEN ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; BASIS_COMPONENT; VECTOR_MUL_COMPONENT] THEN REAL_ARITH_TAC);;
let UNBOUNDED_HALFSPACE_COMPONENT_GE = 
prove (`!a k. ~bounded {x:real^N | x$k >= a}`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_NEGATIONS) THEN MP_TAC(SPECL [`--a:real`; `k:num`] UNBOUNDED_HALFSPACE_COMPONENT_LE) THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN CONJ_TAC THENL [MESON_TAC[VECTOR_NEG_NEG]; REWRITE_TAC[IN_ELIM_THM; VECTOR_NEG_COMPONENT] THEN REAL_ARITH_TAC]);;
let UNBOUNDED_HALFSPACE_COMPONENT_LT = 
prove (`!a k. ~bounded {x:real^N | x$k < a}`,
let UNBOUNDED_HALFSPACE_COMPONENT_GT = 
prove (`!a k. ~bounded {x:real^N | x$k > a}`,
let BOUNDED_HALFSPACE_LE = 
prove (`!a:real^N b. bounded {x | a dot x <= b} <=> a = vec 0 /\ b < &0`,
GEOM_BASIS_MULTIPLE_TAC 1 `a:real^N` THEN SIMP_TAC[DOT_LMUL; DOT_BASIS; VECTOR_MUL_EQ_0; DIMINDEX_GE_1; LE_REFL; BASIS_NONZERO] THEN X_GEN_TAC `a:real` THEN ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `b:real` THENL [REWRITE_TAC[REAL_MUL_LZERO; DOT_LZERO; GSYM REAL_NOT_LE] THEN ASM_CASES_TAC `&0 <= b` THEN ASM_REWRITE_TAC[BOUNDED_EMPTY; NOT_BOUNDED_UNIV; SET_RULE `{x | T} = UNIV`; EMPTY_GSPEC]; ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_LT_LE; UNBOUNDED_HALFSPACE_COMPONENT_LE]]);;
let BOUNDED_HALFSPACE_GE = 
prove (`!a:real^N b. bounded {x | a dot x >= b} <=> a = vec 0 /\ &0 < b`,
REWRITE_TAC[REAL_ARITH `a >= b <=> --a <= --b`] THEN REWRITE_TAC[GSYM DOT_LNEG; BOUNDED_HALFSPACE_LE] THEN REWRITE_TAC[VECTOR_NEG_EQ_0; REAL_ARITH `--b < &0 <=> &0 < b`]);;
let BOUNDED_HALFSPACE_LT = 
prove (`!a:real^N b. bounded {x | a dot x < b} <=> a = vec 0 /\ b <= &0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[DOT_LZERO; GSYM REAL_NOT_LE] THEN ASM_CASES_TAC `b <= &0` THEN ASM_REWRITE_TAC[BOUNDED_EMPTY; NOT_BOUNDED_UNIV; SET_RULE `{x | T} = UNIV`; EMPTY_GSPEC]; ONCE_REWRITE_TAC[GSYM BOUNDED_CLOSURE_EQ] THEN ASM_SIMP_TAC[CLOSURE_HALFSPACE_LT; BOUNDED_HALFSPACE_LE]]);;
let BOUNDED_HALFSPACE_GT = 
prove (`!a:real^N b. bounded {x | a dot x > b} <=> a = vec 0 /\ &0 <= b`,
REWRITE_TAC[REAL_ARITH `a > b <=> --a < --b`] THEN REWRITE_TAC[GSYM DOT_LNEG; BOUNDED_HALFSPACE_LT] THEN REWRITE_TAC[VECTOR_NEG_EQ_0; REAL_ARITH `--b <= &0 <=> &0 <= b`]);;
(* ------------------------------------------------------------------------- *) (* Equality of continuous functions on closure and related results. *) (* ------------------------------------------------------------------------- *)
let FORALL_IN_CLOSURE = 
prove (`!f:real^M->real^N s t. closed t /\ f continuous_on (closure s) /\ (!x. x IN s ==> f x IN t) ==> (!x. x IN closure s ==> f x IN t)`,
REWRITE_TAC[SET_RULE `(!x. x IN s ==> f x IN t) <=> s SUBSET {x | x IN s /\ f x IN t}`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[CLOSED_CLOSURE] THEN CONJ_TAC THENL [MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE THEN ASM_REWRITE_TAC[CLOSED_CLOSURE]]);;
let CONTINUOUS_LE_ON_CLOSURE = 
prove (`!f:real^M->real s a. (lift o f) continuous_on closure(s) /\ (!x. x IN s ==> f(x) <= a) ==> !x. x IN closure(s) ==> f(x) <= a`,
let lemma = prove
   (`x IN s ==> f x <= a <=> x IN s ==> (lift o f) x IN {y | y$1 <= a}`,
    REWRITE_TAC[IN_ELIM_THM; o_THM; GSYM drop; LIFT_DROP]) in
  REWRITE_TAC[lemma] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC FORALL_IN_CLOSURE THEN
  ASM_REWRITE_TAC[ETA_AX; CLOSED_HALFSPACE_COMPONENT_LE]);;
let CONTINUOUS_GE_ON_CLOSURE = 
prove (`!f:real^M->real s a. (lift o f) continuous_on closure(s) /\ (!x. x IN s ==> a <= f(x)) ==> !x. x IN closure(s) ==> a <= f(x)`,
let lemma = prove
   (`x IN s ==> a <= f x <=> x IN s ==> (lift o f) x IN {y | y$1 >= a}`,
    REWRITE_TAC[IN_ELIM_THM; o_THM; GSYM drop; real_ge; LIFT_DROP]) in
  REWRITE_TAC[lemma] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC FORALL_IN_CLOSURE THEN
  ASM_REWRITE_TAC[ETA_AX; CLOSED_HALFSPACE_COMPONENT_GE]);;
let CONTINUOUS_CONSTANT_ON_CLOSURE = 
prove (`!f:real^M->real^N s a. f continuous_on closure(s) /\ (!x. x IN s ==> f(x) = a) ==> !x. x IN closure(s) ==> f(x) = a`,
REWRITE_TAC[SET_RULE `x IN s ==> f x = a <=> x IN s ==> f x IN {a}`] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC FORALL_IN_CLOSURE THEN ASM_REWRITE_TAC[CLOSED_SING]);;
let CONTINUOUS_AGREE_ON_CLOSURE = 
prove (`!g h:real^M->real^N. g continuous_on closure s /\ h continuous_on closure s /\ (!x. x IN s ==> g x = h x) ==> !x. x IN closure s ==> g x = h x`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_CONSTANT_ON_CLOSURE THEN ASM_SIMP_TAC[CONTINUOUS_ON_SUB]);;
let CONTINUOUS_CLOSED_IN_PREIMAGE_CONSTANT = 
prove (`!f:real^M->real^N s a. f continuous_on s ==> closed_in (subtopology euclidean s) {x | x IN s /\ f x = a}`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{x | x IN s /\ f(x) = a} = {x | x IN s /\ f(x) IN {a}}`] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN ASM_REWRITE_TAC[CLOSED_SING]);;
let CONTINUOUS_CLOSED_PREIMAGE_CONSTANT = 
prove (`!f:real^M->real^N s. f continuous_on s /\ closed s ==> closed {x | x IN s /\ f(x) = a}`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `{x | x IN s /\ (f:real^M->real^N)(x) = a} = {}` THEN ASM_REWRITE_TAC[CLOSED_EMPTY] THEN ONCE_REWRITE_TAC[SET_RULE `{x | x IN s /\ f(x) = a} = {x | x IN s /\ f(x) IN {a}}`] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE THEN ASM_REWRITE_TAC[CLOSED_SING] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Theorems relating continuity and uniform continuity to closures. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_ON_CLOSURE = 
prove (`!f:real^M->real^N s. f continuous_on closure s <=> !x e. x IN closure s /\ &0 < e ==> ?d. &0 < d /\ !y. y IN s /\ dist(y,x) < d ==> dist(f y,f x) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_on] THEN EQ_TAC THENL [MESON_TAC[REWRITE_RULE[SUBSET] CLOSURE_SUBSET]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`x:real^M`; `e / &2`]) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[REAL_HALF]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[REAL_HALF] THEN X_GEN_TAC `y:real^M` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`y:real^M`; `e / &2`]) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`y:real^M`; `s:real^M->bool`] CLOSURE_APPROACHABLE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `min k (d / &2)`) THEN ASM_REWRITE_TAC[REAL_HALF; REAL_LT_MIN] THEN ASM_MESON_TAC[DIST_SYM; NORM_ARITH `dist(a,b) < e / &2 /\ dist(b,c) < e / &2 ==> dist(a,c) < e`]);;
let CONTINUOUS_ON_CLOSURE_SEQUENTIALLY = 
prove (`!f:real^M->real^N s. f continuous_on closure s <=> !x a. a IN closure s /\ (!n. x n IN s) /\ (x --> a) sequentially ==> ((f o x) --> f a) sequentially`,
REWRITE_TAC[CONTINUOUS_ON_CLOSURE] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IMP_IMP; GSYM continuous_within] THEN REWRITE_TAC[CONTINUOUS_WITHIN_SEQUENTIALLY] THEN MESON_TAC[]);;
let UNIFORMLY_CONTINUOUS_ON_CLOSURE = 
prove (`!f:real^M->real^N s. f uniformly_continuous_on s /\ f continuous_on closure s ==> f uniformly_continuous_on closure s`,
REPEAT GEN_TAC THEN REWRITE_TAC[uniformly_continuous_on] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &3`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d / &3` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^M`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [continuous_on]) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `y:real^M` th) THEN MP_TAC(SPEC `x:real^M` th)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d1:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MP_TAC(ISPECL [`x:real^M`; `s:real^M->bool`] CLOSURE_APPROACHABLE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `min d1 (d / &3)`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_LT_MIN]] THEN DISCH_THEN(X_CHOOSE_THEN `x':real^M` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `x':real^M`) THEN ASM_SIMP_TAC[REWRITE_RULE[SUBSET] CLOSURE_SUBSET] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d2:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MP_TAC(ISPECL [`y:real^M`; `s:real^M->bool`] CLOSURE_APPROACHABLE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `min d2 (d / &3)`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_LT_MIN]] THEN DISCH_THEN(X_CHOOSE_THEN `y':real^M` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `y':real^M`) THEN ASM_SIMP_TAC[REWRITE_RULE[SUBSET] CLOSURE_SUBSET] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x':real^M`; `y':real^M`]) THEN ASM_MESON_TAC[DIST_SYM; NORM_ARITH `dist(y,x) < d / &3 /\ dist(x',x) < d / &3 /\ dist(y',y) < d / &3 ==> dist(y',x') < d`]);;
(* ------------------------------------------------------------------------- *) (* Continuity properties for square roots. We get other forms of this *) (* later (transcendentals.ml and realanalysis.ml) but it's nice to have *) (* them around earlier. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_AT_SQRT = 
prove (`!a s. &0 < drop a ==> (lift o sqrt o drop) continuous (at a)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_at; o_THM; DIST_LIFT] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `min (drop a) (e * sqrt(drop a))` THEN ASM_SIMP_TAC[REAL_LT_MIN; SQRT_POS_LT; REAL_LT_MUL; DIST_REAL] THEN X_GEN_TAC `b:real^1` THEN REWRITE_TAC[GSYM drop] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REAL_ARITH `abs(b - a) < a ==> &0 < b`)) THEN SUBGOAL_THEN `sqrt(drop b) - sqrt(drop a) = (drop b - drop a) / (sqrt(drop a) + sqrt(drop b))` SUBST1_TAC THENL [MATCH_MP_TAC(REAL_FIELD `sa pow 2 = a /\ sb pow 2 = b /\ &0 < sa /\ &0 < sb ==> sb - sa = (b - a) / (sa + sb)`) THEN ASM_SIMP_TAC[SQRT_POS_LT; SQRT_POW_2; REAL_LT_IMP_LE]; ASM_SIMP_TAC[REAL_ABS_DIV; SQRT_POS_LT; REAL_LT_ADD; REAL_LT_LDIV_EQ; REAL_ARITH `&0 < x ==> abs x = x`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_LTE_TRANS)) THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LE_ADDR; SQRT_POS_LE; REAL_LT_IMP_LE]]);;
let CONTINUOUS_WITHIN_LIFT_SQRT = 
prove (`!a s. (!x. x IN s ==> &0 <= drop x) ==> (lift o sqrt o drop) continuous (at a within s)`,
REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `drop a < &0 \/ drop a = &0 \/ &0 < drop a`) THENL [MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN EXISTS_TAC `{x | &0 <= drop x}` THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM] THEN MATCH_MP_TAC CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL THEN ASM_REWRITE_TAC[IN_ELIM_THM; REAL_NOT_LE] THEN REWRITE_TAC[drop; REWRITE_RULE[real_ge] CLOSED_HALFSPACE_COMPONENT_GE]; RULE_ASSUM_TAC(REWRITE_RULE[GSYM LIFT_EQ; LIFT_DROP; LIFT_NUM]) THEN ASM_REWRITE_TAC[continuous_within; o_THM; DROP_VEC; SQRT_0; LIFT_NUM] THEN REWRITE_TAC[DIST_0; NORM_LIFT; NORM_REAL; GSYM drop] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `(e:real) pow 2` THEN ASM_SIMP_TAC[REAL_POW_LT] THEN X_GEN_TAC `x:real^1` THEN STRIP_TAC THEN ASM_SIMP_TAC[real_abs; SQRT_POS_LE] THEN SUBGOAL_THEN `e = sqrt(e pow 2)` SUBST1_TAC THENL [ASM_SIMP_TAC[POW_2_SQRT; REAL_LT_IMP_LE]; MATCH_MP_TAC SQRT_MONO_LT THEN ASM_SIMP_TAC[] THEN ASM_REAL_ARITH_TAC]; MATCH_MP_TAC CONTINUOUS_AT_WITHIN THEN MATCH_MP_TAC CONTINUOUS_AT_SQRT THEN ASM_REWRITE_TAC[]]);;
let CONTINUOUS_WITHIN_SQRT_COMPOSE = 
prove (`!f s a:real^N. (\x. lift(f x)) continuous (at a within s) /\ (&0 < f a \/ !x. x IN s ==> &0 <= f x) ==> (\x. lift(sqrt(f x))) continuous (at a within s)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `(\x:real^N. lift(sqrt(f x))) = (lift o sqrt o drop) o (lift o f)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN REPEAT STRIP_TAC THEN (MATCH_MP_TAC CONTINUOUS_WITHIN_COMPOSE THEN CONJ_TAC THENL [ASM_REWRITE_TAC[o_DEF]; ALL_TAC]) THENL [MATCH_MP_TAC CONTINUOUS_AT_WITHIN THEN MATCH_MP_TAC CONTINUOUS_AT_SQRT THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP]; MATCH_MP_TAC CONTINUOUS_WITHIN_LIFT_SQRT THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_DEF; LIFT_DROP]]);;
let CONTINUOUS_AT_SQRT_COMPOSE = 
prove (`!f a:real^N. (\x. lift(f x)) continuous (at a) /\ (&0 < f a \/ !x. &0 <= f x) ==> (\x. lift(sqrt(f x))) continuous (at a)`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:real^N->real`; `(:real^N)`; `a:real^N`] CONTINUOUS_WITHIN_SQRT_COMPOSE) THEN REWRITE_TAC[WITHIN_UNIV; IN_UNIV]);;
let CONTINUOUS_ON_LIFT_SQRT = 
prove (`!s. (!x. x IN s ==> &0 <= drop x) ==> (lift o sqrt o drop) continuous_on s`,
let CONTINUOUS_ON_LIFT_SQRT_COMPOSE = 
prove (`!f:real^N->real s. (lift o f) continuous_on s /\ (!x. x IN s ==> &0 <= f x) ==> (\x. lift(sqrt(f x))) continuous_on s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x:real^N. lift(sqrt(f x))) = (lift o sqrt o drop) o (lift o f)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_ON_LIFT_SQRT THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]]);;
(* ------------------------------------------------------------------------- *) (* Cauchy continuity, and the extension of functions to closures. *) (* ------------------------------------------------------------------------- *)
let UNIFORMLY_CONTINUOUS_IMP_CAUCHY_CONTINUOUS = 
prove (`!f:real^M->real^N s. f uniformly_continuous_on s ==> (!x. cauchy x /\ (!n. (x n) IN s) ==> cauchy(f o x))`,
REPEAT GEN_TAC THEN REWRITE_TAC[uniformly_continuous_on; cauchy; o_DEF] THEN MESON_TAC[]);;
let CONTINUOUS_CLOSED_IMP_CAUCHY_CONTINUOUS = 
prove (`!f:real^M->real^N s. f continuous_on s /\ closed s ==> (!x. cauchy x /\ (!n. (x n) IN s) ==> cauchy(f o x))`,
REWRITE_TAC[GSYM COMPLETE_EQ_CLOSED; CONTINUOUS_ON_SEQUENTIALLY] THEN REWRITE_TAC[complete] THEN MESON_TAC[CONVERGENT_IMP_CAUCHY]);;
let CAUCHY_CONTINUOUS_UNIQUENESS_LEMMA = 
prove (`!f:real^M->real^N s. (!x. cauchy x /\ (!n. (x n) IN s) ==> cauchy(f o x)) ==> !a x. (!n. (x n) IN s) /\ (x --> a) sequentially ==> ?l. ((f o x) --> l) sequentially /\ !y. (!n. (y n) IN s) /\ (y --> a) sequentially ==> ((f o y) --> l) sequentially`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:num->real^M`) THEN ANTS_TAC THENL [ASM_MESON_TAC[CONVERGENT_IMP_CAUCHY]; ALL_TAC] THEN REWRITE_TAC[GSYM CONVERGENT_EQ_CAUCHY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^N` THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:num->real^M` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `y:num->real^M`) THEN ANTS_TAC THENL [ASM_MESON_TAC[CONVERGENT_IMP_CAUCHY]; ALL_TAC] THEN REWRITE_TAC[GSYM CONVERGENT_EQ_CAUCHY] THEN DISCH_THEN(X_CHOOSE_THEN `m:real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `l:real^N = m` (fun th -> ASM_REWRITE_TAC[th]) THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN EXISTS_TAC `\n:num. (f:real^M->real^N)(x n) - f(y n)` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_SIMP_TAC[LIM_SUB; TRIVIAL_LIMIT_SEQUENTIALLY] THEN FIRST_X_ASSUM(MP_TAC o SPEC `\n. if EVEN n then x(n DIV 2):real^M else y(n DIV 2)`) THEN REWRITE_TAC[cauchy; o_THM; LIM_SEQUENTIALLY] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MAP_EVERY UNDISCH_TAC [`((y:num->real^M) --> a) sequentially`; `((x:num->real^M) --> a) sequentially`] THEN REPEAT(FIRST_X_ASSUM(K ALL_TAC o check (is_forall o concl))) THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `2 * (N1 + N2)` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `m DIV 2` th) THEN MP_TAC(SPEC `n DIV 2` th))) THEN REPEAT(ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_TAC]) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_NOT_LE])) THEN CONV_TAC NORM_ARITH; MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`2 * n`; `2 * n + 1`]) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH_EVEN] THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`] THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO]]);;
let CAUCHY_CONTINUOUS_EXTENDS_TO_CLOSURE = 
prove (`!f:real^M->real^N s. (!x. cauchy x /\ (!n. (x n) IN s) ==> cauchy(f o x)) ==> ?g. g continuous_on closure s /\ (!x. x IN s ==> g x = f x)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!a:real^M. ?x. a IN closure s ==> (!n. x n IN s) /\ (x --> a) sequentially` MP_TAC THENL [MESON_TAC[CLOSURE_SEQUENTIAL]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `X:real^M->num->real^M` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_UNIQUENESS_LEMMA) THEN DISCH_THEN(MP_TAC o GEN `a:real^M` o SPECL [`a:real^M`; `(X:real^M->num->real^M) a`]) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[] `(!a. P a ==> Q a) ==> ((!a. P a ==> R a) ==> p) ==> ((!a. Q a ==> R a) ==> p)`)) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^M->real^N` THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [X_GEN_TAC `a:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:real^M`) THEN ASM_SIMP_TAC[REWRITE_RULE[SUBSET] CLOSURE_SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `(\n. a):num->real^M` o CONJUNCT2) THEN ASM_SIMP_TAC[LIM_CONST_EQ; o_DEF; TRIVIAL_LIMIT_SEQUENTIALLY]; STRIP_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_ON_CLOSURE_SEQUENTIALLY] THEN MAP_EVERY X_GEN_TAC [`x:num->real^M`; `a:real^M`] THEN STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `(f:real^M->real^N) o (x:num->real^M)` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_SIMP_TAC[o_THM]);;
let UNIFORMLY_CONTINUOUS_EXTENDS_TO_CLOSURE = 
prove (`!f:real^M->real^N s. f uniformly_continuous_on s ==> ?g. g uniformly_continuous_on closure s /\ (!x. x IN s ==> g x = f x) /\ !h. h continuous_on closure s /\ (!x. x IN s ==> h x = f x) ==> !x. x IN closure s ==> h x = g x`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CAUCHY_CONTINUOUS_EXTENDS_TO_CLOSURE o MATCH_MP UNIFORMLY_CONTINUOUS_IMP_CAUCHY_CONTINUOUS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^M->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[UNIFORMLY_CONTINUOUS_ON_CLOSURE; UNIFORMLY_CONTINUOUS_ON_EQ]; ASM_MESON_TAC[CONTINUOUS_AGREE_ON_CLOSURE]]);;
let CAUCHY_CONTINUOUS_IMP_CONTINUOUS = 
prove (`!f:real^M->real^N s. (!x. cauchy x /\ (!n. (x n) IN s) ==> cauchy(f o x)) ==> f continuous_on s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(CHOOSE_TAC o MATCH_MP CAUCHY_CONTINUOUS_EXTENDS_TO_CLOSURE) THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; CLOSURE_SUBSET; CONTINUOUS_ON_EQ]);;
(* ------------------------------------------------------------------------- *) (* Linear functions are (uniformly) continuous on any set. *) (* ------------------------------------------------------------------------- *)
let LINEAR_LIM_0 = 
prove (`!f. linear f ==> (f --> vec 0) (at (vec 0))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[LIM_AT] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP LINEAR_BOUNDED_POS) THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e / B` THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN REWRITE_TAC[dist; VECTOR_SUB_RZERO] THEN ASM_MESON_TAC[REAL_MUL_SYM; REAL_LET_TRANS; REAL_LT_RDIV_EQ]);;
let LINEAR_CONTINUOUS_AT = 
prove (`!f:real^M->real^N a. linear f ==> f continuous (at a)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\x. (f:real^M->real^N) (a + x) - f(a)` LINEAR_LIM_0) THEN ANTS_TAC THENL [POP_ASSUM MP_TAC THEN SIMP_TAC[linear] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[GSYM LIM_NULL; CONTINUOUS_AT] THEN GEN_REWRITE_TAC RAND_CONV [LIM_AT_ZERO] THEN SIMP_TAC[]);;
let LINEAR_CONTINUOUS_WITHIN = 
prove (`!f:real^M->real^N s x. linear f ==> f continuous (at x within s)`,
let LINEAR_CONTINUOUS_ON = 
prove (`!f:real^M->real^N s. linear f ==> f continuous_on s`,
let LINEAR_CONTINUOUS_COMPOSE = 
prove (`!net f:A->real^N g:real^N->real^P. f continuous net /\ linear g ==> (\x. g(f x)) continuous net`,
REWRITE_TAC[continuous; LIM_LINEAR]);;
let LINEAR_CONTINUOUS_ON_COMPOSE = 
prove (`!f:real^M->real^N g:real^N->real^P s. f continuous_on s /\ linear g ==> (\x. g(f x)) continuous_on s`,
let CONTINUOUS_LIFT_COMPONENT_COMPOSE = 
prove (`!net f:A->real^N i. f continuous net ==> (\x. lift(f x$i)) continuous net`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `linear(\x:real^N. lift (x$i))` MP_TAC THENL [REWRITE_TAC[LINEAR_LIFT_COMPONENT]; REWRITE_TAC[GSYM IMP_CONJ_ALT]] THEN REWRITE_TAC[LINEAR_CONTINUOUS_COMPOSE]);;
let CONTINUOUS_ON_LIFT_COMPONENT_COMPOSE = 
prove (`!f:real^M->real^N s. f continuous_on s ==> (\x. lift (f x$i)) continuous_on s`,
(* ------------------------------------------------------------------------- *) (* Also bilinear functions, in composition form. *) (* ------------------------------------------------------------------------- *)
let BILINEAR_CONTINUOUS_COMPOSE = 
prove (`!net f:A->real^M g:A->real^N h:real^M->real^N->real^P. f continuous net /\ g continuous net /\ bilinear h ==> (\x. h (f x) (g x)) continuous net`,
REWRITE_TAC[continuous; LIM_BILINEAR]);;
let BILINEAR_CONTINUOUS_ON_COMPOSE = 
prove (`!f g h s. f continuous_on s /\ g continuous_on s /\ bilinear h ==> (\x. h (f x) (g x)) continuous_on s`,
let BILINEAR_DOT = 
prove (`bilinear (\x y:real^N. lift(x dot y))`,
REWRITE_TAC[bilinear; linear; DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL] THEN REWRITE_TAC[LIFT_ADD; LIFT_CMUL]);;
let CONTINUOUS_LIFT_DOT2 = 
prove (`!net f g:A->real^N. f continuous net /\ g continuous net ==> (\x. lift(f x dot g x)) continuous net`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (MATCH_MP (REWRITE_RULE [TAUT `p /\ q /\ r ==> s <=> r ==> p /\ q ==> s`] BILINEAR_CONTINUOUS_COMPOSE) BILINEAR_DOT)) THEN REWRITE_TAC[]);;
let CONTINUOUS_ON_LIFT_DOT2 = 
prove (`!f:real^M->real^N g s. f continuous_on s /\ g continuous_on s ==> (\x. lift(f x dot g x)) continuous_on s`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (MATCH_MP (REWRITE_RULE [TAUT `p /\ q /\ r ==> s <=> r ==> p /\ q ==> s`] BILINEAR_CONTINUOUS_ON_COMPOSE) BILINEAR_DOT)) THEN REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Occasionally useful invariance properties. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_AT_COMPOSE_EQ = 
prove (`!f:real^M->real^N g:real^M->real^M h:real^M->real^M. g continuous at x /\ h continuous at (g x) /\ (!y. g(h y) = y) /\ h(g x) = x ==> (f continuous at (g x) <=> (\x. f(g x)) continuous at x)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[REWRITE_RULE[o_DEF] CONTINUOUS_AT_COMPOSE] THEN DISCH_TAC THEN SUBGOAL_THEN `((f:real^M->real^N) o (g:real^M->real^M) o (h:real^M->real^M)) continuous at (g(x:real^M))` MP_TAC THENL [REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC CONTINUOUS_AT_COMPOSE THEN ASM_REWRITE_TAC[o_DEF]; ASM_REWRITE_TAC[o_DEF; ETA_AX]]);;
let CONTINUOUS_AT_TRANSLATION = 
prove (`!a z f:real^M->real^N. f continuous at (a + z) <=> (\x. f(a + x)) continuous at z`,
REPEAT GEN_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_COMPOSE_EQ THEN EXISTS_TAC `\x:real^M. x - a` THEN SIMP_TAC[CONTINUOUS_ADD; CONTINUOUS_SUB; CONTINUOUS_AT_ID; CONTINUOUS_CONST] THEN VECTOR_ARITH_TAC);;
add_translation_invariants [CONTINUOUS_AT_TRANSLATION];;
let CONTINUOUS_AT_LINEAR_IMAGE = 
prove (`!h:real^M->real^M z f:real^M->real^N. linear h /\ (!x. norm(h x) = norm x) ==> (f continuous at (h z) <=> (\x. f(h x)) continuous at z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [GSYM ORTHOGONAL_TRANSFORMATION]) THEN FIRST_ASSUM(X_CHOOSE_TAC `g:real^M->real^M` o MATCH_MP ORTHOGONAL_TRANSFORMATION_INVERSE) THEN MATCH_MP_TAC CONTINUOUS_AT_COMPOSE_EQ THEN EXISTS_TAC `g:real^M->real^M` THEN RULE_ASSUM_TAC(REWRITE_RULE[ORTHOGONAL_TRANSFORMATION]) THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_AT]);;
add_linear_invariants [CONTINUOUS_AT_LINEAR_IMAGE];; (* ------------------------------------------------------------------------- *) (* Interior of an injective image. *) (* ------------------------------------------------------------------------- *)
let INTERIOR_IMAGE_SUBSET = 
prove (`!f:real^M->real^N s. (!x. f continuous at x) /\ (!x y. f x = f y ==> x = y) ==> interior(IMAGE f s) SUBSET IMAGE f (interior s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET] THEN REWRITE_TAC[interior; IN_ELIM_THM] THEN X_GEN_TAC `y:real^N` THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN SUBGOAL_THEN `y IN IMAGE (f:real^M->real^N) s` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN EXISTS_TAC `{x | (f:real^M->real^N)(x) IN t}` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_OPEN_PREIMAGE_UNIV THEN ASM_MESON_TAC[]; ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Making a continuous function avoid some value in a neighbourhood. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_WITHIN_AVOID = 
prove (`!f:real^M->real^N x s a. f continuous (at x within s) /\ x IN s /\ ~(f x = a) ==> ?e. &0 < e /\ !y. y IN s /\ dist(x,y) < e ==> ~(f y = a)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [continuous_within]) THEN DISCH_THEN(MP_TAC o SPEC `norm((f:real^M->real^N) x - a)`) THEN ASM_REWRITE_TAC[NORM_POS_LT; VECTOR_SUB_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN SIMP_TAC[] THEN NORM_ARITH_TAC);;
let CONTINUOUS_AT_AVOID = 
prove (`!f:real^M->real^N x a. f continuous (at x) /\ ~(f x = a) ==> ?e. &0 < e /\ !y. dist(x,y) < e ==> ~(f y = a)`,
MP_TAC CONTINUOUS_WITHIN_AVOID THEN REPLICATE_TAC 2 (MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(:real^M)`) THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN REWRITE_TAC[WITHIN_UNIV; IN_UNIV]);;
let CONTINUOUS_ON_AVOID = 
prove (`!f:real^M->real^N x s a. f continuous_on s /\ x IN s /\ ~(f x = a) ==> ?e. &0 < e /\ !y. y IN s /\ dist(x,y) < e ==> ~(f y = a)`,
REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_WITHIN_AVOID THEN ASM_SIMP_TAC[]);;
let CONTINUOUS_ON_OPEN_AVOID = 
prove (`!f:real^M->real^N x s a. f continuous_on s /\ open s /\ x IN s /\ ~(f x = a) ==> ?e. &0 < e /\ !y. dist(x,y) < e ==> ~(f y = a)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `open(s:real^M->bool)` THEN ASM_SIMP_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_AVOID THEN ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Proving a function is constant by proving open-ness of level set. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_LEVELSET_OPEN_IN_CASES = 
prove (`!f:real^M->real^N s a. connected s /\ f continuous_on s /\ open_in (subtopology euclidean s) {x | x IN s /\ f x = a} ==> (!x. x IN s ==> ~(f x = a)) \/ (!x. x IN s ==> f x = a)`,
REWRITE_TAC[SET_RULE `(!x. x IN s ==> ~(f x = a)) <=> {x | x IN s /\ f x = a} = {}`; SET_RULE `(!x. x IN s ==> f x = a) <=> {x | x IN s /\ f x = a} = s`] THEN REWRITE_TAC[CONNECTED_CLOPEN] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[CONTINUOUS_CLOSED_IN_PREIMAGE_CONSTANT]);;
let CONTINUOUS_LEVELSET_OPEN_IN = 
prove (`!f:real^M->real^N s a. connected s /\ f continuous_on s /\ open_in (subtopology euclidean s) {x | x IN s /\ f x = a} /\ (?x. x IN s /\ f x = a) ==> (!x. x IN s ==> f x = a)`,
let CONTINUOUS_LEVELSET_OPEN = 
prove (`!f:real^M->real^N s a. connected s /\ f continuous_on s /\ open {x | x IN s /\ f x = a} /\ (?x. x IN s /\ f x = a) ==> (!x. x IN s ==> f x = a)`,
REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC CONTINUOUS_LEVELSET_OPEN_IN THEN ASM_REWRITE_TAC[OPEN_IN_OPEN] THEN EXISTS_TAC `{x | x IN s /\ (f:real^M->real^N) x = a}` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Some arithmetical combinations (more to prove). *) (* ------------------------------------------------------------------------- *)
let OPEN_SCALING = 
prove (`!s:real^N->bool c. ~(c = &0) /\ open s ==> open(IMAGE (\x. c % x) s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[open_def; FORALL_IN_IMAGE] THEN STRIP_TAC THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e * abs(c)` THEN ASM_SIMP_TAC[REAL_LT_MUL; GSYM REAL_ABS_NZ] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `inv(c) % y:real^N` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; VECTOR_MUL_LID] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SUBGOAL_THEN `x = inv(c) % c % x:real^N` SUBST1_TAC THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID]; REWRITE_TAC[dist; GSYM VECTOR_SUB_LDISTRIB; NORM_MUL] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_ABS_INV] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_LDIV_EQ; GSYM REAL_ABS_NZ] THEN ASM_REWRITE_TAC[GSYM dist]]);;
let OPEN_NEGATIONS = 
prove (`!s:real^N->bool. open s ==> open (IMAGE (--) s)`,
SUBGOAL_THEN `(--) = \x:real^N. --(&1) % x` (fun th -> SIMP_TAC[th; OPEN_SCALING; REAL_ARITH `~(--(&1) = &0)`]) THEN REWRITE_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC);;
let OPEN_TRANSLATION = 
prove (`!s a:real^N. open s ==> open(IMAGE (\x. a + x) s)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x:real^N. x - a`; `s:real^N->bool`] CONTINUOUS_OPEN_PREIMAGE_UNIV) THEN ASM_SIMP_TAC[CONTINUOUS_SUB; CONTINUOUS_AT_ID; CONTINUOUS_CONST] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_UNIV] THEN ASM_MESON_TAC[VECTOR_ARITH `(a + x) - a = x:real^N`; VECTOR_ARITH `a + (x - a) = x:real^N`]);;
let OPEN_TRANSLATION_EQ = 
prove (`!a s. open (IMAGE (\x:real^N. a + x) s) <=> open s`,
REWRITE_TAC[open_def] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [OPEN_TRANSLATION_EQ];;
let OPEN_AFFINITY = 
prove (`!s a:real^N c. open s /\ ~(c = &0) ==> open (IMAGE (\x. a + c % x) s)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x:real^N. a + c % x) = (\x. a + x) o (\x. c % x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[IMAGE_o; OPEN_TRANSLATION; OPEN_SCALING]);;
let INTERIOR_TRANSLATION = 
prove (`!a:real^N s. interior (IMAGE (\x. a + x) s) = IMAGE (\x. a + x) (interior s)`,
REWRITE_TAC[interior] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [INTERIOR_TRANSLATION];;
let OPEN_SUMS = 
prove (`!s t:real^N->bool. open s \/ open t ==> open {x + y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN REWRITE_TAC[open_def] THEN STRIP_TAC THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`); FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N`)] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[VECTOR_ADD_SYM; VECTOR_ARITH `(z - y) + y:real^N = z`; NORM_ARITH `dist(z:real^N,x + y) < e ==> dist(z - y,x) < e`]);;
(* ------------------------------------------------------------------------- *) (* Preservation of compactness and connectedness under continuous function. *) (* ------------------------------------------------------------------------- *)
let COMPACT_CONTINUOUS_IMAGE = 
prove (`!f:real^M->real^N s. f continuous_on s /\ compact s ==> compact(IMAGE f s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_on; compact] THEN STRIP_TAC THEN X_GEN_TAC `y:num->real^N` THEN REWRITE_TAC[IN_IMAGE; SKOLEM_THM; FORALL_AND_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:num->real^M` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->real^M`) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN DISCH_THEN(X_CHOOSE_THEN `l:real^M` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:real^M->real^N) l` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN FIRST_X_ASSUM(MP_TAC o SPEC `l:real^M`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_SEQUENTIALLY]) THEN DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]);;
let COMPACT_CONTINUOUS_IMAGE_EQ = 
prove (`!f:real^M->real^N s. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> (f continuous_on s <=> !t. compact t /\ t SUBSET s ==> compact(IMAGE f t))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [MESON_TAC[COMPACT_CONTINUOUS_IMAGE; CONTINUOUS_ON_SUBSET]; DISCH_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `g:real^N->real^M` o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN REWRITE_TAC[CONTINUOUS_ON_CLOSED] THEN X_GEN_TAC `u:real^N->bool` THEN DISCH_TAC THEN MP_TAC(ISPECL [`g:real^N->real^M`; `IMAGE (f:real^M->real^N) s`; `s:real^M->bool`] PROPER_MAP) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `(q ==> s) /\ p ==> (p <=> q /\ r) ==> s`) THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x IN u} = IMAGE g u` (fun th -> ASM_MESON_TAC[th]); SUBGOAL_THEN `{x | x IN IMAGE f s /\ (g:real^N->real^M) x IN k} = IMAGE f k` (fun th -> ASM_SIMP_TAC[th])] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM SET_TAC[]);;
let COMPACT_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. compact s /\ linear f ==> compact(IMAGE f s)`,
let COMPACT_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (compact (IMAGE f s) <=> compact s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE COMPACT_LINEAR_IMAGE));;
add_linear_invariants [COMPACT_LINEAR_IMAGE_EQ];;
let CONNECTED_CONTINUOUS_IMAGE = 
prove (`!f:real^M->real^N s. f continuous_on s /\ connected s ==> connected(IMAGE f s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_ON_OPEN] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[CONNECTED_CLOPEN; NOT_FORALL_THM; NOT_IMP; DE_MORGAN_THM] THEN REWRITE_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `t:real^N->bool` th) THEN MP_TAC(SPEC `IMAGE (f:real^M->real^N) s DIFF t` th)) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x IN IMAGE f s DIFF t} = s DIFF {x | x IN s /\ f x IN t}` SUBST1_TAC THENL [UNDISCH_TAC `t SUBSET IMAGE (f:real^M->real^N) s` THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DIFF; IN_ELIM_THM; SUBSET] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN EXISTS_TAC `{x | x IN s /\ (f:real^M->real^N) x IN t}` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REWRITE_TAC[IN_IMAGE; SUBSET; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN MESON_TAC[]]);;
let CONNECTED_TRANSLATION = 
prove (`!a s. connected s ==> connected (IMAGE (\x:real^N. a + x) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST]);;
let CONNECTED_TRANSLATION_EQ = 
prove (`!a s. connected (IMAGE (\x:real^N. a + x) s) <=> connected s`,
REWRITE_TAC[connected] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [CONNECTED_TRANSLATION_EQ];;
let CONNECTED_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. connected s /\ linear f ==> connected(IMAGE f s)`,
let CONNECTED_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (connected (IMAGE f s) <=> connected s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE CONNECTED_LINEAR_IMAGE));;
add_linear_invariants [CONNECTED_LINEAR_IMAGE_EQ];;
let BOUNDED_UNIFORMLY_CONTINUOUS_IMAGE = 
prove (`!f:real^M->real^N s. f uniformly_continuous_on s /\ bounded s ==> bounded(IMAGE f s)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM (MP_TAC o MATCH_MP UNIFORMLY_CONTINUOUS_EXTENDS_TO_CLOSURE) THEN DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `IMAGE (g:real^M->real^N) (closure s)` THEN CONJ_TAC THENL [ASM_MESON_TAC[COMPACT_CLOSURE; UNIFORMLY_CONTINUOUS_IMP_CONTINUOUS; COMPACT_IMP_BOUNDED; COMPACT_CONTINUOUS_IMAGE]; MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Connected components, considered as a "connectedness" relation or a set. *) (* ------------------------------------------------------------------------- *)
let connected_component = new_definition
 `connected_component s x y <=>
        ?t. connected t /\ t SUBSET s /\ x IN t /\ y IN t`;;
let CONNECTED_COMPONENT_IN = 
prove (`!s x y. connected_component s x y ==> x IN s /\ y IN s`,
REWRITE_TAC[connected_component] THEN SET_TAC[]);;
let CONNECTED_COMPONENT_REFL = 
prove (`!s x:real^N. x IN s ==> connected_component s x x`,
REWRITE_TAC[connected_component] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `{x:real^N}` THEN REWRITE_TAC[CONNECTED_SING] THEN ASM SET_TAC[]);;
let CONNECTED_COMPONENT_REFL_EQ = 
prove (`!s x:real^N. connected_component s x x <=> x IN s`,
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[CONNECTED_COMPONENT_REFL] THEN REWRITE_TAC[connected_component] THEN SET_TAC[]);;
let CONNECTED_COMPONENT_SYM = 
prove (`!s x y:real^N. connected_component s x y ==> connected_component s y x`,
REWRITE_TAC[connected_component] THEN MESON_TAC[]);;
let CONNECTED_COMPONENT_TRANS = 
prove (`!s x y:real^N. connected_component s x y /\ connected_component s y z ==> connected_component s x z`,
REPEAT GEN_TAC THEN REWRITE_TAC[connected_component] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `t:real^N->bool`) (X_CHOOSE_TAC `u:real^N->bool`)) THEN EXISTS_TAC `t UNION u:real^N->bool` THEN ASM_REWRITE_TAC[IN_UNION; UNION_SUBSET] THEN MATCH_MP_TAC CONNECTED_UNION THEN ASM SET_TAC[]);;
let CONNECTED_COMPONENT_OF_SUBSET = 
prove (`!s t x. s SUBSET t /\ connected_component s x y ==> connected_component t x y`,
REWRITE_TAC[connected_component] THEN SET_TAC[]);;
let CONNECTED_COMPONENT_SET = 
prove (`!s x. connected_component s x = { y | ?t. connected t /\ t SUBSET s /\ x IN t /\ y IN t}`,
REWRITE_TAC[IN_ELIM_THM; EXTENSION] THEN REWRITE_TAC[IN; connected_component] THEN MESON_TAC[]);;
let CONNECTED_COMPONENT_UNIONS = 
prove (`!s x. connected_component s x = UNIONS {t | connected t /\ x IN t /\ t SUBSET s}`,
REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN SET_TAC[]);;
let CONNECTED_COMPONENT_SUBSET = 
prove (`!s x. (connected_component s x) SUBSET s`,
REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN SET_TAC[]);;
let CONNECTED_CONNECTED_COMPONENT_SET = 
prove (`!s. connected s <=> !x:real^N. x IN s ==> connected_component s x = s`,
GEN_TAC THEN REWRITE_TAC[CONNECTED_COMPONENT_UNIONS] THEN EQ_TAC THENL [SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[CONNECTED_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `a:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC CONNECTED_UNIONS THEN ASM SET_TAC[]);;
let CONNECTED_COMPONENT_EQ_SELF = 
prove (`!s x. connected s /\ x IN s ==> connected_component s x = s`,
let CONNECTED_IFF_CONNECTED_COMPONENT = 
prove (`!s. connected s <=> !x y. x IN s /\ y IN s ==> connected_component s x y`,
REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT_SET] THEN REWRITE_TAC[EXTENSION] THEN MESON_TAC[IN; CONNECTED_COMPONENT_IN]);;
let CONNECTED_COMPONENT_MAXIMAL = 
prove (`!s t x:real^N. x IN t /\ connected t /\ t SUBSET s ==> t SUBSET (connected_component s x)`,
REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN SET_TAC[]);;
let CONNECTED_COMPONENT_MONO = 
prove (`!s t x. s SUBSET t ==> (connected_component s x) SUBSET (connected_component t x)`,
REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN SET_TAC[]);;
let CONNECTED_CONNECTED_COMPONENT = 
prove (`!s x. connected(connected_component s x)`,
REWRITE_TAC[CONNECTED_COMPONENT_UNIONS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_UNIONS THEN SET_TAC[]);;
let CONNECTED_COMPONENT_EQ_EMPTY = 
prove (`!s x:real^N. connected_component s x = {} <=> ~(x IN s)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN REWRITE_TAC[IN; CONNECTED_COMPONENT_REFL_EQ]; REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN SET_TAC[]]);;
let CONNECTED_COMPONENT_EMPTY = 
prove (`!x. connected_component {} x = {}`,
let CONNECTED_COMPONENT_EQ = 
prove (`!s x y. y IN connected_component s x ==> (connected_component s y = connected_component s x)`,
let CLOSED_CONNECTED_COMPONENT = 
prove (`!s x:real^N. closed s ==> closed(connected_component s x)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:real^N) IN s` THENL [ALL_TAC; ASM_MESON_TAC[CONNECTED_COMPONENT_EQ_EMPTY; CLOSED_EMPTY]] THEN REWRITE_TAC[GSYM CLOSURE_EQ] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[CLOSURE_SUBSET] THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN SIMP_TAC[CONNECTED_CLOSURE; CONNECTED_CONNECTED_COMPONENT] THEN CONJ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[SUBSET] CLOSURE_SUBSET) THEN ASM_REWRITE_TAC[IN; CONNECTED_COMPONENT_REFL_EQ]; MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]]);;
let CONNECTED_COMPONENT_DISJOINT = 
prove (`!s a b. DISJOINT (connected_component s a) (connected_component s b) <=> ~(a IN connected_component s b)`,
REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN REWRITE_TAC[IN] THEN MESON_TAC[CONNECTED_COMPONENT_SYM; CONNECTED_COMPONENT_TRANS]);;
let CONNECTED_COMPONENT_NONOVERLAP = 
prove (`!s a b:real^N. (connected_component s a) INTER (connected_component s b) = {} <=> ~(a IN s) \/ ~(b IN s) \/ ~(connected_component s a = connected_component s b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM CONNECTED_COMPONENT_EQ_EMPTY]) THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `(b:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM CONNECTED_COMPONENT_EQ_EMPTY]) THEN ASM_REWRITE_TAC[INTER_EMPTY] THEN ASM_CASES_TAC `connected_component s (a:real^N) = connected_component s b` THEN ASM_REWRITE_TAC[INTER_IDEMPOT; CONNECTED_COMPONENT_EQ_EMPTY] THEN FIRST_X_ASSUM(MP_TAC o check(is_neg o concl)) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC CONNECTED_COMPONENT_EQ THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [GSYM DISJOINT]) THEN REWRITE_TAC[CONNECTED_COMPONENT_DISJOINT]);;
let CONNECTED_COMPONENT_OVERLAP = 
prove (`!s a b:real^N. ~((connected_component s a) INTER (connected_component s b) = {}) <=> a IN s /\ b IN s /\ connected_component s a = connected_component s b`,
REWRITE_TAC[CONNECTED_COMPONENT_NONOVERLAP; DE_MORGAN_THM]);;
let CONNECTED_COMPONENT_SYM_EQ = 
prove (`!s x y. connected_component s x y <=> connected_component s y x`,
let CONNECTED_COMPONENT_EQ_EQ = 
prove (`!s x y:real^N. connected_component s x = connected_component s y <=> ~(x IN s) /\ ~(y IN s) \/ x IN s /\ y IN s /\ connected_component s x y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `(y:real^N) IN s` THENL [ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[CONNECTED_COMPONENT_TRANS; CONNECTED_COMPONENT_REFL; CONNECTED_COMPONENT_SYM]; ASM_MESON_TAC[CONNECTED_COMPONENT_EQ_EMPTY]]; RULE_ASSUM_TAC(REWRITE_RULE[GSYM CONNECTED_COMPONENT_EQ_EMPTY]) THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_EQ_EMPTY] THEN ONCE_REWRITE_TAC[CONNECTED_COMPONENT_SYM_EQ] THEN ASM_REWRITE_TAC[EMPTY] THEN ASM_MESON_TAC[CONNECTED_COMPONENT_EQ_EMPTY]]);;
let CONNECTED_EQ_CONNECTED_COMPONENT_EQ = 
prove (`!s. connected s <=> !x y. x IN s /\ y IN s ==> connected_component s x = connected_component s y`,
let CONNECTED_COMPONENT_IDEMP = 
prove (`!s x:real^N. connected_component (connected_component s x) x = connected_component s x`,
REWRITE_TAC[FUN_EQ_THM; connected_component] THEN REPEAT GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CONNECTED_COMPONENT_MAXIMAL; SUBSET_TRANS; CONNECTED_COMPONENT_SUBSET]);;
let CONNECTED_COMPONENT_UNIQUE = 
prove (`!s c x:real^N. x IN c /\ c SUBSET s /\ connected c /\ (!c'. x IN c' /\ c' SUBSET s /\ connected c' ==> c' SUBSET c) ==> connected_component s x = c`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET; CONNECTED_CONNECTED_COMPONENT] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_REFL_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN ASM_REWRITE_TAC[]]);;
let JOINABLE_CONNECTED_COMPONENT_EQ = 
prove (`!s t x y:real^N. connected t /\ t SUBSET s /\ ~(connected_component s x INTER t = {}) /\ ~(connected_component s y INTER t = {}) ==> connected_component s x = connected_component s y`,
REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `w:real^N` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `z:real^N` STRIP_ASSUME_TAC)) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_COMPONENT_EQ THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN EXISTS_TAC `z:real^N` THEN CONJ_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN MATCH_MP_TAC CONNECTED_COMPONENT_TRANS THEN EXISTS_TAC `w:real^N` THEN CONJ_TAC THENL [REWRITE_TAC[connected_component] THEN EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC[]; ASM_MESON_TAC[IN; CONNECTED_COMPONENT_SYM]]);;
let CONNECTED_COMPONENT_TRANSLATION = 
prove (`!a s x. connected_component (IMAGE (\x. a + x) s) (a + x) = IMAGE (\x. a + x) (connected_component s x)`,
REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [CONNECTED_COMPONENT_TRANSLATION];;
let CONNECTED_COMPONENT_LINEAR_IMAGE = 
prove (`!f s x. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> connected_component (IMAGE f s) (f x) = IMAGE f (connected_component s x)`,
REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [CONNECTED_COMPONENT_LINEAR_IMAGE];;
let UNIONS_CONNECTED_COMPONENT = 
prove (`!s:real^N->bool. UNIONS {connected_component s x |x| x IN s} = s`,
GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC; CONNECTED_COMPONENT_SUBSET] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_REFL_EQ]);;
let CLOSED_IN_CONNECTED_COMPONENT = 
prove (`!s x:real^N. closed_in (subtopology euclidean s) (connected_component s x)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `connected_component s (x:real^N) = {}` THEN ASM_REWRITE_TAC[CLOSED_IN_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[CONNECTED_COMPONENT_EQ_EMPTY]) THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN EXISTS_TAC `closure(connected_component s x):real^N->bool` THEN REWRITE_TAC[CLOSED_CLOSURE] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET_INTER; CONNECTED_COMPONENT_SUBSET; CLOSURE_SUBSET] THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN REWRITE_TAC[INTER_SUBSET] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[IN_INTER] THEN MATCH_MP_TAC(REWRITE_RULE[SUBSET] CLOSURE_SUBSET) THEN ASM_REWRITE_TAC[IN; CONNECTED_COMPONENT_REFL_EQ]; MATCH_MP_TAC CONNECTED_INTERMEDIATE_CLOSURE THEN EXISTS_TAC `connected_component s (x:real^N)` THEN REWRITE_TAC[INTER_SUBSET; CONNECTED_CONNECTED_COMPONENT; SUBSET_INTER; CONNECTED_COMPONENT_SUBSET; CLOSURE_SUBSET]]);;
let OPEN_IN_CONNECTED_COMPONENT = 
prove (`!s x:real^N. FINITE {connected_component s x |x| x IN s} ==> open_in (subtopology euclidean s) (connected_component s x)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `connected_component s (x:real^N) = s DIFF (UNIONS {connected_component s y |y| y IN s} DIFF connected_component s x)` SUBST1_TAC THENL [REWRITE_TAC[UNIONS_CONNECTED_COMPONENT] THEN MATCH_MP_TAC(SET_RULE `t SUBSET s ==> t = s DIFF (s DIFF t)`) THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]; MATCH_MP_TAC OPEN_IN_DIFF THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_REFL; TOPSPACE_EUCLIDEAN; SUBSET_UNIV] THEN REWRITE_TAC[UNIONS_DIFF] THEN MATCH_MP_TAC CLOSED_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `connected_component s y DIFF connected_component s x = connected_component s y \/ connected_component s (y:real^N) DIFF connected_component s x = {}` (DISJ_CASES_THEN SUBST1_TAC) THENL [MATCH_MP_TAC(SET_RULE `(~(s INTER t = {}) ==> s = t) ==> s DIFF t = s \/ s DIFF t = {}`) THEN SIMP_TAC[CONNECTED_COMPONENT_OVERLAP]; REWRITE_TAC[CLOSED_IN_CONNECTED_COMPONENT]; REWRITE_TAC[CLOSED_IN_EMPTY]]]);;
let CONNECTED_COMPONENT_EQUIVALENCE_RELATION = 
prove (`!R s:real^N->bool. (!x y. R x y ==> R y x) /\ (!x y z. R x y /\ R y z ==> R x z) /\ (!a. a IN s ==> ?t. open_in (subtopology euclidean s) t /\ a IN t /\ !x. x IN t ==> R a x) ==> !a b. connected_component s a b ==> R a b`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`R:real^N->real^N->bool`; `connected_component s (a:real^N)`] CONNECTED_EQUIVALENCE_RELATION) THEN ASM_REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT] THEN ANTS_TAC THENL [X_GEN_TAC `c:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N`) THEN ANTS_TAC THENL [ASM_MESON_TAC[CONNECTED_COMPONENT_SUBSET; SUBSET]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `t INTER connected_component s (a:real^N)` THEN ASM_SIMP_TAC[IN_INTER; OPEN_IN_OPEN] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_IN_OPEN]) THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] CONNECTED_COMPONENT_SUBSET) THEN SET_TAC[]; DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN] THEN REWRITE_TAC[CONNECTED_COMPONENT_REFL_EQ] THEN ASM_MESON_TAC[CONNECTED_COMPONENT_IN]]);;
(* ------------------------------------------------------------------------- *) (* The set of connected components of a set. *) (* ------------------------------------------------------------------------- *)
let components = new_definition
  `components s = {connected_component s x | x | x:real^N IN s}`;;
let COMPONENTS_TRANSLATION = 
prove (`!a s. components(IMAGE (\x. a + x) s) = IMAGE (IMAGE (\x. a + x)) (components s)`,
REWRITE_TAC[components] THEN GEOM_TRANSLATE_TAC[] THEN SET_TAC[]);;
add_translation_invariants [COMPONENTS_TRANSLATION];;
let COMPONENTS_LINEAR_IMAGE = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> components(IMAGE f s) = IMAGE (IMAGE f) (components s)`,
REWRITE_TAC[components] THEN GEOM_TRANSFORM_TAC[] THEN SET_TAC[]);;
add_linear_invariants [COMPONENTS_LINEAR_IMAGE];;
let IN_COMPONENTS = 
prove (`!u:real^N->bool s. s IN components u <=> ?x. x IN u /\ s = connected_component u x`,
REPEAT GEN_TAC THEN REWRITE_TAC[components] THEN EQ_TAC THENL [SET_TAC[];STRIP_TAC THEN ASM_SIMP_TAC[] THEN UNDISCH_TAC `x:real^N IN u` THEN SET_TAC[]]);;
let UNIONS_COMPONENTS = 
prove (`!u:real^N->bool. u = UNIONS (components u)`,
REWRITE_TAC[EXTENSION] THEN REPEAT GEN_TAC THEN EQ_TAC THENL[DISCH_TAC THEN REWRITE_TAC[IN_UNIONS] THEN EXISTS_TAC `connected_component (u:real^N->bool) x` THEN CONJ_TAC THENL [REWRITE_TAC[components] THEN SET_TAC[ASSUME `x:real^N IN u`]; REWRITE_TAC[CONNECTED_COMPONENT_SET] THEN SUBGOAL_THEN `?s:real^N->bool. connected s /\ s SUBSET u /\ x IN s` MP_TAC THENL[EXISTS_TAC `{x:real^N}` THEN ASM_REWRITE_TAC[CONNECTED_SING] THEN POP_ASSUM MP_TAC THEN SET_TAC[]; SET_TAC[]]]; REWRITE_TAC[IN_UNIONS] THEN STRIP_TAC THEN MATCH_MP_TAC (SET_RULE `!x:real^N s u. x IN s /\ s SUBSET u ==> x IN u`) THEN EXISTS_TAC `t:real^N->bool` THEN ASM_REWRITE_TAC[] THEN STRIP_ASSUME_TAC (MESON[IN_COMPONENTS;ASSUME `t:real^N->bool IN components u`] `?y. t:real^N->bool = connected_component u y`) THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]]);;
let PAIRWISE_DISJOINT_COMPONENTS = 
prove (`!u:real^N->bool. pairwise DISJOINT (components u)`,
GEN_TAC THEN REWRITE_TAC[pairwise;DISJOINT] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `t:real^N->bool`] THEN STRIP_TAC THEN ASSERT_TAC `(?a. s:real^N->bool = connected_component u a) /\ ?b. t:real^N->bool = connected_component u b` THENL [ASM_MESON_TAC[IN_COMPONENTS]; ASM_MESON_TAC[CONNECTED_COMPONENT_NONOVERLAP]]);;
let IN_COMPONENTS_NONEMPTY = 
prove (`!s c. c IN components s ==> ~(c = {})`,
REPEAT GEN_TAC THEN REWRITE_TAC[components; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_EQ_EMPTY]);;
let IN_COMPONENTS_SUBSET = 
prove (`!s c. c IN components s ==> c SUBSET s`,
REPEAT GEN_TAC THEN REWRITE_TAC[components; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]);;
let IN_COMPONENTS_CONNECTED = 
prove (`!s c. c IN components s ==> connected c`,
REPEAT GEN_TAC THEN REWRITE_TAC[components; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT]);;
let IN_COMPONENTS_MAXIMAL = 
prove (`!s c:real^N->bool. c IN components s <=> ~(c = {}) /\ c SUBSET s /\ connected c /\ !c'. ~(c' = {}) /\ c SUBSET c' /\ c' SUBSET s /\ connected c' ==> c' = c`,
REPEAT GEN_TAC THEN REWRITE_TAC[components; IN_ELIM_THM] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `x:real^N` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_EQ_EMPTY; CONNECTED_COMPONENT_SUBSET; CONNECTED_CONNECTED_COMPONENT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN ASM_MESON_TAC[CONNECTED_COMPONENT_REFL; IN; SUBSET]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(GSYM CONNECTED_COMPONENT_UNIQUE) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `c':real^N->bool` THEN STRIP_TAC THEN REWRITE_TAC[SET_RULE `c' SUBSET c <=> c' UNION c = c`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC CONNECTED_UNION THEN ASM SET_TAC[]]);;
let JOINABLE_COMPONENTS_EQ = 
prove (`!s t c1 c2. connected t /\ t SUBSET s /\ c1 IN components s /\ c2 IN components s /\ ~(c1 INTER t = {}) /\ ~(c2 INTER t = {}) ==> c1 = c2`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; components; FORALL_IN_GSPEC] THEN MESON_TAC[JOINABLE_CONNECTED_COMPONENT_EQ]);;
let CLOSED_COMPONENTS = 
prove (`!s c. closed s /\ c IN components s ==> closed c`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; components; FORALL_IN_GSPEC] THEN SIMP_TAC[CLOSED_CONNECTED_COMPONENT]);;
let CONTINUOUS_ON_COMPONENTS_GEN = 
prove (`!f:real^M->real^N s. (!c. c IN components s ==> open_in (subtopology euclidean s) c /\ f continuous_on c) ==> f continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_OPEN_IN_PREIMAGE_EQ] THEN DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x IN t} = UNIONS {{x | x IN c /\ f x IN t} | c IN components s}` SUBST1_TAC THENL [CONV_TAC(LAND_CONV(SUBS_CONV [ISPEC `s:real^M->bool` UNIONS_COMPONENTS])) THEN REWRITE_TAC[UNIONS_GSPEC; IN_UNIONS] THEN SET_TAC[]; MATCH_MP_TAC OPEN_IN_UNIONS THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[OPEN_IN_TRANS]]);;
let CONTINUOUS_ON_COMPONENTS_CLOSED_GEN = 
prove (`!f:real^M->real^N s. FINITE(components s) /\ (!c. c IN components s ==> closed_in (subtopology euclidean s) c /\ f continuous_on c) ==> f continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_CLOSED_IN_PREIMAGE_EQ] THEN DISCH_TAC THEN X_GEN_TAC `t:real^N->bool` THEN DISCH_TAC THEN SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x IN t} = UNIONS {{x | x IN c /\ f x IN t} | c IN components s}` SUBST1_TAC THENL [CONV_TAC(LAND_CONV(SUBS_CONV [ISPEC `s:real^M->bool` UNIONS_COMPONENTS])) THEN REWRITE_TAC[UNIONS_GSPEC; IN_UNIONS] THEN SET_TAC[]; MATCH_MP_TAC CLOSED_IN_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[CLOSED_IN_TRANS]]);;
let CONTINUOUS_ON_COMPONENTS_CLOSED = 
prove (`!f:real^M->real^N s. closed s /\ FINITE(components s) /\ (!c. c IN components s ==> f continuous_on c) ==> f continuous_on s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_COMPONENTS_CLOSED_GEN THEN ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_SUBSET THEN ASM_MESON_TAC[CLOSED_COMPONENTS; IN_COMPONENTS_SUBSET]);;
let COMPONENTS_NONOVERLAP = 
prove (`!s c c'. c IN components s /\ c' IN components s ==> (c INTER c' = {} <=> ~(c = c'))`,
REWRITE_TAC[components; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CONNECTED_COMPONENT_NONOVERLAP]);;
let COMPONENTS_EQ = 
prove (`!s c c'. c IN components s /\ c' IN components s ==> (c = c' <=> ~(c INTER c' = {}))`,
MESON_TAC[COMPONENTS_NONOVERLAP]);;
let COMPONENTS_EQ_EMPTY = 
prove (`!s. components s = {} <=> s = {}`,
GEN_TAC THEN REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[components; connected_component; IN_ELIM_THM] THEN SET_TAC[]);;
let CONNECTED_EQ_CONNECTED_COMPONENTS_EQ = 
prove (`!s. connected s <=> !c c'. c IN components s /\ c' IN components s ==> c = c'`,
REWRITE_TAC[components; IN_ELIM_THM] THEN MESON_TAC[CONNECTED_EQ_CONNECTED_COMPONENT_EQ]);;
let COMPONENTS_EQ_SING,COMPONENTS_EQ_SING_EXISTS = (CONJ_PAIR o prove) (`(!s:real^N->bool. components s = {s} <=> connected s /\ ~(s = {})) /\ (!s:real^N->bool. (?a. components s = {a}) <=> connected s /\ ~(s = {}))`, REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `s:real^N->bool` THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> r) /\ (r ==> p) ==> (p <=> r) /\ (q <=> r)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[]; STRIP_TAC THEN ASM_REWRITE_TAC[CONNECTED_EQ_CONNECTED_COMPONENTS_EQ] THEN ASM_MESON_TAC[IN_SING; COMPONENTS_EQ_EMPTY; NOT_INSERT_EMPTY]; STRIP_TAC THEN ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[IN_SING] THEN REWRITE_TAC[components; IN_ELIM_THM] THEN ASM_MESON_TAC[CONNECTED_CONNECTED_COMPONENT_SET; MEMBER_NOT_EMPTY]]);;
let IN_COMPONENTS_SELF = 
prove (`!s:real^N->bool. s IN components s <=> connected s /\ ~(s = {})`,
GEN_TAC THEN EQ_TAC THENL [MESON_TAC[IN_COMPONENTS_NONEMPTY; IN_COMPONENTS_CONNECTED]; SIMP_TAC[GSYM COMPONENTS_EQ_SING; IN_SING]]);;
let COMPONENTS_MAXIMAL = 
prove (`!s t c:real^N->bool. c IN components s /\ connected t /\ t SUBSET s /\ ~(c INTER t = {}) ==> t SUBSET c`,
REWRITE_TAC[IMP_CONJ; components; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[IN_INTER; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP CONNECTED_COMPONENT_EQ) THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN ASM_REWRITE_TAC[]);;
let COMPONENTS_UNIQUE = 
prove (`!s:real^N->bool k. UNIONS k = s /\ (!c. c IN k ==> connected c /\ ~(c = {}) /\ !c'. connected c' /\ c SUBSET c' /\ c' SUBSET s ==> c' = c) ==> components s = k`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `c:real^N->bool` THEN REWRITE_TAC[IN_COMPONENTS] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `x:real^N` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN FIRST_ASSUM(MP_TAC o SPEC `x:real^N` o GEN_REWRITE_RULE I [EXTENSION]) THEN REWRITE_TAC[IN_UNIONS] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `connected_component s (x:real^N) = c` (fun th -> ASM_REWRITE_TAC[th]) THEN MATCH_MP_TAC CONNECTED_COMPONENT_UNIQUE THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN X_GEN_TAC `c':real^N->bool` THEN STRIP_TAC THEN REWRITE_TAC[SET_RULE `c' SUBSET c <=> c' UNION c = c`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC CONNECTED_UNION; ASM SET_TAC[]] THEN ASM SET_TAC[]; DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; CONV_TAC SYM_CONV] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT; CONNECTED_COMPONENT_SUBSET] THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);;
let COMPONENTS_UNIQUE_EQ = 
prove (`!s:real^N->bool k. components s = k <=> UNIONS k = s /\ (!c. c IN k ==> connected c /\ ~(c = {}) /\ !c'. connected c' /\ c SUBSET c' /\ c' SUBSET s ==> c' = c)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(SUBST1_TAC o SYM); REWRITE_TAC[COMPONENTS_UNIQUE]] THEN REWRITE_TAC[GSYM UNIONS_COMPONENTS] THEN X_GEN_TAC `c:real^N->bool` THEN DISCH_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[IN_COMPONENTS_CONNECTED]; ASM_MESON_TAC[IN_COMPONENTS_NONEMPTY]; RULE_ASSUM_TAC(REWRITE_RULE[IN_COMPONENTS_MAXIMAL]) THEN ASM_MESON_TAC[SUBSET_EMPTY]]);;
(* ------------------------------------------------------------------------- *) (* Continuity implies uniform continuity on a compact domain. *) (* ------------------------------------------------------------------------- *)
let COMPACT_UNIFORMLY_EQUICONTINUOUS = 
prove (`!(fs:(real^M->real^N)->bool) s. (!x e. x IN s /\ &0 < e ==> ?d. &0 < d /\ (!f x'. f IN fs /\ x' IN s /\ dist (x',x) < d ==> dist (f x',f x) < e)) /\ compact s ==> !e. &0 < e ==> ?d. &0 < d /\ !f x x'. f IN fs /\ x IN s /\ x' IN s /\ dist (x',x) < d ==> dist(f x',f x) < e`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:real^M->real->real` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP HEINE_BOREL_LEMMA) THEN DISCH_THEN(MP_TAC o SPEC `{ ball(x:real^M,d x (e / &2)) | x IN s}`) THEN SIMP_TAC[FORALL_IN_GSPEC; OPEN_BALL; UNIONS_GSPEC; SUBSET; IN_ELIM_THM] THEN ANTS_TAC THENL [ASM_MESON_TAC[CENTRE_IN_BALL; REAL_HALF]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`f:real^M->real^N`; `u:real^M`; `v:real^M`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `v:real^M` th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CHOOSE_THEN MP_TAC)) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `u:real^M` th) THEN MP_TAC(SPEC `v:real^M` th)) THEN ASM_REWRITE_TAC[DIST_REFL] THEN FIRST_X_ASSUM(X_CHOOSE_THEN `w:real^M` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN ASM_REWRITE_TAC[CENTRE_IN_BALL] THEN ASM_REWRITE_TAC[IN_BALL] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:real^M`; `e / &2`]) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(MP_TAC o SPEC `f:real^M->real^N` o CONJUNCT2) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `u:real^M` th) THEN MP_TAC(SPEC `v:real^M` th)) THEN ASM_REWRITE_TAC[] THEN CONV_TAC NORM_ARITH);;
let COMPACT_UNIFORMLY_CONTINUOUS = 
prove (`!f:real^M->real^N s. f continuous_on s /\ compact s ==> f uniformly_continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous_on; uniformly_continuous_on] THEN STRIP_TAC THEN MP_TAC(ISPECL [`{f:real^M->real^N}`; `s:real^M->bool`] COMPACT_UNIFORMLY_EQUICONTINUOUS) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; IN_SING; FORALL_UNWIND_THM2] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* A uniformly convergent limit of continuous functions is continuous. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_UNIFORM_LIMIT = 
prove (`!net f:A->real^M->real^N g s. ~(trivial_limit net) /\ eventually (\n. (f n) continuous_on s) net /\ (!e. &0 < e ==> eventually (\n. !x. x IN s ==> norm(f n x - g x) < e) net) ==> g continuous_on s`,
REWRITE_TAC[continuous_on] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &3`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN FIRST_X_ASSUM(fun th -> MP_TAC th THEN REWRITE_TAC[IMP_IMP] THEN GEN_REWRITE_TAC LAND_CONV [GSYM EVENTUALLY_AND]) THEN DISCH_THEN(MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `x:real^M`) ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:real^M` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `x:real^M` th) THEN MP_TAC(SPEC `y:real^M` th)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `w <= x + y + z ==> x < e / &3 ==> y < e / &3 ==> z < e / &3 ==> w < e`) THEN REWRITE_TAC[dist] THEN SUBST1_TAC(VECTOR_ARITH `(g:real^M->real^N) y - g x = --(f (a:A) y - g y) + (f a x - g x) + (f a y - f a x)`) THEN MATCH_MP_TAC NORM_TRIANGLE_LE THEN REWRITE_TAC[NORM_NEG; REAL_LE_LADD] THEN MATCH_MP_TAC NORM_TRIANGLE_LE THEN REWRITE_TAC[NORM_NEG; REAL_LE_REFL]);;
(* ------------------------------------------------------------------------- *) (* Topological stuff lifted from and dropped to R *) (* ------------------------------------------------------------------------- *)
let OPEN_LIFT = 
prove (`!s. open(IMAGE lift s) <=> !x. x IN s ==> ?e. &0 < e /\ !x'. abs(x' - x) < e ==> x' IN s`,
let LIMPT_APPROACHABLE_LIFT = 
prove (`!x s. (lift x) limit_point_of (IMAGE lift s) <=> !e. &0 < e ==> ?x'. x' IN s /\ ~(x' = x) /\ abs(x' - x) < e`,
let CLOSED_LIFT = 
prove (`!s. closed (IMAGE lift s) <=> !x. (!e. &0 < e ==> ?x'. x' IN s /\ ~(x' = x) /\ abs(x' - x) < e) ==> x IN s`,
GEN_TAC THEN REWRITE_TAC[CLOSED_LIMPT; LIMPT_APPROACHABLE] THEN ONCE_REWRITE_TAC[FORALL_LIFT] THEN REWRITE_TAC[LIMPT_APPROACHABLE_LIFT; LIFT_EQ; DIST_LIFT; EXISTS_LIFT; LIFT_IN_IMAGE_LIFT]);;
let CONTINUOUS_AT_LIFT_RANGE = 
prove (`!f x. (lift o f) continuous (at x) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. norm(x' - x) < d ==> abs(f x' - f x) < e)`,
REWRITE_TAC[continuous_at; o_THM; DIST_LIFT] THEN REWRITE_TAC[dist]);;
let CONTINUOUS_ON_LIFT_RANGE = 
prove (`!f s. (lift o f) continuous_on s <=> !x. x IN s ==> !e. &0 < e ==> ?d. &0 < d /\ (!x'. x' IN s /\ norm(x' - x) < d ==> abs(f x' - f x) < e)`,
REWRITE_TAC[continuous_on; o_THM; DIST_LIFT] THEN REWRITE_TAC[dist]);;
let CONTINUOUS_LIFT_NORM_COMPOSE = 
prove (`!net f:A->real^N. f continuous net ==> (\x. lift(norm(f x))) continuous net`,
REPEAT GEN_TAC THEN REWRITE_TAC[continuous; tendsto] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[DIST_REAL; GSYM drop; LIFT_DROP] THEN NORM_ARITH_TAC);;
let CONTINUOUS_ON_LIFT_NORM_COMPOSE = 
prove (`!f:real^M->real^N s. f continuous_on s ==> (\x. lift(norm(f x))) continuous_on s`,
let CONTINUOUS_AT_LIFT_NORM = 
prove (`!x. (lift o norm) continuous (at x)`,
let CONTINUOUS_ON_LIFT_NORM = 
prove (`!s. (lift o norm) continuous_on s`,
let CONTINUOUS_AT_LIFT_COMPONENT = 
prove (`!i a. 1 <= i /\ i <= dimindex(:N) ==> (\x:real^N. lift(x$i)) continuous (at a)`,
let CONTINUOUS_ON_LIFT_COMPONENT = 
prove (`!i s. 1 <= i /\ i <= dimindex(:N) ==> (\x:real^N. lift(x$i)) continuous_on s`,
let CONTINUOUS_AT_LIFT_INFNORM = 
prove (`!x:real^N. (lift o infnorm) continuous (at x)`,
let CONTINUOUS_AT_LIFT_DIST = 
prove (`!a:real^N x. (lift o (\x. dist(a,x))) continuous (at x)`,
REWRITE_TAC[CONTINUOUS_AT_LIFT_RANGE] THEN MESON_TAC[NORM_ARITH `abs(dist(a:real^N,x) - dist(a,y)) <= norm(x - y)`; REAL_LET_TRANS]);;
let CONTINUOUS_ON_LIFT_DIST = 
prove (`!a s. (lift o (\x. dist(a,x))) continuous_on s`,
REWRITE_TAC[CONTINUOUS_ON_LIFT_RANGE] THEN MESON_TAC[NORM_ARITH `abs(dist(a:real^N,x) - dist(a,y)) <= norm(x - y)`; REAL_LET_TRANS]);;
(* ------------------------------------------------------------------------- *) (* Hence some handy theorems on distance, diameter etc. of/from a set. *) (* ------------------------------------------------------------------------- *)
let COMPACT_ATTAINS_SUP = 
prove (`!s. compact (IMAGE lift s) /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> y <= x`,
REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC `s:real->bool` BOUNDED_HAS_SUP) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN EXISTS_TAC `sup s` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CLOSED_LIFT; REAL_ARITH `s <= s - e <=> ~(&0 < e)`; REAL_ARITH `x <= s /\ ~(x <= s - e) ==> abs(x - s) < e`]);;
let COMPACT_ATTAINS_INF = 
prove (`!s. compact (IMAGE lift s) /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> x <= y`,
REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC `s:real->bool` BOUNDED_HAS_INF) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN EXISTS_TAC `inf s` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CLOSED_LIFT; REAL_ARITH `s + e <= s <=> ~(&0 < e)`; REAL_ARITH `s <= x /\ ~(s + e <= x) ==> abs(x - s) < e`]);;
let CONTINUOUS_ATTAINS_SUP = 
prove (`!f:real^N->real s. compact s /\ ~(s = {}) /\ (lift o f) continuous_on s ==> ?x. x IN s /\ !y. y IN s ==> f(y) <= f(x)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE (f:real^N->real) s` COMPACT_ATTAINS_SUP) THEN ASM_SIMP_TAC[GSYM IMAGE_o; COMPACT_CONTINUOUS_IMAGE; IMAGE_EQ_EMPTY] THEN MESON_TAC[IN_IMAGE]);;
let CONTINUOUS_ATTAINS_INF = 
prove (`!f:real^N->real s. compact s /\ ~(s = {}) /\ (lift o f) continuous_on s ==> ?x. x IN s /\ !y. y IN s ==> f(x) <= f(y)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE (f:real^N->real) s` COMPACT_ATTAINS_INF) THEN ASM_SIMP_TAC[GSYM IMAGE_o; COMPACT_CONTINUOUS_IMAGE; IMAGE_EQ_EMPTY] THEN MESON_TAC[IN_IMAGE]);;
let DISTANCE_ATTAINS_SUP = 
prove (`!s a. compact s /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> dist(a,y) <= dist(a,x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ATTAINS_SUP THEN ASM_REWRITE_TAC[CONTINUOUS_ON_LIFT_RANGE] THEN REWRITE_TAC[dist] THEN ASM_MESON_TAC[REAL_LET_TRANS; REAL_ABS_SUB_NORM; NORM_NEG; VECTOR_ARITH `(a - x) - (a - y) = --(x - y):real^N`]);;
(* ------------------------------------------------------------------------- *) (* For *minimal* distance, we only need closure, not compactness. *) (* ------------------------------------------------------------------------- *)
let DISTANCE_ATTAINS_INF = 
prove (`!s a:real^N. closed s /\ ~(s = {}) ==> ?x. x IN s /\ !y. y IN s ==> dist(a,x) <= dist(a,y)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `b:real^N`) THEN MP_TAC(ISPECL [`\x:real^N. dist(a,x)`; `cball(a:real^N,dist(b,a)) INTER s`] CONTINUOUS_ATTAINS_INF) THEN ANTS_TAC THENL [ASM_SIMP_TAC[COMPACT_EQ_BOUNDED_CLOSED; CLOSED_INTER; BOUNDED_INTER; BOUNDED_CBALL; CLOSED_CBALL; GSYM MEMBER_NOT_EMPTY] THEN REWRITE_TAC[dist; CONTINUOUS_ON_LIFT_RANGE; IN_INTER; IN_CBALL] THEN ASM_MESON_TAC[REAL_LET_TRANS; REAL_ABS_SUB_NORM; NORM_NEG; REAL_LE_REFL; NORM_SUB; VECTOR_ARITH `(a - x) - (a - y) = --(x - y):real^N`]; MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[IN_INTER; IN_CBALL] THEN ASM_MESON_TAC[DIST_SYM; REAL_LE_TOTAL; REAL_LE_TRANS]]);;
(* ------------------------------------------------------------------------- *) (* We can now extend limit compositions to consider the scalar multiplier. *) (* ------------------------------------------------------------------------- *)
let LIM_MUL = 
prove (`!net:(A)net f l:real^N c d. ((lift o c) --> lift d) net /\ (f --> l) net ==> ((\x. c(x) % f(x)) --> (d % l)) net`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`net:(A)net`; `\x (y:real^N). drop x % y`; `lift o (c:A->real)`; `f:A->real^N`; `lift d`; `l:real^N`] LIM_BILINEAR) THEN ASM_REWRITE_TAC[LIFT_DROP; o_THM] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[bilinear; linear; DROP_ADD; DROP_CMUL] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let LIM_VMUL = 
prove (`!net:(A)net c d v:real^N. ((lift o c) --> lift d) net ==> ((\x. c(x) % v) --> d % v) net`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_MUL THEN ASM_REWRITE_TAC[LIM_CONST]);;
let CONTINUOUS_VMUL = 
prove (`!net c v. (lift o c) continuous net ==> (\x. c(x) % v) continuous net`,
REWRITE_TAC[continuous; LIM_VMUL; o_THM]);;
let CONTINUOUS_MUL = 
prove (`!net f c. (lift o c) continuous net /\ f continuous net ==> (\x. c(x) % f(x)) continuous net`,
REWRITE_TAC[continuous; LIM_MUL; o_THM]);;
let CONTINUOUS_ON_VMUL = 
prove (`!s c v. (lift o c) continuous_on s ==> (\x. c(x) % v) continuous_on s`,
REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN SIMP_TAC[CONTINUOUS_VMUL]);;
let CONTINUOUS_ON_MUL = 
prove (`!s c f. (lift o c) continuous_on s /\ f continuous_on s ==> (\x. c(x) % f(x)) continuous_on s`,
REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN SIMP_TAC[CONTINUOUS_MUL]);;
let CONTINUOUS_LIFT_POW = 
prove (`!net f:A->real n. (\x. lift(f x)) continuous net ==> (\x. lift(f x pow n)) continuous net`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LIFT_CMUL; real_pow; CONTINUOUS_CONST] THEN MATCH_MP_TAC CONTINUOUS_MUL THEN ASM_REWRITE_TAC[o_DEF]);;
let CONTINUOUS_ON_LIFT_POW = 
prove (`!f:real^N->real s n. (\x. lift(f x)) continuous_on s ==> (\x. lift(f x pow n)) continuous_on s`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LIFT_CMUL; real_pow; CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_MUL THEN ASM_REWRITE_TAC[o_DEF]);;
let CONTINUOUS_LIFT_PRODUCT = 
prove (`!net:(A)net f (t:B->bool). FINITE t /\ (!i. i IN t ==> (\x. lift(f x i)) continuous net) ==> (\x. lift(product t (f x))) continuous net`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[PRODUCT_CLAUSES] THEN REWRITE_TAC[CONTINUOUS_CONST; LIFT_CMUL; FORALL_IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN ASM_SIMP_TAC[o_DEF]);;
let CONTINUOUS_ON_LIFT_PRODUCT = 
prove (`!f:real^N->A->real s t. FINITE t /\ (!i. i IN t ==> (\x. lift(f x i)) continuous_on s) ==> (\x. lift(product t (f x))) continuous_on s`,
(* ------------------------------------------------------------------------- *) (* And so we have continuity of inverse. *) (* ------------------------------------------------------------------------- *)
let LIM_INV = 
prove (`!net:(A)net f l. ((lift o f) --> lift l) net /\ ~(l = &0) ==> ((lift o inv o f) --> lift(inv l)) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN ASM_CASES_TAC `trivial_limit(net:(A)net)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM; DIST_LIFT] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `min (abs(l) / &2) ((l pow 2 * e) / &2)`) THEN REWRITE_TAC[REAL_LT_MIN] THEN ANTS_TAC THENL [ASM_SIMP_TAC[GSYM REAL_ABS_NZ; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC REAL_LT_DIV THEN REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN ASM_SIMP_TAC[REAL_LT_MUL; GSYM REAL_ABS_NZ; REAL_POW_LT]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `b:A` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN SIMP_TAC[REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REAL_ARITH `abs(x - l) * &2 < abs l ==> ~(x = &0)`)) THEN ASM_SIMP_TAC[REAL_SUB_INV; REAL_ABS_DIV; REAL_LT_LDIV_EQ; GSYM REAL_ABS_NZ; REAL_ENTIRE] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `abs(x - y) * &2 < b * c ==> c * b <= d * &2 ==> abs(y - x) < d`)) THEN ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_LE_LMUL_EQ] THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[REAL_ABS_MUL; REAL_POW_2; REAL_MUL_ASSOC; GSYM REAL_ABS_NZ; REAL_LE_RMUL_EQ] THEN ASM_SIMP_TAC[REAL_ARITH `abs(x - y) * &2 < abs y ==> abs y <= &2 * abs x`]);;
let CONTINUOUS_INV = 
prove (`!net f. (lift o f) continuous net /\ ~(f(netlimit net) = &0) ==> (lift o inv o f) continuous net`,
REWRITE_TAC[continuous; LIM_INV; o_THM]);;
let CONTINUOUS_AT_WITHIN_INV = 
prove (`!f s a:real^N. (lift o f) continuous (at a within s) /\ ~(f a = &0) ==> (lift o inv o f) continuous (at a within s)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `trivial_limit (at (a:real^N) within s)` THENL [ASM_REWRITE_TAC[continuous; LIM]; ASM_SIMP_TAC[NETLIMIT_WITHIN; CONTINUOUS_INV]]);;
let CONTINUOUS_AT_INV = 
prove (`!f a. (lift o f) continuous at a /\ ~(f a = &0) ==> (lift o inv o f) continuous at a`,
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[CONTINUOUS_AT_WITHIN_INV]);;
let CONTINUOUS_ON_INV = 
prove (`!f s. (lift o f) continuous_on s /\ (!x. x IN s ==> ~(f x = &0)) ==> (lift o inv o f) continuous_on s`,
(* ------------------------------------------------------------------------- *) (* Preservation properties for pasted sets (Cartesian products). *) (* ------------------------------------------------------------------------- *)
let BOUNDED_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. bounded (s PCROSS t) <=> s = {} \/ t = {} \/ bounded s /\ bounded t`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| F} = {}`; BOUNDED_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[bounded; FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN ASM_MESON_TAC[NORM_LE_PASTECART; REAL_LE_TRANS; NORM_PASTECART_LE; REAL_LE_ADD2]);;
let BOUNDED_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. bounded s /\ bounded t ==> bounded (s PCROSS t)`,
SIMP_TAC[BOUNDED_PCROSS_EQ]);;
let CLOSED_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. closed (s PCROSS t) <=> s = {} \/ t = {} \/ closed s /\ closed t`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN MAP_EVERY ASM_CASES_TAC [`s:real^M->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; CLOSED_EMPTY; SET_RULE `{f x y |x,y| F} = {}`] THEN REWRITE_TAC[CLOSED_SEQUENTIAL_LIMITS; LIM_SEQUENTIALLY] THEN REWRITE_TAC[FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN REWRITE_TAC[IN_ELIM_THM; SKOLEM_THM; FORALL_AND_THM] THEN ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN SIMP_TAC[TAUT `((p /\ q) /\ r) /\ s ==> t <=> r ==> p /\ q /\ s ==> t`] THEN ONCE_REWRITE_TAC[MESON[] `(!a b c d e. P a b c d e) <=> (!d e b c a. P a b c d e)`] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN EQ_TAC THENL [GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`; FORALL_AND_THM] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ALL_TAC; GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM]] THEN MATCH_MP_TAC MONO_FORALL THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC(MESON[] `(?x. P x (\n. x)) ==> (?s x. P x s)`) THEN ASM_MESON_TAC[DIST_PASTECART_CANCEL]; ONCE_REWRITE_TAC[MESON[] `(!x l. P x l) /\ (!y m. Q y m) <=> (!x y l m. P x l /\ Q y m)`] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN REWRITE_TAC[dist; PASTECART_SUB] THEN ASM_MESON_TAC[NORM_LE_PASTECART; REAL_LET_TRANS]]);;
let CLOSED_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. closed s /\ closed t ==> closed (s PCROSS t)`,
SIMP_TAC[CLOSED_PCROSS_EQ]);;
let COMPACT_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. compact (s PCROSS t) <=> s = {} \/ t = {} \/ compact s /\ compact t`,
let COMPACT_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. compact s /\ compact t ==> compact (s PCROSS t)`,
SIMP_TAC[COMPACT_PCROSS_EQ]);;
let OPEN_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. open (s PCROSS t) <=> s = {} \/ t = {} \/ open s /\ open t`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| F} = {}`; OPEN_EMPTY] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN EQ_TAC THENL [REWRITE_TAC[open_def; FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN ASM_MESON_TAC[DIST_PASTECART_CANCEL]; REWRITE_TAC[OPEN_CLOSED] THEN STRIP_TAC THEN SUBGOAL_THEN `UNIV DIFF {pastecart x y | x IN s /\ y IN t} = {pastecart x y | x IN ((:real^M) DIFF s) /\ y IN (:real^N)} UNION {pastecart x y | x IN (:real^M) /\ y IN ((:real^N) DIFF t)}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_DIFF; IN_UNION; FORALL_PASTECART; IN_UNIV] THEN REWRITE_TAC[IN_ELIM_THM; PASTECART_EQ; FSTCART_PASTECART; SNDCART_PASTECART] THEN MESON_TAC[]; SIMP_TAC[GSYM PCROSS] THEN MATCH_MP_TAC CLOSED_UNION THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_PCROSS THEN ASM_REWRITE_TAC[CLOSED_UNIV]]]);;
let OPEN_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. open s /\ open t ==> open (s PCROSS t)`,
SIMP_TAC[OPEN_PCROSS_EQ]);;
let OPEN_IN_PCROSS = 
prove (`!s s':real^M->bool t t':real^N->bool. open_in (subtopology euclidean s) s' /\ open_in (subtopology euclidean t) t' ==> open_in (subtopology euclidean (s PCROSS t)) (s' PCROSS t')`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_OPEN] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s'':real^M->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t'':real^N->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `(s'':real^M->bool) PCROSS (t'':real^N->bool)` THEN ASM_SIMP_TAC[OPEN_PCROSS; EXTENSION; FORALL_PASTECART] THEN REWRITE_TAC[IN_INTER; PASTECART_IN_PCROSS] THEN ASM SET_TAC[]);;
let PASTECART_IN_INTERIOR_SUBTOPOLOGY = 
prove (`!s t u x:real^M y:real^N. pastecart x y IN u /\ open_in (subtopology euclidean (s PCROSS t)) u ==> ?v w. open_in (subtopology euclidean s) v /\ x IN v /\ open_in (subtopology euclidean t) w /\ y IN w /\ (v PCROSS w) SUBSET u`,
REWRITE_TAC[open_in; FORALL_PASTECART; PASTECART_IN_PCROSS] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^M`; `y:real^N`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `ball(x:real^M,e / &2) INTER s` THEN EXISTS_TAC `ball(y:real^N,e / &2) INTER t` THEN SUBGOAL_THEN `(x:real^M) IN s /\ (y:real^N) IN t` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; PASTECART_IN_PCROSS]; ALL_TAC] THEN ASM_SIMP_TAC[INTER_SUBSET; IN_INTER; CENTRE_IN_BALL; REAL_HALF] THEN REWRITE_TAC[IN_BALL] THEN REPEAT(CONJ_TAC THENL [MESON_TAC[REAL_SUB_LT; NORM_ARITH `dist(x,y) < e /\ dist(z,y) < e - dist(x,y) ==> dist(x:real^N,z) < e`]; ALL_TAC]) THEN REWRITE_TAC[SUBSET; FORALL_PASTECART; PASTECART_IN_PCROSS] THEN REWRITE_TAC[IN_BALL; IN_INTER] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[dist; PASTECART_SUB] THEN W(MP_TAC o PART_MATCH lhand NORM_PASTECART_LE o lhand o snd) THEN REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[DIST_SYM] dist)] THEN ASM_REAL_ARITH_TAC);;
let OPEN_IN_PCROSS_EQ = 
prove (`!s s':real^M->bool t t':real^N->bool. open_in (subtopology euclidean (s PCROSS t)) (s' PCROSS t') <=> s' = {} \/ t' = {} \/ open_in (subtopology euclidean s) s' /\ open_in (subtopology euclidean t) t'`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s':real^M->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; OPEN_IN_EMPTY] THEN ASM_CASES_TAC `t':real^N->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; OPEN_IN_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[OPEN_IN_PCROSS] THEN REPEAT STRIP_TAC THENL [ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN UNDISCH_TAC `~(t':real^N->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `y:real^N`); ONCE_REWRITE_TAC[OPEN_IN_SUBOPEN] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN UNDISCH_TAC `~(s':real^M->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `x:real^M`)] THEN MP_TAC(ISPECL [`s:real^M->bool`; `t:real^N->bool`; `(s':real^M->bool) PCROSS (t':real^N->bool)`; `x:real^M`; `y:real^N`] PASTECART_IN_INTERIOR_SUBTOPOLOGY) THEN ASM_REWRITE_TAC[SUBSET; FORALL_PASTECART; PASTECART_IN_PCROSS] THEN MESON_TAC[]);;
let INTERIOR_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. interior (s PCROSS t) = (interior s) PCROSS (interior t)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_PASTECART; PASTECART_IN_PCROSS] THEN MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^N`] THEN DISCH_TAC THEN MP_TAC(ISPECL [`(:real^M)`; `(:real^N)`; `interior((s:real^M->bool) PCROSS (t:real^N->bool))`; `x:real^M`; `y:real^N`] PASTECART_IN_INTERIOR_SUBTOPOLOGY) THEN REWRITE_TAC[UNIV_PCROSS_UNIV; SUBTOPOLOGY_UNIV; GSYM OPEN_IN] THEN ASM_REWRITE_TAC[OPEN_INTERIOR] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[INTERIOR_SUBSET; SUBSET_TRANS] `s SUBSET interior t ==> s SUBSET t`)) THEN REWRITE_TAC[SUBSET_PCROSS] THEN ASM_MESON_TAC[NOT_IN_EMPTY; INTERIOR_MAXIMAL; SUBSET]; MATCH_MP_TAC INTERIOR_MAXIMAL THEN SIMP_TAC[OPEN_PCROSS; OPEN_INTERIOR; PCROSS_MONO; INTERIOR_SUBSET]]);;
let LIM_PASTECART = 
prove (`!net f:A->real^M g:A->real^N. (f --> a) net /\ (g --> b) net ==> ((\x. pastecart (f x) (g x)) --> pastecart a b) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN ASM_CASES_TAC `trivial_limit(net:(A)net)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(MP_TAC o MATCH_MP NET_DILEMMA) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN REWRITE_TAC[dist; PASTECART_SUB] THEN MATCH_MP_TAC(REAL_ARITH `z <= x + y ==> x < e / &2 /\ y < e / &2 ==> z < e`) THEN REWRITE_TAC[NORM_PASTECART_LE]);;
let LIM_PASTECART_EQ = 
prove (`!net f:A->real^M g:A->real^N. ((\x. pastecart (f x) (g x)) --> pastecart a b) net <=> (f --> a) net /\ (g --> b) net`,
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[LIM_PASTECART] THEN REPEAT STRIP_TAC THENL [FIRST_ASSUM(MP_TAC o ISPEC `fstcart:real^(M,N)finite_sum->real^M` o MATCH_MP (REWRITE_RULE[IMP_CONJ] LIM_LINEAR)) THEN REWRITE_TAC[LINEAR_FSTCART; FSTCART_PASTECART; ETA_AX]; FIRST_ASSUM(MP_TAC o ISPEC `sndcart:real^(M,N)finite_sum->real^N` o MATCH_MP (REWRITE_RULE[IMP_CONJ] LIM_LINEAR)) THEN REWRITE_TAC[LINEAR_SNDCART; SNDCART_PASTECART; ETA_AX]]);;
let CONTINUOUS_PASTECART = 
prove (`!net f:A->real^M g:A->real^N. f continuous net /\ g continuous net ==> (\x. pastecart (f x) (g x)) continuous net`,
REWRITE_TAC[continuous; LIM_PASTECART]);;
let CONTINUOUS_ON_PASTECART = 
prove (`!f:real^M->real^N g:real^M->real^P s. f continuous_on s /\ g continuous_on s ==> (\x. pastecart (f x) (g x)) continuous_on s`,
let CONNECTED_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. connected s /\ connected t ==> connected (s PCROSS t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS; CONNECTED_IFF_CONNECTED_COMPONENT] THEN DISCH_TAC THEN REWRITE_TAC[FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN MAP_EVERY X_GEN_TAC [`x1:real^M`; `y1:real^N`; `x2:real^M`; `y2:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 (MP_TAC o SPECL [`x1:real^M`; `x2:real^M`]) (MP_TAC o SPECL [`y1:real^N`; `y2:real^N`])) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; connected_component] THEN X_GEN_TAC `c2:real^N->bool` THEN STRIP_TAC THEN X_GEN_TAC `c1:real^M->bool` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (\x:real^M. pastecart x y1) c1 UNION IMAGE (\y:real^N. pastecart x2 y) c2` THEN REWRITE_TAC[IN_UNION] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CONNECTED_UNION THEN ASM_SIMP_TAC[CONNECTED_CONTINUOUS_IMAGE; CONTINUOUS_ON_PASTECART; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER; EXISTS_IN_IMAGE] THEN EXISTS_TAC `x2:real^M` THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; IN_UNION; FORALL_AND_THM; FORALL_IN_IMAGE; TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN ASM SET_TAC[]; ASM SET_TAC[]; ASM SET_TAC[]]);;
let CONNECTED_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. connected (s PCROSS t) <=> s = {} \/ t = {} \/ connected s /\ connected t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN REWRITE_TAC[PCROSS_EMPTY; CONNECTED_EMPTY] THEN EQ_TAC THEN SIMP_TAC[CONNECTED_PCROSS] THEN REWRITE_TAC[PCROSS] THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `connected (IMAGE fstcart {pastecart (x:real^M) (y:real^N) | x IN s /\ y IN t})` MP_TAC THENL [MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE; ALL_TAC]; SUBGOAL_THEN `connected (IMAGE sndcart {pastecart (x:real^M) (y:real^N) | x IN s /\ y IN t})` MP_TAC THENL [MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE; ALL_TAC]] THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_ON; LINEAR_FSTCART; LINEAR_SNDCART] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; IN_ELIM_PASTECART_THM; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
let CLOSURE_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. closure (s PCROSS t) = (closure s) PCROSS (closure t)`,
REWRITE_TAC[EXTENSION; PCROSS; FORALL_PASTECART] THEN REPEAT GEN_TAC THEN REWRITE_TAC[CLOSURE_APPROACHABLE; EXISTS_PASTECART; FORALL_PASTECART] THEN REWRITE_TAC[IN_ELIM_PASTECART_THM; PASTECART_INJ] THEN REWRITE_TAC[FSTCART_PASTECART; SNDCART_PASTECART] THEN REWRITE_TAC[dist; PASTECART_SUB] THEN EQ_TAC THENL [MESON_TAC[NORM_LE_PASTECART; REAL_LET_TRANS]; DISCH_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2`)) THEN ASM_MESON_TAC[REAL_HALF; NORM_PASTECART_LE; REAL_ARITH `z <= x + y /\ x < e / &2 /\ y < e / &2 ==> z < e`]);;
let LIMPT_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool x y. x limit_point_of s /\ y limit_point_of t ==> (pastecart x y) limit_point_of (s PCROSS t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS; LIMPT_APPROACHABLE; EXISTS_PASTECART] THEN REWRITE_TAC[IN_ELIM_PASTECART_THM; PASTECART_INJ; dist; PASTECART_SUB] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2`)) THEN ASM_MESON_TAC[REAL_HALF; NORM_PASTECART_LE; REAL_ARITH `z <= x + y /\ x < e / &2 /\ y < e / &2 ==> z < e`]);;
(* ------------------------------------------------------------------------- *) (* Hence some useful properties follow quite easily. *) (* ------------------------------------------------------------------------- *)
let CONNECTED_SCALING = 
prove (`!s:real^N->bool c. connected s ==> connected (IMAGE (\x. c % x) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN REWRITE_TAC[linear] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let CONNECTED_NEGATIONS = 
prove (`!s:real^N->bool. connected s ==> connected (IMAGE (--) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN REWRITE_TAC[linear] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let CONNECTED_SUMS = 
prove (`!s t:real^N->bool. connected s /\ connected t ==> connected {x + y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONNECTED_PCROSS) THEN DISCH_THEN(MP_TAC o ISPEC `\z. (fstcart z + sndcart z:real^N)` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CONNECTED_CONTINUOUS_IMAGE)) THEN SIMP_TAC[CONTINUOUS_ON_ADD; LINEAR_CONTINUOUS_ON; LINEAR_FSTCART; LINEAR_SNDCART; PCROSS] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM; EXISTS_PASTECART] THEN REWRITE_TAC[PASTECART_INJ; FSTCART_PASTECART; SNDCART_PASTECART] THEN MESON_TAC[]);;
let COMPACT_SCALING = 
prove (`!s:real^N->bool c. compact s ==> compact (IMAGE (\x. c % x) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN REWRITE_TAC[linear] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let COMPACT_NEGATIONS = 
prove (`!s:real^N->bool. compact s ==> compact (IMAGE (--) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN REWRITE_TAC[linear] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let COMPACT_SUMS = 
prove (`!s:real^N->bool t. compact s /\ compact t ==> compact {x + y | x IN s /\ y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x + y | x IN s /\ y IN t} = IMAGE (\z. fstcart z + sndcart z :real^N) (s PCROSS t)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; PCROSS] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[FSTCART_PASTECART; SNDCART_PASTECART; PASTECART_FST_SND]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[COMPACT_PCROSS] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_AT THEN REWRITE_TAC[linear; FSTCART_ADD; FSTCART_CMUL; SNDCART_ADD; SNDCART_CMUL] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let COMPACT_DIFFERENCES = 
prove (`!s:real^N->bool t. compact s /\ compact t ==> compact {x - y | x IN s /\ y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x - y | x:real^N IN s /\ y IN t} = {x + y | x IN s /\ y IN (IMAGE (--) t)}` (fun th -> ASM_SIMP_TAC[th; COMPACT_SUMS; COMPACT_NEGATIONS]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `(x:real^N = --y) <=> (y = --x)`] THEN SIMP_TAC[VECTOR_SUB; GSYM CONJ_ASSOC; UNWIND_THM2] THEN MESON_TAC[VECTOR_NEG_NEG]);;
let COMPACT_TRANSLATION_EQ = 
prove (`!a s. compact (IMAGE (\x:real^N. a + x) s) <=> compact s`,
REWRITE_TAC[COMPACT_EQ_HEINE_BOREL] THEN GEOM_TRANSLATE_TAC[]);;
let COMPACT_TRANSLATION = 
prove (`!s a:real^N. compact s ==> compact (IMAGE (\x. a + x) s)`,
REWRITE_TAC[COMPACT_TRANSLATION_EQ]);;
add_translation_invariants [COMPACT_TRANSLATION_EQ];;
let COMPACT_AFFINITY = 
prove (`!s a:real^N c. compact s ==> compact (IMAGE (\x. a + c % x) s)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x:real^N. a + c % x) = (\x. a + x) o (\x. c % x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[IMAGE_o; COMPACT_TRANSLATION; COMPACT_SCALING]);;
(* ------------------------------------------------------------------------- *) (* Hence we get the following. *) (* ------------------------------------------------------------------------- *)
let COMPACT_SUP_MAXDISTANCE = 
prove (`!s:real^N->bool. compact s /\ ~(s = {}) ==> ?x y. x IN s /\ y IN s /\ !u v. u IN s /\ v IN s ==> norm(u - v) <= norm(x - y)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{x - y:real^N | x IN s /\ y IN s}`; `vec 0:real^N`] DISTANCE_ATTAINS_SUP) THEN ANTS_TAC THENL [ASM_SIMP_TAC[COMPACT_DIFFERENCES] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]; REWRITE_TAC[IN_ELIM_THM; dist; VECTOR_SUB_RZERO; VECTOR_SUB_LZERO; NORM_NEG] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* We can state this in terms of diameter of a set. *) (* ------------------------------------------------------------------------- *)
let diameter = new_definition
  `diameter s =
        if s = {} then &0
        else sup {norm(x - y) | x IN s /\ y IN s}`;;
let DIAMETER_BOUNDED = 
prove (`!s. bounded s ==> (!x:real^N y. x IN s /\ y IN s ==> norm(x - y) <= diameter s) /\ (!d. &0 <= d /\ d < diameter s ==> ?x y. x IN s /\ y IN s /\ norm(x - y) > d)`,
GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[diameter; NOT_IN_EMPTY; REAL_LET_ANTISYM] THEN MP_TAC(SPEC `{norm(x - y:real^N) | x IN s /\ y IN s}` SUP) THEN ABBREV_TAC `b = sup {norm(x - y:real^N) | x IN s /\ y IN s}` THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; real_gt] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[MEMBER_NOT_EMPTY]; ALL_TAC]; MESON_TAC[REAL_NOT_LE]] THEN SIMP_TAC[VECTOR_SUB; LEFT_IMP_EXISTS_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [bounded]) THEN MESON_TAC[REAL_ARITH `x <= y + z /\ y <= b /\ z<= b ==> x <= b + b`; NORM_TRIANGLE; NORM_NEG]);;
let DIAMETER_BOUNDED_BOUND = 
prove (`!s x y. bounded s /\ x IN s /\ y IN s ==> norm(x - y) <= diameter s`,
MESON_TAC[DIAMETER_BOUNDED]);;
let DIAMETER_COMPACT_ATTAINED = 
prove (`!s:real^N->bool. compact s /\ ~(s = {}) ==> ?x y. x IN s /\ y IN s /\ (norm(x - y) = diameter s)`,
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_SUP_MAXDISTANCE) THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPEC `s:real^N->bool` DIAMETER_BOUNDED) THEN RULE_ASSUM_TAC(REWRITE_RULE[COMPACT_EQ_BOUNDED_CLOSED]) THEN ASM_REWRITE_TAC[real_gt] THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN ASM_MESON_TAC[NORM_POS_LE; REAL_NOT_LT]);;
let DIAMETER_TRANSLATION = 
prove (`!a s. diameter (IMAGE (\x. a + x) s) = diameter s`,
REWRITE_TAC[diameter] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [DIAMETER_TRANSLATION];;
let DIAMETER_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x. norm(f x) = norm x) ==> diameter(IMAGE f s) = diameter s`,
REWRITE_TAC[diameter] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[diameter; IMAGE_EQ_EMPTY] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN ASM_MESON_TAC[LINEAR_SUB]);;
add_linear_invariants [DIAMETER_LINEAR_IMAGE];;
let DIAMETER_EMPTY = 
prove (`diameter {} = &0`,
REWRITE_TAC[diameter]);;
let DIAMETER_SING = 
prove (`!a. diameter {a} = &0`,
REWRITE_TAC[diameter; NOT_INSERT_EMPTY; IN_SING] THEN REWRITE_TAC[SET_RULE `{f x y | x = a /\ y = a} = {f a a }`] THEN REWRITE_TAC[SUP_SING; VECTOR_SUB_REFL; NORM_0]);;
let DIAMETER_POS_LE = 
prove (`!s:real^N->bool. bounded s ==> &0 <= diameter s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[diameter] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN MP_TAC(SPEC `{norm(x - y:real^N) | x IN s /\ y IN s}` SUP) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `B:real` o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN EXISTS_TAC `&2 * B` THEN ASM_SIMP_TAC[NORM_ARITH `norm x <= B /\ norm y <= B ==> norm(x - y) <= &2 * B`]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN DISCH_THEN(MP_TAC o SPECL [`a:real^N`; `a:real^N`] o CONJUNCT1) THEN ASM_REWRITE_TAC[VECTOR_SUB_REFL; NORM_0]]);;
let DIAMETER_SUBSET = 
prove (`!s t:real^N->bool. s SUBSET t /\ bounded t ==> diameter s <= diameter t`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_SIMP_TAC[DIAMETER_EMPTY; DIAMETER_POS_LE] THEN ASM_REWRITE_TAC[diameter] THEN COND_CASES_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC REAL_SUP_LE_SUBSET THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `B:real` o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN EXISTS_TAC `&2 * B` THEN ASM_SIMP_TAC[NORM_ARITH `norm x <= B /\ norm y <= B ==> norm(x - y) <= &2 * B`]);;
let DIAMETER_CLOSURE = 
prove (`!s:real^N->bool. bounded s ==> diameter(closure s) = diameter s`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DIAMETER_SUBSET; BOUNDED_CLOSURE; CLOSURE_SUBSET] THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN DISCH_TAC THEN MP_TAC(ISPEC `closure s:real^N->bool` DIAMETER_BOUNDED) THEN ABBREV_TAC `d = diameter(closure s) - diameter(s:real^N->bool)` THEN ASM_SIMP_TAC[BOUNDED_CLOSURE] THEN DISCH_THEN(MP_TAC o SPEC `diameter(closure(s:real^N->bool)) - d / &2` o CONJUNCT2) THEN REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; NOT_EXISTS_THM] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP DIAMETER_POS_LE) THEN REPEAT(CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN REWRITE_TAC[CLOSURE_APPROACHABLE; CONJ_ASSOC; AND_FORALL_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `d / &4`) ASSUME_TAC) THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < d / &4 <=> &0 < d`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `u:real^N` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) (X_CHOOSE_THEN `v:real^N` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))) THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIAMETER_BOUNDED) THEN DISCH_THEN(MP_TAC o SPECL [`u:real^N`; `v:real^N`] o CONJUNCT1) THEN ASM_REWRITE_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN NORM_ARITH_TAC);;
let DIAMETER_SUBSET_CBALL_NONEMPTY = 
prove (`!s:real^N->bool. bounded s /\ ~(s = {}) ==> ?z. z IN s /\ s SUBSET cball(z,diameter s)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN ASM_REWRITE_TAC[SUBSET] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_CBALL; dist] THEN ASM_MESON_TAC[DIAMETER_BOUNDED]);;
let DIAMETER_SUBSET_CBALL = 
prove (`!s:real^N->bool. bounded s ==> ?z. s SUBSET cball(z,diameter s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_MESON_TAC[DIAMETER_SUBSET_CBALL_NONEMPTY; EMPTY_SUBSET]);;
let DIAMETER_EQ_0 = 
prove (`!s:real^N->bool. bounded s ==> (diameter s = &0 <=> s = {} \/ ?a. s = {a})`,
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[DIAMETER_EMPTY; DIAMETER_SING] THEN REWRITE_TAC[SET_RULE `s = {} \/ (?a. s = {a}) <=> !a b. a IN s /\ b IN s ==> a = b`] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`; `b:real^N`] DIAMETER_BOUNDED_BOUND) THEN ASM_REWRITE_TAC[] THEN NORM_ARITH_TAC);;
let DIAMETER_LE = 
prove (`!s:real^N->bool. (~(s = {}) \/ &0 <= d) /\ (!x y. x IN s /\ y IN s ==> norm(x - y) <= d) ==> diameter s <= d`,
GEN_TAC THEN REWRITE_TAC[diameter] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_SUP_LE THEN CONJ_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[FORALL_IN_GSPEC]]);;
let DIAMETER_CBALL = 
prove (`!a:real^N r. diameter(cball(a,r)) = if r < &0 then &0 else &2 * r`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL [ASM_MESON_TAC[CBALL_EQ_EMPTY; DIAMETER_EMPTY]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LT]) THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL [MATCH_MP_TAC DIAMETER_LE THEN ASM_SIMP_TAC[CBALL_EQ_EMPTY; REAL_LE_MUL; REAL_POS; REAL_NOT_LT] THEN REWRITE_TAC[IN_CBALL] THEN NORM_ARITH_TAC; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm((a + r % basis 1) - (a - r % basis 1):real^N)` THEN CONJ_TAC THENL [REWRITE_TAC[VECTOR_ARITH `(a + r % b) - (a - r % b:real^N) = (&2 * r) % b`] THEN SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC DIAMETER_BOUNDED_BOUND THEN REWRITE_TAC[BOUNDED_CBALL; IN_CBALL] THEN REWRITE_TAC[NORM_ARITH `dist(a:real^N,a + b) = norm b /\ dist(a,a - b) = norm b`] THEN SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN ASM_REAL_ARITH_TAC]]);;
let DIAMETER_BALL = 
prove (`!a:real^N r. diameter(ball(a,r)) = if r < &0 then &0 else &2 * r`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL [ASM_SIMP_TAC[BALL_EMPTY; REAL_LT_IMP_LE; DIAMETER_EMPTY]; ALL_TAC] THEN ASM_CASES_TAC `r = &0` THEN ASM_SIMP_TAC[BALL_EMPTY; REAL_LE_REFL; DIAMETER_EMPTY; REAL_MUL_RZERO] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `diameter(cball(a:real^N,r))` THEN CONJ_TAC THENL [SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[GSYM CLOSURE_BALL; DIAMETER_CLOSURE; BOUNDED_BALL]; ASM_SIMP_TAC[DIAMETER_CBALL]]);;
let LEBESGUE_COVERING_LEMMA = 
prove (`!s:real^N->bool c. compact s /\ ~(c = {}) /\ s SUBSET UNIONS c /\ (!b. b IN c ==> open b) ==> ?d. &0 < d /\ !t. t SUBSET s /\ diameter t <= d ==> ?b. b IN c /\ t SUBSET b`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HEINE_BOREL_LEMMA) THEN DISCH_THEN(MP_TAC o SPEC `c:(real^N->bool)->bool`) THEN ASM_SIMP_TAC[] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN EXISTS_TAC `e / &2` THEN ASM_REWRITE_TAC[REAL_HALF] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPEC `t:real^N->bool` DIAMETER_SUBSET_CBALL_NONEMPTY) THEN ANTS_TAC THENL [ASM_MESON_TAC[BOUNDED_SUBSET; COMPACT_IMP_BOUNDED]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `x:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN X_GEN_TAC `b:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `cball(x:real^N,diameter(t:real^N->bool))` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `ball(x:real^N,e)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_CBALL; IN_BALL] THEN MAP_EVERY UNDISCH_TAC [`&0 < e`; `diameter(t:real^N->bool) <= e / &2`] THEN NORM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Related results with closure as the conclusion. *) (* ------------------------------------------------------------------------- *)
let CLOSED_SCALING = 
prove (`!s:real^N->bool c. closed s ==> closed (IMAGE (\x. c % x) s)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s :real^N->bool = {}` THEN ASM_REWRITE_TAC[CLOSED_EMPTY; IMAGE_CLAUSES] THEN ASM_CASES_TAC `c = &0` THENL [SUBGOAL_THEN `IMAGE (\x:real^N. c % x) s = {(vec 0)}` (fun th -> REWRITE_TAC[th; CLOSED_SING]) THEN ASM_REWRITE_TAC[EXTENSION; IN_IMAGE; IN_SING; VECTOR_MUL_LZERO] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN REWRITE_TAC[CLOSED_SEQUENTIAL_LIMITS; IN_IMAGE; SKOLEM_THM] THEN STRIP_TAC THEN X_GEN_TAC `x:num->real^N` THEN X_GEN_TAC `l:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `y:num->real^N` MP_TAC) THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN EXISTS_TAC `inv(c) % l :real^N` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; VECTOR_MUL_LID] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `\n:num. inv(c) % x n:real^N` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID]; MATCH_MP_TAC LIM_CMUL THEN FIRST_ASSUM(fun th -> REWRITE_TAC[SYM(SPEC_ALL th)]) THEN ASM_REWRITE_TAC[ETA_AX]]);;
let CLOSED_NEGATIONS = 
prove (`!s:real^N->bool. closed s ==> closed (IMAGE (--) s)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `IMAGE (--) s = IMAGE (\x:real^N. --(&1) % x) s` SUBST1_TAC THEN SIMP_TAC[CLOSED_SCALING] THEN REWRITE_TAC[VECTOR_ARITH `--(&1) % x = --x`] THEN REWRITE_TAC[ETA_AX]);;
let COMPACT_CLOSED_SUMS = 
prove (`!s:real^N->bool t. compact s /\ closed t ==> closed {x + y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN REWRITE_TAC[compact; IN_ELIM_THM; CLOSED_SEQUENTIAL_LIMITS] THEN STRIP_TAC THEN X_GEN_TAC `f:num->real^N` THEN X_GEN_TAC `l:real^N` THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `a:num->real^N` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `b:num->real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o check(is_imp o concl) o SPEC `a:num->real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `la:real^N` (X_CHOOSE_THEN `sub:num->num` STRIP_ASSUME_TAC)) THEN MAP_EVERY EXISTS_TAC [`la:real^N`; `l - la:real^N`] THEN ASM_REWRITE_TAC[VECTOR_ARITH `a + (b - a) = b:real^N`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `\n. (f o (sub:num->num)) n - (a o sub) n:real^N` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[VECTOR_ADD_SUB; o_THM]; ALL_TAC] THEN MATCH_MP_TAC LIM_SUB THEN ASM_SIMP_TAC[LIM_SUBSEQUENCE; ETA_AX]);;
let CLOSED_COMPACT_SUMS = 
prove (`!s:real^N->bool t. closed s /\ compact t ==> closed {x + y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `{x + y:real^N | x IN s /\ y IN t} = {y + x | y IN t /\ x IN s}` SUBST1_TAC THEN SIMP_TAC[COMPACT_CLOSED_SUMS] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[VECTOR_ADD_SYM]);;
let COMPACT_CLOSED_DIFFERENCES = 
prove (`!s:real^N->bool t. compact s /\ closed t ==> closed {x - y | x IN s /\ y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x - y | x:real^N IN s /\ y IN t} = {x + y | x IN s /\ y IN (IMAGE (--) t)}` (fun th -> ASM_SIMP_TAC[th; COMPACT_CLOSED_SUMS; CLOSED_NEGATIONS]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `(x:real^N = --y) <=> (y = --x)`] THEN SIMP_TAC[VECTOR_SUB; GSYM CONJ_ASSOC; UNWIND_THM2] THEN MESON_TAC[VECTOR_NEG_NEG]);;
let CLOSED_COMPACT_DIFFERENCES = 
prove (`!s:real^N->bool t. closed s /\ compact t ==> closed {x - y | x IN s /\ y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x - y | x:real^N IN s /\ y IN t} = {x + y | x IN s /\ y IN (IMAGE (--) t)}` (fun th -> ASM_SIMP_TAC[th; CLOSED_COMPACT_SUMS; COMPACT_NEGATIONS]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `(x:real^N = --y) <=> (y = --x)`] THEN SIMP_TAC[VECTOR_SUB; GSYM CONJ_ASSOC; UNWIND_THM2] THEN MESON_TAC[VECTOR_NEG_NEG]);;
let CLOSED_TRANSLATION_EQ = 
prove (`!a s. closed (IMAGE (\x:real^N. a + x) s) <=> closed s`,
REWRITE_TAC[closed] THEN GEOM_TRANSLATE_TAC[]);;
let CLOSED_TRANSLATION = 
prove (`!s a:real^N. closed s ==> closed (IMAGE (\x. a + x) s)`,
REWRITE_TAC[CLOSED_TRANSLATION_EQ]);;
add_translation_invariants [CLOSED_TRANSLATION_EQ];;
let COMPLETE_TRANSLATION_EQ = 
prove (`!a s. complete(IMAGE (\x:real^N. a + x) s) <=> complete s`,
add_translation_invariants [COMPLETE_TRANSLATION_EQ];;
let TRANSLATION_UNIV = 
prove (`!a. IMAGE (\x. a + x) (:real^N) = (:real^N)`,
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEOM_TRANSLATE_TAC[]);;
let TRANSLATION_DIFF = 
prove (`!s t:real^N->bool. IMAGE (\x. a + x) (s DIFF t) = (IMAGE (\x. a + x) s) DIFF (IMAGE (\x. a + x) t)`,
REWRITE_TAC[EXTENSION; IN_DIFF; IN_IMAGE] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `x:real^N = a + y <=> y = x - a`] THEN REWRITE_TAC[UNWIND_THM2]);;
let CLOSURE_TRANSLATION = 
prove (`!a s. closure(IMAGE (\x:real^N. a + x) s) = IMAGE (\x. a + x) (closure s)`,
REWRITE_TAC[CLOSURE_INTERIOR] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [CLOSURE_TRANSLATION];;
let FRONTIER_TRANSLATION = 
prove (`!a s. frontier(IMAGE (\x:real^N. a + x) s) = IMAGE (\x. a + x) (frontier s)`,
REWRITE_TAC[frontier] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [FRONTIER_TRANSLATION];; (* ------------------------------------------------------------------------- *) (* Separation between points and sets. *) (* ------------------------------------------------------------------------- *)
let SEPARATE_POINT_CLOSED = 
prove (`!s a:real^N. closed s /\ ~(a IN s) ==> ?d. &0 < d /\ !x. x IN s ==> d <= dist(a,x)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; REAL_LT_01]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`] DISTANCE_ATTAINS_INF) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN EXISTS_TAC `dist(a:real^N,b)` THEN ASM_MESON_TAC[DIST_POS_LT]);;
let SEPARATE_COMPACT_CLOSED = 
prove (`!s t:real^N->bool. compact s /\ closed t /\ s INTER t = {} ==> ?d. &0 < d /\ !x y. x IN s /\ y IN t ==> d <= dist(x,y)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{x - y:real^N | x IN s /\ y IN t}`; `vec 0:real^N`] SEPARATE_POINT_CLOSED) THEN ASM_SIMP_TAC[COMPACT_CLOSED_DIFFERENCES; IN_ELIM_THM] THEN REWRITE_TAC[VECTOR_ARITH `vec 0 = x - y <=> x = y`] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MESON_TAC[NORM_ARITH `dist(vec 0,x - y) = dist(x,y)`]);;
let SEPARATE_CLOSED_COMPACT = 
prove (`!s t:real^N->bool. closed s /\ compact t /\ s INTER t = {} ==> ?d. &0 < d /\ !x y. x IN s /\ y IN t ==> d <= dist(x,y)`,
ONCE_REWRITE_TAC[DIST_SYM; INTER_COMM] THEN MESON_TAC[SEPARATE_COMPACT_CLOSED]);;
(* ------------------------------------------------------------------------- *) (* Representing sets as the union of a chain of compact sets. *) (* ------------------------------------------------------------------------- *)
let CLOSED_UNION_COMPACT_SUBSETS = 
prove (`!s. closed s ==> ?f:num->real^N->bool. (!n. compact(f n)) /\ (!n. (f n) SUBSET s) /\ (!n. (f n) SUBSET f(n + 1)) /\ UNIONS {f n | n IN (:num)} = s /\ (!k. compact k /\ k SUBSET s ==> ?N. !n. n >= N ==> k SUBSET (f n))`,
REPEAT STRIP_TAC THEN EXISTS_TAC `\n. s INTER cball(vec 0:real^N,&n)` THEN ASM_SIMP_TAC[INTER_SUBSET; COMPACT_CBALL; CLOSED_INTER_COMPACT] THEN REPEAT CONJ_TAC THENL [GEN_TAC THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> s INTER t SUBSET s INTER u`) THEN REWRITE_TAC[SUBSET_BALLS; DIST_REFL; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; REWRITE_TAC[EXTENSION; UNIONS_GSPEC; IN_ELIM_THM; IN_UNIV; IN_INTER] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_CBALL_0] THEN MESON_TAC[REAL_ARCH_SIMPLE]; X_GEN_TAC `k:real^N->bool` THEN SIMP_TAC[SUBSET_INTER] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN DISCH_THEN (MP_TAC o SPEC `vec 0:real^N` o MATCH_MP BOUNDED_SUBSET_CBALL) THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `r:real` REAL_ARCH_SIMPLE) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[GSYM REAL_OF_NUM_GE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN REWRITE_TAC[SUBSET_BALLS; DIST_REFL] THEN ASM_REAL_ARITH_TAC]);;
let OPEN_UNION_COMPACT_SUBSETS = 
prove (`!s. open s ==> ?f:num->real^N->bool. (!n. compact(f n)) /\ (!n. (f n) SUBSET s) /\ (!n. (f n) SUBSET interior(f(n + 1))) /\ UNIONS {f n | n IN (:num)} = s /\ (!k. compact k /\ k SUBSET s ==> ?N. !n. n >= N ==> k SUBSET (f n))`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [DISCH_TAC THEN EXISTS_TAC `(\n. {}):num->real^N->bool` THEN ASM_SIMP_TAC[EMPTY_SUBSET; SUBSET_EMPTY; COMPACT_EMPTY] THEN REWRITE_TAC[EXTENSION; UNIONS_GSPEC; IN_ELIM_THM; NOT_IN_EMPTY]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN STRIP_TAC] THEN MATCH_MP_TAC(MESON[] `(!f. p1 f /\ p3 f /\ p4 f ==> p5 f) /\ (?f. p1 f /\ p2 f /\ p3 f /\ (p2 f ==> p4 f)) ==> ?f. p1 f /\ p2 f /\ p3 f /\ p4 f /\ p5 f`) THEN CONJ_TAC THENL [X_GEN_TAC `f:num->real^N->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN X_GEN_TAC `k:real^N->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL]) THEN DISCH_THEN(MP_TAC o SPEC `{interior(f n):real^N->bool | n IN (:num)}`) THEN REWRITE_TAC[FORALL_IN_GSPEC; OPEN_INTERIOR] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM] THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN REWRITE_TAC[SIMPLE_IMAGE; EXISTS_FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[SUBSET_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `i:num->bool` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[GE] THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `(f:num->real^N->bool) m` THEN REWRITE_TAC[INTERIOR_SUBSET] THEN SUBGOAL_THEN `!m n. m <= n ==> (f:num->real^N->bool) m SUBSET f n` (fun th -> ASM_MESON_TAC[th; LE_TRANS]) THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_MESON_TAC[SUBSET; ADD1; INTERIOR_SUBSET]]; EXISTS_TAC `\n. cball(a,&n) DIFF {x + e | x IN (:real^N) DIFF s /\ e IN ball(vec 0,inv(&n + &1))}` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `n:num` THEN MATCH_MP_TAC COMPACT_DIFF THEN SIMP_TAC[COMPACT_CBALL; OPEN_SUMS; OPEN_BALL]; GEN_TAC THEN MATCH_MP_TAC(SET_RULE `(UNIV DIFF s) SUBSET t ==> c DIFF t SUBSET s`) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:real^N`; `vec 0:real^N`] THEN ASM_REWRITE_TAC[VECTOR_ADD_RID; CENTRE_IN_BALL; REAL_LT_INV_EQ] THEN REAL_ARITH_TAC; GEN_TAC THEN REWRITE_TAC[INTERIOR_DIFF] THEN MATCH_MP_TAC(SET_RULE `s SUBSET s' /\ t' SUBSET t ==> (s DIFF t) SUBSET (s' DIFF t')`) THEN CONJ_TAC THENL [REWRITE_TAC[INTERIOR_CBALL; SUBSET; IN_BALL; IN_CBALL] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `{x + e | x IN (:real^N) DIFF s /\ e IN cball(vec 0,inv(&n + &2))}` THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSURE_MINIMAL THEN ASM_SIMP_TAC[CLOSED_COMPACT_SUMS; COMPACT_CBALL; GSYM OPEN_CLOSED] THEN MATCH_MP_TAC(SET_RULE `t SUBSET t' ==> {f x y | x IN s /\ y IN t} SUBSET {f x y | x IN s /\ y IN t'}`) THEN REWRITE_TAC[SUBSET; IN_BALL; IN_CBALL; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; MATCH_MP_TAC(SET_RULE `t SUBSET t' ==> {f x y | x IN s /\ y IN t} SUBSET {f x y | x IN s /\ y IN t'}`) THEN REWRITE_TAC[SUBSET; IN_BALL; IN_CBALL; GSYM REAL_OF_NUM_ADD] THEN GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH `a < b ==> x <= a ==> x < b`) THEN MATCH_MP_TAC REAL_LT_INV2 THEN REAL_ARITH_TAC]]; DISCH_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[SUBSET; UNIONS_GSPEC; IN_UNIV; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_DIFF] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; IN_BALL_0] THEN REWRITE_TAC[VECTOR_ARITH `x:real^N = y + e <=> e = x - y`] THEN REWRITE_TAC[TAUT `(p /\ q) /\ r <=> r /\ p /\ q`; UNWIND_THM2] THEN REWRITE_TAC[MESON[] `~(?x. ~P x /\ Q x) <=> !x. Q x ==> P x`] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[SUBSET; IN_BALL; dist] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_ARCH_INV]) THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `norm(x - a:real^N)` REAL_ARCH_SIMPLE) THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN CONJ_TAC THENL [REWRITE_TAC[IN_CBALL] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN UNDISCH_TAC `norm(x - a:real^N) <= &N2` THEN REWRITE_TAC[dist; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SUBGOAL_THEN `inv(&(N1 + N2) + &1) <= inv(&N1)` MP_TAC THENL [MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_OF_NUM_LT; LE_1] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC; ASM_REAL_ARITH_TAC]]]]);;
(* ------------------------------------------------------------------------- *) (* A cute way of denoting open and closed intervals using overloading. *) (* ------------------------------------------------------------------------- *)
let open_interval = new_definition
  `open_interval(a:real^N,b:real^N) =
        {x:real^N | !i. 1 <= i /\ i <= dimindex(:N)
                        ==> a$i < x$i /\ x$i < b$i}`;;
let closed_interval = new_definition
  `closed_interval(l:(real^N#real^N)list) =
         {x:real^N | !i. 1 <= i /\ i <= dimindex(:N)
                         ==> FST(HD l)$i <= x$i /\ x$i <= SND(HD l)$i}`;;
make_overloadable "interval" `:A`;; overload_interface("interval",`open_interval`);; overload_interface("interval",`closed_interval`);;
let interval = 
prove (`(interval (a,b) = {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> a$i < x$i /\ x$i < b$i}) /\ (interval [a,b] = {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= x$i /\ x$i <= b$i})`,
REWRITE_TAC[open_interval; closed_interval; HD; FST; SND]);;
let IN_INTERVAL = 
prove (`(!x:real^N. x IN interval (a,b) <=> !i. 1 <= i /\ i <= dimindex(:N) ==> a$i < x$i /\ x$i < b$i) /\ (!x:real^N. x IN interval [a,b] <=> !i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= x$i /\ x$i <= b$i)`,
REWRITE_TAC[interval; IN_ELIM_THM]);;
let IN_INTERVAL_REFLECT = 
prove (`(!a b x. (--x) IN interval[--b,--a] <=> x IN interval[a,b]) /\ (!a b x. (--x) IN interval(--b,--a) <=> x IN interval(a,b))`,
SIMP_TAC[IN_INTERVAL; REAL_LT_NEG2; REAL_LE_NEG2; VECTOR_NEG_COMPONENT] THEN MESON_TAC[]);;
let REFLECT_INTERVAL = 
prove (`(!a b:real^N. IMAGE (--) (interval[a,b]) = interval[--b,--a]) /\ (!a b:real^N. IMAGE (--) (interval(a,b)) = interval(--b,--a))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_INTERVAL_REFLECT] THEN MESON_TAC[VECTOR_NEG_NEG]);;
let INTERVAL_EQ_EMPTY = 
prove (`((interval [a:real^N,b] = {}) <=> ?i. 1 <= i /\ i <= dimindex(:N) /\ b$i < a$i) /\ ((interval (a:real^N,b) = {}) <=> ?i. 1 <= i /\ i <= dimindex(:N) /\ b$i <= a$i)`,
REWRITE_TAC[EXTENSION; IN_INTERVAL; NOT_IN_EMPTY] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THEN EQ_TAC THENL [MESON_TAC[REAL_LE_REFL; REAL_NOT_LE]; MESON_TAC[REAL_LE_TRANS; REAL_NOT_LE]; ALL_TAC; MESON_TAC[REAL_LT_TRANS; REAL_NOT_LT]] THEN SUBGOAL_THEN `!a b. ?c. a < b ==> a < c /\ c < b` (MP_TAC o REWRITE_RULE[SKOLEM_THM]) THENL [MESON_TAC[REAL_LT_BETWEEN]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `mid:real->real->real`) THEN DISCH_THEN(MP_TAC o SPEC `(lambda i. mid ((a:real^N)$i) ((b:real^N)$i)):real^N`) THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> ~(a /\ b ==> ~c)`] THEN SIMP_TAC[LAMBDA_BETA] THEN ASM_MESON_TAC[REAL_NOT_LT]);;
let INTERVAL_NE_EMPTY = 
prove (`(~(interval [a:real^N,b] = {}) <=> !i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= b$i) /\ (~(interval (a:real^N,b) = {}) <=> !i. 1 <= i /\ i <= dimindex(:N) ==> a$i < b$i)`,
REWRITE_TAC[INTERVAL_EQ_EMPTY] THEN MESON_TAC[REAL_NOT_LE]);;
let SUBSET_INTERVAL_IMP = 
prove (`((!i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= c$i /\ d$i <= b$i) ==> interval[c,d] SUBSET interval[a:real^N,b]) /\ ((!i. 1 <= i /\ i <= dimindex(:N) ==> a$i < c$i /\ d$i < b$i) ==> interval[c,d] SUBSET interval(a:real^N,b)) /\ ((!i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= c$i /\ d$i <= b$i) ==> interval(c,d) SUBSET interval[a:real^N,b]) /\ ((!i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= c$i /\ d$i <= b$i) ==> interval(c,d) SUBSET interval(a:real^N,b))`,
REWRITE_TAC[SUBSET; IN_INTERVAL] THEN REPEAT CONJ_TAC THEN DISCH_TAC THEN GEN_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let INTERVAL_SING = 
prove (`interval[a,a] = {a} /\ interval(a,a) = {}`,
REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY; IN_INTERVAL] THEN REWRITE_TAC[REAL_LE_ANTISYM; REAL_LT_ANTISYM; CART_EQ; EQ_SYM_EQ] THEN MESON_TAC[DIMINDEX_GE_1; LE_REFL]);;
let SUBSET_INTERVAL = 
prove (`(interval[c,d] SUBSET interval[a:real^N,b] <=> (!i. 1 <= i /\ i <= dimindex(:N) ==> c$i <= d$i) ==> (!i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= c$i /\ d$i <= b$i)) /\ (interval[c,d] SUBSET interval(a:real^N,b) <=> (!i. 1 <= i /\ i <= dimindex(:N) ==> c$i <= d$i) ==> (!i. 1 <= i /\ i <= dimindex(:N) ==> a$i < c$i /\ d$i < b$i)) /\ (interval(c,d) SUBSET interval[a:real^N,b] <=> (!i. 1 <= i /\ i <= dimindex(:N) ==> c$i < d$i) ==> (!i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= c$i /\ d$i <= b$i)) /\ (interval(c,d) SUBSET interval(a:real^N,b) <=> (!i. 1 <= i /\ i <= dimindex(:N) ==> c$i < d$i) ==> (!i. 1 <= i /\ i <= dimindex(:N) ==> a$i <= c$i /\ d$i <= b$i))`,
let lemma = prove
   (`(!x:real^N. (!i. 1 <= i /\ i <= dimindex(:N) ==> Q i (x$i))
                 ==> (!i. 1 <= i /\ i <= dimindex(:N) ==> R i (x$i)))
     ==> (!i. 1 <= i /\ i <= dimindex(:N) ==> ?y. Q i y)
         ==> !i y. 1 <= i /\ i <= dimindex(:N) /\ Q i y ==> R i y`,
    DISCH_TAC THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    DISCH_THEN(X_CHOOSE_THEN `f:num->real` STRIP_ASSUME_TAC) THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o
     SPEC `(lambda j. if j = i then y else f j):real^N`) THEN
    SIMP_TAC[LAMBDA_BETA] THEN ASM_MESON_TAC[]) in
  REPEAT STRIP_TAC THEN
  (MATCH_MP_TAC(TAUT
    `(~q ==> p) /\ (q ==> (p <=> r)) ==> (p <=> q ==> r)`) THEN
   CONJ_TAC THENL
    [DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `s = {} ==> s SUBSET t`) THEN
     REWRITE_TAC[INTERVAL_EQ_EMPTY] THEN ASM_MESON_TAC[REAL_NOT_LT];
     ALL_TAC] THEN
   DISCH_TAC THEN EQ_TAC THEN REWRITE_TAC[SUBSET_INTERVAL_IMP] THEN
   REWRITE_TAC[SUBSET; IN_INTERVAL] THEN
   DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN ANTS_TAC THENL
    [ASM_MESON_TAC[REAL_LT_BETWEEN; REAL_LE_BETWEEN]; ALL_TAC] THEN
   MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN
   DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN
   FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN
   ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(K ALL_TAC) THEN STRIP_TAC)
  THENL
   [ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL];
    ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL];
    ALL_TAC; ALL_TAC] THEN
  (REPEAT STRIP_TAC THENL
    [FIRST_X_ASSUM(MP_TAC o SPEC
      `((c:real^N)$i + min ((a:real^N)$i) ((d:real^N)$i)) / &2`) THEN
     POP_ASSUM MP_TAC THEN REAL_ARITH_TAC;
     FIRST_X_ASSUM(MP_TAC o SPEC
      `(max ((b:real^N)$i) ((c:real^N)$i) + (d:real^N)$i) / &2`) THEN
     POP_ASSUM MP_TAC THEN REAL_ARITH_TAC]));;
let DISJOINT_INTERVAL = 
prove (`!a b c d:real^N. (interval[a,b] INTER interval[c,d] = {} <=> ?i. 1 <= i /\ i <= dimindex(:N) /\ (b$i < a$i \/ d$i < c$i \/ b$i < c$i \/ d$i < a$i)) /\ (interval[a,b] INTER interval(c,d) = {} <=> ?i. 1 <= i /\ i <= dimindex(:N) /\ (b$i < a$i \/ d$i <= c$i \/ b$i <= c$i \/ d$i <= a$i)) /\ (interval(a,b) INTER interval[c,d] = {} <=> ?i. 1 <= i /\ i <= dimindex(:N) /\ (b$i <= a$i \/ d$i < c$i \/ b$i <= c$i \/ d$i <= a$i)) /\ (interval(a,b) INTER interval(c,d) = {} <=> ?i. 1 <= i /\ i <= dimindex(:N) /\ (b$i <= a$i \/ d$i <= c$i \/ b$i <= c$i \/ d$i <= a$i))`,
REWRITE_TAC[EXTENSION; IN_INTER; IN_INTERVAL; NOT_IN_EMPTY] THEN REWRITE_TAC[AND_FORALL_THM; NOT_FORALL_THM] THEN REWRITE_TAC[TAUT `~((p ==> q) /\ (p ==> r)) <=> p /\ (~q \/ ~r)`] THEN REWRITE_TAC[DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN (EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `(lambda i. (max ((a:real^N)$i) ((c:real^N)$i) + min ((b:real^N)$i) ((d:real^N)$i)) / &2):real^N`) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN REAL_ARITH_TAC; DISCH_THEN(fun th -> GEN_TAC THEN MP_TAC th) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[] THEN REAL_ARITH_TAC]));;
let ENDS_IN_INTERVAL = 
prove (`(!a b. a IN interval[a,b] <=> ~(interval[a,b] = {})) /\ (!a b. b IN interval[a,b] <=> ~(interval[a,b] = {})) /\ (!a b. ~(a IN interval(a,b))) /\ (!a b. ~(b IN interval(a,b)))`,
REWRITE_TAC[IN_INTERVAL; INTERVAL_NE_EMPTY] THEN REWRITE_TAC[REAL_LE_REFL; REAL_LT_REFL] THEN MESON_TAC[DIMINDEX_GE_1; LE_REFL]);;
let ENDS_IN_UNIT_INTERVAL = 
prove (`vec 0 IN interval[vec 0,vec 1] /\ vec 1 IN interval[vec 0,vec 1] /\ ~(vec 0 IN interval(vec 0,vec 1)) /\ ~(vec 1 IN interval(vec 0,vec 1))`,
REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_NE_EMPTY; VEC_COMPONENT] THEN REWRITE_TAC[REAL_POS]);;
let INTER_INTERVAL = 
prove (`interval[a,b] INTER interval[c,d] = interval[(lambda i. max (a$i) (c$i)),(lambda i. min (b$i) (d$i))]`,
REWRITE_TAC[EXTENSION; IN_INTER; IN_INTERVAL] THEN SIMP_TAC[LAMBDA_BETA; REAL_MAX_LE; REAL_LE_MIN] THEN MESON_TAC[]);;
let INTERVAL_OPEN_SUBSET_CLOSED = 
prove (`!a b. interval(a,b) SUBSET interval[a,b]`,
REWRITE_TAC[SUBSET; IN_INTERVAL] THEN MESON_TAC[REAL_LT_IMP_LE]);;
let OPEN_INTERVAL_LEMMA = 
prove (`!a b x. a < x /\ x < b ==> ?d. &0 < d /\ !x'. abs(x' - x) < d ==> a < x' /\ x' < b`,
REPEAT STRIP_TAC THEN EXISTS_TAC `min (x - a) (b - x)` THEN REWRITE_TAC[REAL_LT_MIN] THEN ASM_REAL_ARITH_TAC);;
let OPEN_INTERVAL = 
prove (`!a:real^N b. open(interval (a,b))`,
REPEAT GEN_TAC THEN REWRITE_TAC[open_def; interval; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?d. &0 < d /\ !x'. abs(x' - (x:real^N)$i) < d ==> (a:real^N)$i < x' /\ x' < (b:real^N)$i` MP_TAC THENL [ASM_SIMP_TAC[OPEN_INTERVAL_LEMMA]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `d:num->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `inf (IMAGE d (1..dimindex(:N)))` THEN SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; FINITE_NUMSEG; IMAGE_EQ_EMPTY; NOT_INSERT_EMPTY; NUMSEG_EMPTY; ARITH_RULE `n < 1 <=> (n = 0)`; DIMINDEX_NONZERO] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_NUMSEG; dist] THEN ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_LET_TRANS; VECTOR_SUB_COMPONENT]);;
let CLOSED_INTERVAL = 
prove (`!a:real^N b. closed(interval [a,b])`,
REWRITE_TAC[CLOSED_LIMPT; LIMPT_APPROACHABLE; IN_INTERVAL] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `(a:real^N)$i - (x:real^N)$i`); FIRST_X_ASSUM(MP_TAC o SPEC `(x:real^N)$i - (b:real^N)$i`)] THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `z:real^N` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[dist; REAL_NOT_LT] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs((z - x :real^N)$i)` THEN ASM_SIMP_TAC[COMPONENT_LE_NORM] THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT] THEN ASM_SIMP_TAC[REAL_ARITH `x < a /\ a <= z ==> a - x <= abs(z - x)`; REAL_ARITH `z <= b /\ b < x ==> x - b <= abs(z - x)`]);;
let INTERIOR_CLOSED_INTERVAL = 
prove (`!a:real^N b. interior(interval [a,b]) = interval (a,b)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC INTERIOR_MAXIMAL THEN REWRITE_TAC[INTERVAL_OPEN_SUBSET_CLOSED; OPEN_INTERVAL]] THEN REWRITE_TAC[interior; SUBSET; IN_INTERVAL; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_THEN(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[REAL_LT_LE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [open_def]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THENL [(let t = `x - (e / &2) % basis i :real^N` in DISCH_THEN(MP_TAC o SPEC t) THEN FIRST_X_ASSUM(MP_TAC o SPEC t)); (let t = `x + (e / &2) % basis i :real^N` in DISCH_THEN(MP_TAC o SPEC t) THEN FIRST_X_ASSUM(MP_TAC o SPEC t))] THEN REWRITE_TAC[dist; VECTOR_ADD_SUB; VECTOR_ARITH `x - y - x = --y:real^N`] THEN ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; NORM_NEG; REAL_MUL_RID; REAL_ARITH `&0 < e ==> abs(e / &2) < e`] THEN MATCH_MP_TAC(TAUT `~b ==> (a ==> b) ==> ~a`) THEN REWRITE_TAC[NOT_FORALL_THM] THEN EXISTS_TAC `i:num` THEN ASM_SIMP_TAC[DE_MORGAN_THM; VECTOR_SUB_COMPONENT; VECTOR_ADD_COMPONENT] THENL [DISJ1_TAC THEN REWRITE_TAC[REAL_ARITH `a <= a - b <=> ~(&0 < b)`]; DISJ2_TAC THEN REWRITE_TAC[REAL_ARITH `a + b <= a <=> ~(&0 < b)`]] THEN ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; basis; LAMBDA_BETA; REAL_MUL_RID] THEN ASM_REWRITE_TAC[REAL_HALF]);;
let INTERIOR_INTERVAL = 
prove (`(!a b. interior(interval[a,b]) = interval(a,b)) /\ (!a b. interior(interval(a,b)) = interval(a,b))`,
let BOUNDED_CLOSED_INTERVAL = 
prove (`!a b:real^N. bounded (interval [a,b])`,
REPEAT STRIP_TAC THEN REWRITE_TAC[bounded; interval] THEN EXISTS_TAC `sum(1..dimindex(:N)) (\i. abs((a:real^N)$i) + abs((b:real^N)$i))` THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(1..dimindex(:N)) (\i. abs((x:real^N)$i))` THEN REWRITE_TAC[NORM_LE_L1] THEN MATCH_MP_TAC SUM_LE THEN ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; REAL_ARITH `a <= x /\ x <= b ==> abs(x) <= abs(a) + abs(b)`]);;
let BOUNDED_INTERVAL = 
prove (`(!a b. bounded (interval [a,b])) /\ (!a b. bounded (interval (a,b)))`,
let NOT_INTERVAL_UNIV = 
prove (`(!a b. ~(interval[a,b] = UNIV)) /\ (!a b. ~(interval(a,b) = UNIV))`,
let COMPACT_INTERVAL = 
prove (`!a b. compact (interval [a,b])`,
let OPEN_INTERVAL_MIDPOINT = 
prove (`!a b:real^N. ~(interval(a,b) = {}) ==> (inv(&2) % (a + b)) IN interval(a,b)`,
REWRITE_TAC[INTERVAL_NE_EMPTY; IN_INTERVAL] THEN SIMP_TAC[VECTOR_MUL_COMPONENT; VECTOR_ADD_COMPONENT] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let OPEN_CLOSED_INTERVAL_CONVEX = 
prove (`!a b x y:real^N e. x IN interval(a,b) /\ y IN interval[a,b] /\ &0 < e /\ e <= &1 ==> (e % x + (&1 - e) % y) IN interval(a,b)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(c /\ d ==> a /\ b ==> e) ==> a /\ b /\ c /\ d ==> e`) THEN STRIP_TAC THEN REWRITE_TAC[IN_INTERVAL; AND_FORALL_THM] THEN SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN SUBST1_TAC(REAL_ARITH `(a:real^N)$i = e * a$i + (&1 - e) * a$i`) THEN SUBST1_TAC(REAL_ARITH `(b:real^N)$i = e * b$i + (&1 - e) * b$i`) THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_LE_LMUL; REAL_SUB_LE]);;
let CLOSURE_OPEN_INTERVAL = 
prove (`!a b:real^N. ~(interval(a,b) = {}) ==> closure(interval(a,b)) = interval[a,b]`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSURE_MINIMAL THEN REWRITE_TAC[INTERVAL_OPEN_SUBSET_CLOSED; CLOSED_INTERVAL]; ALL_TAC] THEN REWRITE_TAC[SUBSET; closure; IN_UNION] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(~b ==> c) ==> b \/ c`) THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LIMPT_SEQUENTIAL] THEN ABBREV_TAC `(c:real^N) = inv(&2) % (a + b)` THEN EXISTS_TAC `\n. (x:real^N) + inv(&n + &1) % (c - x)` THEN CONJ_TAC THENL [X_GEN_TAC `n:num` THEN REWRITE_TAC[IN_DELETE] THEN REWRITE_TAC[VECTOR_ARITH `x + a = x <=> a = vec 0`] THEN REWRITE_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0] THEN REWRITE_TAC[VECTOR_SUB_EQ; REAL_ARITH `~(&n + &1 = &0)`] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[OPEN_INTERVAL_MIDPOINT]] THEN REWRITE_TAC[VECTOR_ARITH `x + a % (y - x) = a % y + (&1 - a) % x`] THEN MATCH_MP_TAC OPEN_CLOSED_INTERVAL_CONVEX THEN CONJ_TAC THENL [ASM_MESON_TAC[OPEN_INTERVAL_MIDPOINT]; ALL_TAC] THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < &n + &1`] THEN MATCH_MP_TAC REAL_INV_LE_1 THEN REAL_ARITH_TAC; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [VECTOR_ARITH `x:real^N = x + &0 % (c - x)`] THEN MATCH_MP_TAC LIM_ADD THEN REWRITE_TAC[LIM_CONST] THEN MATCH_MP_TAC LIM_VMUL THEN REWRITE_TAC[LIM_CONST] THEN REWRITE_TAC[LIM_SEQUENTIALLY; o_THM; DIST_LIFT; REAL_SUB_RZERO] THEN X_GEN_TAC `e:real` THEN GEN_REWRITE_TAC LAND_CONV [REAL_ARCH_INV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN REWRITE_TAC[REAL_ABS_INV] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv(&N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV2 THEN UNDISCH_TAC `N:num <= n` THEN UNDISCH_TAC `~(N = 0)` THEN REWRITE_TAC[GSYM LT_NZ; GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_LT] THEN REAL_ARITH_TAC);;
let CLOSURE_INTERVAL = 
prove (`(!a b. closure(interval[a,b]) = interval[a,b]) /\ (!a b. closure(interval(a,b)) = if interval(a,b) = {} then {} else interval[a,b])`,
SIMP_TAC[CLOSURE_CLOSED; CLOSED_INTERVAL] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[CLOSURE_OPEN_INTERVAL; CLOSURE_EMPTY]);;
let BOUNDED_SUBSET_OPEN_INTERVAL_SYMMETRIC = 
prove (`!s:real^N->bool. bounded s ==> ?a. s SUBSET interval(--a,a)`,
REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `B:real`] THEN STRIP_TAC THEN EXISTS_TAC `(lambda i. B + &1):real^N` THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; REAL_BOUNDS_LT; VECTOR_NEG_COMPONENT] THEN ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_ARITH `x <= y ==> a <= x ==> a < y + &1`]);;
let BOUNDED_SUBSET_OPEN_INTERVAL = 
prove (`!s:real^N->bool. bounded s ==> ?a b. s SUBSET interval(a,b)`,
let BOUNDED_SUBSET_CLOSED_INTERVAL_SYMMETRIC = 
prove (`!s:real^N->bool. bounded s ==> ?a. s SUBSET interval[--a,a]`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_SUBSET_OPEN_INTERVAL_SYMMETRIC) THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[IN_BALL; IN_INTERVAL; SUBSET; REAL_LT_IMP_LE]);;
let BOUNDED_SUBSET_CLOSED_INTERVAL = 
prove (`!s:real^N->bool. bounded s ==> ?a b. s SUBSET interval[a,b]`,
let FRONTIER_CLOSED_INTERVAL = 
prove (`!a b. frontier(interval[a,b]) = interval[a,b] DIFF interval(a,b)`,
let FRONTIER_OPEN_INTERVAL = 
prove (`!a b. frontier(interval(a,b)) = if interval(a,b) = {} then {} else interval[a,b] DIFF interval(a,b)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FRONTIER_EMPTY] THEN ASM_SIMP_TAC[frontier; CLOSURE_OPEN_INTERVAL; INTERIOR_OPEN; OPEN_INTERVAL]);;
let INTER_INTERVAL_MIXED_EQ_EMPTY = 
prove (`!a b c d:real^N. ~(interval(c,d) = {}) ==> (interval(a,b) INTER interval[c,d] = {} <=> interval(a,b) INTER interval(c,d) = {})`,
let INTERVAL_TRANSLATION = 
prove (`(!c a b. interval[c + a,c + b] = IMAGE (\x. c + x) (interval[a,b])) /\ (!c a b. interval(c + a,c + b) = IMAGE (\x. c + x) (interval(a,b)))`,
REWRITE_TAC[interval] THEN CONJ_TAC THEN GEOM_TRANSLATE_TAC[] THEN REWRITE_TAC[VECTOR_ADD_COMPONENT; REAL_LT_LADD; REAL_LE_LADD]);;
add_translation_invariants [CONJUNCT1 INTERVAL_TRANSLATION; CONJUNCT2 INTERVAL_TRANSLATION];;
let EMPTY_AS_INTERVAL = 
prove (`{} = interval[vec 1,vec 0]`,
SIMP_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTERVAL; VEC_COMPONENT] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `1`) THEN REWRITE_TAC[LE_REFL; DIMINDEX_GE_1] THEN REAL_ARITH_TAC);;
let UNIT_INTERVAL_NONEMPTY = 
prove (`~(interval[vec 0:real^N,vec 1] = {}) /\ ~(interval(vec 0:real^N,vec 1) = {})`,
let IMAGE_STRETCH_INTERVAL = 
prove (`!a b:real^N m. IMAGE (\x. lambda k. m(k) * x$k) (interval[a,b]) = if interval[a,b] = {} then {} else interval[(lambda k. min (m(k) * a$k) (m(k) * b$k)):real^N, (lambda k. max (m(k) * a$k) (m(k) * b$k))]`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[IMAGE_CLAUSES] THEN ASM_SIMP_TAC[EXTENSION; IN_IMAGE; CART_EQ; IN_INTERVAL; AND_FORALL_THM; TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`; LAMBDA_BETA; GSYM LAMBDA_SKOLEM] THEN X_GEN_TAC `x:real^N` THEN MATCH_MP_TAC(MESON[] `(!x. p x ==> (q x <=> r x)) ==> ((!x. p x ==> q x) <=> (!x. p x ==> r x))`) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INTERVAL_NE_EMPTY]) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `k:num` THEN ASM_CASES_TAC `1 <= k /\ k <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(m:num->real) k = &0` THENL [ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MAX_ACI; REAL_MIN_ACI] THEN ASM_MESON_TAC[REAL_LE_ANTISYM; REAL_LE_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_FIELD `~(m = &0) ==> (x = m * y <=> y = x / m)`] THEN REWRITE_TAC[UNWIND_THM2] THEN FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `~(z = &0) ==> &0 < z \/ &0 < --z`)) THENL [ALL_TAC; ONCE_REWRITE_TAC[GSYM REAL_LE_NEG2] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_ARITH `--(max a b) = min (--a) (--b)`; REAL_ARITH `--(min a b) = max (--a) (--b)`; real_div; GSYM REAL_MUL_RNEG; GSYM REAL_INV_NEG] THEN REWRITE_TAC[GSYM real_div]] THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN ASM_SIMP_TAC[real_min; real_max; REAL_LE_LMUL_EQ; REAL_LE_RMUL_EQ] THEN REAL_ARITH_TAC);;
let INTERVAL_IMAGE_STRETCH_INTERVAL = 
prove (`!a b:real^N m. ?u v:real^N. IMAGE (\x. lambda k. m k * x$k) (interval[a,b]) = interval[u,v]`,
REWRITE_TAC[IMAGE_STRETCH_INTERVAL] THEN MESON_TAC[EMPTY_AS_INTERVAL]);;
let CLOSED_INTERVAL_IMAGE_UNIT_INTERVAL = 
prove (`!a b:real^N. ~(interval[a,b] = {}) ==> interval[a,b] = IMAGE (\x:real^N. a + x) (IMAGE (\x. (lambda i. (b$i - a$i) * x$i)) (interval[vec 0:real^N,vec 1]))`,
REWRITE_TAC[INTERVAL_NE_EMPTY] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_STRETCH_INTERVAL; UNIT_INTERVAL_NONEMPTY] THEN REWRITE_TAC[GSYM INTERVAL_TRANSLATION] THEN REWRITE_TAC[EXTENSION; IN_INTERVAL] THEN SIMP_TAC[LAMBDA_BETA; VECTOR_ADD_COMPONENT; VEC_COMPONENT] THEN GEN_TAC THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_MUL_RID] THEN MATCH_MP_TAC(MESON[] `(!x. P x <=> Q x) ==> ((!x. P x) <=> (!x. Q x))`) THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `1 <= i /\ i <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let SUMS_INTERVALS = 
prove (`(!a b c d:real^N. ~(interval[a,b] = {}) /\ ~(interval[c,d] = {}) ==> {x + y | x IN interval[a,b] /\ y IN interval[c,d]} = interval[a+c,b+d]) /\ (!a b c d:real^N. ~(interval(a,b) = {}) /\ ~(interval(c,d) = {}) ==> {x + y | x IN interval(a,b) /\ y IN interval(c,d)} = interval(a+c,b+d))`,
CONJ_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[INTERVAL_NE_EMPTY] THEN STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_INTERVAL; IN_ELIM_THM] THEN REWRITE_TAC[TAUT `(a /\ b) /\ c <=> c /\ a /\ b`] THEN REWRITE_TAC[VECTOR_ARITH `x:real^N = y + z <=> z = x - y`] THEN REWRITE_TAC[UNWIND_THM2; VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT] THEN (X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC); DISCH_TAC THEN REWRITE_TAC[AND_FORALL_THM; GSYM LAMBDA_SKOLEM; TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN REWRITE_TAC[REAL_ARITH `((a <= y /\ y <= b) /\ c <= x - y /\ x - y <= d <=> max a (x - d) <= y /\ y <= min b (x - c)) /\ ((a < y /\ y < b) /\ c < x - y /\ x - y < d <=> max a (x - d) < y /\ y < min b (x - c))`] THEN REWRITE_TAC[GSYM REAL_LE_BETWEEN; GSYM REAL_LT_BETWEEN]] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC));;
let PCROSS_INTERVAL = 
prove (`!a b:real^M c d:real^N. interval[a,b] PCROSS interval[c,d] = interval[pastecart a c,pastecart b d]`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN REWRITE_TAC[EXTENSION; FORALL_PASTECART; IN_ELIM_PASTECART_THM] THEN SIMP_TAC[IN_INTERVAL; pastecart; LAMBDA_BETA; DIMINDEX_FINITE_SUM] THEN MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^N`] THEN EQ_TAC THEN STRIP_TAC THENL [X_GEN_TAC `i:num` THEN STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; CONJ_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC; FIRST_X_ASSUM(MP_TAC o SPEC `i + dimindex(:M)`) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_SUB] THENL [ASM_ARITH_TAC; DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC]]]);;
let OPEN_CONTAINS_INTERVAL,OPEN_CONTAINS_OPEN_INTERVAL = (CONJ_PAIR o prove) (`(!s:real^N->bool. open s <=> !x. x IN s ==> ?a b. x IN interval(a,b) /\ interval[a,b] SUBSET s) /\ (!s:real^N->bool. open s <=> !x. x IN s ==> ?a b. x IN interval(a,b) /\ interval(a,b) SUBSET s)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(q ==> r) /\ (r ==> p) /\ (p ==> q) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[SUBSET_TRANS; INTERVAL_OPEN_SUBSET_CLOSED]; DISCH_TAC THEN REWRITE_TAC[OPEN_CONTAINS_BALL] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN STRIP_TAC THEN MP_TAC(ISPEC `interval(a:real^N,b)` OPEN_CONTAINS_BALL) THEN REWRITE_TAC[OPEN_INTERVAL] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET_TRANS; INTERVAL_OPEN_SUBSET_CLOSED]; DISCH_TAC THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:real^N` o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `x - e / &(dimindex(:N)) % vec 1:real^N` THEN EXISTS_TAC `x + e / &(dimindex(:N)) % vec 1:real^N` THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `b SUBSET s ==> x IN i /\ j SUBSET b ==> x IN i /\ j SUBSET s`)) THEN SIMP_TAC[IN_INTERVAL; VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT; IN_CBALL; VEC_COMPONENT; VECTOR_ADD_COMPONENT; SUBSET; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `x - e < x /\ x < x + e <=> &0 < e`; REAL_ARITH `x - e <= y /\ y <= x + e <=> abs(x - y) <= e`] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; DIMINDEX_GE_1] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[GSYM VECTOR_SUB_COMPONENT] THEN DISCH_TAC THEN REWRITE_TAC[dist] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(1..dimindex(:N)) (\i. abs((x - y:real^N)$i))` THEN REWRITE_TAC[NORM_LE_L1] THEN MATCH_MP_TAC SUM_BOUND_GEN THEN ASM_SIMP_TAC[CARD_NUMSEG_1; IN_NUMSEG; FINITE_NUMSEG] THEN REWRITE_TAC[NUMSEG_EMPTY; NOT_LT; DIMINDEX_GE_1]]);;
let DIAMETER_INTERVAL = 
prove (`(!a b:real^N. diameter(interval[a,b]) = if interval[a,b] = {} then &0 else norm(b - a)) /\ (!a b:real^N. diameter(interval(a,b)) = if interval(a,b) = {} then &0 else norm(b - a))`,
REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `interval[a:real^N,b] = {}` THENL [ASM_MESON_TAC[INTERVAL_OPEN_SUBSET_CLOSED; SUBSET_EMPTY; DIAMETER_EMPTY]; ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN ASM_SIMP_TAC[DIAMETER_BOUNDED_BOUND; ENDS_IN_INTERVAL; BOUNDED_INTERVAL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `diameter(cball(inv(&2) % (a + b):real^N,norm(b - a) / &2))` THEN CONJ_TAC THENL [MATCH_MP_TAC DIAMETER_SUBSET THEN REWRITE_TAC[BOUNDED_CBALL] THEN REWRITE_TAC[SUBSET; IN_INTERVAL; IN_CBALL] THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[dist] THEN REWRITE_TAC[GSYM NORM_MUL; REAL_ARITH `x / &2 = abs(inv(&2)) * x`] THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT] THEN REAL_ARITH_TAC; REWRITE_TAC[DIAMETER_CBALL] THEN NORM_ARITH_TAC]; DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DIAMETER_EMPTY] THEN SUBGOAL_THEN `interval[a:real^N,b] = closure(interval(a,b))` SUBST_ALL_TAC THEN ASM_REWRITE_TAC[CLOSURE_INTERVAL] THEN ASM_MESON_TAC[DIAMETER_CLOSURE; BOUNDED_INTERVAL]]);;
(* ------------------------------------------------------------------------- *) (* Some special cases for intervals in R^1. *) (* ------------------------------------------------------------------------- *)
let INTERVAL_CASES_1 = 
prove (`!x:real^1. x IN interval[a,b] ==> x IN interval(a,b) \/ (x = a) \/ (x = b)`,
REWRITE_TAC[CART_EQ; IN_INTERVAL; FORALL_DIMINDEX_1] THEN REAL_ARITH_TAC);;
let IN_INTERVAL_1 = 
prove (`!a b x:real^1. (x IN interval[a,b] <=> drop a <= drop x /\ drop x <= drop b) /\ (x IN interval(a,b) <=> drop a < drop x /\ drop x < drop b)`,
REWRITE_TAC[IN_INTERVAL; drop; CONJ_ASSOC; DIMINDEX_1; LE_ANTISYM] THEN MESON_TAC[]);;
let INTERVAL_EQ_EMPTY_1 = 
prove (`!a b:real^1. (interval[a,b] = {} <=> drop b < drop a) /\ (interval(a,b) = {} <=> drop b <= drop a)`,
REWRITE_TAC[INTERVAL_EQ_EMPTY; drop; CONJ_ASSOC; DIMINDEX_1; LE_ANTISYM] THEN MESON_TAC[]);;
let INTERVAL_NE_EMPTY_1 = 
prove (`(!a b:real^1. ~(interval[a,b] = {}) <=> drop a <= drop b) /\ (!a b:real^1. ~(interval(a,b) = {}) <=> drop a < drop b)`,
REWRITE_TAC[INTERVAL_EQ_EMPTY_1] THEN REAL_ARITH_TAC);;
let SUBSET_INTERVAL_1 = 
prove (`!a b c d. (interval[a,b] SUBSET interval[c,d] <=> drop b < drop a \/ drop c <= drop a /\ drop a <= drop b /\ drop b <= drop d) /\ (interval[a,b] SUBSET interval(c,d) <=> drop b < drop a \/ drop c < drop a /\ drop a <= drop b /\ drop b < drop d) /\ (interval(a,b) SUBSET interval[c,d] <=> drop b <= drop a \/ drop c <= drop a /\ drop a < drop b /\ drop b <= drop d) /\ (interval(a,b) SUBSET interval(c,d) <=> drop b <= drop a \/ drop c <= drop a /\ drop a < drop b /\ drop b <= drop d)`,
REWRITE_TAC[SUBSET_INTERVAL; FORALL_1; DIMINDEX_1; drop] THEN REAL_ARITH_TAC);;
let EQ_INTERVAL_1 = 
prove (`!a b c d:real^1. (interval[a,b] = interval[c,d] <=> drop b < drop a /\ drop d < drop c \/ drop a = drop c /\ drop b = drop d)`,
REWRITE_TAC[SET_RULE `s = t <=> s SUBSET t /\ t SUBSET s`] THEN REWRITE_TAC[SUBSET_INTERVAL_1] THEN REAL_ARITH_TAC);;
let DISJOINT_INTERVAL_1 = 
prove (`!a b c d:real^1. (interval[a,b] INTER interval[c,d] = {} <=> drop b < drop a \/ drop d < drop c \/ drop b < drop c \/ drop d < drop a) /\ (interval[a,b] INTER interval(c,d) = {} <=> drop b < drop a \/ drop d <= drop c \/ drop b <= drop c \/ drop d <= drop a) /\ (interval(a,b) INTER interval[c,d] = {} <=> drop b <= drop a \/ drop d < drop c \/ drop b <= drop c \/ drop d <= drop a) /\ (interval(a,b) INTER interval(c,d) = {} <=> drop b <= drop a \/ drop d <= drop c \/ drop b <= drop c \/ drop d <= drop a)`,
REWRITE_TAC[DISJOINT_INTERVAL; CONJ_ASSOC; DIMINDEX_1; LE_ANTISYM; UNWIND_THM1; drop]);;
let OPEN_CLOSED_INTERVAL_1 = 
prove (`!a b:real^1. interval(a,b) = interval[a,b] DIFF {a,b}`,
REWRITE_TAC[EXTENSION; IN_INTERVAL_1; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM DROP_EQ] THEN REAL_ARITH_TAC);;
let CLOSED_OPEN_INTERVAL_1 = 
prove (`!a b:real^1. drop a <= drop b ==> interval[a,b] = interval(a,b) UNION {a,b}`,
REWRITE_TAC[EXTENSION; IN_INTERVAL_1; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM DROP_EQ] THEN REAL_ARITH_TAC);;
let BALL_1 = 
prove (`!x:real^1 r. cball(x,r) = interval[x - lift r,x + lift r] /\ ball(x,r) = interval(x - lift r,x + lift r)`,
REWRITE_TAC[EXTENSION; IN_BALL; IN_CBALL; IN_INTERVAL_1] THEN REWRITE_TAC[dist; NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP; DROP_ADD] THEN REAL_ARITH_TAC);;
let SPHERE_1 = 
prove (`!a:real^1 r. sphere(a,r) = if r < &0 then {} else {a - lift r,a + lift r}`,
REPEAT GEN_TAC THEN REWRITE_TAC[sphere] THEN COND_CASES_TAC THEN REWRITE_TAC[DIST_REAL; GSYM drop; FORALL_DROP] THEN REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[GSYM DROP_EQ; DROP_ADD; DROP_SUB; LIFT_DROP] THEN ASM_REAL_ARITH_TAC);;
let FINITE_SPHERE_1 = 
prove (`!a:real^1 r. FINITE(sphere(a,r))`,
REPEAT GEN_TAC THEN REWRITE_TAC[SPHERE_1] THEN MESON_TAC[FINITE_INSERT; FINITE_EMPTY]);;
let FINITE_INTERVAL_1 = 
prove (`(!a b. FINITE(interval[a,b]) <=> drop b <= drop a) /\ (!a b. FINITE(interval(a,b)) <=> drop b <= drop a)`,
REWRITE_TAC[OPEN_CLOSED_INTERVAL_1] THEN REWRITE_TAC[SET_RULE `s DIFF {a,b} = s DELETE a DELETE b`] THEN REWRITE_TAC[FINITE_DELETE] THEN REPEAT GEN_TAC THEN SUBGOAL_THEN `interval[a,b] = IMAGE lift {x | drop a <= x /\ x <= drop b}` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN CONJ_TAC THENL [MESON_TAC[LIFT_DROP]; ALL_TAC] THEN REWRITE_TAC[IN_INTERVAL_1; IN_ELIM_THM; LIFT_DROP]; SIMP_TAC[FINITE_IMAGE_INJ_EQ; LIFT_EQ; FINITE_REAL_INTERVAL]]);;
let BALL_INTERVAL = 
prove (`!x:real^1 e. ball(x,e) = interval(x - lift e,x + lift e)`,
REWRITE_TAC[EXTENSION; IN_BALL; IN_INTERVAL_1; DIST_REAL] THEN REWRITE_TAC[GSYM drop; DROP_SUB; DROP_ADD; LIFT_DROP] THEN REAL_ARITH_TAC);;
let CBALL_INTERVAL = 
prove (`!x:real^1 e. cball(x,e) = interval[x - lift e,x + lift e]`,
REWRITE_TAC[EXTENSION; IN_CBALL; IN_INTERVAL_1; DIST_REAL] THEN REWRITE_TAC[GSYM drop; DROP_SUB; DROP_ADD; LIFT_DROP] THEN REAL_ARITH_TAC);;
let BALL_INTERVAL_0 = 
prove (`!e. ball(vec 0:real^1,e) = interval(--lift e,lift e)`,
GEN_TAC THEN REWRITE_TAC[BALL_INTERVAL] THEN AP_TERM_TAC THEN BINOP_TAC THEN VECTOR_ARITH_TAC);;
let CBALL_INTERVAL_0 = 
prove (`!e. cball(vec 0:real^1,e) = interval[--lift e,lift e]`,
GEN_TAC THEN REWRITE_TAC[CBALL_INTERVAL] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN BINOP_TAC THEN VECTOR_ARITH_TAC);;
let INTER_INTERVAL_1 = 
prove (`!a b c d:real^1. interval[a,b] INTER interval[c,d] = interval[lift(max (drop a) (drop c)),lift(min (drop b) (drop d))]`,
REWRITE_TAC[EXTENSION; IN_INTER; IN_INTERVAL_1; real_max; real_min] THEN REPEAT GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[LIFT_DROP]) THEN ASM_REAL_ARITH_TAC);;
let CLOSED_DIFF_OPEN_INTERVAL_1 = 
prove (`!a b:real^1. interval[a,b] DIFF interval(a,b) = if interval[a,b] = {} then {} else {a,b}`,
REWRITE_TAC[EXTENSION; IN_DIFF; INTERVAL_EQ_EMPTY_1; IN_INTERVAL_1] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[GSYM DROP_EQ] THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Intervals in general, including infinite and mixtures of open and closed. *) (* ------------------------------------------------------------------------- *)
let is_interval = new_definition
  `is_interval(s:real^N->bool) <=>
        !a b x. a IN s /\ b IN s /\
                (!i. 1 <= i /\ i <= dimindex(:N)
                     ==> (a$i <= x$i /\ x$i <= b$i) \/
                         (b$i <= x$i /\ x$i <= a$i))
                ==> x IN s`;;
let IS_INTERVAL_INTERVAL = 
prove (`!a:real^N b. is_interval(interval (a,b)) /\ is_interval(interval [a,b])`,
let IS_INTERVAL_EMPTY = 
prove (`is_interval {}`,
REWRITE_TAC[is_interval; NOT_IN_EMPTY]);;
let IS_INTERVAL_UNIV = 
prove (`is_interval(UNIV:real^N->bool)`,
REWRITE_TAC[is_interval; IN_UNIV]);;
let IS_INTERVAL_TRANSLATION_EQ = 
prove (`!a:real^N s. is_interval(IMAGE (\x. a + x) s) <=> is_interval s`,
REWRITE_TAC[is_interval] THEN GEOM_TRANSLATE_TAC[] THEN REWRITE_TAC[VECTOR_ADD_COMPONENT; REAL_LT_LADD; REAL_LE_LADD]);;
add_translation_invariants [IS_INTERVAL_TRANSLATION_EQ];;
let IS_INTERVAL_TRANSLATION = 
prove (`!s a:real^N. is_interval s ==> is_interval(IMAGE (\x. a + x) s)`,
let IS_INTERVAL_POINTWISE = 
prove (`!s:real^N->bool x. is_interval s /\ (!i. 1 <= i /\ i <= dimindex(:N) ==> ?a. a IN s /\ a$i = x$i) ==> x IN s`,
REWRITE_TAC[is_interval] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!n. ?y:real^N. (!i. 1 <= i /\ i <= n ==> y$i = (x:real^N)$i) /\ y IN s` MP_TAC THENL [INDUCT_TAC THEN REWRITE_TAC[ARITH_RULE `~(1 <= i /\ i <= 0)`] THENL [ASM_MESON_TAC[DIMINDEX_GE_1; LE_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `y:real^N`) THEN ASM_CASES_TAC `SUC n <= dimindex(:N)` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `z:real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(lambda i. if i <= n then (y:real^N)$i else (z:real^N)$i):real^N` THEN CONJ_TAC THENL [X_GEN_TAC `i:num` THEN STRIP_TAC THEN SUBGOAL_THEN `i <= dimindex(:N)` ASSUME_TAC THENL [ASM_ARITH_TAC; ASM_SIMP_TAC[LAMBDA_BETA]] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `i = SUC n` (fun th -> ASM_REWRITE_TAC[th]) THEN ASM_ARITH_TAC; FIRST_X_ASSUM(ASSUME_TAC o CONJUNCT2) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`y:real^N`; `z:real^N`] THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN REAL_ARITH_TAC]; EXISTS_TAC `y:real^N` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `y:real^N = x` (fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[CART_EQ] THEN ASM_MESON_TAC[ARITH_RULE `i <= N /\ ~(SUC n <= N) ==> i <= n`]]; DISCH_THEN(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[GSYM CART_EQ] THEN MESON_TAC[]]);;
let IS_INTERVAL_COMPACT = 
prove (`!s:real^N->bool. is_interval s /\ compact s <=> ?a b. s = interval[a,b]`,
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[IS_INTERVAL_INTERVAL; COMPACT_INTERVAL] THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_MESON_TAC[EMPTY_AS_INTERVAL]; ALL_TAC] THEN EXISTS_TAC `(lambda i. inf { (x:real^N)$i | x IN s}):real^N` THEN EXISTS_TAC `(lambda i. sup { (x:real^N)$i | x IN s}):real^N` THEN SIMP_TAC[EXTENSION; IN_INTERVAL; LAMBDA_BETA] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MP_TAC(ISPEC `{ (x:real^N)$i | x IN s}` INF) THEN MP_TAC(ISPEC `{ (x:real^N)$i | x IN s}` SUP) THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[bounded] THEN ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_LE_TRANS; MEMBER_NOT_EMPTY; REAL_ARITH `abs(x) <= B ==> --B <= x /\ x <= B`]; DISCH_TAC THEN MATCH_MP_TAC IS_INTERVAL_POINTWISE THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN SUBGOAL_THEN `?a b:real^N. a IN s /\ b IN s /\ a$i <= (x:real^N)$i /\ x$i <= b$i` STRIP_ASSUME_TAC THENL [MP_TAC(ISPECL [`\x:real^N. x$i`; `s:real^N->bool`] CONTINUOUS_ATTAINS_INF) THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT; o_DEF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN MP_TAC(ISPECL [`\x:real^N. x$i`; `s:real^N->bool`] CONTINUOUS_ATTAINS_SUP) THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT; o_DEF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `inf {(x:real^N)$i | x IN s}` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_LE_INF THEN ASM SET_TAC[]; EXISTS_TAC `sup {(x:real^N)$i | x IN s}` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_SUP_LE THEN ASM SET_TAC[]]; EXISTS_TAC `(lambda j. if j = i then (x:real^N)$i else (a:real^N)$j):real^N` THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[is_interval]) THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `(lambda j. if j = i then (b:real^N)$i else (a:real^N)$j):real^N`] THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[is_interval]) THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `b:real^N`] THEN ASM_SIMP_TAC[LAMBDA_BETA]; ALL_TAC] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]]);;
let IS_INTERVAL_1 = 
prove (`!s:real^1->bool. is_interval s <=> !a b x. a IN s /\ b IN s /\ drop a <= drop x /\ drop x <= drop b ==> x IN s`,
REWRITE_TAC[is_interval; DIMINDEX_1; FORALL_1; GSYM drop] THEN REWRITE_TAC[FORALL_LIFT; LIFT_DROP] THEN MESON_TAC[]);;
let IS_INTERVAL_1_CASES = 
prove (`!s:real^1->bool. is_interval s <=> s = {} \/ s = (:real^1) \/ (?a. s = {x | a < drop x}) \/ (?a. s = {x | a <= drop x}) \/ (?b. s = {x | drop x <= b}) \/ (?b. s = {x | drop x < b}) \/ (?a b. s = {x | a < drop x /\ drop x < b}) \/ (?a b. s = {x | a < drop x /\ drop x <= b}) \/ (?a b. s = {x | a <= drop x /\ drop x < b}) \/ (?a b. s = {x | a <= drop x /\ drop x <= b})`,
GEN_TAC THEN REWRITE_TAC[IS_INTERVAL_1] THEN EQ_TAC THENL [DISCH_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_UNIV; NOT_IN_EMPTY] THEN REAL_ARITH_TAC] THEN ASM_CASES_TAC `s:real^1->bool = {}` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPEC `IMAGE drop s` SUP) THEN MP_TAC(ISPEC `IMAGE drop s` INF) THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN ASM_CASES_TAC `?a. !x. x IN s ==> a <= drop x` THEN ASM_CASES_TAC `?b. !x. x IN s ==> drop x <= b` THEN ASM_REWRITE_TAC[] THENL [STRIP_TAC THEN STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`inf(IMAGE drop s) IN IMAGE drop s`; `sup(IMAGE drop s) IN IMAGE drop s`] THENL [REPLICATE_TAC 8 DISJ2_TAC; REPLICATE_TAC 7 DISJ2_TAC THEN DISJ1_TAC; REPLICATE_TAC 6 DISJ2_TAC THEN DISJ1_TAC; REPLICATE_TAC 5 DISJ2_TAC THEN DISJ1_TAC] THEN MAP_EVERY EXISTS_TAC [`inf(IMAGE drop s)`; `sup(IMAGE drop s)`]; STRIP_TAC THEN ASM_CASES_TAC `inf(IMAGE drop s) IN IMAGE drop s` THENL [REPLICATE_TAC 2 DISJ2_TAC THEN DISJ1_TAC; DISJ2_TAC THEN DISJ1_TAC] THEN EXISTS_TAC `inf(IMAGE drop s)`; STRIP_TAC THEN ASM_CASES_TAC `sup(IMAGE drop s) IN IMAGE drop s` THENL [REPLICATE_TAC 3 DISJ2_TAC THEN DISJ1_TAC; REPLICATE_TAC 4 DISJ2_TAC THEN DISJ1_TAC] THEN EXISTS_TAC `sup(IMAGE drop s)`; DISJ1_TAC] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_IMAGE]) THEN REWRITE_TAC[GSYM REAL_NOT_LE] THEN ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_TOTAL; REAL_LE_ANTISYM]);;
let IS_INTERVAL_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. is_interval s /\ is_interval t ==> is_interval(s PCROSS t)`,
REWRITE_TAC[is_interval; DIMINDEX_FINITE_SUM] THEN REWRITE_TAC[FORALL_PASTECART; PASTECART_IN_PCROSS] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(MESON[] `(!a b a' b' x x'. P a b x /\ Q a' b' x' ==> R a b x a' b' x') ==> (!a b x. P a b x) /\ (!a' b' x'. Q a' b' x') ==> (!a a' b b' x x'. R a b x a' b' x')`) THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_SIMP_TAC[pastecart; LAMBDA_BETA; DIMINDEX_FINITE_SUM; ARITH_RULE `x:num <= m ==> x <= m + n`]; FIRST_X_ASSUM(MP_TAC o SPEC `dimindex(:M) + i`) THEN ASM_SIMP_TAC[pastecart; LAMBDA_BETA; DIMINDEX_FINITE_SUM; ARITH_RULE `x:num <= n ==> m + x <= m + n`; ARITH_RULE `1 <= x ==> 1 <= m + x`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD_SUB2] THEN ASM_ARITH_TAC]);;
let IS_INTERVAL_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. is_interval(s PCROSS t) <=> s = {} \/ t = {} \/ is_interval s /\ is_interval t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; IS_INTERVAL_EMPTY] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[PCROSS_EMPTY; IS_INTERVAL_EMPTY] THEN EQ_TAC THEN REWRITE_TAC[IS_INTERVAL_PCROSS] THEN REWRITE_TAC[is_interval] THEN REWRITE_TAC[FORALL_PASTECART; PASTECART_IN_PCROSS] THEN STRIP_TAC THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`a:real^M`; `b:real^M`; `x:real^M`] THEN STRIP_TAC THEN UNDISCH_TAC `~(t:real^N->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `y:real^N`) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`a:real^M`; `y:real^N`; `b:real^M`; `y:real^N`; `x:real^M`; `y:real^N`]); MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`; `x:real^N`] THEN STRIP_TAC THEN UNDISCH_TAC `~(s:real^M->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `w:real^M`) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`w:real^M`; `a:real^N`; `w:real^M`; `b:real^N`; `w:real^M`; `x:real^N`])] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN SIMP_TAC[pastecart; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN ASM_MESON_TAC[DIMINDEX_FINITE_SUM; ARITH_RULE `1 <= i /\ i <= m + n /\ ~(i <= m) ==> 1 <= i - m /\ i - m <= n`]);;
let IS_INTERVAL_INTER = 
prove (`!s t:real^N->bool. is_interval s /\ is_interval t ==> is_interval(s INTER t)`,
REWRITE_TAC[is_interval; IN_INTER] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`; `x:real^N`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `b:real^N`] THEN ASM_REWRITE_TAC[]);;
let INTERVAL_SUBSET_IS_INTERVAL = 
prove (`!s a b:real^N. is_interval s ==> (interval[a,b] SUBSET s <=> interval[a,b] = {} \/ a IN s /\ b IN s)`,
REWRITE_TAC[is_interval] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `interval[a:real^N,b] = {}` THEN ASM_REWRITE_TAC[EMPTY_SUBSET] THEN EQ_TAC THENL [ASM_MESON_TAC[ENDS_IN_INTERVAL; SUBSET]; ALL_TAC] THEN REWRITE_TAC[SUBSET; IN_INTERVAL] THEN ASM_MESON_TAC[]);;
let INTERVAL_CONTAINS_COMPACT_NEIGHBOURHOOD = 
prove (`!s x:real^N. is_interval s /\ x IN s ==> ?a b d. &0 < d /\ x IN interval[a,b] /\ interval[a,b] SUBSET s /\ ball(x,d) INTER s SUBSET interval[a,b]`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INTERVAL_SUBSET_IS_INTERVAL] THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?a. (?y. y IN s /\ y$i = a) /\ (a < x$i \/ a = (x:real^N)$i /\ !y:real^N. y IN s ==> a <= y$i)` MP_TAC THENL [ASM_MESON_TAC[REAL_NOT_LT]; REWRITE_TAC[LAMBDA_SKOLEM]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?b. (?y. y IN s /\ y$i = b) /\ (x$i < b \/ b = (x:real^N)$i /\ !y:real^N. y IN s ==> y$i <= b)` MP_TAC THENL [ASM_MESON_TAC[REAL_NOT_LT]; REWRITE_TAC[LAMBDA_SKOLEM]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N` THEN STRIP_TAC THEN EXISTS_TAC `min (inf (IMAGE (\i. if a$i < x$i then (x:real^N)$i - (a:real^N)$i else &1) (1..dimindex(:N)))) (inf (IMAGE (\i. if x$i < b$i then (b:real^N)$i - x$i else &1) (1..dimindex(:N))))` THEN REWRITE_TAC[REAL_LT_MIN; SUBSET; IN_BALL; IN_INTER] THEN SIMP_TAC[REAL_LT_INF_FINITE; IMAGE_EQ_EMPTY; FINITE_IMAGE; FINITE_NUMSEG; NUMSEG_EMPTY; GSYM NOT_LE; DIMINDEX_GE_1] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_INTERVAL] THEN REPEAT CONJ_TAC THENL [MESON_TAC[REAL_SUB_LT; REAL_LT_01]; MESON_TAC[REAL_SUB_LT; REAL_LT_01]; ASM_MESON_TAC[REAL_LE_LT]; DISJ2_TAC THEN CONJ_TAC THEN MATCH_MP_TAC IS_INTERVAL_POINTWISE THEN ASM_MESON_TAC[]; X_GEN_TAC `y:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN (COND_CASES_TAC THENL [REWRITE_TAC[dist]; ASM_MESON_TAC[]]) THEN DISCH_TAC THEN MP_TAC(ISPECL [`x - y:real^N`; `i:num`] COMPONENT_LE_NORM) THEN ASM_REWRITE_TAC[VECTOR_SUB_COMPONENT] THEN ASM_REAL_ARITH_TAC]);;
let IS_INTERVAL_SUMS = 
prove (`!s t:real^N->bool. is_interval s /\ is_interval t ==> is_interval {x + y | x IN s /\ y IN t}`,
REPEAT GEN_TAC THEN REWRITE_TAC[is_interval] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `a':real^N`; `b:real^N`; `b':real^N`; `y:real^N`] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPECL [`a:real^N`; `b:real^N`]) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPECL [`a':real^N`; `b':real^N`]) STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[IMP_IMP; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `z:real^N = x + y <=> y = z - x`] THEN REWRITE_TAC[UNWIND_THM2] THEN MATCH_MP_TAC(MESON[] `(?x. P x /\ Q(f x)) ==> (!x. P x ==> x IN s) /\ (!x. Q x ==> x IN t) ==> ?x. x IN s /\ f x IN t`) THEN REWRITE_TAC[VECTOR_SUB_COMPONENT; AND_FORALL_THM; TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN REWRITE_TAC[GSYM LAMBDA_SKOLEM] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[VECTOR_ADD_COMPONENT] THEN REWRITE_TAC[REAL_ARITH `c <= y - x /\ y - x <= d <=> y - d <= x /\ x <= y - c`] THEN REWRITE_TAC[REAL_ARITH `a <= x /\ x <= b \/ b <= x /\ x <= a <=> min a b <= x /\ x <= max a b`] THEN ONCE_REWRITE_TAC[TAUT `(p /\ q) /\ (r /\ s) <=> (p /\ r) /\ (q /\ s)`] THEN REWRITE_TAC[GSYM REAL_LE_MIN; GSYM REAL_MAX_LE] THEN REWRITE_TAC[GSYM REAL_LE_BETWEEN] THEN REAL_ARITH_TAC);;
let IS_INTERVAL_SING = 
prove (`!a:real^N. is_interval {a}`,
SIMP_TAC[is_interval; IN_SING; IMP_CONJ; CART_EQ; REAL_LE_ANTISYM]);;
let IS_INTERVAL_SCALING = 
prove (`!s:real^N->bool c. is_interval s ==> is_interval(IMAGE (\x. c % x) s)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THENL [ASM_REWRITE_TAC[VECTOR_MUL_LZERO] THEN SUBGOAL_THEN `IMAGE ((\x. vec 0):real^N->real^N) s = {} \/ IMAGE ((\x. vec 0):real^N->real^N) s = {vec 0}` STRIP_ASSUME_TAC THENL [SET_TAC[]; ASM_REWRITE_TAC[IS_INTERVAL_EMPTY]; ASM_REWRITE_TAC[IS_INTERVAL_SING]]; REWRITE_TAC[is_interval; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN GEN_REWRITE_TAC (BINOP_CONV o REDEPTH_CONV) [RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; VECTOR_MUL_COMPONENT] THEN MAP_EVERY (fun t -> MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC t) [`a:real^N`; `b:real^N`] THEN DISCH_THEN(fun th -> X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN MP_TAC(SPEC `inv(c) % x:real^N` th)) THEN ASM_REWRITE_TAC[VECTOR_MUL_COMPONENT; IN_IMAGE] THEN ANTS_TAC THENL [X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `~(c = &0) ==> &0 < c \/ &0 < --c`)) THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_LE_NEG2] THEN ASM_SIMP_TAC[GSYM REAL_MUL_RNEG; GSYM REAL_LE_RDIV_EQ; GSYM REAL_LE_LDIV_EQ] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REAL_ARITH_TAC; DISCH_TAC THEN EXISTS_TAC `inv c % x:real^N` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; VECTOR_MUL_LID]]]);;
let IS_INTERVAL_SCALING_EQ = 
prove (`!s:real^N->bool c. is_interval(IMAGE (\x. c % x) s) <=> c = &0 \/ is_interval s`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THENL [ASM_REWRITE_TAC[VECTOR_MUL_LZERO] THEN SUBGOAL_THEN `IMAGE ((\x. vec 0):real^N->real^N) s = {} \/ IMAGE ((\x. vec 0):real^N->real^N) s = {vec 0}` STRIP_ASSUME_TAC THENL [SET_TAC[]; ASM_REWRITE_TAC[IS_INTERVAL_EMPTY]; ASM_REWRITE_TAC[IS_INTERVAL_SING]]; ASM_REWRITE_TAC[] THEN EQ_TAC THEN REWRITE_TAC[IS_INTERVAL_SCALING] THEN DISCH_THEN(MP_TAC o SPEC `inv c:real` o MATCH_MP IS_INTERVAL_SCALING) THEN ASM_SIMP_TAC[GSYM IMAGE_o; VECTOR_MUL_ASSOC; o_DEF; REAL_MUL_LINV; VECTOR_MUL_LID; IMAGE_ID]]);;
let lemma = 
prove (`!c. &0 < c ==> !s:real^N->bool. is_interval(IMAGE (\x. c % x) s) <=> is_interval s`,
SIMP_TAC[IS_INTERVAL_SCALING_EQ; REAL_LT_IMP_NZ]) in add_scaling_theorems [lemma];;
(* ------------------------------------------------------------------------- *) (* Line segments, with same open/closed overloading as for intervals. *) (* ------------------------------------------------------------------------- *)
let closed_segment = define
 `closed_segment[a,b] = {(&1 - u) % a + u % b | &0 <= u /\ u <= &1}`;;
let open_segment = new_definition
 `open_segment(a,b) = closed_segment[a,b] DIFF {a,b}`;;
let OPEN_SEGMENT_ALT = 
prove (`!a b:real^N. ~(a = b) ==> open_segment(a,b) = {(&1 - u) % a + u % b | &0 < u /\ u < &1}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[open_segment; closed_segment] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `u:real` THEN ASM_CASES_TAC `x:real^N = (&1 - u) % a + u % b` THEN ASM_REWRITE_TAC[REAL_LE_LT; VECTOR_ARITH `(&1 - u) % a + u % b = a <=> u % (b - a) = vec 0`; VECTOR_ARITH `(&1 - u) % a + u % b = b <=> (&1 - u) % (b - a) = vec 0`; VECTOR_MUL_EQ_0; REAL_SUB_0; VECTOR_SUB_EQ] THEN REAL_ARITH_TAC);;
make_overloadable "segment" `:A`;; overload_interface("segment",`open_segment`);; overload_interface("segment",`closed_segment`);;
let segment = 
prove (`segment[a,b] = {(&1 - u) % a + u % b | &0 <= u /\ u <= &1} /\ segment(a,b) = segment[a,b] DIFF {a,b}`,
REWRITE_TAC[open_segment; closed_segment]);;
let SEGMENT_REFL = 
prove (`(!a. segment[a,a] = {a}) /\ (!a. segment(a,a) = {})`,
REWRITE_TAC[segment; VECTOR_ARITH `(&1 - u) % a + u % a = a`] THEN SET_TAC[REAL_POS]);;
let IN_SEGMENT = 
prove (`!a b x:real^N. (x IN segment[a,b] <=> ?u. &0 <= u /\ u <= &1 /\ x = (&1 - u) % a + u % b) /\ (x IN segment(a,b) <=> ~(a = b) /\ ?u. &0 < u /\ u < &1 /\ x = (&1 - u) % a + u % b)`,
REPEAT STRIP_TAC THENL [REWRITE_TAC[segment; IN_ELIM_THM; CONJ_ASSOC]; ALL_TAC] THEN ASM_CASES_TAC `a:real^N = b` THEN ASM_REWRITE_TAC[SEGMENT_REFL; NOT_IN_EMPTY] THEN ASM_SIMP_TAC[OPEN_SEGMENT_ALT; IN_ELIM_THM; CONJ_ASSOC]);;
let SEGMENT_SYM = 
prove (`(!a b:real^N. segment[a,b] = segment[b,a]) /\ (!a b:real^N. segment(a,b) = segment(b,a))`,
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN SIMP_TAC[open_segment] THEN CONJ_TAC THENL [ALL_TAC; SIMP_TAC[INSERT_AC]] THEN REWRITE_TAC[EXTENSION; IN_SEGMENT] THEN REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `u:real`) THEN EXISTS_TAC `&1 - u` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN TRY ASM_ARITH_TAC THEN VECTOR_ARITH_TAC);;
let ENDS_IN_SEGMENT = 
prove (`!a b. a IN segment[a,b] /\ b IN segment[a,b]`,
REPEAT STRIP_TAC THEN REWRITE_TAC[segment; IN_ELIM_THM] THENL [EXISTS_TAC `&0`; EXISTS_TAC `&1`] THEN (CONJ_TAC THENL [REAL_ARITH_TAC; VECTOR_ARITH_TAC]));;
let ENDS_NOT_IN_SEGMENT = 
prove (`!a b. ~(a IN segment(a,b)) /\ ~(b IN segment(a,b))`,
REWRITE_TAC[open_segment] THEN SET_TAC[]);;
let SEGMENT_CLOSED_OPEN = 
prove (`!a b. segment[a,b] = segment(a,b) UNION {a,b}`,
REPEAT GEN_TAC THEN REWRITE_TAC[open_segment] THEN MATCH_MP_TAC(SET_RULE `a IN s /\ b IN s ==> s = (s DIFF {a,b}) UNION {a,b}`) THEN REWRITE_TAC[ENDS_IN_SEGMENT]);;
let MIDPOINT_IN_SEGMENT = 
prove (`(!a b:real^N. midpoint(a,b) IN segment[a,b]) /\ (!a b:real^N. midpoint(a,b) IN segment(a,b) <=> ~(a = b))`,
REWRITE_TAC[IN_SEGMENT] THEN REPEAT STRIP_TAC THENL [ALL_TAC; ASM_CASES_TAC `a:real^N = b` THEN ASM_REWRITE_TAC[]] THEN EXISTS_TAC `&1 / &2` THEN REWRITE_TAC[midpoint] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN VECTOR_ARITH_TAC);;
let BETWEEN_IN_SEGMENT = 
prove (`!x a b:real^N. between x (a,b) <=> x IN segment[a,b]`,
REPEAT GEN_TAC THEN REWRITE_TAC[between] THEN ASM_CASES_TAC `a:real^N = b` THEN ASM_REWRITE_TAC[SEGMENT_REFL; IN_SING] THENL [NORM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[segment; IN_ELIM_THM] THEN EQ_TAC THENL [DISCH_THEN(ASSUME_TAC o SYM) THEN EXISTS_TAC `dist(a:real^N,x) / dist(a,b)` THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; DIST_POS_LT] THEN CONJ_TAC THENL [FIRST_ASSUM(SUBST1_TAC o SYM) THEN NORM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC VECTOR_MUL_LCANCEL_IMP THEN EXISTS_TAC `dist(a:real^N,b)` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; VECTOR_ADD_LDISTRIB; REAL_SUB_LDISTRIB; REAL_DIV_LMUL; DIST_EQ_0] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DIST_TRIANGLE_EQ] o SYM) THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[dist; REAL_ARITH `(a + b) * &1 - a = b`] THEN VECTOR_ARITH_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[dist] THEN REWRITE_TAC[VECTOR_ARITH `a - ((&1 - u) % a + u % b) = u % (a - b)`; VECTOR_ARITH `((&1 - u) % a + u % b) - b = (&1 - u) % (a - b)`; NORM_MUL; GSYM REAL_ADD_LDISTRIB] THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD]);;
let IN_SEGMENT_COMPONENT = 
prove (`!a b x:real^N i. x IN segment[a,b] /\ 1 <= i /\ i <= dimindex(:N) ==> min (a$i) (b$i) <= x$i /\ x$i <= max (a$i) (b$i)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SEGMENT]) THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `t:real` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN SIMP_TAC[REAL_ARITH `c <= u * a + t * b <=> u * --a + t * --b <= --c`] THEN MATCH_MP_TAC REAL_CONVEX_BOUND_LE THEN ASM_REAL_ARITH_TAC);;
let SEGMENT_1 = 
prove (`(!a b. segment[a,b] = if drop a <= drop b then interval[a,b] else interval[b,a]) /\ (!a b. segment(a,b) = if drop a <= drop b then interval(a,b) else interval(b,a))`,
CONJ_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[open_segment] THEN COND_CASES_TAC THEN REWRITE_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY; EXTENSION; GSYM BETWEEN_IN_SEGMENT; between; IN_INTERVAL_1] THEN REWRITE_TAC[GSYM DROP_EQ; DIST_REAL; GSYM drop] THEN ASM_REAL_ARITH_TAC);;
let OPEN_SEGMENT_1 = 
prove (`!a b:real^1. open(segment(a,b))`,
REPEAT GEN_TAC THEN REWRITE_TAC[SEGMENT_1] THEN COND_CASES_TAC THEN REWRITE_TAC[OPEN_INTERVAL]);;
let SEGMENT_TRANSLATION = 
prove (`(!c a b. segment[c + a,c + b] = IMAGE (\x. c + x) (segment[a,b])) /\ (!c a b. segment(c + a,c + b) = IMAGE (\x. c + x) (segment(a,b)))`,
REWRITE_TAC[EXTENSION; IN_SEGMENT; IN_IMAGE] THEN REWRITE_TAC[VECTOR_ARITH `(&1 - u) % (c + a) + u % (c + b) = c + (&1 - u) % a + u % b`] THEN REWRITE_TAC[VECTOR_ARITH `c + a:real^N = c + b <=> a = b`] THEN MESON_TAC[]);;
add_translation_invariants [CONJUNCT1 SEGMENT_TRANSLATION; CONJUNCT2 SEGMENT_TRANSLATION];;
let CLOSED_SEGMENT_LINEAR_IMAGE = 
prove (`!f a b. linear f ==> segment[f a,f b] = IMAGE f (segment[a,b])`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_SEGMENT] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_CMUL th)]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_ADD th)]) THEN MESON_TAC[]);;
add_linear_invariants [CLOSED_SEGMENT_LINEAR_IMAGE];;
let OPEN_SEGMENT_LINEAR_IMAGE = 
prove (`!f:real^M->real^N a b. linear f /\ (!x y. f x = f y ==> x = y) ==> segment(f a,f b) = IMAGE f (segment(a,b))`,
REWRITE_TAC[open_segment] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [OPEN_SEGMENT_LINEAR_IMAGE];;
let IN_OPEN_SEGMENT = 
prove (`!a b x:real^N. x IN segment(a,b) <=> x IN segment[a,b] /\ ~(x = a) /\ ~(x = b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[open_segment; IN_DIFF] THEN SET_TAC[]);;
let IN_OPEN_SEGMENT_ALT = 
prove (`!a b x:real^N. x IN segment(a,b) <=> x IN segment[a,b] /\ ~(x = a) /\ ~(x = b) /\ ~(a = b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = b` THEN ASM_REWRITE_TAC[SEGMENT_REFL; IN_SING; NOT_IN_EMPTY] THEN ASM_MESON_TAC[IN_OPEN_SEGMENT]);;
let COLLINEAR_DIST_IN_CLOSED_SEGMENT = 
prove (`!a b x. collinear {x,a,b} /\ dist(x,a) <= dist(a,b) /\ dist(x,b) <= dist(a,b) ==> x IN segment[a,b]`,
let COLLINEAR_DIST_IN_OPEN_SEGMENT = 
prove (`!a b x. collinear {x,a,b} /\ dist(x,a) < dist(a,b) /\ dist(x,b) < dist(a,b) ==> x IN segment(a,b)`,
let SEGMENT_SCALAR_MULTIPLE = 
prove (`(!a b v. segment[a % v,b % v] = {x % v:real^N | a <= x /\ x <= b \/ b <= x /\ x <= a}) /\ (!a b v. ~(v = vec 0) ==> segment(a % v,b % v) = {x % v:real^N | a < x /\ x < b \/ b < x /\ x < a})`,
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN REPEAT STRIP_TAC THENL [REPEAT GEN_TAC THEN MP_TAC(SPECL [`a % basis 1:real^1`; `b % basis 1:real^1`] (CONJUNCT1 SEGMENT_1)) THEN REWRITE_TAC[segment; VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_RDISTRIB] THEN REWRITE_TAC[SET_RULE `{f x % b | p x} = IMAGE (\a. a % b) {f x | p x}`] THEN DISCH_TAC THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `IMAGE drop`) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; DROP_CMUL] THEN SIMP_TAC[drop; BASIS_COMPONENT; DIMINDEX_GE_1; LE_REFL] THEN REWRITE_TAC[REAL_MUL_RID; IMAGE_ID] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN CONJ_TAC THENL [MESON_TAC[LIFT_DROP]; ALL_TAC] THEN REWRITE_TAC[FORALL_LIFT; LIFT_DROP] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_INTERVAL_1; LIFT_DROP] THEN SIMP_TAC[drop; VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_GE_1; LE_REFL; IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[open_segment] THEN ASM_SIMP_TAC[VECTOR_MUL_RCANCEL; SET_RULE `(!x y. x % v = y % v <=> x = y) ==> {x % v | P x} DIFF {a % v,b % v} = {x % v | P x /\ ~(x = a) /\ ~(x = b)}`] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REAL_ARITH_TAC]);;
let FINITE_INTER_COLLINEAR_OPEN_SEGMENTS = 
prove (`!a b c d:real^N. collinear{a,b,c} ==> (FINITE(segment(a,b) INTER segment(c,d)) <=> segment(a,b) INTER segment(c,d) = {})`,
REPEAT GEN_TAC THEN ABBREV_TAC `m:real^N = b - a` THEN POP_ASSUM MP_TAC THEN GEOM_NORMALIZE_TAC `m:real^N` THEN SIMP_TAC[VECTOR_SUB_EQ; SEGMENT_REFL; INTER_EMPTY; FINITE_EMPTY] THEN X_GEN_TAC `m:real^N` THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN POP_ASSUM MP_TAC THEN GEOM_ORIGIN_TAC `a:real^N` THEN GEOM_BASIS_MULTIPLE_TAC 1 `b:real^N` THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN SIMP_TAC[VECTOR_SUB_RZERO; NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN ASM_REWRITE_TAC[real_abs; REAL_MUL_RID] THEN DISCH_THEN SUBST_ALL_TAC THEN POP_ASSUM(K ALL_TAC) THEN ASM_CASES_TAC `collinear{vec 0:real^N,&1 % basis 1,y}` THENL [POP_ASSUM MP_TAC THEN SIMP_TAC[COLLINEAR_LEMMA_ALT; BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL] THEN MATCH_MP_TAC(TAUT `~a /\ (b ==> c ==> d) ==> a \/ b ==> a \/ c ==> d`) THEN CONJ_TAC THENL [SIMP_TAC[VECTOR_MUL_LID; BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN X_GEN_TAC `b:real` THEN DISCH_THEN SUBST_ALL_TAC THEN X_GEN_TAC `a:real` THEN DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RID] THEN SUBST1_TAC(VECTOR_ARITH `vec 0:real^N = &0 % basis 1`) THEN SIMP_TAC[SEGMENT_SCALAR_MULTIPLE; BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL; VECTOR_MUL_RCANCEL; IMAGE_EQ_EMPTY; FINITE_IMAGE_INJ_EQ; SET_RULE `(!x y. x % v = y % v <=> x = y) ==> {x % v | P x} INTER {x % v | Q x} = IMAGE (\x. x % v) {x | P x /\ Q x}`] THEN REWRITE_TAC[REAL_ARITH `(&0 < x /\ x < &1 \/ &1 < x /\ x < &0) /\ (b < x /\ x < a \/ a < x /\ x < b) <=> max (&0) (min a b) < x /\ x < min (&1) (max a b)`] THEN SIMP_TAC[FINITE_REAL_INTERVAL; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN SIMP_TAC[GSYM REAL_LT_BETWEEN; GSYM NOT_EXISTS_THM] THEN REAL_ARITH_TAC; DISCH_TAC THEN ASM_CASES_TAC `segment(vec 0:real^N,&1 % basis 1) INTER segment (x,y) = {}` THEN ASM_REWRITE_TAC[FINITE_EMPTY] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE_TAC[open_segment; IN_DIFF; NOT_IN_EMPTY; DE_MORGAN_THM; IN_INTER; IN_INSERT] THEN DISCH_THEN(X_CHOOSE_THEN `p:real^N` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `~collinear{vec 0:real^N,&1 % basis 1, y}` THEN RULE_ASSUM_TAC(REWRITE_RULE[VECTOR_MUL_LID]) THEN REWRITE_TAC[VECTOR_MUL_LID] THEN MATCH_MP_TAC COLLINEAR_SUBSET THEN EXISTS_TAC `{p,x:real^N, y, vec 0, basis 1}` THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN MP_TAC(ISPECL [`{y:real^N,vec 0,basis 1}`; `p:real^N`; `x:real^N`] COLLINEAR_TRIPLES) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[SET_RULE `{p,x,y} = {x,p,y}`] THEN MATCH_MP_TAC BETWEEN_IMP_COLLINEAR THEN ASM_REWRITE_TAC[BETWEEN_IN_SEGMENT]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM COLLINEAR_4_3] THEN ONCE_REWRITE_TAC[SET_RULE `{p,x,z,w} = {w,z,p,x}`] THEN SIMP_TAC[COLLINEAR_4_3; BASIS_NONZERO; DIMINDEX_GE_1; ARITH] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR o GEN_REWRITE_RULE I [GSYM BETWEEN_IN_SEGMENT])) THEN REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[INSERT_AC]]);;
let DIST_IN_CLOSED_SEGMENT,DIST_IN_OPEN_SEGMENT = (CONJ_PAIR o prove) (`(!a b x:real^N. x IN segment[a,b] ==> dist(x,a) <= dist(a,b) /\ dist(x,b) <= dist(a,b)) /\ (!a b x:real^N. x IN segment(a,b) ==> dist(x,a) < dist(a,b) /\ dist(x,b) < dist(a,b))`, SIMP_TAC[IN_SEGMENT; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM; dist; VECTOR_ARITH `((&1 - u) % a + u % b) - a:real^N = u % (b - a) /\ ((&1 - u) % a + u % b) - b = --(&1 - u) % (b - a)`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_NEG; NORM_SUB] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THENL [REWRITE_TAC[REAL_ARITH `x * y <= y <=> x * y <= &1 * y`] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[NORM_POS_LE] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_ARITH `x * y < y <=> x * y < &1 * y`] THEN ASM_SIMP_TAC[REAL_LT_RMUL_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN ASM_REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Limit component bounds. *) (* ------------------------------------------------------------------------- *)
let LIM_COMPONENT_UBOUND = 
prove (`!net:(A)net f (l:real^N) b k. ~(trivial_limit net) /\ (f --> l) net /\ eventually (\x. (f x)$k <= b) net /\ 1 <= k /\ k <= dimindex(:N) ==> l$k <= b`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`net:(A)net`; `f:A->real^N`; `{y:real^N | basis k dot y <= b}`; `l:real^N`] LIM_IN_CLOSED_SET) THEN ASM_SIMP_TAC[CLOSED_HALFSPACE_LE; IN_ELIM_THM; DOT_BASIS]);;
let LIM_COMPONENT_LBOUND = 
prove (`!net:(A)net f (l:real^N) b k. ~(trivial_limit net) /\ (f --> l) net /\ eventually (\x. b <= (f x)$k) net /\ 1 <= k /\ k <= dimindex(:N) ==> b <= l$k`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`net:(A)net`; `f:A->real^N`; `{y:real^N | b <= basis k dot y}`; `l:real^N`] LIM_IN_CLOSED_SET) THEN ASM_SIMP_TAC[REWRITE_RULE[real_ge] CLOSED_HALFSPACE_GE; IN_ELIM_THM; DOT_BASIS]);;
let LIM_COMPONENT_EQ = 
prove (`!net f:A->real^N i l b. (f --> l) net /\ 1 <= i /\ i <= dimindex(:N) /\ ~(trivial_limit net) /\ eventually (\x. f(x)$i = b) net ==> l$i = b`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; EVENTUALLY_AND] THEN MESON_TAC[LIM_COMPONENT_UBOUND; LIM_COMPONENT_LBOUND]);;
let LIM_COMPONENT_LE = 
prove (`!net:(A)net f:A->real^N g:A->real^N k l m. ~(trivial_limit net) /\ (f --> l) net /\ (g --> m) net /\ eventually (\x. (f x)$k <= (g x)$k) net /\ 1 <= k /\ k <= dimindex(:N) ==> l$k <= m$k`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN REWRITE_TAC[GSYM VECTOR_SUB_COMPONENT; LIM_COMPONENT_LBOUND] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b /\ a ==> c ==> d`] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_SUB) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; LIM_COMPONENT_LBOUND]);;
let LIM_DROP_LE = 
prove (`!net:(A)net f g l m. ~(trivial_limit net) /\ (f --> l) net /\ (g --> m) net /\ eventually (\x. drop(f x) <= drop(g x)) net ==> drop l <= drop m`,
REWRITE_TAC[drop] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `net:(A)net` LIM_COMPONENT_LE) THEN MAP_EVERY EXISTS_TAC [`f:A->real^1`; `g:A->real^1`] THEN ASM_REWRITE_TAC[DIMINDEX_1; LE_REFL]);;
let LIM_DROP_UBOUND = 
prove (`!net f:A->real^1 l b. (f --> l) net /\ ~(trivial_limit net) /\ eventually (\x. drop(f x) <= b) net ==> drop l <= b`,
SIMP_TAC[drop] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_COMPONENT_UBOUND THEN REWRITE_TAC[LE_REFL; DIMINDEX_1] THEN ASM_MESON_TAC[]);;
let LIM_DROP_LBOUND = 
prove (`!net f:A->real^1 l b. (f --> l) net /\ ~(trivial_limit net) /\ eventually (\x. b <= drop(f x)) net ==> b <= drop l`,
SIMP_TAC[drop] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_COMPONENT_LBOUND THEN REWRITE_TAC[LE_REFL; DIMINDEX_1] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Also extending closed bounds to closures. *) (* ------------------------------------------------------------------------- *)
let IMAGE_CLOSURE_SUBSET = 
prove (`!f (s:real^N->bool) (t:real^M->bool). f continuous_on closure s /\ closed t /\ IMAGE f s SUBSET t ==> IMAGE f (closure s) SUBSET t`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `closure s SUBSET {x | (f:real^N->real^M) x IN t}` MP_TAC THENL [MATCH_MP_TAC SUBSET_TRANS; SET_TAC []] THEN EXISTS_TAC `{x | x IN closure s /\ (f:real^N->real^M) x IN t}` THEN CONJ_TAC THENL [MATCH_MP_TAC CLOSURE_MINIMAL; SET_TAC[]] THEN ASM_SIMP_TAC[CONTINUOUS_CLOSED_PREIMAGE; CLOSED_CLOSURE] THEN MP_TAC (ISPEC `s:real^N->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[]);;
let CLOSURE_IMAGE_CLOSURE = 
prove (`!f:real^M->real^N s. f continuous_on closure s ==> closure(IMAGE f (closure s)) = closure(IMAGE f s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN SIMP_TAC[SUBSET_CLOSURE; IMAGE_SUBSET; CLOSURE_SUBSET] THEN SIMP_TAC[CLOSURE_MINIMAL_EQ; CLOSED_CLOSURE] THEN MATCH_MP_TAC IMAGE_CLOSURE_SUBSET THEN ASM_REWRITE_TAC[CLOSED_CLOSURE; CLOSURE_SUBSET]);;
let CONTINUOUS_ON_CLOSURE_NORM_LE = 
prove (`!f:real^N->real^M s x b. f continuous_on (closure s) /\ (!y. y IN s ==> norm(f y) <= b) /\ x IN (closure s) ==> norm(f x) <= b`,
REWRITE_TAC [GSYM IN_CBALL_0] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^N->real^M) (closure s) SUBSET cball(vec 0,b)` MP_TAC THENL [MATCH_MP_TAC IMAGE_CLOSURE_SUBSET; ASM SET_TAC []] THEN ASM_REWRITE_TAC [CLOSED_CBALL] THEN ASM SET_TAC []);;
let CONTINUOUS_ON_CLOSURE_COMPONENT_LE = 
prove (`!f:real^N->real^M s x b k. f continuous_on (closure s) /\ (!y. y IN s ==> (f y)$k <= b) /\ x IN (closure s) ==> (f x)$k <= b`,
REWRITE_TAC [GSYM IN_CBALL_0] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^N->real^M) (closure s) SUBSET {x | x$k <= b}` MP_TAC THENL [MATCH_MP_TAC IMAGE_CLOSURE_SUBSET; ASM SET_TAC []] THEN ASM_REWRITE_TAC[CLOSED_HALFSPACE_COMPONENT_LE] THEN ASM SET_TAC[]);;
let CONTINUOUS_ON_CLOSURE_COMPONENT_GE = 
prove (`!f:real^N->real^M s x b k. f continuous_on (closure s) /\ (!y. y IN s ==> b <= (f y)$k) /\ x IN (closure s) ==> b <= (f x)$k`,
REWRITE_TAC [GSYM IN_CBALL_0] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^N->real^M) (closure s) SUBSET {x | x$k >= b}` MP_TAC THENL [MATCH_MP_TAC IMAGE_CLOSURE_SUBSET; ASM SET_TAC [real_ge]] THEN ASM_REWRITE_TAC[CLOSED_HALFSPACE_COMPONENT_GE] THEN ASM SET_TAC[real_ge]);;
(* ------------------------------------------------------------------------- *) (* Limits relative to a union. *) (* ------------------------------------------------------------------------- *)
let LIM_WITHIN_UNION = 
prove (`(f --> l) (at x within (s UNION t)) <=> (f --> l) (at x within s) /\ (f --> l) (at x within t)`,
REWRITE_TAC[LIM_WITHIN; IN_UNION; AND_FORALL_THM] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN (CONJUNCTS_THEN2 (X_CHOOSE_TAC `d:real`) (X_CHOOSE_TAC `k:real`)) THEN EXISTS_TAC `min d k` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);;
let CONTINUOUS_ON_UNION = 
prove (`!f s t. closed s /\ closed t /\ f continuous_on s /\ f continuous_on t ==> f continuous_on (s UNION t)`,
let CONTINUOUS_ON_CASES = 
prove (`!P f g:real^M->real^N s t. closed s /\ closed t /\ f continuous_on s /\ g continuous_on t /\ (!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x) ==> (\x. if P x then f x else g x) continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_UNION THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_EQ THENL [EXISTS_TAC `f:real^M->real^N`; EXISTS_TAC `g:real^M->real^N`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let CONTINUOUS_ON_UNION_LOCAL = 
prove (`!f:real^M->real^N s. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ f continuous_on s /\ f continuous_on t ==> f continuous_on (s UNION t)`,
let CONTINUOUS_ON_CASES_LOCAL = 
prove (`!P f g:real^M->real^N s t. closed_in (subtopology euclidean (s UNION t)) s /\ closed_in (subtopology euclidean (s UNION t)) t /\ f continuous_on s /\ g continuous_on t /\ (!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x) ==> (\x. if P x then f x else g x) continuous_on (s UNION t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_UNION_LOCAL THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_EQ THENL [EXISTS_TAC `f:real^M->real^N`; EXISTS_TAC `g:real^M->real^N`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let CONTINUOUS_ON_CASES_LE = 
prove (`!f g:real^M->real^N h s a. f continuous_on {t | t IN s /\ h t <= a} /\ g continuous_on {t | t IN s /\ a <= h t} /\ (lift o h) continuous_on s /\ (!t. t IN s /\ h t = a ==> f t = g t) ==> (\t. if h t <= a then f(t) else g(t)) continuous_on s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `{t | t IN s /\ (h:real^M->real) t <= a} UNION {t | t IN s /\ a <= h t}` THEN CONJ_TAC THENL [ALL_TAC; SIMP_TAC[SUBSET; IN_UNION; IN_ELIM_THM; REAL_LE_TOTAL]] THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM; GSYM CONJ_ASSOC; REAL_LE_ANTISYM] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN CONJ_TAC THENL [SUBGOAL_THEN `{t | t IN s /\ (h:real^M->real) t <= a} = {t | t IN ({t | t IN s /\ h t <= a} UNION {t | t IN s /\ a <= h t}) /\ (lift o h) t IN {x | x$1 <= a}}` (fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THENL [REWRITE_TAC[GSYM drop; o_THM; IN_ELIM_THM; LIFT_DROP; EXTENSION; IN_UNION] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN ASM_REWRITE_TAC[CLOSED_HALFSPACE_COMPONENT_LE; ETA_AX] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN SET_TAC[]]; SUBGOAL_THEN `{t | t IN s /\ a <= (h:real^M->real) t} = {t | t IN ({t | t IN s /\ h t <= a} UNION {t | t IN s /\ a <= h t}) /\ (lift o h) t IN {x | x$1 >= a}}` (fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THENL [REWRITE_TAC[GSYM drop; o_THM; IN_ELIM_THM; LIFT_DROP; EXTENSION; IN_UNION] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN ASM_REWRITE_TAC[CLOSED_HALFSPACE_COMPONENT_GE; ETA_AX] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN SET_TAC[]]]);;
let CONTINUOUS_ON_CASES_1 = 
prove (`!f g:real^1->real^N s a. f continuous_on {t | t IN s /\ drop t <= a} /\ g continuous_on {t | t IN s /\ a <= drop t} /\ (lift a IN s ==> f(lift a) = g(lift a)) ==> (\t. if drop t <= a then f(t) else g(t)) continuous_on s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LE THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; CONTINUOUS_ON_ID] THEN REWRITE_TAC[GSYM LIFT_EQ; LIFT_DROP] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Componentwise limits and continuity. *) (* ------------------------------------------------------------------------- *)
let LIM_COMPONENTWISE_LIFT = 
prove (`!net f:A->real^N. (f --> l) net <=> !i. 1 <= i /\ i <= dimindex(:N) ==> ((\x. lift((f x)$i)) --> lift(l$i)) net`,
REPEAT GEN_TAC THEN REWRITE_TAC[tendsto] THEN EQ_TAC THENL [DISCH_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_SIMP_TAC[GSYM VECTOR_SUB_COMPONENT] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN GEN_TAC THEN REWRITE_TAC[dist] THEN MATCH_MP_TAC(REAL_ARITH `y <= x ==> x < e ==> y < e`) THEN ASM_SIMP_TAC[COMPONENT_LE_NORM; GSYM LIFT_SUB; NORM_LIFT; GSYM VECTOR_SUB_COMPONENT]; GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_FORALL_THM] THEN ONCE_REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[GSYM IN_NUMSEG; RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[FORALL_EVENTUALLY; FINITE_NUMSEG; NUMSEG_EMPTY; GSYM NOT_LE; DIMINDEX_GE_1] THEN REWRITE_TAC[DIST_LIFT; GSYM VECTOR_SUB_COMPONENT] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &(dimindex(:N))`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; DIMINDEX_GE_1] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN X_GEN_TAC `x:A` THEN SIMP_TAC[GSYM VECTOR_SUB_COMPONENT; dist] THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REAL_ARITH `s < e ==> n <= s ==> n < e`) THEN MATCH_MP_TAC SUM_BOUND_LT_GEN THEN ASM_SIMP_TAC[FINITE_NUMSEG; NUMSEG_EMPTY; GSYM NOT_LE; DIMINDEX_GE_1; CARD_NUMSEG_1; GSYM IN_NUMSEG]]);;
let CONTINUOUS_COMPONENTWISE_LIFT = 
prove (`!net f:A->real^N. f continuous net <=> !i. 1 <= i /\ i <= dimindex(:N) ==> (\x. lift((f x)$i)) continuous net`,
REWRITE_TAC[continuous; GSYM LIM_COMPONENTWISE_LIFT]);;
let CONTINUOUS_ON_COMPONENTWISE_LIFT = 
prove (`!f:real^M->real^N s. f continuous_on s <=> !i. 1 <= i /\ i <= dimindex(:N) ==> (\x. lift((f x)$i)) continuous_on s`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CONTINUOUS_COMPONENTWISE_LIFT] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Some more convenient intermediate-value theorem formulations. *) (* ------------------------------------------------------------------------- *)
let CONNECTED_IVT_HYPERPLANE = 
prove (`!s x y:real^N a b. connected s /\ x IN s /\ y IN s /\ a dot x <= b /\ b <= a dot y ==> ?z. z IN s /\ a dot z = b`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [connected]) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPECL [`{x:real^N | a dot x < b}`; `{x:real^N | a dot x > b}`]) THEN REWRITE_TAC[OPEN_HALFSPACE_LT; OPEN_HALFSPACE_GT] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY; SUBSET; IN_UNION; REAL_LT_LE; real_gt] THEN ASM_MESON_TAC[REAL_LE_TOTAL; REAL_LE_ANTISYM]);;
let CONNECTED_IVT_COMPONENT = 
prove (`!s x y:real^N a k. connected s /\ x IN s /\ y IN s /\ 1 <= k /\ k <= dimindex(:N) /\ x$k <= a /\ a <= y$k ==> ?z. z IN s /\ z$k = a`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`; `y:real^N`; `(basis k):real^N`; `a:real`] CONNECTED_IVT_HYPERPLANE) THEN ASM_SIMP_TAC[DOT_BASIS]);;
(* ------------------------------------------------------------------------- *) (* Also more convenient formulations of monotone convergence. *) (* ------------------------------------------------------------------------- *)
let BOUNDED_INCREASING_CONVERGENT = 
prove (`!s:num->real^1. bounded {s n | n IN (:num)} /\ (!n. drop(s n) <= drop(s(SUC n))) ==> ?l. (s --> l) sequentially`,
GEN_TAC THEN REWRITE_TAC[bounded; IN_ELIM_THM; ABS_DROP; LIM_SEQUENTIALLY; dist; DROP_SUB; IN_UNIV; GSYM EXISTS_DROP] THEN DISCH_TAC THEN MATCH_MP_TAC CONVERGENT_BOUNDED_MONOTONE THEN REWRITE_TAC[LEFT_EXISTS_AND_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISJ1_TAC THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_REWRITE_TAC[REAL_LE_TRANS; REAL_LE_REFL]);;
let BOUNDED_DECREASING_CONVERGENT = 
prove (`!s:num->real^1. bounded {s n | n IN (:num)} /\ (!n. drop(s(SUC n)) <= drop(s(n))) ==> ?l. (s --> l) sequentially`,
GEN_TAC THEN REWRITE_TAC[bounded; FORALL_IN_GSPEC] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC(ISPEC `\n. --((s:num->real^1) n)` BOUNDED_INCREASING_CONVERGENT) THEN ASM_SIMP_TAC[bounded; FORALL_IN_GSPEC; NORM_NEG; DROP_NEG; REAL_LE_NEG2] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [GSYM LIM_NEG_EQ] THEN REWRITE_TAC[VECTOR_NEG_NEG; ETA_AX] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Since we'll use some cardinality reasoning, add invariance theorems. *) (* ------------------------------------------------------------------------- *) let card_translation_invariants = (CONJUNCTS o prove) (`(!a (s:real^N->bool) (t:A->bool). IMAGE (\x. a + x) s =_c t <=> s =_c t) /\ (!a (s:A->bool) (t:real^N->bool). s =_c IMAGE (\x. a + x) t <=> s =_c t) /\ (!a (s:real^N->bool) (t:A->bool). IMAGE (\x. a + x) s <_c t <=> s <_c t) /\ (!a (s:A->bool) (t:real^N->bool). s <_c IMAGE (\x. a + x) t <=> s <_c t) /\ (!a (s:real^N->bool) (t:A->bool). IMAGE (\x. a + x) s <=_c t <=> s <=_c t) /\ (!a (s:A->bool) (t:real^N->bool). s <=_c IMAGE (\x. a + x) t <=> s <=_c t) /\ (!a (s:real^N->bool) (t:A->bool). IMAGE (\x. a + x) s >_c t <=> s >_c t) /\ (!a (s:A->bool) (t:real^N->bool). s >_c IMAGE (\x. a + x) t <=> s >_c t) /\ (!a (s:real^N->bool) (t:A->bool). IMAGE (\x. a + x) s >=_c t <=> s >=_c t) /\ (!a (s:A->bool) (t:real^N->bool). s >=_c IMAGE (\x. a + x) t <=> s >=_c t)`, REWRITE_TAC[gt_c; ge_c] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC CARD_EQ_CONG; MATCH_MP_TAC CARD_EQ_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LE_CONG; MATCH_MP_TAC CARD_LE_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LE_CONG; MATCH_MP_TAC CARD_LE_CONG] THEN REWRITE_TAC[CARD_EQ_REFL] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN SIMP_TAC[VECTOR_ARITH `a + x:real^N = a + y <=> x = y`]) in add_translation_invariants card_translation_invariants;; let card_linear_invariants = (CONJUNCTS o prove) (`(!(f:real^M->real^N) s (t:A->bool). linear f /\ (!x y. f x = f y ==> x = y) ==> (IMAGE f s =_c t <=> s =_c t)) /\ (!(f:real^M->real^N) (s:A->bool) t. linear f /\ (!x y. f x = f y ==> x = y) ==> (s =_c IMAGE f t <=> s =_c t)) /\ (!(f:real^M->real^N) s (t:A->bool). linear f /\ (!x y. f x = f y ==> x = y) ==> (IMAGE f s <_c t <=> s <_c t)) /\ (!(f:real^M->real^N) (s:A->bool) t. linear f /\ (!x y. f x = f y ==> x = y) ==> (s <_c IMAGE f t <=> s <_c t)) /\ (!(f:real^M->real^N) s (t:A->bool). linear f /\ (!x y. f x = f y ==> x = y) ==> (IMAGE f s <=_c t <=> s <=_c t)) /\ (!(f:real^M->real^N) (s:A->bool) t. linear f /\ (!x y. f x = f y ==> x = y) ==> (s <=_c IMAGE f t <=> s <=_c t)) /\ (!(f:real^M->real^N) s (t:A->bool). linear f /\ (!x y. f x = f y ==> x = y) ==> (IMAGE f s >_c t <=> s >_c t)) /\ (!(f:real^M->real^N) (s:A->bool) t. linear f /\ (!x y. f x = f y ==> x = y) ==> (s >_c IMAGE f t <=> s >_c t)) /\ (!(f:real^M->real^N) s (t:A->bool). linear f /\ (!x y. f x = f y ==> x = y) ==> (IMAGE f s >=_c t <=> s >=_c t)) /\ (!(f:real^M->real^N) (s:A->bool) t. linear f /\ (!x y. f x = f y ==> x = y) ==> (s >=_c IMAGE f t <=> s >=_c t))`, REWRITE_TAC[gt_c; ge_c] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC CARD_EQ_CONG; MATCH_MP_TAC CARD_EQ_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LE_CONG; MATCH_MP_TAC CARD_LE_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LT_CONG; MATCH_MP_TAC CARD_LE_CONG; MATCH_MP_TAC CARD_LE_CONG] THEN REWRITE_TAC[CARD_EQ_REFL] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM_MESON_TAC[]) in add_linear_invariants card_linear_invariants;; (* ------------------------------------------------------------------------- *) (* Basic homeomorphism definitions. *) (* ------------------------------------------------------------------------- *)
let homeomorphism = new_definition
  `homeomorphism (s,t) (f,g) <=>
     (!x. x IN s ==> (g(f(x)) = x)) /\ (IMAGE f s = t) /\ f continuous_on s /\
     (!y. y IN t ==> (f(g(y)) = y)) /\ (IMAGE g t = s) /\ g continuous_on t`;;
parse_as_infix("homeomorphic",(12,"right"));;
let homeomorphic = new_definition
  `s homeomorphic t <=> ?f g. homeomorphism (s,t) (f,g)`;;
let HOMEOMORPHISM = 
prove (`!s:real^M->bool t:real^N->bool f g. homeomorphism (s,t) (f,g) <=> f continuous_on s /\ IMAGE f s SUBSET t /\ g continuous_on t /\ IMAGE g t SUBSET s /\ (!x. x IN s ==> g (f x) = x) /\ (!y. y IN t ==> f (g y) = y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphism] THEN EQ_TAC THEN SIMP_TAC[] THEN SET_TAC[]);;
let HOMEOMORPHISM_OF_SUBSETS = 
prove (`!f g s t s' t'. homeomorphism (s,t) (f,g) /\ s' SUBSET s /\ t' SUBSET t /\ IMAGE f s' = t' ==> homeomorphism (s',t') (f,g)`,
REWRITE_TAC[homeomorphism] THEN REPEAT STRIP_TAC THEN TRY(MATCH_MP_TAC CONTINUOUS_ON_SUBSET) THEN ASM SET_TAC[]);;
let HOMEOMORPHISM_ID = 
prove (`!s:real^N->bool. homeomorphism (s,s) ((\x. x),(\x. x))`,
REWRITE_TAC[homeomorphism; IMAGE_ID; CONTINUOUS_ON_ID]);;
let HOMEOMORPHISM_I = 
prove (`!s:real^N->bool. homeomorphism (s,s) (I,I)`,
REWRITE_TAC[I_DEF; HOMEOMORPHISM_ID]);;
let HOMEOMORPHIC_REFL = 
prove (`!s:real^N->bool. s homeomorphic s`,
REWRITE_TAC[homeomorphic] THEN MESON_TAC[HOMEOMORPHISM_I]);;
let HOMEOMORPHISM_SYM = 
prove (`!f:real^M->real^N g s t. homeomorphism (s,t) (f,g) <=> homeomorphism (t,s) (g,f)`,
REWRITE_TAC[homeomorphism] THEN MESON_TAC[]);;
let HOMEOMORPHIC_SYM = 
prove (`!s t. s homeomorphic t <=> t homeomorphic s`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN CONV_TAC TAUT);;
let HOMEOMORPHISM_COMPOSE = 
prove (`!f:real^M->real^N g h:real^N->real^P k s t u. homeomorphism (s,t) (f,g) /\ homeomorphism (t,u) (h,k) ==> homeomorphism (s,u) (h o f,g o k)`,
SIMP_TAC[homeomorphism; CONTINUOUS_ON_COMPOSE; IMAGE_o; o_THM] THEN SET_TAC[]);;
let HOMEOMORPHIC_TRANS = 
prove (`!s:real^M->bool t:real^N->bool u:real^P->bool. s homeomorphic t /\ t homeomorphic u ==> s homeomorphic u`,
REWRITE_TAC[homeomorphic] THEN MESON_TAC[HOMEOMORPHISM_COMPOSE]);;
let HOMEOMORPHIC_IMP_CARD_EQ = 
prove (`!s:real^M->bool t:real^N->bool. s homeomorphic t ==> s =_c t`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism; eq_c] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;
let HOMEOMORPHIC_EMPTY = 
prove (`(!s. (s:real^N->bool) homeomorphic ({}:real^M->bool) <=> s = {}) /\ (!s. ({}:real^M->bool) homeomorphic (s:real^N->bool) <=> s = {})`,
REWRITE_TAC[homeomorphic; homeomorphism; IMAGE_CLAUSES; IMAGE_EQ_EMPTY] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[continuous_on; NOT_IN_EMPTY]);;
let HOMEOMORPHIC_MINIMAL = 
prove (`!s t. s homeomorphic t <=> ?f g. (!x. x IN s ==> f(x) IN t /\ (g(f(x)) = x)) /\ (!y. y IN t ==> g(y) IN s /\ (f(g(y)) = y)) /\ f continuous_on s /\ g continuous_on t`,
REWRITE_TAC[homeomorphic; homeomorphism; EXTENSION; IN_IMAGE] THEN REPEAT GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN MESON_TAC[]);;
let HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_SELF = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (IMAGE f s) homeomorphic s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_LEFT_INVERSE]) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `f:real^M->real^N` THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_ON; FORALL_IN_IMAGE; FUN_IN_IMAGE] THEN ASM_SIMP_TAC[continuous_on; IMP_CONJ; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_BOUNDED_BELOW_POS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e * B:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN X_GEN_TAC `y:real^M` THEN ASM_SIMP_TAC[dist; GSYM LINEAR_SUB] THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> b < x ==> a < x`) THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ]);;
let HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_LEFT_EQ = 
prove (`!f:real^M->real^N s t. linear f /\ (!x y. f x = f y ==> x = y) ==> ((IMAGE f s) homeomorphic t <=> s homeomorphic t)`,
REPEAT GEN_TAC THEN DISCH_THEN(ASSUME_TAC o SPEC `s:real^M->bool` o MATCH_MP HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_SELF) THEN EQ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HOMEOMORPHIC_SYM]); POP_ASSUM MP_TAC] THEN REWRITE_TAC[IMP_IMP; HOMEOMORPHIC_TRANS]);;
let HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_RIGHT_EQ = 
prove (`!f:real^M->real^N s t. linear f /\ (!x y. f x = f y ==> x = y) ==> (s homeomorphic (IMAGE f t) <=> s homeomorphic t)`,
ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_LEFT_EQ]);;
add_linear_invariants [HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_LEFT_EQ; HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_RIGHT_EQ];;
let HOMEOMORPHIC_TRANSLATION_SELF = 
prove (`!a:real^N s. (IMAGE (\x. a + x) s) homeomorphic s`,
REPEAT GEN_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN EXISTS_TAC `\x:real^N. x - a` THEN EXISTS_TAC `\x:real^N. a + x` THEN SIMP_TAC[FORALL_IN_IMAGE; CONTINUOUS_ON_SUB; CONTINUOUS_ON_ID; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ADD; VECTOR_ADD_SUB] THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]);;
let HOMEOMORPHIC_TRANSLATION_LEFT_EQ = 
prove (`!a:real^N s t. (IMAGE (\x. a + x) s) homeomorphic t <=> s homeomorphic t`,
let HOMEOMORPHIC_TRANSLATION_RIGHT_EQ = 
prove (`!a:real^N s t. s homeomorphic (IMAGE (\x. a + x) t) <=> s homeomorphic t`,
ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_TRANSLATION_LEFT_EQ]);;
add_translation_invariants [HOMEOMORPHIC_TRANSLATION_LEFT_EQ; HOMEOMORPHIC_TRANSLATION_RIGHT_EQ];;
let HOMEOMORPHISM_IMP_QUOTIENT_MAP = 
prove (`!f:real^M->real^N g s t. homeomorphism (s,t) (f,g) ==> !u. u SUBSET t ==> (open_in (subtopology euclidean s) {x | x IN s /\ f x IN u} <=> open_in (subtopology euclidean t) u)`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphism] THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_RIGHT_INVERSE_IMP_QUOTIENT_MAP THEN EXISTS_TAC `g:real^N->real^M` THEN ASM_REWRITE_TAC[SUBSET_REFL]);;
let HOMEOMORPHIC_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool s':real^P->bool t':real^Q->bool. s homeomorphic s' /\ t homeomorphic t' ==> (s PCROSS t) homeomorphic (s' PCROSS t')`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; HOMEOMORPHISM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `f:real^M->real^P` (X_CHOOSE_THEN `f':real^P->real^M` STRIP_ASSUME_TAC)) (X_CHOOSE_THEN `g:real^N->real^Q` (X_CHOOSE_THEN `g':real^Q->real^N` STRIP_ASSUME_TAC))) THEN MAP_EVERY EXISTS_TAC [`(\z. pastecart (f(fstcart z)) (g(sndcart z))) :real^(M,N)finite_sum->real^(P,Q)finite_sum`; `(\z. pastecart (f'(fstcart z)) (g'(sndcart z))) :real^(P,Q)finite_sum->real^(M,N)finite_sum`] THEN ASM_SIMP_TAC[FORALL_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART; SUBSET; FORALL_IN_IMAGE; PASTECART_IN_PCROSS] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_PASTECART THEN CONJ_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[LINEAR_FSTCART; LINEAR_SNDCART; LINEAR_CONTINUOUS_ON] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_PCROSS; SUBSET] THEN SIMP_TAC[FSTCART_PASTECART; SNDCART_PASTECART]);;
let HOMEOMORPHIC_PCROSS_SYM = 
prove (`!s:real^M->bool t:real^N->bool. (s PCROSS t) homeomorphic (t PCROSS s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; homeomorphism] THEN EXISTS_TAC `(\z. pastecart (sndcart z) (fstcart z)) :real^(M,N)finite_sum->real^(N,M)finite_sum` THEN EXISTS_TAC `(\z. pastecart (sndcart z) (fstcart z)) :real^(N,M)finite_sum->real^(M,N)finite_sum` THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[CONTINUOUS_ON_PASTECART; LINEAR_CONTINUOUS_ON; LINEAR_FSTCART; LINEAR_SNDCART] THEN REWRITE_TAC[FORALL_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART; IN_IMAGE; EXISTS_PASTECART; PASTECART_INJ; PASTECART_IN_PCROSS] THEN MESON_TAC[]);;
let HOMEOMORPHIC_PCROSS_ASSOC = 
prove (`!s:real^M->bool t:real^N->bool u:real^P->bool. (s PCROSS (t PCROSS u)) homeomorphic ((s PCROSS t) PCROSS u)`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; HOMEOMORPHISM] THEN MAP_EVERY EXISTS_TAC [`\z:real^(M,(N,P)finite_sum)finite_sum. pastecart (pastecart (fstcart z) (fstcart(sndcart z))) (sndcart(sndcart z))`; `\z:real^((M,N)finite_sum,P)finite_sum. pastecart (fstcart(fstcart z)) (pastecart (sndcart(fstcart z)) (sndcart z))`] THEN REWRITE_TAC[FORALL_IN_PCROSS; SUBSET; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN SIMP_TAC[FSTCART_PASTECART; SNDCART_PASTECART; PASTECART_IN_PCROSS] THEN CONJ_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN REPEAT(MATCH_MP_TAC LINEAR_PASTECART THEN CONJ_TAC) THEN TRY(GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC LINEAR_COMPOSE) THEN REWRITE_TAC[LINEAR_FSTCART; LINEAR_SNDCART]);;
let HOMEOMORPHIC_SCALING_LEFT = 
prove (`!c. &0 < c ==> !s t. (IMAGE (\x. c % x) s) homeomorphic t <=> s homeomorphic t`,
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_LEFT_EQ THEN ASM_SIMP_TAC[VECTOR_MUL_LCANCEL; REAL_LT_IMP_NZ; LINEAR_SCALING]);;
let HOMEOMORPHIC_SCALING_RIGHT = 
prove (`!c. &0 < c ==> !s t. s homeomorphic (IMAGE (\x. c % x) t) <=> s homeomorphic t`,
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_INJECTIVE_LINEAR_IMAGE_RIGHT_EQ THEN ASM_SIMP_TAC[VECTOR_MUL_LCANCEL; REAL_LT_IMP_NZ; LINEAR_SCALING]);;
let HOMEOMORPHIC_SUBSPACES = 
prove (`!s:real^M->bool t:real^N->bool. subspace s /\ subspace t /\ dim s = dim t ==> s homeomorphic t`,
REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; HOMEOMORPHISM] THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMETRIES_SUBSPACES) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^M->real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^M` THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTER; IN_CBALL_0] THEN SIMP_TAC[LINEAR_CONTINUOUS_ON] THEN ASM SET_TAC[]);;
let HOMEOMORPHIC_FINITE = 
prove (`!s:real^M->bool t:real^N->bool. FINITE s /\ FINITE t ==> (s homeomorphic t <=> CARD s = CARD t)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_CARD_EQ) THEN ASM_SIMP_TAC[CARD_EQ_CARD]; STRIP_TAC THEN REWRITE_TAC[homeomorphic; HOMEOMORPHISM] THEN MP_TAC(ISPECL [`s:real^M->bool`; `t:real^N->bool`] CARD_EQ_BIJECTIONS) THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM_SIMP_TAC[CONTINUOUS_ON_FINITE] THEN ASM SET_TAC[]]);;
let HOMEOMORPHIC_FINITE_STRONG = 
prove (`!s:real^M->bool t:real^N->bool. FINITE s \/ FINITE t ==> (s homeomorphic t <=> FINITE s /\ FINITE t /\ CARD s = CARD t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN SIMP_TAC[HOMEOMORPHIC_FINITE] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CARD_FINITE_CONG o MATCH_MP HOMEOMORPHIC_IMP_CARD_EQ) THEN FIRST_X_ASSUM DISJ_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[HOMEOMORPHIC_FINITE]);;
let HOMEOMORPHIC_SING = 
prove (`!a:real^M b:real^N. {a} homeomorphic {b}`,
let HOMEOMORPHIC_PCROSS_SING = 
prove (`(!s:real^M->bool a:real^N. s homeomorphic (s PCROSS {a})) /\ (!s:real^M->bool a:real^N. s homeomorphic ({a} PCROSS s))`,
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [MESON_TAC[HOMEOMORPHIC_PCROSS_SYM; HOMEOMORPHIC_TRANS]; ALL_TAC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[homeomorphic; HOMEOMORPHISM] THEN EXISTS_TAC `\x. (pastecart x a:real^(M,N)finite_sum)` THEN EXISTS_TAC `fstcart:real^(M,N)finite_sum->real^M` THEN SIMP_TAC[CONTINUOUS_ON_PASTECART; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID] THEN SIMP_TAC[LINEAR_FSTCART; LINEAR_CONTINUOUS_ON; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[FORALL_IN_PCROSS; PASTECART_IN_PCROSS; IN_SING] THEN SIMP_TAC[FSTCART_PASTECART]);;
(* ------------------------------------------------------------------------- *) (* Inverse function property for open/closed maps. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_ON_INVERSE_OPEN_MAP = 
prove (`!f:real^M->real^N g s t. f continuous_on s /\ IMAGE f s = t /\ (!x. x IN s ==> g(f x) = x) /\ (!u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u)) ==> g continuous_on t`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`g:real^N->real^M`; `t:real^N->bool`; `s:real^M->bool`] CONTINUOUS_ON_OPEN_GEN) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN X_GEN_TAC `u:real^M->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:real^M->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [open_in]) THEN ASM SET_TAC[]);;
let CONTINUOUS_ON_INVERSE_CLOSED_MAP = 
prove (`!f:real^M->real^N g s t. f continuous_on s /\ IMAGE f s = t /\ (!x. x IN s ==> g(f x) = x) /\ (!u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u)) ==> g continuous_on t`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`g:real^N->real^M`; `t:real^N->bool`; `s:real^M->bool`] CONTINUOUS_ON_CLOSED_GEN) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN X_GEN_TAC `u:real^M->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `u:real^M->bool`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [closed_in]) THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN ASM SET_TAC[]);;
let HOMEOMORPHISM_INJECTIVE_OPEN_MAP = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s = t /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ (!u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u)) ==> ?g. homeomorphism (s,t) (f,g)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^M` THEN DISCH_TAC THEN ASM_SIMP_TAC[homeomorphism] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC CONTINUOUS_ON_INVERSE_OPEN_MAP THEN ASM_MESON_TAC[]);;
let HOMEOMORPHISM_INJECTIVE_CLOSED_MAP = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s = t /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ (!u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u)) ==> ?g. homeomorphism (s,t) (f,g)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^M` THEN DISCH_TAC THEN ASM_SIMP_TAC[homeomorphism] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC CONTINUOUS_ON_INVERSE_CLOSED_MAP THEN ASM_MESON_TAC[]);;
let HOMEOMORPHISM_IMP_OPEN_MAP = 
prove (`!f:real^M->real^N g s t u. homeomorphism (s,t) (f,g) /\ open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u)`,
REWRITE_TAC[homeomorphism] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) u = {y | y IN t /\ g(y) IN u}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [open_in]) THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_ON_IMP_OPEN_IN THEN ASM_REWRITE_TAC[]]);;
let HOMEOMORPHISM_IMP_CLOSED_MAP = 
prove (`!f:real^M->real^N g s t u. homeomorphism (s,t) (f,g) /\ closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u)`,
REWRITE_TAC[homeomorphism] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) u = {y | y IN t /\ g(y) IN u}` SUBST1_TAC THENL [FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [closed_in]) THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN ASM SET_TAC[]; MATCH_MP_TAC CONTINUOUS_ON_IMP_CLOSED_IN THEN ASM_REWRITE_TAC[]]);;
let HOMEOMORPHISM_INJECTIVE_OPEN_MAP_EQ = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s = t /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> ((?g. homeomorphism (s,t) (f,g)) <=> !u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC HOMEOMORPHISM_IMP_OPEN_MAP THEN ASM_MESON_TAC[]; MATCH_MP_TAC HOMEOMORPHISM_INJECTIVE_OPEN_MAP THEN ASM_REWRITE_TAC[]]);;
let HOMEOMORPHISM_INJECTIVE_CLOSED_MAP_EQ = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s = t /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> ((?g. homeomorphism (s,t) (f,g)) <=> !u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC HOMEOMORPHISM_IMP_CLOSED_MAP THEN ASM_MESON_TAC[]; MATCH_MP_TAC HOMEOMORPHISM_INJECTIVE_CLOSED_MAP THEN ASM_REWRITE_TAC[]]);;
let INJECTIVE_MAP_OPEN_IFF_CLOSED = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s = t /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> ((!u. open_in (subtopology euclidean s) u ==> open_in (subtopology euclidean t) (IMAGE f u)) <=> (!u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u)))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `?g:real^N->real^M. homeomorphism (s,t) (f,g)` THEN CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC HOMEOMORPHISM_INJECTIVE_OPEN_MAP_EQ; MATCH_MP_TAC HOMEOMORPHISM_INJECTIVE_CLOSED_MAP_EQ] THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Relatively weak hypotheses if the domain of the function is compact. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_IMP_CLOSED_MAP = 
prove (`!f:real^M->real^N s t. f continuous_on s /\ IMAGE f s = t /\ compact s ==> !u. closed_in (subtopology euclidean s) u ==> closed_in (subtopology euclidean t) (IMAGE f u)`,
SIMP_TAC[CLOSED_IN_CLOSED_EQ; COMPACT_IMP_CLOSED] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_CLOSED_IN_TRANS THEN EXPAND_TAC "t" THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN CONJ_TAC THEN MATCH_MP_TAC COMPACT_IMP_CLOSED THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[COMPACT_EQ_BOUNDED_CLOSED; CLOSED_IN_CLOSED_TRANS; BOUNDED_SUBSET; CONTINUOUS_ON_SUBSET]);;
let CONTINUOUS_ON_INVERSE = 
prove (`!f:real^M->real^N g s. f continuous_on s /\ compact s /\ (!x. x IN s ==> (g(f(x)) = x)) ==> g continuous_on (IMAGE f s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_ON_CLOSED] THEN SUBGOAL_THEN `IMAGE g (IMAGE (f:real^M->real^N) s) = s` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `t:real^M->bool` THEN DISCH_TAC THEN REWRITE_TAC[CLOSED_IN_CLOSED] THEN EXISTS_TAC `IMAGE (f:real^M->real^N) t` THEN CONJ_TAC THENL [MATCH_MP_TAC COMPACT_IMP_CLOSED THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET) THEN REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN ASM_MESON_TAC[COMPACT_EQ_BOUNDED_CLOSED; CLOSED_IN_CLOSED_TRANS; BOUNDED_SUBSET; CONTINUOUS_ON_SUBSET]; REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM; IN_IMAGE] THEN ASM_MESON_TAC[CLOSED_IN_SUBSET; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY; SUBSET]]);;
let HOMEOMORPHISM_COMPACT = 
prove (`!s f t. compact s /\ f continuous_on s /\ (IMAGE f s = t) /\ (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) ==> ?g. homeomorphism(s,t) (f,g)`,
REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE] THEN REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[EXTENSION; homeomorphism] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[CONTINUOUS_ON_INVERSE; IN_IMAGE]);;
let HOMEOMORPHIC_COMPACT = 
prove (`!s f t. compact s /\ f continuous_on s /\ (IMAGE f s = t) /\ (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) ==> s homeomorphic t`,
REWRITE_TAC[homeomorphic] THEN MESON_TAC[HOMEOMORPHISM_COMPACT]);;
(* ------------------------------------------------------------------------- *) (* Lemmas about composition of homeomorphisms. *) (* ------------------------------------------------------------------------- *)
let HOMEOMORPHISM_FROM_COMPOSITION_SURJECTIVE = 
prove (`!f:real^M->real^N g:real^N->real^P s t u. f continuous_on s /\ IMAGE f s = t /\ g continuous_on t /\ IMAGE g t SUBSET u /\ (?h. homeomorphism (s,u) (g o f,h)) ==> (?f'. homeomorphism (s,t) (f,f')) /\ (?g'. homeomorphism (t,u) (g,g'))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphism; o_THM]) THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC HOMEOMORPHISM_INJECTIVE_OPEN_MAP THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC OPEN_MAP_FROM_COMPOSITION_SURJECTIVE THEN MAP_EVERY EXISTS_TAC [`f:real^M->real^N`; `s:real^M->bool`] THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHISM_IMP_OPEN_MAP THEN MAP_EVERY EXISTS_TAC [`h:real^P->real^M`; `s:real^M->bool`] THEN ASM_REWRITE_TAC[homeomorphism; o_THM]; REWRITE_TAC[homeomorphism; o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g':real^P->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(h:real^P->real^M) o (g:real^N->real^P)` THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]]);;
let HOMEOMORPHISM_FROM_COMPOSITION_INJECTIVE = 
prove (`!f:real^M->real^N g:real^N->real^P s t u. f continuous_on s /\ IMAGE f s SUBSET t /\ g continuous_on t /\ IMAGE g t SUBSET u /\ (!x y. x IN t /\ y IN t /\ g x = g y ==> x = y) /\ (?h. homeomorphism (s,u) (g o f,h)) ==> (?f'. homeomorphism (s,t) (f,f')) /\ (?g'. homeomorphism (t,u) (g,g'))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[homeomorphism; o_THM]) THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC HOMEOMORPHISM_INJECTIVE_OPEN_MAP THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC OPEN_MAP_FROM_COMPOSITION_INJECTIVE THEN MAP_EVERY EXISTS_TAC [`g:real^N->real^P`; `u:real^P->bool`] THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHISM_IMP_OPEN_MAP THEN MAP_EVERY EXISTS_TAC [`h:real^P->real^M`; `s:real^M->bool`] THEN ASM_REWRITE_TAC[homeomorphism; o_THM]; REWRITE_TAC[homeomorphism; o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `f':real^N->real^M` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:real^M->real^N) o (h:real^P->real^M)` THEN ASM_SIMP_TAC[o_THM; IMAGE_o] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]]);;
(* ------------------------------------------------------------------------- *) (* Preservation of topological properties. *) (* ------------------------------------------------------------------------- *)
let HOMEOMORPHIC_COMPACTNESS = 
prove (`!s t. s homeomorphic t ==> (compact s <=> compact t)`,
REWRITE_TAC[homeomorphic; homeomorphism] THEN MESON_TAC[COMPACT_CONTINUOUS_IMAGE]);;
let HOMEOMORPHIC_CONNECTEDNESS = 
prove (`!s t. s homeomorphic t ==> (connected s <=> connected t)`,
REWRITE_TAC[homeomorphic; homeomorphism] THEN MESON_TAC[CONNECTED_CONTINUOUS_IMAGE]);;
(* ------------------------------------------------------------------------- *) (* Results on translation, scaling etc. *) (* ------------------------------------------------------------------------- *)
let HOMEOMORPHIC_SCALING = 
prove (`!s:real^N->bool c. ~(c = &0) ==> s homeomorphic (IMAGE (\x. c % x) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN MAP_EVERY EXISTS_TAC [`\x:real^N. c % x`; `\x:real^N. inv(c) % x`] THEN ASM_SIMP_TAC[CONTINUOUS_ON_CMUL; CONTINUOUS_ON_ID; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_RINV] THEN SIMP_TAC[VECTOR_MUL_LID; IN_IMAGE; REAL_MUL_LID] THEN MESON_TAC[]);;
let HOMEOMORPHIC_TRANSLATION = 
prove (`!s a:real^N. s homeomorphic (IMAGE (\x. a + x) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN MAP_EVERY EXISTS_TAC [`\x:real^N. a + x`; `\x:real^N. --a + x`] THEN ASM_SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID] THEN SIMP_TAC[VECTOR_ADD_ASSOC; VECTOR_ADD_LINV; VECTOR_ADD_RINV; FORALL_IN_IMAGE; VECTOR_ADD_LID] THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]);;
let HOMEOMORPHIC_AFFINITY = 
prove (`!s a:real^N c. ~(c = &0) ==> s homeomorphic (IMAGE (\x. a + c % x) s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_TRANS THEN EXISTS_TAC `IMAGE (\x:real^N. c % x) s` THEN ASM_SIMP_TAC[HOMEOMORPHIC_SCALING] THEN SUBGOAL_THEN `(\x:real^N. a + c % x) = (\x. a + x) o (\x. c % x)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN REWRITE_TAC[IMAGE_o; HOMEOMORPHIC_TRANSLATION]);;
let [HOMEOMORPHIC_BALLS; HOMEOMORPHIC_CBALLS; HOMEOMORPHIC_SPHERES] = (CONJUNCTS o prove) (`(!a:real^N b:real^N d e. &0 < d /\ &0 < e ==> ball(a,d) homeomorphic ball(b,e)) /\ (!a:real^N b:real^N d e. &0 < d /\ &0 < e ==> cball(a,d) homeomorphic cball(b,e)) /\ (!a:real^N b:real^N d e. &0 < d /\ &0 < e ==> sphere(a,d) homeomorphic sphere(b,e))`, REPEAT STRIP_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN EXISTS_TAC `\x:real^N. b + (e / d) % (x - a)` THEN EXISTS_TAC `\x:real^N. a + (d / e) % (x - b)` THEN ASM_SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_SUB; CONTINUOUS_ON_CMUL; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID; IN_BALL; IN_CBALL; IN_SPHERE] THEN REWRITE_TAC[dist; VECTOR_ARITH `a - (a + b) = --b:real^N`; NORM_NEG] THEN REWRITE_TAC[real_div; VECTOR_ARITH `a + d % ((b + e % (x - a)) - b) = (&1 - d * e) % a + (d * e) % x`] THEN ONCE_REWRITE_TAC[REAL_ARITH `(e * d') * (d * e') = (d * d') * (e * e')`] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_LT_IMP_NZ; REAL_MUL_LID; REAL_SUB_REFL] THEN REWRITE_TAC[NORM_MUL; VECTOR_MUL_LZERO; VECTOR_MUL_LID; VECTOR_ADD_LID] THEN ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ABS_INV; REAL_ARITH `&0 < x ==> (abs x = x)`] THEN GEN_REWRITE_TAC(BINOP_CONV o BINDER_CONV o funpow 2 RAND_CONV) [GSYM REAL_MUL_RID] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * c = (a * c) * b`] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; GSYM real_div; REAL_LE_LDIV_EQ; REAL_MUL_LID; GSYM REAL_MUL_ASSOC; REAL_LT_LMUL_EQ; REAL_LT_LDIV_EQ; NORM_SUB] THEN ASM_SIMP_TAC[REAL_DIV_REFL; REAL_LT_IMP_NZ; REAL_MUL_RID]);; (* ------------------------------------------------------------------------- *) (* Homeomorphism of one-point compactifications. *) (* ------------------------------------------------------------------------- *)
let HOMEOMORPHIC_ONE_POINT_COMPACTIFICATIONS = 
prove (`!s:real^M->bool t:real^N->bool a b. compact s /\ compact t /\ a IN s /\ b IN t /\ (s DELETE a) homeomorphic (t DELETE b) ==> s homeomorphic t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HOMEOMORPHIC_COMPACT THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN REWRITE_TAC[HOMEOMORPHISM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:real^M->real^N`; `g:real^N->real^M`] THEN STRIP_TAC THEN EXISTS_TAC `\x. if x = a then b else (f:real^M->real^N) x` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN ASM_CASES_TAC `x:real^M = a` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[continuous_within] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`b:real^N`; `e:real`] CENTRE_IN_BALL) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `closed_in (subtopology euclidean s) { x | x IN (s DELETE a) /\ (f:real^M->real^N)(x) IN t DIFF ball(b,e)}` MP_TAC THENL [MATCH_MP_TAC CLOSED_SUBSET THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_IMP_CLOSED THEN SUBGOAL_THEN `{x | x IN s DELETE a /\ f x IN t DIFF ball(b,e)} = IMAGE (g:real^N->real^M) (t DIFF ball (b,e))` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[COMPACT_DIFF; OPEN_BALL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]; REWRITE_TAC[closed_in; open_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN DISCH_THEN(MP_TAC o SPEC `a:real^M` o last o CONJUNCTS) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_DIFF; IN_DELETE] THEN SIMP_TAC[IMP_CONJ; DE_MORGAN_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DIST_REFL] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_BALL]) THEN ASM SET_TAC[]]; UNDISCH_TAC `(f:real^M->real^N) continuous_on (s DELETE a)` THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[IN_DELETE] THEN REWRITE_TAC[continuous_within] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d (dist(a:real^M,x))` THEN ASM_REWRITE_TAC[REAL_LT_MIN; GSYM DIST_NZ] THEN ASM_MESON_TAC[REAL_LT_REFL]]);;
(* ------------------------------------------------------------------------- *) (* Homeomorphisms between open intervals in real^1 and then in real^N. *) (* Could prove similar things for closed intervals, but they drop out of *) (* later stuff in "convex.ml" even more easily. *) (* ------------------------------------------------------------------------- *)
let HOMEOMORPHIC_OPEN_INTERVALS_1 = 
prove (`!a b c d. drop a < drop b /\ drop c < drop d ==> interval(a,b) homeomorphic interval(c,d)`,
SUBGOAL_THEN `!a b. drop a < drop b ==> interval(vec 0:real^1,vec 1) homeomorphic interval(a,b)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN EXISTS_TAC `(\x. a + drop x % (b - a)):real^1->real^1` THEN EXISTS_TAC `(\x. inv(drop b - drop a) % (x - a)):real^1->real^1` THEN ASM_REWRITE_TAC[IN_INTERVAL_1; GSYM DROP_EQ] THEN REWRITE_TAC[DROP_ADD; DROP_CMUL; DROP_NEG; DROP_VEC; DROP_SUB] THEN REWRITE_TAC[REAL_ARITH `inv b * a:real = a / b`] THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_SUB_LT; REAL_LT_ADDR; REAL_EQ_LDIV_EQ; REAL_DIV_RMUL; REAL_LT_IMP_NZ; REAL_LT_MUL; REAL_MUL_LZERO; REAL_ADD_SUB; REAL_LT_RMUL_EQ; REAL_ARITH `a + x < b <=> x < &1 * (b - a)`] THEN REPEAT CONJ_TAC THENL [REAL_ARITH_TAC; MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_VMUL THEN REWRITE_TAC[o_DEF; LIFT_DROP; CONTINUOUS_ON_ID]; MATCH_MP_TAC CONTINUOUS_ON_CMUL THEN ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID]]; REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`a:real^1`; `b:real^1`]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`c:real^1`; `d:real^1`]) THEN ASM_REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [HOMEOMORPHIC_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_TRANS]]);;
let HOMEOMORPHIC_OPEN_INTERVAL_UNIV_1 = 
prove (`!a b. drop a < drop b ==> interval(a,b) homeomorphic (:real^1)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`a:real^1`; `b:real^1`; `--vec 1:real^1`; `vec 1:real^1`] HOMEOMORPHIC_OPEN_INTERVALS_1) THEN ASM_REWRITE_TAC[DROP_VEC; DROP_NEG] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HOMEOMORPHIC_TRANS) THEN POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL; IN_UNIV] THEN EXISTS_TAC `\x:real^1. inv(&1 - norm x) % x` THEN EXISTS_TAC `\y. if &0 <= drop y then inv(&1 + drop y) % y else inv(&1 - drop y) % y` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:real^1` THEN REWRITE_TAC[IN_INTERVAL_1] THEN REWRITE_TAC[DROP_NEG; DROP_VEC; DROP_CMUL; NORM_REAL; GSYM drop] THEN SIMP_TAC[REAL_LE_MUL_EQ; REAL_LT_INV_EQ; REAL_LE_MUL_EQ; REAL_ARITH `--a < x /\ x < a ==> &0 < a - abs x`] THEN SIMP_TAC[real_abs; VECTOR_MUL_ASSOC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM VECTOR_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD; X_GEN_TAC `y:real^1` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_INTERVAL_1; DROP_NEG; DROP_VEC; REAL_BOUNDS_LT] THEN REWRITE_TAC[DROP_CMUL; REAL_ABS_MUL; REAL_ABS_INV] THEN REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div)] THEN ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_ARITH `&0 <= x ==> &0 < abs(&1 + x)`; REAL_ARITH `~(&0 <= x) ==> &0 < abs(&1 - x)`] THEN (CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN REWRITE_TAC[NORM_REAL; VECTOR_MUL_ASSOC] THEN REWRITE_TAC[GSYM drop; DROP_CMUL; REAL_ABS_MUL] THEN ASM_REWRITE_TAC[real_abs; REAL_LE_INV_EQ] THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= x ==> &0 <= &1 + x`; REAL_ARITH `~(&0 <= x) ==> &0 <= &1 - x`] THEN GEN_REWRITE_TAC RAND_CONV [GSYM VECTOR_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD; MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN X_GEN_TAC `x:real^1` THEN REWRITE_TAC[IN_INTERVAL_1; DROP_NEG; DROP_VEC] THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[CONTINUOUS_AT_ID] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_INV THEN REWRITE_TAC[NETLIMIT_AT; o_DEF; LIFT_SUB; LIFT_DROP] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_SUB THEN SIMP_TAC[CONTINUOUS_CONST; REWRITE_RULE[o_DEF] CONTINUOUS_AT_LIFT_NORM]; REWRITE_TAC[NORM_REAL; GSYM drop] THEN ASM_REAL_ARITH_TAC]; SUBGOAL_THEN `(:real^1) = {x | x$1 >= &0} UNION {x | x$1 <= &0}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_UNION; IN_UNION; IN_ELIM_THM; IN_UNIV] THEN REAL_ARITH_TAC; MATCH_MP_TAC CONTINUOUS_ON_CASES THEN REWRITE_TAC[CLOSED_HALFSPACE_COMPONENT_LE; CLOSED_HALFSPACE_COMPONENT_GE; IN_ELIM_THM] THEN REWRITE_TAC[GSYM drop; REAL_NOT_LE; real_ge; REAL_LET_ANTISYM] THEN SIMP_TAC[REAL_LE_ANTISYM; REAL_SUB_RZERO; REAL_ADD_RID] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN X_GEN_TAC `y:real^1` THEN REWRITE_TAC[IN_ELIM_THM; real_ge] THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[CONTINUOUS_AT_ID] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_INV THEN REWRITE_TAC[NETLIMIT_AT; o_DEF; LIFT_ADD; LIFT_SUB; LIFT_DROP] THEN ASM_SIMP_TAC[CONTINUOUS_ADD; CONTINUOUS_AT_ID; CONTINUOUS_SUB; CONTINUOUS_CONST] THEN ASM_REAL_ARITH_TAC]]);;
let HOMEOMORPHIC_OPEN_INTERVALS = 
prove (`!a b:real^N c d:real^N. (interval(a,b) = {} <=> interval(c,d) = {}) ==> interval(a,b) homeomorphic interval(c,d)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `interval(c:real^N,d) = {}` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[HOMEOMORPHIC_REFL] THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> interval(lift((a:real^N)$i),lift((b:real^N)$i)) homeomorphic interval(lift((c:real^N)$i),lift((d:real^N)$i))` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY]) THEN ASM_SIMP_TAC[HOMEOMORPHIC_OPEN_INTERVALS_1; LIFT_DROP]; ALL_TAC] THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL; IN_INTERVAL_1; LIFT_DROP] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:num->real^1->real^1`; `g:num->real^1->real^1`] THEN DISCH_TAC THEN EXISTS_TAC `(\x. lambda i. drop((f:num->real^1->real^1) i (lift(x$i)))):real^N->real^N` THEN EXISTS_TAC `(\x. lambda i. drop((g:num->real^1->real^1) i (lift(x$i)))):real^N->real^N` THEN ASM_SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; CART_EQ; LIFT_DROP] THEN ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN SIMP_TAC[LAMBDA_BETA; LIFT_DROP] THEN CONJ_TAC THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT] THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THENL [EXISTS_TAC `interval(lift((a:real^N)$i),lift((b:real^N)$i))`; EXISTS_TAC `interval(lift((c:real^N)$i),lift((d:real^N)$i))`] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTERVAL_1] THEN ASM_SIMP_TAC[LIFT_DROP; IN_INTERVAL]);;
let HOMEOMORPHIC_OPEN_INTERVAL_UNIV = 
prove (`!a b:real^N. ~(interval(a,b) = {}) ==> interval(a,b) homeomorphic (:real^N)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> interval(lift((a:real^N)$i),lift((b:real^N)$i)) homeomorphic (:real^1)` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY]) THEN ASM_SIMP_TAC[HOMEOMORPHIC_OPEN_INTERVAL_UNIV_1; LIFT_DROP]; ALL_TAC] THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL; IN_INTERVAL_1; LIFT_DROP] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`f:num->real^1->real^1`; `g:num->real^1->real^1`] THEN DISCH_TAC THEN EXISTS_TAC `(\x. lambda i. drop((f:num->real^1->real^1) i (lift(x$i)))):real^N->real^N` THEN EXISTS_TAC `(\x. lambda i. drop((g:num->real^1->real^1) i (lift(x$i)))):real^N->real^N` THEN ASM_SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; CART_EQ; LIFT_DROP; IN_UNIV] THEN ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN SIMP_TAC[LAMBDA_BETA; LIFT_DROP] THEN CONJ_TAC THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT] THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THENL [EXISTS_TAC `interval(lift((a:real^N)$i),lift((b:real^N)$i))`; EXISTS_TAC `(:real^1)`] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_INTERVAL_1; IN_UNIV] THEN ASM_SIMP_TAC[LIFT_DROP; IN_INTERVAL]);;
let HOMEOMORPHIC_BALL_UNIV = 
prove (`!a:real^N r. &0 < r ==> ball(a,r) homeomorphic (:real^N)`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `a:real^N` THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?y:real^N. r = norm(y)` (CHOOSE_THEN SUBST_ALL_TAC) THENL [ASM_MESON_TAC[VECTOR_CHOOSE_SIZE; REAL_LT_IMP_LE]; POP_ASSUM MP_TAC] THEN REWRITE_TAC[NORM_POS_LT] THEN GEOM_NORMALIZE_TAC `y:real^N` THEN SIMP_TAC[] THEN GEN_TAC THEN REPEAT(DISCH_THEN(K ALL_TAC)) THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN EXISTS_TAC `\z:real^N. inv(&1 - norm(z)) % z` THEN EXISTS_TAC `\z:real^N. inv(&1 + norm(z)) % z` THEN REWRITE_TAC[IN_BALL; IN_UNIV; DIST_0; VECTOR_MUL_ASSOC; VECTOR_MUL_EQ_0; VECTOR_ARITH `a % x:real^N = x <=> (a - &1) % x = vec 0`] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN DISJ1_TAC THEN REWRITE_TAC[GSYM REAL_INV_MUL; REAL_SUB_0; REAL_INV_EQ_1] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_INV] THEN ASM_SIMP_TAC[REAL_ARITH `x < &1 ==> abs(&1 - x) = &1 - x`] THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD; X_GEN_TAC `y:real^N` THEN REWRITE_TAC[NORM_MUL; REAL_ABS_INV] THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_ARITH `&0 <= y ==> inv(abs(&1 + y)) * z = z / (&1 + y)`] THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_LT_LDIV_EQ; REAL_ARITH `&0 <= y ==> &0 < &1 + y`] THEN CONJ_TAC THENL [REAL_ARITH_TAC; DISJ1_TAC] THEN REWRITE_TAC[GSYM REAL_INV_MUL; REAL_SUB_0; REAL_INV_EQ_1] THEN MP_TAC(ISPEC `y:real^N` NORM_POS_LE) THEN CONV_TAC REAL_FIELD; MATCH_MP_TAC CONTINUOUS_ON_MUL THEN REWRITE_TAC[CONTINUOUS_ON_ID] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_INV THEN SIMP_TAC[IN_BALL_0; REAL_SUB_0; REAL_ARITH `x < &1 ==> ~(&1 = x)`] THEN REWRITE_TAC[o_DEF; LIFT_SUB] THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_LIFT_NORM_COMPOSE THEN REWRITE_TAC[CONTINUOUS_ON_ID]; MATCH_MP_TAC CONTINUOUS_ON_MUL THEN REWRITE_TAC[CONTINUOUS_ON_ID] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM o_DEF] THEN MATCH_MP_TAC CONTINUOUS_ON_INV THEN SIMP_TAC[NORM_POS_LE; REAL_ARITH `&0 <= x ==> ~(&1 + x = &0)`] THEN REWRITE_TAC[o_DEF; LIFT_ADD] THEN MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_LIFT_NORM_COMPOSE THEN REWRITE_TAC[CONTINUOUS_ON_ID]]);;
(* ------------------------------------------------------------------------- *) (* Cardinalities of various useful sets. *) (* ------------------------------------------------------------------------- *)
let CARD_EQ_EUCLIDEAN = 
prove (`(:real^N) =_c (:real)`,
MATCH_MP_TAC CARD_EQ_CART THEN REWRITE_TAC[real_INFINITE]);;
let UNCOUNTABLE_EUCLIDEAN = 
prove (`~COUNTABLE(:real^N)`,
MATCH_MP_TAC CARD_EQ_REAL_IMP_UNCOUNTABLE THEN REWRITE_TAC[CARD_EQ_EUCLIDEAN]);;
let CARD_EQ_INTERVAL = 
prove (`(!a b:real^N. ~(interval(a,b) = {}) ==> interval[a,b] =_c (:real)) /\ (!a b:real^N. ~(interval(a,b) = {}) ==> interval(a,b) =_c (:real))`,
REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `interval(a:real^N,b) = {}` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `(:real^N)` THEN REWRITE_TAC[CARD_LE_UNIV] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN REWRITE_TAC[CARD_EQ_EUCLIDEAN]; TRANS_TAC CARD_LE_TRANS `interval(a:real^N,b)` THEN SIMP_TAC[CARD_LE_SUBSET; INTERVAL_OPEN_SUBSET_CLOSED]; TRANS_TAC CARD_LE_TRANS `(:real^N)` THEN REWRITE_TAC[CARD_LE_UNIV] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN REWRITE_TAC[CARD_EQ_EUCLIDEAN]; ALL_TAC] THEN TRANS_TAC CARD_LE_TRANS `(:real^N)` THEN SIMP_TAC[ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_IMP_LE; CARD_EQ_EUCLIDEAN] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_OPEN_INTERVAL_UNIV) THEN DISCH_THEN(MP_TAC o MATCH_MP HOMEOMORPHIC_IMP_CARD_EQ) THEN MESON_TAC[CARD_EQ_IMP_LE; CARD_EQ_SYM]);;
let UNCOUNTABLE_INTERVAL = 
prove (`(!a b. ~(interval(a,b) = {}) ==> ~COUNTABLE(interval[a,b])) /\ (!a b. ~(interval(a,b) = {}) ==> ~COUNTABLE(interval(a,b)))`,
let COUNTABLE_OPEN_INTERVAL = 
prove (`!a b. COUNTABLE(interval(a,b)) <=> interval(a,b) = {}`,
let CARD_EQ_OPEN = 
prove (`!s:real^N->bool. open s /\ ~(s = {}) ==> s =_c (:real)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `(:real^N)` THEN REWRITE_TAC[CARD_LE_UNIV] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN REWRITE_TAC[CARD_EQ_EUCLIDEAN]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_INTERVAL]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `c:real^N`) THEN DISCH_THEN(MP_TAC o SPEC `c:real^N`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN ASM_CASES_TAC `interval(a:real^N,b) = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `interval[a:real^N,b]` THEN ASM_SIMP_TAC[CARD_LE_SUBSET] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN ASM_SIMP_TAC[CARD_EQ_INTERVAL]]);;
let UNCOUNTABLE_OPEN = 
prove (`!s:real^N->bool. open s /\ ~(s = {}) ==> ~(COUNTABLE s)`,
let CARD_EQ_BALL = 
prove (`!a:real^N r. &0 < r ==> ball(a,r) =_c (:real)`,
let CARD_EQ_CBALL = 
prove (`!a:real^N r. &0 < r ==> cball(a,r) =_c (:real)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `(:real^N)` THEN REWRITE_TAC[CARD_LE_UNIV] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN REWRITE_TAC[CARD_EQ_EUCLIDEAN]; TRANS_TAC CARD_LE_TRANS `ball(a:real^N,r)` THEN SIMP_TAC[CARD_LE_SUBSET; BALL_SUBSET_CBALL] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN ASM_SIMP_TAC[CARD_EQ_BALL]]);;
let FINITE_IMP_NOT_OPEN = 
prove (`!s:real^N->bool. FINITE s /\ ~(s = {}) ==> ~(open s)`,
let OPEN_IMP_INFINITE = 
prove (`!s. open s ==> s = {} \/ INFINITE s`,
let EMPTY_INTERIOR_FINITE = 
prove (`!s:real^N->bool. FINITE s ==> interior s = {}`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` OPEN_INTERIOR) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] FINITE_IMP_NOT_OPEN) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[INTERIOR_SUBSET]);;
let CARD_EQ_CONNECTED = 
prove (`!s a b:real^N. connected s /\ a IN s /\ b IN s /\ ~(a = b) ==> s =_c (:real)`,
GEOM_ORIGIN_TAC `b:real^N` THEN GEOM_NORMALIZE_TAC `a:real^N` THEN REWRITE_TAC[NORM_EQ_SQUARE; REAL_POS; REAL_POW_ONE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `(:real^N)` THEN SIMP_TAC[CARD_LE_UNIV; CARD_EQ_EUCLIDEAN; CARD_EQ_IMP_LE]; TRANS_TAC CARD_LE_TRANS `interval[vec 0:real^1,vec 1]` THEN CONJ_TAC THENL [MATCH_MP_TAC(ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_IMP_LE) THEN SIMP_TAC[UNIT_INTERVAL_NONEMPTY; CARD_EQ_INTERVAL]; REWRITE_TAC[LE_C] THEN EXISTS_TAC `\x:real^N. lift(a dot x)` THEN SIMP_TAC[FORALL_LIFT; LIFT_EQ; IN_INTERVAL_1; LIFT_DROP; DROP_VEC] THEN X_GEN_TAC `t:real` THEN STRIP_TAC THEN MATCH_MP_TAC CONNECTED_IVT_HYPERPLANE THEN MAP_EVERY EXISTS_TAC [`vec 0:real^N`; `a:real^N`] THEN ASM_REWRITE_TAC[DOT_RZERO]]]);;
let UNCOUNTABLE_CONNECTED = 
prove (`!s a b:real^N. connected s /\ a IN s /\ b IN s /\ ~(a = b) ==> ~COUNTABLE s`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC CARD_EQ_REAL_IMP_UNCOUNTABLE THEN MATCH_MP_TAC CARD_EQ_CONNECTED THEN ASM_MESON_TAC[]);;
let CARD_LT_IMP_DISCONNECTED = 
prove (`!s x:real^N. s <_c (:real) /\ x IN s ==> connected_component s x = {x}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `s = {a} <=> a IN s /\ !a b. a IN s /\ b IN s /\ ~(a = b) ==> F`] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[CONNECTED_COMPONENT_REFL_EQ] THEN MP_TAC(ISPECL [`connected_component s (x:real^N)`; `a:real^N`; `b:real^N`] CARD_EQ_CONNECTED) THEN ASM_REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT] THEN DISCH_TAC THEN UNDISCH_TAC `(s:real^N->bool) <_c (:real)` THEN REWRITE_TAC[CARD_NOT_LT] THEN TRANS_TAC CARD_LE_TRANS `connected_component s (x:real^N)` THEN ASM_SIMP_TAC[ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_IMP_LE] THEN MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET]);;
let COUNTABLE_IMP_DISCONNECTED = 
prove (`!s x:real^N. COUNTABLE s /\ x IN s ==> connected_component s x = {x}`,
let CONNECTED_CARD_EQ_IFF_NONTRIVIAL = 
prove (`!s:real^N->bool. connected s ==> (s =_c (:real) <=> ~(?a. s SUBSET {a}))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [ALL_TAC; MATCH_MP_TAC CARD_EQ_CONNECTED THEN ASM SET_TAC[]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET)) THEN REWRITE_TAC[FINITE_SING] THEN ASM_MESON_TAC[CARD_EQ_REAL_IMP_UNCOUNTABLE; FINITE_IMP_COUNTABLE]);;
(* ------------------------------------------------------------------------- *) (* "Iff" forms of constancy of function from connected set into a set that *) (* is smaller than R, or countable, or finite, or disconnected, or discrete. *) (* ------------------------------------------------------------------------- *) let [CONTINUOUS_DISCONNECTED_RANGE_CONSTANT_EQ; CONTINUOUS_DISCRETE_RANGE_CONSTANT_EQ; CONTINUOUS_FINITE_RANGE_CONSTANT_EQ] = (CONJUNCTS o prove) (`(!s. connected s <=> !f:real^M->real^N t. f continuous_on s /\ IMAGE f s SUBSET t /\ (!y. y IN t ==> connected_component t y = {y}) ==> ?a. !x. x IN s ==> f x = a) /\ (!s. connected s <=> !f:real^M->real^N. f continuous_on s /\ (!x. x IN s ==> ?e. &0 < e /\ !y. y IN s /\ ~(f y = f x) ==> e <= norm(f y - f x)) ==> ?a. !x. x IN s ==> f x = a) /\ (!s. connected s <=> !f:real^M->real^N. f continuous_on s /\ FINITE(IMAGE f s) ==> ?a. !x. x IN s ==> f x = a)`, REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `s:real^M->bool` THEN MATCH_MP_TAC(TAUT `(s ==> t) /\ (t ==> u) /\ (u ==> v) /\ (v ==> s) ==> (s <=> t) /\ (s <=> u) /\ (s <=> v)`) THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `x:real^M` o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN EXISTS_TAC `(f:real^M->real^N) x` THEN MATCH_MP_TAC(SET_RULE `IMAGE f s SUBSET {a} ==> !y. y IN s ==> f y = a`) THEN FIRST_X_ASSUM(MP_TAC o SPEC `(f:real^M->real^N) x`) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN ASM_SIMP_TAC[CONNECTED_CONTINUOUS_IMAGE] THEN ASM SET_TAC[]; REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `IMAGE (f:real^M->real^N) s` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; SUBSET_REFL] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(SET_RULE `(!y. y IN s /\ f y IN connected_component (IMAGE f s) a ==> f y = a) /\ connected_component (IMAGE f s) a SUBSET (IMAGE f s) /\ connected_component (IMAGE f s) a a ==> connected_component (IMAGE f s) a = {a}`) THEN REWRITE_TAC[CONNECTED_COMPONENT_SUBSET; CONNECTED_COMPONENT_REFL_EQ] THEN ASM_SIMP_TAC[FUN_IN_IMAGE] THEN X_GEN_TAC `y:real^M` THEN STRIP_TAC THEN MP_TAC(ISPEC `connected_component (IMAGE (f:real^M->real^N) s) (f x)` CONNECTED_CLOSED) THEN REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY EXISTS_TAC [`cball((f:real^M->real^N) x,e / &2)`; `(:real^N) DIFF ball((f:real^M->real^N) x,e)`] THEN REWRITE_TAC[GSYM OPEN_CLOSED; OPEN_BALL; CLOSED_CBALL] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_CBALL; IN_UNION; IN_DIFF; IN_BALL; IN_UNIV] THEN MATCH_MP_TAC(MESON[SUBSET; CONNECTED_COMPONENT_SUBSET] `(!x. x IN s ==> P x) ==> (!x. x IN connected_component s y ==> P x)`) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `z:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:real^M`) THEN ASM_REWRITE_TAC[] THEN CONV_TAC NORM_ARITH; MATCH_MP_TAC(SET_RULE `(!x. x IN s /\ x IN t ==> F) ==> s INTER t INTER u = {}`) THEN REWRITE_TAC[IN_BALL; IN_CBALL; IN_DIFF; IN_UNIV] THEN UNDISCH_TAC `&0 < e` THEN CONV_TAC NORM_ARITH; EXISTS_TAC `(f:real^M->real^N) x` THEN ASM_SIMP_TAC[CENTRE_IN_CBALL; REAL_HALF; REAL_LT_IMP_LE; IN_INTER] THEN REWRITE_TAC[IN] THEN ASM_SIMP_TAC[CONNECTED_COMPONENT_REFL_EQ; FUN_IN_IMAGE]; EXISTS_TAC `(f:real^M->real^N) y` THEN ASM_REWRITE_TAC[IN_INTER; IN_DIFF; IN_UNIV; IN_BALL; REAL_NOT_LT] THEN ASM_SIMP_TAC[ONCE_REWRITE_RULE[DIST_SYM] dist]]; MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `f:real^M->real^N` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MATCH_MP_TAC th) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN ASM_CASES_TAC `IMAGE (f:real^M->real^N) s DELETE (f x) = {}` THENL [EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `inf{norm(z - f x) |z| z IN IMAGE (f:real^M->real^N) s DELETE (f x)}` THEN REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_SIMP_TAC[REAL_LT_INF_FINITE; REAL_INF_LE_FINITE; FINITE_DELETE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN REWRITE_TAC[IN_DELETE; NORM_POS_LT; VECTOR_SUB_EQ; IN_IMAGE] THEN MESON_TAC[REAL_LE_REFL]; REWRITE_TAC[CONNECTED_CLOSED_IN_EQ] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`t:real^M->bool`; `u:real^M->bool`] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o SPEC `(\x. if x IN t then vec 0 else basis 1):real^M->real^N`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [EXPAND_TAC "s" THEN MATCH_MP_TAC CONTINUOUS_ON_CASES_LOCAL THEN ASM_REWRITE_TAC[CONTINUOUS_ON_CONST] THEN ASM SET_TAC[]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{vec 0:real^N,basis 1}` THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY] THEN SET_TAC[]; SUBGOAL_THEN `?a b:real^M. a IN s /\ a IN t /\ b IN s /\ ~(b IN t)` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; DISCH_THEN(CHOOSE_THEN MP_TAC)] THEN DISCH_THEN(fun th -> MP_TAC(SPEC `a:real^M` th) THEN MP_TAC(SPEC `b:real^M` th)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC(RAND_CONV SYM_CONV) THEN SIMP_TAC[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1; REAL_LE_REFL]]]);;
let CONTINUOUS_DISCONNECTED_RANGE_CONSTANT = 
prove (`!f:real^M->real^N s. connected s /\ f continuous_on s /\ IMAGE f s SUBSET t /\ (!y. y IN t ==> connected_component t y = {y}) ==> ?a. !x. x IN s ==> f x = a`,
MESON_TAC[CONTINUOUS_DISCONNECTED_RANGE_CONSTANT_EQ]);;
let CONTINUOUS_DISCRETE_RANGE_CONSTANT = 
prove (`!f:real^M->real^N s. connected s /\ f continuous_on s /\ (!x. x IN s ==> ?e. &0 < e /\ !y. y IN s /\ ~(f y = f x) ==> e <= norm(f y - f x)) ==> ?a. !x. x IN s ==> f x = a`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN REWRITE_TAC[IMP_IMP; GSYM CONTINUOUS_DISCRETE_RANGE_CONSTANT_EQ]);;
let CONTINUOUS_FINITE_RANGE_CONSTANT = 
prove (`!f:real^M->real^N s. connected s /\ f continuous_on s /\ FINITE(IMAGE f s) ==> ?a. !x. x IN s ==> f x = a`,
MESON_TAC[CONTINUOUS_FINITE_RANGE_CONSTANT_EQ]);;
let CONTINUOUS_COUNTABLE_RANGE_CONSTANT_EQ = 
prove (`!s. connected s <=> !f:real^M->real^N. f continuous_on s /\ COUNTABLE(IMAGE f s) ==> ?a. !x. x IN s ==> f x = a`,
GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[CONTINUOUS_DISCONNECTED_RANGE_CONSTANT_EQ]; REWRITE_TAC[CONTINUOUS_FINITE_RANGE_CONSTANT_EQ]] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[FINITE_IMP_COUNTABLE] THEN EXISTS_TAC `IMAGE (f:real^M->real^N) s` THEN ASM_SIMP_TAC[COUNTABLE_IMP_DISCONNECTED; SUBSET_REFL]);;
let CONTINUOUS_CARD_LT_RANGE_CONSTANT_EQ = 
prove (`!s. connected s <=> !f:real^M->real^N. f continuous_on s /\ (IMAGE f s) <_c (:real) ==> ?a. !x. x IN s ==> f x = a`,
GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[CONTINUOUS_DISCONNECTED_RANGE_CONSTANT_EQ]; REWRITE_TAC[CONTINUOUS_COUNTABLE_RANGE_CONSTANT_EQ]] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[COUNTABLE_IMP_CARD_LT_REAL] THEN EXISTS_TAC `IMAGE (f:real^M->real^N) s` THEN ASM_SIMP_TAC[CARD_LT_IMP_DISCONNECTED; SUBSET_REFL]);;
let CONTINUOUS_COUNTABLE_RANGE_CONSTANT = 
prove (`!f:real^M->real^N s. connected s /\ f continuous_on s /\ COUNTABLE(IMAGE f s) ==> ?a. !x. x IN s ==> f x = a`,
let CONTINUOUS_CARD_LT_RANGE_CONSTANT = 
prove (`!f:real^M->real^N s. connected s /\ f continuous_on s /\ (IMAGE f s) <_c (:real) ==> ?a. !x. x IN s ==> f x = a`,
(* ------------------------------------------------------------------------- *) (* Homeomorphism of hyperplanes. *) (* ------------------------------------------------------------------------- *)
let HOMEOMORPHIC_HYPERPLANES = 
prove (`!a:real^N b c:real^N d. ~(a = vec 0) /\ ~(c = vec 0) ==> {x | a dot x = b} homeomorphic {x | c dot x = d}`,
let lemma = prove
   (`~(a = vec 0)
     ==> {x:real^N | a dot x = b} homeomorphic {x:real^N | x$1 = &0}`,
    REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c:real^N. a dot c = b`
    STRIP_ASSUME_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [CART_EQ]) THEN
      REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; VEC_COMPONENT] THEN
      DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `b / (a:real^N)$k % basis k:real^N` THEN
      ASM_SIMP_TAC[DOT_RMUL; DOT_BASIS; REAL_DIV_RMUL];
      FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
      ABBREV_TAC `p = {x:real^N | x$1 = &0}` THEN
      GEOM_ORIGIN_TAC `c:real^N` THEN
      REWRITE_TAC[VECTOR_ADD_RID; DOT_RADD; DOT_RZERO; REAL_EQ_ADD_LCANCEL_0;
                  REAL_ADD_RID] THEN
      REPEAT STRIP_TAC THEN UNDISCH_TAC `~(a:real^N = vec 0)` THEN
      GEOM_BASIS_MULTIPLE_TAC 1 `a:real^N` THEN
      SIMP_TAC[VECTOR_MUL_EQ_0; DE_MORGAN_THM; DOT_LMUL; REAL_ENTIRE] THEN
      SIMP_TAC[DOT_BASIS; LE_REFL; DIMINDEX_GE_1] THEN
      EXPAND_TAC "p" THEN REWRITE_TAC[HOMEOMORPHIC_REFL]]) in
  REPEAT STRIP_TAC THEN
  TRANS_TAC HOMEOMORPHIC_TRANS `{x:real^N | x$1 = &0}` THEN
  ASM_SIMP_TAC[lemma] THEN ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN
  ASM_SIMP_TAC[lemma]);;
let HOMEOMORPHIC_HYPERPLANE_STANDARD_HYPERPLANE = 
prove (`!a:real^N b k c. ~(a = vec 0) /\ 1 <= k /\ k <= dimindex(:N) ==> {x | a dot x = b} homeomorphic {x:real^N | x$k = c}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x:real^N | x$k = c} = {x | basis k dot x = c}` SUBST1_TAC THENL [ASM_SIMP_TAC[DOT_BASIS]; MATCH_MP_TAC HOMEOMORPHIC_HYPERPLANES] THEN ASM_SIMP_TAC[BASIS_NONZERO]);;
let HOMEOMORPHIC_STANDARD_HYPERPLANE_HYPERPLANE = 
prove (`!a:real^N b k c. ~(a = vec 0) /\ 1 <= k /\ k <= dimindex(:N) ==> {x:real^N | x$k = c} homeomorphic {x | a dot x = b}`,
ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN REWRITE_TAC[HOMEOMORPHIC_HYPERPLANE_STANDARD_HYPERPLANE]);;
let HOMEOMORPHIC_HYPERPLANE_UNIV = 
prove (`!a b. ~(a = vec 0) /\ dimindex(:N) = dimindex(:M) + 1 ==> {x:real^N | a dot x = b} homeomorphic (:real^M)`,
REPEAT STRIP_TAC THEN TRANS_TAC HOMEOMORPHIC_TRANS `{x:real^N | basis(dimindex(:N)) dot x = &0}` THEN ASM_SIMP_TAC[HOMEOMORPHIC_HYPERPLANES; BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] THEN REWRITE_TAC[homeomorphic; HOMEOMORPHISM] THEN EXISTS_TAC `(\x. lambda i. x$i):real^N->real^M` THEN EXISTS_TAC `(\x. lambda i. if i <= dimindex(:M) then x$i else &0) :real^M->real^N` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN SIMP_TAC[linear; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT]; REWRITE_TAC[SUBSET_UNIV]; MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN SIMP_TAC[linear; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN ASM_SIMP_TAC[DOT_BASIS; LAMBDA_BETA; LE_REFL; ARITH_RULE `1 <= n + 1`; ARITH_RULE `~(m + 1 <= m)`]; ASM_SIMP_TAC[IN_ELIM_THM; LAMBDA_BETA; DOT_BASIS; LE_REFL; CART_EQ; ARITH_RULE `1 <= n + 1`] THEN GEN_TAC THEN DISCH_TAC THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i = dimindex(:M) + 1` THEN ASM_REWRITE_TAC[COND_ID] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_ARITH_TAC; ASM_SIMP_TAC[LAMBDA_BETA; CART_EQ; IN_UNIV; LE_REFL; ARITH_RULE `i <= n ==> i <= n + 1`]]);;
(* ------------------------------------------------------------------------- *) (* "Isometry" (up to constant bounds) of injective linear map etc. *) (* ------------------------------------------------------------------------- *)
let CAUCHY_ISOMETRIC = 
prove (`!f s e x. &0 < e /\ subspace s /\ linear f /\ (!x. x IN s ==> norm(f x) >= e * norm(x)) /\ (!n. x(n) IN s) /\ cauchy(f o x) ==> cauchy x`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_ge] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[CAUCHY; dist; o_THM] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_SUB th)]) THEN DISCH_THEN(fun th -> X_GEN_TAC `d:real` THEN DISCH_TAC THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o SPEC `d * e`) THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN ASM_MESON_TAC[REAL_LE_RDIV_EQ; REAL_MUL_SYM; REAL_LET_TRANS; SUBSPACE_SUB; REAL_LT_LDIV_EQ]);;
let COMPLETE_ISOMETRIC_IMAGE = 
prove (`!f:real^M->real^N s e. &0 < e /\ subspace s /\ linear f /\ (!x. x IN s ==> norm(f x) >= e * norm(x)) /\ complete s ==> complete(IMAGE f s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[complete; EXISTS_IN_IMAGE] THEN STRIP_TAC THEN X_GEN_TAC `g:num->real^N` THEN REWRITE_TAC[IN_IMAGE; SKOLEM_THM; FORALL_AND_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `x:num->real^M` MP_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM FUN_EQ_THM] THEN REWRITE_TAC[GSYM o_DEF] THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num->real^M`) THEN ASM_MESON_TAC[CAUCHY_ISOMETRIC; LINEAR_CONTINUOUS_AT; CONTINUOUS_AT_SEQUENTIALLY]);;
let INJECTIVE_IMP_ISOMETRIC = 
prove (`!f:real^M->real^N s. closed s /\ subspace s /\ linear f /\ (!x. x IN s /\ (f x = vec 0) ==> (x = vec 0)) ==> ?e. &0 < e /\ !x. x IN s ==> norm(f x) >= e * norm(x)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s SUBSET {vec 0 :real^M}` THENL [EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01; REAL_MUL_LID; real_ge] THEN ASM_MESON_TAC[SUBSET; IN_SING; NORM_0; LINEAR_0; REAL_LE_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [SUBSET]) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; IN_SING] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^M` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`{(f:real^M->real^N) x | x IN s /\ norm(x) = norm(a:real^M)}`; `vec 0:real^N`] DISTANCE_ATTAINS_INF) THEN ANTS_TAC THENL [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN MATCH_MP_TAC COMPACT_IMP_CLOSED THEN SUBST1_TAC(SET_RULE `{f x | x IN s /\ norm(x) = norm(a:real^M)} = IMAGE (f:real^M->real^N) (s INTER {x | norm x = norm a})`) THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_ON] THEN MATCH_MP_TAC CLOSED_INTER_COMPACT THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `{x:real^M | norm x = norm(a:real^M)} = frontier(cball(vec 0,norm a))` SUBST1_TAC THENL [ASM_SIMP_TAC[FRONTIER_CBALL; NORM_POS_LT; dist; VECTOR_SUB_LZERO; NORM_NEG; sphere]; ASM_SIMP_TAC[COMPACT_FRONTIER; COMPACT_CBALL]]; ALL_TAC] THEN ONCE_REWRITE_TAC[SET_RULE `{f x | P x} = IMAGE f {x | P x}`] THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^M` MP_TAC) THEN REWRITE_TAC[IN_ELIM_THM; dist; VECTOR_SUB_LZERO; NORM_NEG] THEN STRIP_TAC THEN REWRITE_TAC[CLOSED_LIMPT; LIMPT_APPROACHABLE] THEN EXISTS_TAC `norm((f:real^M->real^N) b) / norm(b)` THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_DIV; NORM_POS_LT; NORM_EQ_0]; ALL_TAC] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN ASM_CASES_TAC `x:real^M = vec 0` THENL [FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP LINEAR_0 th]) THEN REWRITE_TAC[NORM_0; REAL_MUL_RZERO; real_ge; REAL_LE_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(norm(a:real^M) / norm(x)) % x:real^M`) THEN ANTS_TAC THENL [ASM_SIMP_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[REAL_DIV_RMUL; NORM_EQ_0] THEN ASM_MESON_TAC[subspace]; ALL_TAC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_CMUL th]) THEN ASM_REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM; real_ge] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; NORM_POS_LT] THEN REWRITE_TAC[real_div; REAL_MUL_AC]);;
let CLOSED_INJECTIVE_IMAGE_SUBSPACE = 
prove (`!f s. subspace s /\ linear f /\ (!x. x IN s /\ f(x) = vec 0 ==> x = vec 0) /\ closed s ==> closed(IMAGE f s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM COMPLETE_EQ_CLOSED] THEN MATCH_MP_TAC COMPLETE_ISOMETRIC_IMAGE THEN ASM_REWRITE_TAC[COMPLETE_EQ_CLOSED] THEN MATCH_MP_TAC INJECTIVE_IMP_ISOMETRIC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Relating linear images to open/closed/interior/closure. *) (* ------------------------------------------------------------------------- *)
let OPEN_SURJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N. linear f /\ (!y. ?x. f x = y) ==> !s. open s ==> open(IMAGE f s)`,
GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[open_def; FORALL_IN_IMAGE] THEN FIRST_ASSUM(MP_TAC o GEN `k:num` o SPEC `basis k:real^N`) THEN REWRITE_TAC[SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `b:num->real^M` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `bounded(IMAGE (b:num->real^M) (1..dimindex(:N)))` MP_TAC THENL [SIMP_TAC[FINITE_IMP_BOUNDED; FINITE_IMAGE; FINITE_NUMSEG]; ALL_TAC] THEN REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; IN_NUMSEG] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN X_GEN_TAC `s:real^M->bool` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:real^M` THEN ASM_CASES_TAC `(x:real^M) IN s` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e / B / &(dimindex(:N))` THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; DIMINDEX_GE_1; LE_1] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_IMAGE] THEN ABBREV_TAC `u = y - (f:real^M->real^N) x` THEN EXISTS_TAC `x + vsum(1..dimindex(:N)) (\i. (u:real^N)$i % b i):real^M` THEN ASM_SIMP_TAC[LINEAR_ADD; LINEAR_VSUM; FINITE_NUMSEG; o_DEF; LINEAR_CMUL; BASIS_EXPANSION] THEN CONJ_TAC THENL [EXPAND_TAC "u" THEN VECTOR_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[NORM_ARITH `dist(x + y,x) = norm y`] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `(dist(y,(f:real^M->real^N) x) * &(dimindex(:N))) * B` THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; DIMINDEX_GE_1; LE_1] THEN MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN REWRITE_TAC[FINITE_NUMSEG] THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * c:real = b * a * c`] THEN GEN_REWRITE_TAC(RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[NORM_MUL; dist] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS; NORM_POS_LE] THEN ASM_SIMP_TAC[COMPONENT_LE_NORM]);;
let OPEN_BIJECTIVE_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> (open(IMAGE f s) <=> open s)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[OPEN_SURJECTIVE_LINEAR_IMAGE]] THEN SUBGOAL_THEN `s = {x | (f:real^M->real^N) x IN IMAGE f s}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_OPEN_PREIMAGE_UNIV THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_AT]);;
add_linear_invariants [OPEN_BIJECTIVE_LINEAR_IMAGE_EQ];;
let CLOSED_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> !s. closed s ==> closed(IMAGE f s)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC CLOSED_IN_CLOSED_TRANS THEN EXISTS_TAC `IMAGE (f:real^M->real^N) (:real^M)` THEN CONJ_TAC THENL [MP_TAC(ISPECL [`g:real^N->real^M`; `IMAGE (f:real^M->real^N) (:real^M)`; `IMAGE (g:real^N->real^M) (IMAGE (f:real^M->real^N) s)`] CONTINUOUS_CLOSED_IN_PREIMAGE) THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_ON] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[GSYM IMAGE_o; IMAGE_I]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN REWRITE_TAC[EXTENSION; o_THM; I_THM] THEN SET_TAC[]; MATCH_MP_TAC CLOSED_INJECTIVE_IMAGE_SUBSPACE THEN ASM_REWRITE_TAC[IN_UNIV; SUBSPACE_UNIV; CLOSED_UNIV] THEN X_GEN_TAC `x:real^M` THEN DISCH_THEN(MP_TAC o AP_TERM `g:real^N->real^M`) THEN RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM; I_THM; o_THM]) THEN ASM_MESON_TAC[LINEAR_0]]);;
let CLOSED_INJECTIVE_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (closed(IMAGE f s) <=> closed s)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[CLOSED_INJECTIVE_LINEAR_IMAGE]] THEN SUBGOAL_THEN `s = {x | (f:real^M->real^N) x IN IMAGE f s}` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_AT]);;
add_linear_invariants [CLOSED_INJECTIVE_LINEAR_IMAGE_EQ];;
let CLOSURE_LINEAR_IMAGE_SUBSET = 
prove (`!f:real^M->real^N s. linear f ==> IMAGE f (closure s) SUBSET closure(IMAGE f s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC IMAGE_CLOSURE_SUBSET THEN ASM_SIMP_TAC[CLOSED_CLOSURE; CLOSURE_SUBSET; LINEAR_CONTINUOUS_ON]);;
let CLOSURE_INJECTIVE_LINEAR_IMAGE  = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> closure(IMAGE f s) = IMAGE f (closure s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[CLOSURE_LINEAR_IMAGE_SUBSET] THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN SIMP_TAC[CLOSURE_SUBSET; IMAGE_SUBSET] THEN ASM_MESON_TAC[CLOSED_INJECTIVE_LINEAR_IMAGE; CLOSED_CLOSURE]);;
add_linear_invariants [CLOSURE_INJECTIVE_LINEAR_IMAGE];;
let CLOSURE_BOUNDED_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ bounded s ==> closure(IMAGE f s) = IMAGE f (closure s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[CLOSURE_LINEAR_IMAGE_SUBSET] THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN SIMP_TAC[CLOSURE_SUBSET; IMAGE_SUBSET] THEN MATCH_MP_TAC COMPACT_IMP_CLOSED THEN MATCH_MP_TAC COMPACT_LINEAR_IMAGE THEN ASM_REWRITE_TAC[COMPACT_CLOSURE]);;
let LINEAR_INTERIOR_IMAGE_SUBSET = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> interior(IMAGE f s) SUBSET IMAGE f (interior s)`,
let LINEAR_IMAGE_SUBSET_INTERIOR = 
prove (`!f:real^M->real^N s. linear f /\ (!y. ?x. f x = y) ==> IMAGE f (interior s) SUBSET interior(IMAGE f s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERIOR_MAXIMAL THEN ASM_SIMP_TAC[OPEN_SURJECTIVE_LINEAR_IMAGE; OPEN_INTERIOR; IMAGE_SUBSET; INTERIOR_SUBSET]);;
let INTERIOR_BIJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> interior(IMAGE f s) = IMAGE f (interior s)`,
REWRITE_TAC[interior] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [INTERIOR_BIJECTIVE_LINEAR_IMAGE];;
let FRONTIER_BIJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> frontier(IMAGE f s) = IMAGE f (frontier s)`,
REWRITE_TAC[frontier] THEN GEOM_TRANSFORM_TAC[]);;
add_linear_invariants [FRONTIER_BIJECTIVE_LINEAR_IMAGE];; (* ------------------------------------------------------------------------- *) (* Corollaries, reformulations and special cases for M = N. *) (* ------------------------------------------------------------------------- *)
let IN_INTERIOR_LINEAR_IMAGE = 
prove (`!f:real^M->real^N g s x. linear f /\ linear g /\ (f o g = I) /\ x IN interior s ==> (f x) IN interior (IMAGE f s)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`] LINEAR_IMAGE_SUBSET_INTERIOR) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[]);;
let LINEAR_OPEN_MAPPING = 
prove (`!f:real^M->real^N g. linear f /\ linear g /\ (f o g = I) ==> !s. open s ==> open(IMAGE f s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN DISCH_TAC THEN MATCH_MP_TAC OPEN_SURJECTIVE_LINEAR_IMAGE THEN ASM_MESON_TAC[]);;
let INTERIOR_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^N->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> interior(IMAGE f s) = IMAGE f (interior s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERIOR_BIJECTIVE_LINEAR_IMAGE THEN ASM_MESON_TAC[LINEAR_INJECTIVE_IMP_SURJECTIVE]);;
let INTERIOR_SURJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^N->real^N s. linear f /\ (!y. ?x. f x = y) ==> interior(IMAGE f s) = IMAGE f (interior s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERIOR_BIJECTIVE_LINEAR_IMAGE THEN ASM_MESON_TAC[LINEAR_SURJECTIVE_IMP_INJECTIVE]);;
let CLOSURE_SURJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^N->real^N s. linear f /\ (!y. ?x. f x = y) ==> closure(IMAGE f s) = IMAGE f (closure s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_INJECTIVE_LINEAR_IMAGE THEN ASM_MESON_TAC[LINEAR_SURJECTIVE_IMP_INJECTIVE]);;
let FRONTIER_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^N->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> frontier(IMAGE f s) = IMAGE f (frontier s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FRONTIER_BIJECTIVE_LINEAR_IMAGE THEN ASM_MESON_TAC[LINEAR_INJECTIVE_IMP_SURJECTIVE]);;
let FRONTIER_SURJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^N->real^N. linear f /\ (!y. ?x. f x = y) ==> frontier(IMAGE f s) = IMAGE f (frontier s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FRONTIER_BIJECTIVE_LINEAR_IMAGE THEN ASM_MESON_TAC[LINEAR_SURJECTIVE_IMP_INJECTIVE]);;
let COMPLETE_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> !s. complete s ==> complete(IMAGE f s)`,
let COMPLETE_INJECTIVE_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (complete(IMAGE f s) <=> complete s)`,
add_linear_invariants [COMPLETE_INJECTIVE_LINEAR_IMAGE_EQ];;
let LIMPT_INJECTIVE_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> ((f x) limit_point_of (IMAGE f s) <=> x limit_point_of s)`,
REWRITE_TAC[LIMPT_APPROACHABLE; EXISTS_IN_IMAGE] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THENL [MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_BOUNDED_BELOW_POS); MP_TAC(ISPEC `f:real^M->real^N` LINEAR_BOUNDED_POS)] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THENL [FIRST_X_ASSUM(MP_TAC o SPEC `e * B:real`); FIRST_X_ASSUM(MP_TAC o SPEC `e / B:real`)] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_MUL; dist; GSYM LINEAR_SUB] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> b < x ==> a < x`) THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ]);;
add_linear_invariants [LIMPT_INJECTIVE_LINEAR_IMAGE_EQ];;
let LIMPT_TRANSLATION_EQ = 
prove (`!a s x. (a + x) limit_point_of (IMAGE (\y. a + y) s) <=> x limit_point_of s`,
REWRITE_TAC[limit_point_of] THEN GEOM_TRANSLATE_TAC[]);;
add_translation_invariants [LIMPT_TRANSLATION_EQ];;
let OPEN_OPEN_LEFT_PROJECTION = 
prove (`!s t:real^(M,N)finite_sum->bool. open s /\ open t ==> open {x | x IN s /\ ?y. pastecart x y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{x | x IN s /\ ?y. (pastecart x y:real^(M,N)finite_sum) IN t} = s INTER IMAGE fstcart t` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_IMAGE] THEN MESON_TAC[FSTCART_PASTECART; PASTECART_FST_SND]; MATCH_MP_TAC OPEN_INTER THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM] OPEN_SURJECTIVE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART] THEN MESON_TAC[FSTCART_PASTECART]]);;
let OPEN_OPEN_RIGHT_PROJECTION = 
prove (`!s t:real^(M,N)finite_sum->bool. open s /\ open t ==> open {y | y IN s /\ ?x. pastecart x y IN t}`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `{y | y IN s /\ ?x. (pastecart x y:real^(M,N)finite_sum) IN t} = s INTER IMAGE sndcart t` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_IMAGE] THEN MESON_TAC[SNDCART_PASTECART; PASTECART_FST_SND]; MATCH_MP_TAC OPEN_INTER THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM] OPEN_SURJECTIVE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART] THEN MESON_TAC[SNDCART_PASTECART]]);;
(* ------------------------------------------------------------------------- *) (* Even more special cases. *) (* ------------------------------------------------------------------------- *)
let INTERIOR_NEGATIONS = 
prove (`!s. interior(IMAGE (--) s) = IMAGE (--) (interior s)`,
GEN_TAC THEN MATCH_MP_TAC INTERIOR_INJECTIVE_LINEAR_IMAGE THEN REWRITE_TAC[linear] THEN REPEAT CONJ_TAC THEN VECTOR_ARITH_TAC);;
let SYMMETRIC_INTERIOR = 
prove (`!s:real^N->bool. (!x. x IN s ==> --x IN s) ==> !x. x IN interior s ==> (--x) IN interior s`,
REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(ISPEC `(--):real^N->real^N` FUN_IN_IMAGE)) THEN REWRITE_TAC[GSYM INTERIOR_NEGATIONS] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ASM_MESON_TAC[VECTOR_NEG_NEG]);;
let CLOSURE_NEGATIONS = 
prove (`!s. closure(IMAGE (--) s) = IMAGE (--) (closure s)`,
GEN_TAC THEN MATCH_MP_TAC CLOSURE_INJECTIVE_LINEAR_IMAGE THEN REWRITE_TAC[linear] THEN REPEAT CONJ_TAC THEN VECTOR_ARITH_TAC);;
let SYMMETRIC_CLOSURE = 
prove (`!s:real^N->bool. (!x. x IN s ==> --x IN s) ==> !x. x IN closure s ==> (--x) IN closure s`,
REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(ISPEC `(--):real^N->real^N` FUN_IN_IMAGE)) THEN REWRITE_TAC[GSYM CLOSURE_NEGATIONS] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ASM_MESON_TAC[VECTOR_NEG_NEG]);;
(* ------------------------------------------------------------------------- *) (* Some properties of a canonical subspace. *) (* ------------------------------------------------------------------------- *)
let SUBSPACE_SUBSTANDARD = 
prove (`!d. subspace {x:real^N | !i. d < i /\ i <= dimindex(:N) ==> x$i = &0}`,
GEN_TAC THEN ASM_CASES_TAC `d <= dimindex(:N)` THENL [MP_TAC(ARITH_RULE `!i. d < i ==> 1 <= i`) THEN SIMP_TAC[subspace; IN_ELIM_THM; REAL_MUL_RZERO; REAL_ADD_LID; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT]; ASM_SIMP_TAC[ARITH_RULE `~(d:num <= e) ==> (d < i /\ i <= e <=> F)`] THEN REWRITE_TAC[SET_RULE `{x | T} = UNIV`; SUBSPACE_UNIV]]);;
let CLOSED_SUBSTANDARD = 
prove (`!d. closed {x:real^N | !i. d < i /\ i <= dimindex(:N) ==> x$i = &0}`,
GEN_TAC THEN SUBGOAL_THEN `{x:real^N | !i. d < i /\ i <= dimindex(:N) ==> x$i = &0} = INTERS {{x | basis i dot x = &0} | d < i /\ i <= dimindex(:N)}` SUBST1_TAC THENL [ALL_TAC; SIMP_TAC[CLOSED_INTERS; CLOSED_HYPERPLANE; IN_ELIM_THM; LEFT_IMP_EXISTS_THM]] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTERS; IN_ELIM_THM] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN MP_TAC(ARITH_RULE `!i. d < i ==> 1 <= i`) THEN SIMP_TAC[DOT_BASIS] THEN MESON_TAC[]);;
let DIM_SUBSTANDARD = 
prove (`!d. d <= dimindex(:N) ==> (dim {x:real^N | !i. d < i /\ i <= dimindex(:N) ==> x$i = &0} = d)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `IMAGE (basis:num->real^N) (1..d)` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_NUMSEG] THEN MESON_TAC[BASIS_COMPONENT; ARITH_RULE `d < i ==> 1 <= i`; NOT_LT]; ALL_TAC; MATCH_MP_TAC INDEPENDENT_MONO THEN EXISTS_TAC `{basis i :real^N | 1 <= i /\ i <= dimindex(:N)}` THEN REWRITE_TAC[INDEPENDENT_STDBASIS]THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_NUMSEG] THEN ASM_MESON_TAC[LE_TRANS]; MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN REWRITE_TAC[HAS_SIZE_NUMSEG_1] THEN REWRITE_TAC[IN_NUMSEG] THEN ASM_MESON_TAC[LE_TRANS; BASIS_INJ]] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THENL [REWRITE_TAC[ARITH_RULE `0 < i <=> 1 <= i`; SPAN_STDBASIS] THEN SUBGOAL_THEN `IMAGE basis (1 .. 0) :real^N->bool = {}` SUBST1_TAC THENL [REWRITE_TAC[IMAGE_EQ_EMPTY; NUMSEG_EMPTY; ARITH]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[SPAN_EMPTY; SUBSET; IN_ELIM_THM; IN_SING] THEN SIMP_TAC[CART_EQ; VEC_COMPONENT]; ALL_TAC] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ASM_SIMP_TAC[ARITH_RULE `SUC d <= n ==> d <= n`] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN DISCH_TAC THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x - (x$(SUC d)) % basis(SUC d) :real^N`) THEN ANTS_TAC THENL [X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `d < i ==> 1 <= i`)) THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT] THEN ASM_SIMP_TAC[BASIS_COMPONENT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_RID; REAL_SUB_REFL] THEN ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO] THEN ASM_MESON_TAC[ARITH_RULE `d < i /\ ~(i = SUC d) ==> SUC d < i`]; ALL_TAC] THEN DISCH_TAC THEN SUBST1_TAC(VECTOR_ARITH `x = (x - (x$(SUC d)) % basis(SUC d)) + x$(SUC d) % basis(SUC d) :real^N`) THEN MATCH_MP_TAC SPAN_ADD THEN CONJ_TAC THENL [ASM_MESON_TAC[SPAN_MONO; SUBSET_IMAGE; SUBSET; SUBSET_NUMSEG; LE_REFL; LE]; MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN MESON_TAC[LE_REFL; ARITH_RULE `1 <= SUC d`]]);;
(* ------------------------------------------------------------------------- *) (* Hence closure and completeness of all subspaces. *) (* ------------------------------------------------------------------------- *)
let CLOSED_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> closed s`,
REPEAT STRIP_TAC THEN ABBREV_TAC `d = dim(s:real^N->bool)` THEN MP_TAC(MATCH_MP DIM_SUBSTANDARD (ISPEC `s:real^N->bool` DIM_SUBSET_UNIV)) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPECL [`{x:real^N | !i. d < i /\ i <= dimindex(:N) ==> x$i = &0}`; `s:real^N->bool`] SUBSPACE_ISOMORPHISM) THEN ASM_REWRITE_TAC[SUBSPACE_SUBSTANDARD] THEN DISCH_THEN(X_CHOOSE_THEN `f:real^N->real^N` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(ISPEC `f:real^N->real^N` CLOSED_INJECTIVE_IMAGE_SUBSPACE) THEN ASM_REWRITE_TAC[SUBSPACE_SUBSTANDARD; CLOSED_SUBSTANDARD] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[LINEAR_0]] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[VEC_COMPONENT; ARITH_RULE `d < i ==> 1 <= i`]);;
let COMPLETE_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> complete s`,
let CLOSED_SPAN = 
prove (`!s. closed(span s)`,
let DIM_CLOSURE = 
prove (`!s:real^N->bool. dim(closure s) = dim s`,
GEN_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [GSYM DIM_SPAN]; ALL_TAC] THEN MATCH_MP_TAC DIM_SUBSET THEN REWRITE_TAC[CLOSURE_SUBSET] THEN MATCH_MP_TAC CLOSURE_MINIMAL THEN SIMP_TAC[CLOSED_SUBSPACE; SUBSPACE_SPAN; SPAN_INC]);;
let CLOSED_BOUNDEDPREIM_CONTINUOUS_IMAGE = 
prove (`!f:real^M->real^N s. closed s /\ f continuous_on s /\ (!e. bounded {x | x IN s /\ norm(f x) <= e}) ==> closed(IMAGE f s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CLOSED_INTERS_COMPACT] THEN REWRITE_TAC[SET_RULE `cball(vec 0,e) INTER IMAGE (f:real^M->real^N) s = IMAGE f (s INTER {x | x IN s /\ f x IN cball(vec 0,e)})`] THEN X_GEN_TAC `e:real` THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `s:real^M->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]; MATCH_MP_TAC CLOSED_INTER_COMPACT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[IN_CBALL_0]; ASM_SIMP_TAC[CONTINUOUS_CLOSED_PREIMAGE; CLOSED_CBALL]]]);;
let CLOSED_INJECTIVE_IMAGE_SUBSET_SUBSPACE = 
prove (`!f:real^M->real^N s t. closed s /\ s SUBSET t /\ subspace t /\ linear f /\ (!x. x IN t /\ f(x) = vec 0 ==> x = vec 0) ==> closed(IMAGE f s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSED_BOUNDEDPREIM_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[LINEAR_CONTINUOUS_ON] THEN MP_TAC(ISPECL [`f:real^M->real^N`; `t:real^M->bool`] INJECTIVE_IMP_ISOMETRIC) THEN ASM_SIMP_TAC[CLOSED_SUBSPACE; real_ge] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN X_GEN_TAC `e:real` THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `cball(vec 0:real^M,e / B)` THEN REWRITE_TAC[BOUNDED_CBALL] THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; IN_CBALL_0; REAL_LE_RDIV_EQ] THEN ASM_MESON_TAC[SUBSET; REAL_LE_TRANS]);;
let BASIS_COORDINATES_LIPSCHITZ = 
prove (`!b:real^N->bool. independent b ==> ?B. &0 < B /\ !c v. v IN b ==> abs(c v) <= B * norm(vsum b (\v. c(v) % v))`,
X_GEN_TAC `k:real^N->bool` THEN DISCH_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP INDEPENDENT_BOUND) THEN FIRST_ASSUM(X_CHOOSE_THEN `b:num->real^N` STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN ABBREV_TAC `n = CARD(k:real^N->bool)` THEN MP_TAC(ISPECL [`(\x. vsum(1..n) (\i. x$i % b i)):real^N->real^N`; `span(IMAGE basis (1..n)):real^N->bool`] INJECTIVE_IMP_ISOMETRIC) THEN REWRITE_TAC[SUBSPACE_SPAN] THEN ANTS_TAC THENL [CONJ_TAC THENL [SIMP_TAC[CLOSED_SUBSPACE; SUBSPACE_SPAN]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC LINEAR_COMPOSE_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LINEAR_VMUL_COMPONENT THEN SIMP_TAC[LINEAR_ID] THEN ASM_ARITH_TAC; ALL_TAC] THEN X_GEN_TAC `x:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_SPAN_IMAGE_BASIS]) THEN REWRITE_TAC[IN_NUMSEG] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN DISCH_THEN(X_CHOOSE_TAC `c:real^N->num`) THEN SUBGOAL_THEN `vsum(1..n) (\i. (x:real^N)$i % b i:real^N) = vsum k (\v. x$(c v) % v)` SUBST1_TAC THENL [MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN MAP_EVERY EXISTS_TAC [`b:num->real^N`; `c:real^N->num`] THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INDEPENDENT_EXPLICIT]) THEN DISCH_THEN(MP_TAC o SPEC `\v:real^N. (x:real^N)$(c v)` o CONJUNCT2) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[CART_EQ; FORALL_IN_IMAGE; VEC_COMPONENT] THEN ASM_MESON_TAC[IN_NUMSEG]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `inv(B:real)` THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_NUMSEG] THEN MAP_EVERY X_GEN_TAC [`c:real^N->real`; `j:num`] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `inv B * x = x / B`] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ] THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o rand o rand o snd) THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN DISCH_THEN SUBST1_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(lambda i. if 1 <= i /\ i <= n then c(b i:real^N) else &0):real^N`) THEN SIMP_TAC[IN_SPAN_IMAGE_BASIS; LAMBDA_BETA] THEN ANTS_TAC THENL [MESON_TAC[IN_NUMSEG]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `x = v /\ u <= y ==> x >= y ==> u <= v`) THEN CONJ_TAC THENL [AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ_NUMSEG THEN SUBGOAL_THEN `!i. i <= n ==> i <= dimindex(:N)` MP_TAC THENL [ASM_ARITH_TAC; SIMP_TAC[LAMBDA_BETA] THEN DISCH_THEN(K ALL_TAC)] THEN REWRITE_TAC[o_THM]; GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN ASM_SIMP_TAC[REAL_LE_RMUL_EQ] THEN MP_TAC(ISPECL [`(lambda i. if 1 <= i /\ i <= n then c(b i:real^N) else &0):real^N`; `j:num`] COMPONENT_LE_NORM) THEN SIMP_TAC[LAMBDA_BETA] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC]);;
let BASIS_COORDINATES_CONTINUOUS = 
prove (`!b:real^N->bool e. independent b /\ &0 < e ==> ?d. &0 < d /\ !c. norm(vsum b (\v. c(v) % v)) < d ==> !v. v IN b ==> abs(c v) < e`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP BASIS_COORDINATES_LIPSCHITZ) THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e / B:real` THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN X_GEN_TAC `c:real^N->real` THEN DISCH_TAC THEN X_GEN_TAC `v:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `B * norm(vsum b (\v:real^N. c v % v))` THEN ASM_SIMP_TAC[] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ]);;
(* ------------------------------------------------------------------------- *) (* Affine transformations of intervals. *) (* ------------------------------------------------------------------------- *)
let AFFINITY_INVERSES = 
prove (`!m c. ~(m = &0) ==> (\x. m % x + c) o (\x. inv(m) % x + (--(inv(m) % c))) = I /\ (\x. inv(m) % x + (--(inv(m) % c))) o (\x. m % x + c) = I`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_RNEG] THEN SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_RINV] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let REAL_AFFINITY_LE = 
prove (`!m c x y. &0 < m ==> (m * x + c <= y <=> x <= inv(m) * y + --(c / m))`,
REWRITE_TAC[REAL_ARITH `m * x + c <= y <=> x * m <= y - c`] THEN SIMP_TAC[GSYM REAL_LE_RDIV_EQ] THEN REAL_ARITH_TAC);;
let REAL_LE_AFFINITY = 
prove (`!m c x y. &0 < m ==> (y <= m * x + c <=> inv(m) * y + --(c / m) <= x)`,
REWRITE_TAC[REAL_ARITH `y <= m * x + c <=> y - c <= x * m`] THEN SIMP_TAC[GSYM REAL_LE_LDIV_EQ] THEN REAL_ARITH_TAC);;
let REAL_AFFINITY_LT = 
prove (`!m c x y. &0 < m ==> (m * x + c < y <=> x < inv(m) * y + --(c / m))`,
SIMP_TAC[REAL_LE_AFFINITY; GSYM REAL_NOT_LE]);;
let REAL_LT_AFFINITY = 
prove (`!m c x y. &0 < m ==> (y < m * x + c <=> inv(m) * y + --(c / m) < x)`,
SIMP_TAC[REAL_AFFINITY_LE; GSYM REAL_NOT_LE]);;
let REAL_AFFINITY_EQ = 
prove (`!m c x y. ~(m = &0) ==> (m * x + c = y <=> x = inv(m) * y + --(c / m))`,
CONV_TAC REAL_FIELD);;
let REAL_EQ_AFFINITY = 
prove (`!m c x y. ~(m = &0) ==> (y = m * x + c <=> inv(m) * y + --(c / m) = x)`,
CONV_TAC REAL_FIELD);;
let VECTOR_AFFINITY_EQ = 
prove (`!m c x y. ~(m = &0) ==> (m % x + c = y <=> x = inv(m) % y + --(inv(m) % c))`,
let VECTOR_EQ_AFFINITY = 
prove (`!m c x y. ~(m = &0) ==> (y = m % x + c <=> inv(m) % y + --(inv(m) % c) = x)`,
let IMAGE_AFFINITY_INTERVAL = 
prove (`!a b:real^N m c. IMAGE (\x. m % x + c) (interval[a,b]) = if interval[a,b] = {} then {} else if &0 <= m then interval[m % a + c,m % b + c] else interval[m % b + c,m % a + c]`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IMAGE_CLAUSES] THEN ASM_CASES_TAC `m = &0` THEN ASM_REWRITE_TAC[REAL_LE_LT] THENL [ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID; COND_ID] THEN REWRITE_TAC[INTERVAL_SING] THEN ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `~(x = &0) ==> &0 < x \/ &0 < --x`)) THEN ASM_SIMP_TAC[EXTENSION; IN_IMAGE; REAL_ARITH `&0 < --x ==> ~(&0 < x)`] THENL [ALL_TAC; ONCE_REWRITE_TAC[VECTOR_ARITH `x = m % y + c <=> c = (--m) % y + x`]] THEN ASM_SIMP_TAC[VECTOR_EQ_AFFINITY; REAL_LT_IMP_NZ; UNWIND_THM1] THEN SIMP_TAC[IN_INTERVAL; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VECTOR_NEG_COMPONENT] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_LT_INV_EQ]) THEN SIMP_TAC[REAL_AFFINITY_LE; REAL_LE_AFFINITY; real_div] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[REAL_INV_INV] THEN REWRITE_TAC[REAL_MUL_LNEG; REAL_NEGNEG] THEN ASM_SIMP_TAC[REAL_FIELD `&0 < m ==> (inv m * x) * m = x`] THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Existence of eigenvectors. The proof is only in this file because it uses *) (* a few simple results about continuous functions (at least *) (* CONTINUOUS_ON_LIFT_DOT2, CONTINUOUS_ATTAINS_SUP and CLOSED_SUBSPACE). *) (* ------------------------------------------------------------------------- *)
let SELF_ADJOINT_HAS_EIGENVECTOR_IN_SUBSPACE = 
prove (`!f:real^N->real^N s. linear f /\ adjoint f = f /\ subspace s /\ ~(s = {vec 0}) /\ (!x. x IN s ==> f x IN s) ==> ?v c. v IN s /\ norm(v) = &1 /\ f(v) = c % v`,
let lemma = prove
   (`!a b. (!x. a * x <= b * x pow 2) ==> &0 <= b ==> a = &0`,
    REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN
    ASM_CASES_TAC `b = &0` THEN ASM_REWRITE_TAC[] THENL
     [FIRST_X_ASSUM(fun t -> MP_TAC(SPEC `&1` t) THEN
        MP_TAC(SPEC `-- &1` t)) THEN ASM_REAL_ARITH_TAC;
      DISCH_TAC THEN  FIRST_X_ASSUM(MP_TAC o SPEC `a / &2 / b`) THEN
      ASM_SIMP_TAC[REAL_FIELD
       `&0 < b ==> (b * (a / b) pow 2) = a pow 2 / b`] THEN
      REWRITE_TAC[real_div; REAL_MUL_ASSOC] THEN SIMP_TAC[GSYM real_div] THEN
      ASM_SIMP_TAC[REAL_LE_DIV2_EQ] THEN
      REWRITE_TAC[REAL_LT_SQUARE; REAL_ARITH
        `(a * a) / &2 <= (a / &2) pow 2 <=> ~(&0 < a * a)`]]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\x:real^N. (f x) dot x`;
                 `s INTER sphere(vec 0:real^N,&1)`]
        CONTINUOUS_ATTAINS_SUP) THEN
  REWRITE_TAC[EXISTS_IN_GSPEC; FORALL_IN_GSPEC; o_DEF] THEN ANTS_TAC THENL
   [ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_DOT2; LINEAR_CONTINUOUS_ON;
                   CONTINUOUS_ON_ID] THEN
    ASM_SIMP_TAC[COMPACT_SPHERE; CLOSED_INTER_COMPACT; CLOSED_SUBSPACE] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE
      `~(s = {a}) ==> a IN s ==> ?b. ~(b = a) /\ b IN s`)) THEN
    ASM_SIMP_TAC[SUBSPACE_0; IN_SPHERE_0; GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN
    DISCH_THEN(X_CHOOSE_THEN `x:real^N` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `inv(norm x) % x:real^N` THEN
    ASM_REWRITE_TAC[IN_ELIM_THM; VECTOR_SUB_RZERO; NORM_MUL] THEN
    ASM_SIMP_TAC[SUBSPACE_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
    ASM_SIMP_TAC[REAL_MUL_LINV; NORM_EQ_0];
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `v:real^N` THEN
    REWRITE_TAC[IN_INTER; IN_SPHERE_0] THEN STRIP_TAC THEN
    ABBREV_TAC `c = (f:real^N->real^N) v dot v` THEN
    EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[]] THEN
  ABBREV_TAC `p = \x y:real^N. c * (x dot y) - (f x) dot y` THEN
  SUBGOAL_THEN `!x:real^N. x IN s ==> &0 <= p x x` (LABEL_TAC "POSDEF") THENL
   [X_GEN_TAC `x:real^N` THEN EXPAND_TAC "p" THEN REWRITE_TAC[] THEN
    ASM_CASES_TAC `x:real^N = vec 0` THEN DISCH_TAC THEN
    ASM_REWRITE_TAC[DOT_RZERO; REAL_MUL_RZERO; REAL_SUB_LE; REAL_LE_REFL] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `inv(norm x) % x:real^N`) THEN
    ASM_SIMP_TAC[SUBSPACE_MUL] THEN
    ASM_SIMP_TAC[LINEAR_CMUL; NORM_MUL; REAL_ABS_INV; DOT_RMUL] THEN
    ASM_SIMP_TAC[REAL_ABS_NORM; REAL_MUL_LINV; NORM_EQ_0; DOT_LMUL] THEN
    ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; DOT_POS_LT] THEN
    REWRITE_TAC[GSYM NORM_POW_2; real_div; REAL_INV_POW] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `!y:real^N. y IN s ==> !a. p v y * a <= p y y * a pow 2`
  MP_TAC THENL
   [REPEAT STRIP_TAC THEN
    REMOVE_THEN "POSDEF" (MP_TAC o SPEC `v - (&2 * a) % y:real^N`) THEN
    EXPAND_TAC "p" THEN ASM_SIMP_TAC[SUBSPACE_SUB; SUBSPACE_MUL] THEN
    ASM_SIMP_TAC[LINEAR_SUB; LINEAR_CMUL] THEN
    REWRITE_TAC[DOT_LSUB; DOT_LMUL] THEN
    REWRITE_TAC[DOT_RSUB; DOT_RMUL] THEN
    SUBGOAL_THEN `f y dot (v:real^N) = f v dot y` SUBST1_TAC THENL
     [ASM_MESON_TAC[ADJOINT_CLAUSES; DOT_SYM]; ALL_TAC] THEN
    ASM_REWRITE_TAC[GSYM NORM_POW_2] THEN REWRITE_TAC[NORM_POW_2] THEN
    MATCH_MP_TAC(REAL_ARITH
        `&4 * (z - y) = x ==> &0 <= x ==> y <= z`) THEN
    REWRITE_TAC[DOT_SYM] THEN CONV_TAC REAL_RING;
    DISCH_THEN(MP_TAC o GEN `y:real^N` o DISCH `(y:real^N) IN s` o
      MATCH_MP lemma o C MP (ASSUME `(y:real^N) IN s`) o SPEC `y:real^N`) THEN
    ASM_SIMP_TAC[] THEN EXPAND_TAC "p" THEN
    REWRITE_TAC[GSYM DOT_LMUL; GSYM DOT_LSUB] THEN
    DISCH_THEN(MP_TAC o SPEC `c % v - f v:real^N`) THEN
    ASM_SIMP_TAC[SUBSPACE_MUL; SUBSPACE_SUB; DOT_EQ_0; VECTOR_SUB_EQ]]);;
let SELF_ADJOINT_HAS_EIGENVECTOR = 
prove (`!f:real^N->real^N. linear f /\ adjoint f = f ==> ?v c. norm(v) = &1 /\ f(v) = c % v`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^N->real^N`; `(:real^N)`] SELF_ADJOINT_HAS_EIGENVECTOR_IN_SUBSPACE) THEN ASM_REWRITE_TAC[SUBSPACE_UNIV; IN_UNIV] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC(SET_RULE `!a. ~(a IN s) ==> ~(UNIV = s)`) THEN EXISTS_TAC `vec 1:real^N` THEN REWRITE_TAC[IN_SING; VEC_EQ; ARITH_EQ]);;
let SELF_ADJOINT_HAS_EIGENVECTOR_BASIS_OF_SUBSPACE = 
prove (`!f:real^N->real^N s. linear f /\ adjoint f = f /\ subspace s /\ (!x. x IN s ==> f x IN s) ==> ?b. b SUBSET s /\ pairwise orthogonal b /\ (!x. x IN b ==> norm x = &1 /\ ?c. f(x) = c % x) /\ independent b /\ span b = s /\ b HAS_SIZE dim s`,
let lemma = prove
   (`!f:real^N->real^N s.
          linear f /\ adjoint f = f /\ subspace s /\ (!x. x IN s ==> f x IN s)
          ==> ?b. b SUBSET s /\ b HAS_SIZE dim s /\
                  pairwise orthogonal b /\
                  (!x. x IN b ==> norm x = &1 /\ ?c. f(x) = c % x)`,
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IMP_IMP] THEN
    GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
    WF_INDUCT_TAC `dim(s:real^N->bool)` THEN STRIP_TAC THEN
    ASM_CASES_TAC `dim(s:real^N->bool) = 0` THENL
     [EXISTS_TAC `{}:real^N->bool` THEN
      ASM_SIMP_TAC[HAS_SIZE_CLAUSES; NOT_IN_EMPTY;
                   PAIRWISE_EMPTY; EMPTY_SUBSET];
      ALL_TAC] THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [DIM_EQ_0]) THEN
    DISCH_THEN(ASSUME_TAC o MATCH_MP (SET_RULE
     `~(s SUBSET {a}) ==> ~(s = {a})`)) THEN
    MP_TAC(ISPECL [`f:real^N->real^N`; `s:real^N->bool`]
      SELF_ADJOINT_HAS_EIGENVECTOR_IN_SUBSPACE) THEN
    ASM_REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
    DISCH_THEN(X_CHOOSE_THEN `v:real^N` MP_TAC) THEN
    ASM_CASES_TAC `v:real^N = vec 0` THEN ASM_REWRITE_TAC[NORM_0] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `{y:real^N | y IN s /\ orthogonal v y}`) THEN
    REWRITE_TAC[SUBSPACE_ORTHOGONAL_TO_VECTOR; IN_ELIM_THM] THEN
    MP_TAC(ISPECL [`span {v:real^N}`; `s:real^N->bool`]
          DIM_SUBSPACE_ORTHOGONAL_TO_VECTORS) THEN
    REWRITE_TAC[ONCE_REWRITE_RULE[ORTHOGONAL_SYM] ORTHOGONAL_TO_SPAN_EQ] THEN
    ASM_REWRITE_TAC[SUBSPACE_SPAN; IN_SING; FORALL_UNWIND_THM2] THEN
    ANTS_TAC THENL
     [MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN ASM SET_TAC[];
      DISCH_THEN(SUBST1_TAC o SYM)] THEN
    ASM_REWRITE_TAC[DIM_SPAN; DIM_SING; ARITH_RULE `n < n + 1`] THEN
    ANTS_TAC THENL
     [REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN
      ASM_SIMP_TAC[SUBSPACE_INTER; SUBSPACE_ORTHOGONAL_TO_VECTOR] THEN
      REWRITE_TAC[orthogonal] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN
      MATCH_MP_TAC EQ_TRANS THEN
      EXISTS_TAC `(f:real^N->real^N) v dot x` THEN CONJ_TAC THENL
       [ASM_MESON_TAC[ADJOINT_CLAUSES];
        ASM_MESON_TAC[DOT_LMUL; REAL_MUL_RZERO]];
      DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(v:real^N) INSERT b` THEN
      ASM_REWRITE_TAC[FORALL_IN_INSERT] THEN
      CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
      ASM_REWRITE_TAC[PAIRWISE_INSERT] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE; SUBSET; IN_ELIM_THM]) THEN
      CONJ_TAC THENL
       [ASM_SIMP_TAC[HAS_SIZE; FINITE_INSERT; CARD_CLAUSES] THEN
        COND_CASES_TAC THEN ASM_REWRITE_TAC[ADD1] THEN
        ASM_MESON_TAC[ORTHOGONAL_REFL];
        RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; IN_ELIM_THM]) THEN
        ASM_MESON_TAC[ORTHOGONAL_SYM]]]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:real^N->real^N`; `s:real^N->bool`] lemma) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `b:real^N->bool` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN
    ASM_MESON_TAC[NORM_ARITH `~(norm(vec 0:real^N) = &1)`];
    DISCH_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
     [ASM_MESON_TAC[SPAN_SUBSET_SUBSPACE];
      MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN
      RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN
      ASM_REWRITE_TAC[LE_REFL]]]);;
let SELF_ADJOINT_HAS_EIGENVECTOR_BASIS = 
prove (`!f:real^N->real^N. linear f /\ adjoint f = f ==> ?b. pairwise orthogonal b /\ (!x. x IN b ==> norm x = &1 /\ ?c. f(x) = c % x) /\ independent b /\ span b = (:real^N) /\ b HAS_SIZE (dimindex(:N))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^N->real^N`; `(:real^N)`] SELF_ADJOINT_HAS_EIGENVECTOR_BASIS_OF_SUBSPACE) THEN ASM_REWRITE_TAC[SUBSPACE_UNIV; IN_UNIV; DIM_UNIV; SUBSET_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Diagonalization of symmetric matrix. *) (* ------------------------------------------------------------------------- *)
let SYMMETRIC_MATRIX_DIAGONALIZABLE_EXPLICIT = 
prove (`!A:real^N^N. transp A = A ==> ?P d. orthogonal_matrix P /\ transp P ** A ** P = (lambda i j. if i = j then d i else &0)`,
let lemma1 = prove
   (`!A:real^N^N P:real^N^N d.
       A ** P = P ** (lambda i j. if i = j then d i else &0) <=>
       !i. 1 <= i /\ i <= dimindex(:N)
           ==> A ** column i P = d i % column i P`,
    SIMP_TAC[CART_EQ; matrix_mul; matrix_vector_mul; LAMBDA_BETA;
             column; VECTOR_MUL_COMPONENT] THEN
    REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COND_RAND] THEN
    SIMP_TAC[REAL_MUL_RZERO; SUM_DELTA; IN_NUMSEG] THEN
    EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
    REWRITE_TAC[REAL_MUL_SYM]) in
  let lemma2 = prove
   (`!A:real^N^N P:real^N^N d.
          orthogonal_matrix P /\
          transp P ** A ** P = (lambda i j. if i = j then d i else &0) <=>
          orthogonal_matrix P /\
          !i. 1 <= i /\ i <= dimindex(:N)
              ==> A ** column i P = d i % column i P`,
    REPEAT GEN_TAC THEN REWRITE_TAC[GSYM lemma1; orthogonal_matrix] THEN
    ABBREV_TAC `D:real^N^N = lambda i j. if i = j then d i else &0` THEN
    MESON_TAC[MATRIX_MUL_ASSOC; MATRIX_MUL_LID]) in
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[lemma2] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
  REWRITE_TAC[GSYM SKOLEM_THM] THEN
  MP_TAC(ISPEC `\x:real^N. (A:real^N^N) ** x`
    SELF_ADJOINT_HAS_EIGENVECTOR_BASIS) THEN
  ASM_SIMP_TAC[MATRIX_SELF_ADJOINT; MATRIX_VECTOR_MUL_LINEAR;
               MATRIX_OF_MATRIX_VECTOR_MUL] THEN
  DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` MP_TAC) THEN
  REWRITE_TAC[CONJ_ASSOC] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
  REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN
  ASM_REWRITE_TAC[IN_NUMSEG; TAUT
   `p /\ q /\ x = y ==> a = b <=> p /\ q /\ ~(a = b) ==> ~(x = y)`] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->real^N` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[PAIRWISE_IMAGE; FORALL_IN_IMAGE] THEN
  ASM_SIMP_TAC[pairwise; IN_NUMSEG] THEN STRIP_TAC THEN
  EXISTS_TAC `transp(lambda i. f i):real^N^N` THEN
  SIMP_TAC[COLUMN_TRANSP; ORTHOGONAL_MATRIX_TRANSP] THEN
  SIMP_TAC[ORTHOGONAL_MATRIX_ORTHONORMAL_ROWS_INDEXED; row] THEN
  SIMP_TAC[LAMBDA_ETA; LAMBDA_BETA; pairwise; IN_NUMSEG] THEN
  ASM_MESON_TAC[]);;
let SYMMETRIC_MATRIX_IMP_DIAGONALIZABLE = 
prove (`!A:real^N^N. transp A = A ==> ?P. orthogonal_matrix P /\ diagonal_matrix(transp P ** A ** P)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SYMMETRIC_MATRIX_DIAGONALIZABLE_EXPLICIT) THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[diagonal_matrix; LAMBDA_BETA]);;
let SYMMETRIC_MATRIX_EQ_DIAGONALIZABLE = 
prove (`!A:real^N^N. transp A = A <=> ?P. orthogonal_matrix P /\ diagonal_matrix(transp P ** A ** P)`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[SYMMETRIC_MATRIX_IMP_DIAGONALIZABLE] THEN REWRITE_TAC[orthogonal_matrix] THEN DISCH_THEN(X_CHOOSE_THEN `P:real^N^N` STRIP_ASSUME_TAC) THEN ABBREV_TAC `D:real^N^N = transp P ** (A:real^N^N) ** P` THEN SUBGOAL_THEN `A:real^N^N = P ** (D:real^N^N) ** transp P` SUBST1_TAC THENL [EXPAND_TAC "D" THEN REWRITE_TAC[MATRIX_MUL_ASSOC] THEN ASM_REWRITE_TAC[MATRIX_MUL_LID] THEN ASM_REWRITE_TAC[GSYM MATRIX_MUL_ASSOC; MATRIX_MUL_RID]; REWRITE_TAC[MATRIX_TRANSP_MUL; TRANSP_TRANSP; MATRIX_MUL_ASSOC] THEN ASM_MESON_TAC[TRANSP_DIAGONAL_MATRIX]]);;
(* ------------------------------------------------------------------------- *) (* Some matrix identities are easier to deduce for invertible matrices. We *) (* can then extend by continuity, which is why this material needs to be *) (* here after basic topological notions have been defined. *) (* ------------------------------------------------------------------------- *)
let CONTINUOUS_LIFT_DET = 
prove (`!(A:A->real^N^N) net. (!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) ==> (\x. lift(A x$i$j)) continuous net) ==> (\x. lift(det(A x))) continuous net`,
REPEAT STRIP_TAC THEN REWRITE_TAC[det] THEN SIMP_TAC[LIFT_SUM; FINITE_PERMUTATIONS; FINITE_NUMSEG; o_DEF] THEN MATCH_MP_TAC CONTINUOUS_VSUM THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; LIFT_CMUL; IN_ELIM_THM] THEN X_GEN_TAC `p:num->num` THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_CMUL THEN MATCH_MP_TAC CONTINUOUS_LIFT_PRODUCT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_IMAGE) THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `s = t ==> s SUBSET t`)) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG]);;
let CONTINUOUS_ON_LIFT_DET = 
prove (`!A:real^M->real^N^N s. (!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) ==> (\x. lift(A x$i$j)) continuous_on s) ==> (\x. lift(det(A x))) continuous_on s`,
let NEARBY_INVERTIBLE_MATRIX = 
prove (`!A:real^N^N. ?e. &0 < e /\ !x. ~(x = &0) /\ abs x < e ==> invertible(A + x %% mat 1)`,
GEN_TAC THEN MP_TAC(ISPEC `A:real^N^N` CHARACTERISTIC_POLYNOMIAL) THEN DISCH_THEN(X_CHOOSE_THEN `a:num->real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`dimindex(:N)`; `a:num->real`] REAL_POLYFUN_FINITE_ROOTS) THEN MATCH_MP_TAC(TAUT `q /\ (p ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL [EXISTS_TAC `dimindex(:N)` THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o ISPEC `lift` o MATCH_MP FINITE_IMAGE) THEN DISCH_THEN(MP_TAC o MATCH_MP LIMIT_POINT_FINITE) THEN DISCH_THEN(MP_TAC o SPEC `lift(&0)`) THEN REWRITE_TAC[LIMPT_APPROACHABLE; EXISTS_IN_IMAGE; EXISTS_IN_GSPEC] THEN REWRITE_TAC[DIST_LIFT; LIFT_EQ; REAL_SUB_RZERO; NOT_FORALL_THM; NOT_IMP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(fun th -> X_GEN_TAC `x:real` THEN STRIP_TAC THEN MP_TAC(SPEC `--x:real` th)) THEN FIRST_X_ASSUM(SUBST1_TAC o SYM o SPEC `--x:real`) THEN ASM_REWRITE_TAC[REAL_NEG_EQ_0; REAL_ABS_NEG] THEN ONCE_REWRITE_TAC[GSYM INVERTIBLE_NEG] THEN REWRITE_TAC[INVERTIBLE_DET_NZ; CONTRAPOS_THM] THEN REWRITE_TAC[MATRIX_SUB; MATRIX_NEG_MINUS1] THEN ONCE_REWRITE_TAC[REAL_ARITH `--x = -- &1 * x`] THEN REWRITE_TAC[GSYM MATRIX_CMUL_ADD_LDISTRIB; GSYM MATRIX_CMUL_ASSOC] THEN REWRITE_TAC[MATRIX_CMUL_LID; MATRIX_ADD_SYM]);;
let MATRIX_WLOG_INVERTIBLE = 
prove (`!P. (!A:real^N^N. invertible A ==> P A) /\ (!A:real^N^N. ?d. &0 < d /\ closed {x | x IN cball(vec 0,d) /\ P(A + drop x %% mat 1)}) ==> !A:real^N^N. P A`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `vec 0:real^1` o GEN_REWRITE_RULE I [CLOSED_LIMPT]) THEN ASM_SIMP_TAC[IN_ELIM_THM; DROP_VEC; MATRIX_CMUL_LZERO; MATRIX_ADD_RID] THEN ANTS_TAC THENL [ALL_TAC; CONV_TAC TAUT] THEN MP_TAC(ISPEC `A:real^N^N` NEARBY_INVERTIBLE_MATRIX) THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN REWRITE_TAC[LIMPT_APPROACHABLE] THEN X_GEN_TAC `k:real` THEN DISCH_TAC THEN REWRITE_TAC[EXISTS_LIFT; IN_ELIM_THM] THEN REWRITE_TAC[GSYM LIFT_NUM; IN_CBALL_0; NORM_LIFT; DIST_LIFT] THEN REWRITE_TAC[REAL_SUB_RZERO; LIFT_EQ; LIFT_DROP] THEN EXISTS_TAC `min d ((min e k) / &2)` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; FIRST_X_ASSUM MATCH_MP_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC);;
let SYLVESTER_DETERMINANT_IDENTITY = 
prove (`!A:real^N^M B:real^M^N. det(mat 1 + A ** B) = det(mat 1 + B ** A)`,
let lemma1 = prove
   (`!A:real^N^N B:real^N^N. det(mat 1 + A ** B) = det(mat 1 + B ** A)`,
    ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
    MATCH_MP_TAC MATRIX_WLOG_INVERTIBLE THEN CONJ_TAC THENL
     [REPEAT STRIP_TAC THEN
      SUBGOAL_THEN `det((mat 1 + A ** B) ** A:real^N^N) =
                    det(A ** (mat 1 + B ** A))`
      MP_TAC THENL
       [REWRITE_TAC[MATRIX_ADD_RDISTRIB; MATRIX_ADD_LDISTRIB] THEN
        REWRITE_TAC[MATRIX_MUL_LID; MATRIX_MUL_RID; MATRIX_MUL_ASSOC];
        REWRITE_TAC[DET_MUL] THEN
        FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INVERTIBLE_DET_NZ]) THEN
        CONV_TAC REAL_RING];
      X_GEN_TAC `A:real^N^N` THEN EXISTS_TAC `&1` THEN
      REWRITE_TAC[REAL_LT_01; SET_RULE
       `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN
      MATCH_MP_TAC CLOSED_INTER THEN REWRITE_TAC[CLOSED_CBALL] THEN
      ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
      REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM] THEN
      REWRITE_TAC[SET_RULE `{x | f x = a} = {x | f x IN {a}}`] THEN
      MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN
      REWRITE_TAC[CLOSED_SING; LIFT_SUB] THEN X_GEN_TAC `x:real^1` THEN
      REWRITE_TAC[o_DEF; LIFT_SUB] THEN MATCH_MP_TAC CONTINUOUS_SUB THEN
      CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_LIFT_DET THEN
      MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
      ASM_SIMP_TAC[MATRIX_ADD_COMPONENT; LIFT_ADD] THEN
      MATCH_MP_TAC CONTINUOUS_ADD THEN
      ASM_SIMP_TAC[matrix_mul; LAMBDA_BETA; CONTINUOUS_CONST] THEN
      SIMP_TAC[LIFT_SUM; FINITE_NUMSEG; o_DEF] THEN
      MATCH_MP_TAC CONTINUOUS_VSUM THEN
      REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `k:num` THEN
      DISCH_TAC THENL [ONCE_REWRITE_TAC[REAL_MUL_SYM]; ALL_TAC] THEN
      REWRITE_TAC[LIFT_CMUL] THEN MATCH_MP_TAC CONTINUOUS_CMUL THEN
      REWRITE_TAC[MATRIX_ADD_COMPONENT; MATRIX_CMUL_COMPONENT; LIFT_ADD] THEN
      MATCH_MP_TAC CONTINUOUS_ADD THEN REWRITE_TAC[CONTINUOUS_CONST] THEN
      REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] LIFT_CMUL] THEN
      MATCH_MP_TAC CONTINUOUS_CMUL THEN
      REWRITE_TAC[LIFT_DROP; CONTINUOUS_AT_ID]]) in
  let lemma2 = prove
   (`!A:real^N^M B:real^M^N.
          dimindex(:M) <= dimindex(:N)
          ==> det(mat 1 + A ** B) = det(mat 1 + B ** A)`,
    REPEAT STRIP_TAC THEN
    MAP_EVERY ABBREV_TAC
     [`A':real^N^N =
          lambda i j. if i <= dimindex(:M) then (A:real^N^M)$i$j
                      else &0`;
      `B':real^N^N =
          lambda i j. if j <= dimindex(:M) then (B:real^M^N)$i$j
                      else &0`] THEN
    MP_TAC(ISPECL [`A':real^N^N`; `B':real^N^N`] lemma1) THEN
    SUBGOAL_THEN
     `(B':real^N^N) ** (A':real^N^N) = (B:real^M^N) ** (A:real^N^M)`
    SUBST1_TAC THENL
     [MAP_EVERY EXPAND_TAC ["A'";
"B'"] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA; matrix_mul] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_SUPERSET THEN ASM_SIMP_TAC[IN_NUMSEG; REAL_MUL_LZERO; FINITE_NUMSEG; SUBSET_NUMSEG; LE_REFL; TAUT `(p /\ q) /\ ~(p /\ r) <=> p /\ q /\ ~r`]; DISCH_THEN(SUBST1_TAC o SYM)] THEN REWRITE_TAC[det] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum {p | p permutes 1..dimindex(:N) /\ !i. dimindex(:M) < i ==> p i = i} (\p. sign p * product (1..dimindex(:N)) (\i. (mat 1 + (A':real^N^N) ** (B':real^N^N))$i$p i))` THEN CONJ_TAC THENL [ALL_TAC; CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN CONJ_TAC THENL [SET_TAC[]; SIMP_TAC[IN_ELIM_THM; IMP_CONJ]] THEN X_GEN_TAC `p:num->num` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ENTIRE; PRODUCT_EQ_0_NUMSEG] THEN DISJ2_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `k:num` o CONJUNCT1 o GEN_REWRITE_RULE I [permutes]) THEN ASM_REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_IMAGE) THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `s = t ==> s SUBSET t`)) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_SIMP_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[MATRIX_ADD_COMPONENT; MAT_COMPONENT; REAL_ADD_LID] THEN ASM_SIMP_TAC[matrix_mul; LAMBDA_BETA] THEN MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN EXPAND_TAC "A'" THEN ASM_SIMP_TAC[LAMBDA_BETA; GSYM NOT_LT]] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN EXISTS_TAC `\f:num->num. f` THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THEN X_GEN_TAC `p:num->num` THEN STRIP_TAC THENL [REWRITE_TAC[MESON[] `(?!x. P x /\ x = y) <=> P y`] THEN CONJ_TAC THENL [MATCH_MP_TAC PERMUTES_SUBSET THEN EXISTS_TAC `1..dimindex(:M)` THEN ASM_REWRITE_TAC[SUBSET_NUMSEG; LE_REFL]; X_GEN_TAC `k:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [permutes]) THEN ASM_REWRITE_TAC[IN_NUMSEG; DE_MORGAN_THM; NOT_LE]]; MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC PERMUTES_SUPERSET THEN EXISTS_TAC `1..dimindex(:N)` THEN ASM_REWRITE_TAC[IN_DIFF; IN_NUMSEG] THEN ASM_MESON_TAC[NOT_LE]; DISCH_TAC] THEN AP_TERM_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE `m:num <= n ==> n = m + (n - m)`)) THEN SIMP_TAC[PRODUCT_ADD_SPLIT; ARITH_RULE `1 <= n + 1`] THEN MATCH_MP_TAC(REAL_RING `x = y /\ z = &1 ==> x = y * z`) THEN CONJ_TAC THENL [MATCH_MP_TAC PRODUCT_EQ_NUMSEG THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN SUBGOAL_THEN `i <= dimindex(:N)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`p:num->num`; `1..dimindex(:M)`] PERMUTES_IMAGE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `s = t ==> s SUBSET t`)) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG] THEN DISCH_THEN(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN SUBGOAL_THEN `(p:num->num) i <= dimindex(:N)` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[MATRIX_ADD_COMPONENT; MAT_COMPONENT] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[matrix_mul; LAMBDA_BETA] THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN REPEAT STRIP_TAC THEN MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN ASM_SIMP_TAC[LAMBDA_BETA]; MATCH_MP_TAC PRODUCT_EQ_1_NUMSEG THEN ASM_SIMP_TAC[ARITH_RULE `n + 1 <= i ==> n < i`] THEN ASM_SIMP_TAC[ARITH_RULE `m:num <= n ==> m + (n - m) = n`] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN SUBGOAL_THEN `1 <= i` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[MATRIX_ADD_COMPONENT; MAT_COMPONENT] THEN ASM_SIMP_TAC[REAL_EQ_ADD_LCANCEL_0; matrix_mul; LAMBDA_BETA] THEN MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN EXPAND_TAC "A'" THEN ASM_SIMP_TAC[LAMBDA_BETA; ARITH_RULE `m + 1 <= i ==> ~(i <= m)`]]]) in REPEAT GEN_TAC THEN DISJ_CASES_TAC (ARITH_RULE `dimindex(:M) <= dimindex(:N) \/ dimindex(:N) <= dimindex(:M)`) THENL [ALL_TAC; CONV_TAC SYM_CONV] THEN MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[]);;
let COFACTOR_MATRIX_MUL = 
prove (`!A B:real^N^N. cofactor(A ** B) = cofactor(A) ** cofactor(B)`,
MATCH_MP_TAC MATRIX_WLOG_INVERTIBLE THEN CONJ_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC MATRIX_WLOG_INVERTIBLE THEN CONJ_TAC THENL [ASM_SIMP_TAC[COFACTOR_MATRIX_INV; GSYM INVERTIBLE_DET_NZ; INVERTIBLE_MATRIX_MUL] THEN REWRITE_TAC[DET_MUL; MATRIX_MUL_LMUL] THEN REWRITE_TAC[MATRIX_MUL_RMUL; MATRIX_CMUL_ASSOC; GSYM MATRIX_TRANSP_MUL] THEN ASM_SIMP_TAC[MATRIX_INV_MUL]; GEN_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01]]; X_GEN_TAC `A:real^N^N` THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN REWRITE_TAC[RIGHT_AND_FORALL_THM] THEN MATCH_MP_TAC CLOSED_FORALL THEN GEN_TAC] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN MATCH_MP_TAC CLOSED_INTER THEN REWRITE_TAC[CLOSED_CBALL] THEN REWRITE_TAC[CART_EQ] THEN MATCH_MP_TAC CLOSED_FORALL_IN THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_FORALL_IN THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM] THEN REWRITE_TAC[SET_RULE `{x | f x = a} = {x | f x IN {a}}`] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN REWRITE_TAC[CLOSED_SING; LIFT_SUB] THEN X_GEN_TAC `x:real^1` THEN ASM_SIMP_TAC[matrix_mul; LAMBDA_BETA; cofactor; LIFT_SUM; FINITE_NUMSEG; o_DEF] THEN (MATCH_MP_TAC CONTINUOUS_SUB THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC CONTINUOUS_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[LIFT_CMUL] THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[o_DEF] THEN CONJ_TAC]) THEN MATCH_MP_TAC CONTINUOUS_LIFT_DET THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; CONTINUOUS_CONST] THEN REPEAT(W(fun (asl,w) -> let t = find_term is_cond w in ASM_CASES_TAC (lhand(rator t)) THEN ASM_REWRITE_TAC[CONTINUOUS_CONST])) THEN SIMP_TAC[LIFT_SUM; FINITE_NUMSEG; o_DEF] THEN TRY(MATCH_MP_TAC CONTINUOUS_VSUM THEN REWRITE_TAC[FINITE_NUMSEG] THEN REWRITE_TAC[IN_NUMSEG] THEN X_GEN_TAC `p:num` THEN STRIP_TAC) THEN REWRITE_TAC[LIFT_CMUL] THEN TRY(MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[o_DEF; CONTINUOUS_CONST]) THEN REWRITE_TAC[MATRIX_ADD_COMPONENT; LIFT_ADD] THEN MATCH_MP_TAC CONTINUOUS_ADD THEN REWRITE_TAC[CONTINUOUS_CONST] THEN REWRITE_TAC[MATRIX_CMUL_COMPONENT; LIFT_CMUL; o_DEF] THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[CONTINUOUS_CONST; o_DEF; LIFT_DROP; CONTINUOUS_AT_ID]);;
let DET_COFACTOR = 
prove (`!A:real^N^N. det(cofactor A) = det(A) pow (dimindex(:N) - 1)`,
MATCH_MP_TAC MATRIX_WLOG_INVERTIBLE THEN CONJ_TAC THEN X_GEN_TAC `A:real^N^N` THENL [REWRITE_TAC[INVERTIBLE_DET_NZ] THEN STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_FIELD `~(a = &0) ==> a * x = a * y ==> x = y`)) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM DET_TRANSP] THEN REWRITE_TAC[GSYM DET_MUL; MATRIX_MUL_RIGHT_COFACTOR] THEN REWRITE_TAC[DET_CMUL; GSYM(CONJUNCT2 real_pow); DET_I; REAL_MUL_RID] THEN SIMP_TAC[DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> SUC(n - 1) = n`]; ALL_TAC] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN MATCH_MP_TAC CLOSED_INTER THEN REWRITE_TAC[CLOSED_CBALL] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM] THEN REWRITE_TAC[SET_RULE `{x | f x = a} = {x | f x IN {a}}`] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN REWRITE_TAC[CLOSED_SING; LIFT_SUB] THEN X_GEN_TAC `x:real^1` THEN MATCH_MP_TAC CONTINUOUS_SUB THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC CONTINUOUS_LIFT_POW] THEN MATCH_MP_TAC CONTINUOUS_LIFT_DET THEN MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN ASM_SIMP_TAC[MATRIX_ADD_COMPONENT; MATRIX_CMUL_COMPONENT; LIFT_ADD; LIFT_CMUL; LIFT_DROP; CONTINUOUS_ADD; CONTINUOUS_CONST; CONTINUOUS_MUL; o_DEF; LIFT_DROP; CONTINUOUS_AT_ID] THEN ASM_SIMP_TAC[cofactor; LAMBDA_BETA] THEN MATCH_MP_TAC CONTINUOUS_LIFT_DET THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN REPEAT(W(fun (asl,w) -> let t = find_term is_cond w in ASM_CASES_TAC (lhand(rator t)) THEN ASM_REWRITE_TAC[CONTINUOUS_CONST])) THEN ASM_SIMP_TAC[MATRIX_ADD_COMPONENT; MATRIX_CMUL_COMPONENT; LIFT_ADD; LIFT_CMUL; LIFT_DROP; CONTINUOUS_ADD; CONTINUOUS_CONST; CONTINUOUS_MUL; o_DEF; LIFT_DROP; CONTINUOUS_AT_ID]);;
let INVERTIBLE_COFACTOR = 
prove (`!A:real^N^N. invertible(cofactor A) <=> dimindex(:N) = 1 \/ invertible A`,
SIMP_TAC[DET_COFACTOR; INVERTIBLE_DET_NZ; REAL_POW_EQ_0; DE_MORGAN_THM; DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> (n - 1 = 0 <=> n = 1)`; DISJ_ACI]);;
let COFACTOR_COFACTOR = 
prove (`!A:real^N^N. 2 <= dimindex(:N) ==> cofactor(cofactor A) = (det(A) pow (dimindex(:N) - 2)) %% A`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC MATRIX_WLOG_INVERTIBLE THEN CONJ_TAC THEN X_GEN_TAC `A:real^N^N` THENL [REWRITE_TAC[INVERTIBLE_DET_NZ] THEN DISCH_TAC THEN MP_TAC(ISPECL [`A:real^N^N`; `transp(cofactor A):real^N^N`] COFACTOR_MATRIX_MUL) THEN REWRITE_TAC[MATRIX_MUL_RIGHT_COFACTOR; COFACTOR_CMUL; COFACTOR_I] THEN REWRITE_TAC[COFACTOR_TRANSP] THEN DISCH_THEN(MP_TAC o AP_TERM `transp:real^N^N->real^N^N`) THEN REWRITE_TAC[MATRIX_TRANSP_MUL; TRANSP_TRANSP; TRANSP_MATRIX_CMUL] THEN REWRITE_TAC[TRANSP_MAT] THEN DISCH_THEN(MP_TAC o AP_TERM `(\x. x ** A):real^N^N->real^N^N`) THEN REWRITE_TAC[GSYM MATRIX_MUL_ASSOC; MATRIX_MUL_LEFT_COFACTOR] THEN REWRITE_TAC[MATRIX_MUL_LMUL; MATRIX_MUL_RMUL] THEN REWRITE_TAC[MATRIX_MUL_LID; MATRIX_MUL_RID] THEN DISCH_THEN(MP_TAC o AP_TERM `\x:real^N^N. inv(det(A:real^N^N)) %% x`) THEN ASM_SIMP_TAC[MATRIX_CMUL_ASSOC; REAL_MUL_LINV; MATRIX_CMUL_LID] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[REAL_POW_SUB; ARITH_RULE `2 <= n ==> 1 <= n`] THEN REWRITE_TAC[REAL_POW_2; real_div; REAL_INV_POW] THEN REAL_ARITH_TAC; POP_ASSUM(K ALL_TAC)] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN MATCH_MP_TAC CLOSED_INTER THEN REWRITE_TAC[CLOSED_CBALL] THEN REWRITE_TAC[CART_EQ] THEN MATCH_MP_TAC CLOSED_FORALL_IN THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC CLOSED_FORALL_IN THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM] THEN REWRITE_TAC[SET_RULE `{x | f x = a} = {x | f x IN {a}}`] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN REWRITE_TAC[CLOSED_SING; LIFT_SUB] THEN X_GEN_TAC `x:real^1` THEN MATCH_MP_TAC CONTINUOUS_SUB THEN CONJ_TAC THENL [REPLICATE_TAC 2 (ONCE_REWRITE_TAC[cofactor] THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN MATCH_MP_TAC CONTINUOUS_LIFT_DET THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA] THEN REPEAT(W(fun (asl,w) -> let t = find_term is_cond w in ASM_CASES_TAC (lhand(rator t)) THEN ASM_REWRITE_TAC[CONTINUOUS_CONST]))); REWRITE_TAC[MATRIX_CMUL_COMPONENT; LIFT_CMUL] THEN MATCH_MP_TAC CONTINUOUS_MUL THEN REWRITE_TAC[o_DEF] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_LIFT_POW THEN MATCH_MP_TAC CONTINUOUS_LIFT_DET THEN REPEAT STRIP_TAC; ALL_TAC]] THEN REWRITE_TAC[MATRIX_ADD_COMPONENT; MATRIX_CMUL_COMPONENT] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[LIFT_ADD; LIFT_CMUL; LIFT_DROP] THEN SIMP_TAC[CONTINUOUS_ADD; CONTINUOUS_CONST; CONTINUOUS_CMUL; CONTINUOUS_AT_ID]);;
(* ------------------------------------------------------------------------- *) (* Infinite sums of vectors. Allow general starting point (and more). *) (* ------------------------------------------------------------------------- *) parse_as_infix("sums",(12,"right"));;
let sums = new_definition
  `(f sums l) s = ((\n. vsum(s INTER (0..n)) f) --> l) sequentially`;;
let infsum = new_definition
 `infsum s f = @l. (f sums l) s`;;
let summable = new_definition
 `summable s f = ?l. (f sums l) s`;;
let SUMS_SUMMABLE = 
prove (`!f l s. (f sums l) s ==> summable s f`,
REWRITE_TAC[summable] THEN MESON_TAC[]);;
let SUMS_INFSUM = 
prove (`!f s. (f sums (infsum s f)) s <=> summable s f`,
REWRITE_TAC[infsum; summable] THEN MESON_TAC[]);;
let SUMS_LIM = 
prove (`!f:num->real^N s. (f sums lim sequentially (\n. vsum (s INTER (0..n)) f)) s <=> summable s f`,
GEN_TAC THEN GEN_TAC THEN EQ_TAC THENL [MESON_TAC[summable]; REWRITE_TAC[summable; sums] THEN STRIP_TAC THEN REWRITE_TAC[lim] THEN ASM_MESON_TAC[]]);;
let FINITE_INTER_NUMSEG = 
prove (`!s m n. FINITE(s INTER (m..n))`,
let SERIES_FROM = 
prove (`!f l k. (f sums l) (from k) = ((\n. vsum(k..n) f) --> l) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; numseg; from; IN_ELIM_THM; IN_INTER] THEN ARITH_TAC);;
let SERIES_UNIQUE = 
prove (`!f:num->real^N l l' s. (f sums l) s /\ (f sums l') s ==> (l = l')`,
REWRITE_TAC[sums] THEN MESON_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LIM_UNIQUE]);;
let INFSUM_UNIQUE = 
prove (`!f:num->real^N l s. (f sums l) s ==> infsum s f = l`,
MESON_TAC[SERIES_UNIQUE; SUMS_INFSUM; summable]);;
let SERIES_FINITE = 
prove (`!f s. FINITE s ==> (f sums (vsum s f)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[num_FINITE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[sums; LIM_SEQUENTIALLY] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN SUBGOAL_THEN `s INTER (0..m) = s` (fun th -> ASM_REWRITE_TAC[th; DIST_REFL]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN ASM_MESON_TAC[LE_TRANS]);;
let SERIES_LINEAR = 
prove (`!f h l s. (f sums l) s /\ linear h ==> ((\n. h(f n)) sums h l) s`,
SIMP_TAC[sums; LIM_LINEAR; FINITE_INTER; FINITE_NUMSEG; GSYM(REWRITE_RULE[o_DEF] LINEAR_VSUM)]);;
let SERIES_0 = 
prove (`!s. ((\n. vec 0) sums (vec 0)) s`,
REWRITE_TAC[sums; VSUM_0; LIM_CONST]);;
let SERIES_ADD = 
prove (`!x x0 y y0 s. (x sums x0) s /\ (y sums y0) s ==> ((\n. x n + y n) sums (x0 + y0)) s`,
SIMP_TAC[sums; FINITE_INTER_NUMSEG; VSUM_ADD; LIM_ADD]);;
let SERIES_SUB = 
prove (`!x x0 y y0 s. (x sums x0) s /\ (y sums y0) s ==> ((\n. x n - y n) sums (x0 - y0)) s`,
SIMP_TAC[sums; FINITE_INTER_NUMSEG; VSUM_SUB; LIM_SUB]);;
let SERIES_CMUL = 
prove (`!x x0 c s. (x sums x0) s ==> ((\n. c % x n) sums (c % x0)) s`,
SIMP_TAC[sums; FINITE_INTER_NUMSEG; VSUM_LMUL; LIM_CMUL]);;
let SERIES_NEG = 
prove (`!x x0 s. (x sums x0) s ==> ((\n. --(x n)) sums (--x0)) s`,
SIMP_TAC[sums; FINITE_INTER_NUMSEG; VSUM_NEG; LIM_NEG]);;
let SUMS_IFF = 
prove (`!f g k. (!x. x IN k ==> f x = g x) ==> ((f sums l) k <=> (g sums l) k)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[sums] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[IN_INTER]);;
let SUMS_EQ = 
prove (`!f g k. (!x. x IN k ==> f x = g x) /\ (f sums l) k ==> (g sums l) k`,
MESON_TAC[SUMS_IFF]);;
let SUMS_0 = 
prove (`!f:num->real^N s. (!n. n IN s ==> f n = vec 0) ==> (f sums vec 0) s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUMS_EQ THEN EXISTS_TAC `\n:num. vec 0:real^N` THEN ASM_SIMP_TAC[SERIES_0]);;
let SERIES_FINITE_SUPPORT = 
prove (`!f:num->real^N s k. FINITE (s INTER k) /\ (!x. ~(x IN s INTER k) ==> f x = vec 0) ==> (f sums vsum (s INTER k) f) k`,
REWRITE_TAC[sums; LIM_SEQUENTIALLY] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o ISPEC `\x:num. x` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN SUBGOAL_THEN `vsum (k INTER (0..n)) (f:num->real^N) = vsum(s INTER k) f` (fun th -> ASM_REWRITE_TAC[DIST_REFL; th]) THEN MATCH_MP_TAC VSUM_SUPERSET THEN ASM_SIMP_TAC[SUBSET; IN_INTER; IN_NUMSEG; LE_0] THEN ASM_MESON_TAC[IN_INTER; LE_TRANS]);;
let SERIES_COMPONENT = 
prove (`!f s l:real^N k. (f sums l) s /\ 1 <= k /\ k <= dimindex(:N) ==> ((\i. lift(f(i)$k)) sums lift(l$k)) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN ASM_SIMP_TAC[GSYM LIFT_SUM; GSYM VSUM_COMPONENT; FINITE_INTER; FINITE_NUMSEG] THEN ASM_SIMP_TAC[o_DEF; LIM_COMPONENT]);;
let SERIES_DIFFS = 
prove (`!f:num->real^N k. (f --> vec 0) sequentially ==> ((\n. f(n) - f(n + 1)) sums f(k)) (from k)`,
REWRITE_TAC[sums; FROM_INTER_NUMSEG; VSUM_DIFFS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `\n. (f:num->real^N) k - f(n + 1)` THEN CONJ_TAC THENL [REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `k:num` THEN SIMP_TAC[]; GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_SUB_RZERO] THEN MATCH_MP_TAC LIM_SUB THEN REWRITE_TAC[LIM_CONST] THEN MATCH_MP_TAC SEQ_OFFSET THEN ASM_REWRITE_TAC[]]);;
let SERIES_TRIVIAL = 
prove (`!f. (f sums vec 0) {}`,
REWRITE_TAC[sums; INTER_EMPTY; VSUM_CLAUSES; LIM_CONST]);;
let SERIES_RESTRICT = 
prove (`!f k l:real^N. ((\n. if n IN k then f(n) else vec 0) sums l) (:num) <=> (f sums l) k`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; INTER_UNIV] THEN GEN_TAC THEN MATCH_MP_TAC(MESON[] `vsum s f = vsum t f /\ vsum t f = vsum t g ==> vsum s f = vsum t g`) THEN CONJ_TAC THENL [MATCH_MP_TAC VSUM_SUPERSET THEN SET_TAC[]; MATCH_MP_TAC VSUM_EQ THEN SIMP_TAC[IN_INTER]]);;
let SERIES_VSUM = 
prove (`!f l k s. FINITE s /\ s SUBSET k /\ (!x. ~(x IN s) ==> f x = vec 0) /\ vsum s f = l ==> (f sums l) k`,
REPEAT STRIP_TAC THEN EXPAND_TAC "l" THEN SUBGOAL_THEN `s INTER k = s:num->bool` ASSUME_TAC THENL [ASM SET_TAC []; ASM_MESON_TAC [SERIES_FINITE_SUPPORT]]);;
let SUMS_REINDEX = 
prove (`!k a l n. ((\x. a(x + k)) sums l) (from n) <=> (a sums l) (from(n + k))`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums; FROM_INTER_NUMSEG] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VSUM_OFFSET] THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN ASM_MESON_TAC[ARITH_RULE `N + k:num <= n ==> n = (n - k) + k /\ N <= n - k`; ARITH_RULE `N + k:num <= n ==> N <= n + k`]);;
(* ------------------------------------------------------------------------- *) (* Similar combining theorems just for summability. *) (* ------------------------------------------------------------------------- *)
let SUMMABLE_LINEAR = 
prove (`!f h s. summable s f /\ linear h ==> summable s (\n. h(f n))`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_LINEAR]);;
let SUMMABLE_0 = 
prove (`!s. summable s (\n. vec 0)`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_0]);;
let SUMMABLE_ADD = 
prove (`!x y s. summable s x /\ summable s y ==> summable s (\n. x n + y n)`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_ADD]);;
let SUMMABLE_SUB = 
prove (`!x y s. summable s x /\ summable s y ==> summable s (\n. x n - y n)`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_SUB]);;
let SUMMABLE_CMUL = 
prove (`!s x c. summable s x ==> summable s (\n. c % x n)`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_CMUL]);;
let SUMMABLE_NEG = 
prove (`!x s. summable s x ==> summable s (\n. --(x n))`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_NEG]);;
let SUMMABLE_IFF = 
prove (`!f g k. (!x. x IN k ==> f x = g x) ==> (summable k f <=> summable k g)`,
REWRITE_TAC[summable] THEN MESON_TAC[SUMS_IFF]);;
let SUMMABLE_EQ = 
prove (`!f g k. (!x. x IN k ==> f x = g x) /\ summable k f ==> summable k g`,
REWRITE_TAC[summable] THEN MESON_TAC[SUMS_EQ]);;
let SUMMABLE_COMPONENT = 
prove (`!f:num->real^N s k. summable s f /\ 1 <= k /\ k <= dimindex(:N) ==> summable s (\i. lift(f(i)$k))`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `l:real^N` o REWRITE_RULE[summable]) THEN REWRITE_TAC[summable] THEN EXISTS_TAC `lift((l:real^N)$k)` THEN ASM_SIMP_TAC[SERIES_COMPONENT]);;
let SERIES_SUBSET = 
prove (`!x s t l. s SUBSET t /\ ((\i. if i IN s then x i else vec 0) sums l) t ==> (x sums l) s`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[sums] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_SIMP_TAC[GSYM VSUM_RESTRICT_SET; FINITE_INTER_NUMSEG] THEN AP_THM_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN SET_TAC[]);;
let SUMMABLE_SUBSET = 
prove (`!x s t. s SUBSET t /\ summable t (\i. if i IN s then x i else vec 0) ==> summable s x`,
REWRITE_TAC[summable] THEN MESON_TAC[SERIES_SUBSET]);;
let SUMMABLE_TRIVIAL = 
prove (`!f:num->real^N. summable {} f`,
GEN_TAC THEN REWRITE_TAC[summable] THEN EXISTS_TAC `vec 0:real^N` THEN REWRITE_TAC[SERIES_TRIVIAL]);;
let SUMMABLE_RESTRICT = 
prove (`!f:num->real^N k. summable (:num) (\n. if n IN k then f(n) else vec 0) <=> summable k f`,
REWRITE_TAC[summable; SERIES_RESTRICT]);;
let SUMS_FINITE_DIFF = 
prove (`!f:num->real^N t s l. t SUBSET s /\ FINITE t /\ (f sums l) s ==> (f sums (l - vsum t f)) (s DIFF t)`,
REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(MP_TAC o ISPEC `f:num->real^N` o MATCH_MP SERIES_FINITE) THEN ONCE_REWRITE_TAC[GSYM SERIES_RESTRICT] THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP SERIES_SUB) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF] THEN FIRST_ASSUM(MP_TAC o SPEC `x:num` o GEN_REWRITE_RULE I [SUBSET]) THEN MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC);;
let SUMS_FINITE_UNION = 
prove (`!f:num->real^N s t l. FINITE t /\ (f sums l) s ==> (f sums (l + vsum (t DIFF s) f)) (s UNION t)`,
REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(MP_TAC o SPEC `s:num->bool` o MATCH_MP FINITE_DIFF) THEN DISCH_THEN(MP_TAC o ISPEC `f:num->real^N` o MATCH_MP SERIES_FINITE) THEN ONCE_REWRITE_TAC[GSYM SERIES_RESTRICT] THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP SERIES_ADD) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF; IN_UNION] THEN MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN ASM_REWRITE_TAC[] THEN VECTOR_ARITH_TAC);;
let SUMS_OFFSET = 
prove (`!f:num->real^N l m n. (f sums l) (from m) /\ m < n ==> (f sums (l - vsum(m..(n-1)) f)) (from n)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `from n = from m DIFF (m..(n-1))` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_FROM; IN_DIFF; IN_NUMSEG] THEN ASM_ARITH_TAC; MATCH_MP_TAC SUMS_FINITE_DIFF THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN SIMP_TAC[SUBSET; IN_FROM; IN_NUMSEG]]);;
let SUMS_OFFSET_REV = 
prove (`!f:num->real^N l m n. (f sums l) (from m) /\ n < m ==> (f sums (l + vsum(n..m-1) f)) (from n)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:num->real^N`; `from m`; `n..m-1`; `l:real^N`] SUMS_FINITE_UNION) THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC; ALL_TAC] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_UNION; IN_FROM; IN_NUMSEG] THEN ASM_ARITH_TAC);;
let SUMMABLE_REINDEX = 
prove (`!k a n. summable (from n) (\x. a (x + k)) <=> summable (from(n + k)) a`,
REWRITE_TAC[summable; GSYM SUMS_REINDEX]);;
(* ------------------------------------------------------------------------- *) (* Similar combining theorems for infsum. *) (* ------------------------------------------------------------------------- *)
let INFSUM_LINEAR = 
prove (`!f h s. summable s f /\ linear h ==> infsum s (\n. h(f n)) = h(infsum s f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INFSUM_UNIQUE THEN MATCH_MP_TAC SERIES_LINEAR THEN ASM_REWRITE_TAC[SUMS_INFSUM]);;
let INFSUM_0 = 
prove (`infsum s (\i. vec 0) = vec 0`,
MATCH_MP_TAC INFSUM_UNIQUE THEN REWRITE_TAC[SERIES_0]);;
let INFSUM_ADD = 
prove (`!x y s. summable s x /\ summable s y ==> infsum s (\i. x i + y i) = infsum s x + infsum s y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INFSUM_UNIQUE THEN MATCH_MP_TAC SERIES_ADD THEN ASM_REWRITE_TAC[SUMS_INFSUM]);;
let INFSUM_SUB = 
prove (`!x y s. summable s x /\ summable s y ==> infsum s (\i. x i - y i) = infsum s x - infsum s y`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INFSUM_UNIQUE THEN MATCH_MP_TAC SERIES_SUB THEN ASM_REWRITE_TAC[SUMS_INFSUM]);;
let INFSUM_CMUL = 
prove (`!s x c. summable s x ==> infsum s (\n. c % x n) = c % infsum s x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INFSUM_UNIQUE THEN MATCH_MP_TAC SERIES_CMUL THEN ASM_REWRITE_TAC[SUMS_INFSUM]);;
let INFSUM_NEG = 
prove (`!s x. summable s x ==> infsum s (\n. --(x n)) = --(infsum s x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INFSUM_UNIQUE THEN MATCH_MP_TAC SERIES_NEG THEN ASM_REWRITE_TAC[SUMS_INFSUM]);;
let INFSUM_EQ = 
prove (`!f g k. summable k f /\ summable k g /\ (!x. x IN k ==> f x = g x) ==> infsum k f = infsum k g`,
REPEAT STRIP_TAC THEN REWRITE_TAC[infsum] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[SUMS_EQ; SUMS_INFSUM]);;
let INFSUM_RESTRICT = 
prove (`!k a:num->real^N. infsum (:num) (\n. if n IN k then a n else vec 0) = infsum k a`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`a:num->real^N`; `k:num->bool`] SUMMABLE_RESTRICT) THEN ASM_CASES_TAC `summable k (a:num->real^N)` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [MATCH_MP_TAC INFSUM_UNIQUE THEN ASM_REWRITE_TAC[SERIES_RESTRICT; SUMS_INFSUM]; RULE_ASSUM_TAC(REWRITE_RULE[summable; NOT_EXISTS_THM]) THEN ASM_REWRITE_TAC[infsum]]);;
let PARTIAL_SUMS_COMPONENT_LE_INFSUM = 
prove (`!f:num->real^N s k n. 1 <= k /\ k <= dimindex(:N) /\ (!i. i IN s ==> &0 <= (f i)$k) /\ summable s f ==> (vsum (s INTER (0..n)) f)$k <= (infsum s f)$k`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUMS_INFSUM] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[sums; LIM_SEQUENTIALLY] THEN DISCH_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `vsum (s INTER (0..n)) (f:num->real^N)$k - (infsum s f)$k`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPEC `N + n:num`)) THEN REWRITE_TAC[LE_ADD; REAL_NOT_LT; dist] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs((vsum (s INTER (0..N + n)) f - infsum s f:real^N)$k)` THEN ASM_SIMP_TAC[COMPONENT_LE_NORM] THEN REWRITE_TAC[VECTOR_SUB_COMPONENT] THEN MATCH_MP_TAC(REAL_ARITH `s < a /\ a <= b ==> a - s <= abs(b - s)`) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN SIMP_TAC[NUMSEG_ADD_SPLIT; LE_0; UNION_OVER_INTER] THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_UNION o lhand o rand o snd) THEN ANTS_TAC THENL [SIMP_TAC[FINITE_INTER; FINITE_NUMSEG; DISJOINT; EXTENSION] THEN REWRITE_TAC[IN_INTER; NOT_IN_EMPTY; IN_NUMSEG] THEN ARITH_TAC; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_LE_ADDR; VECTOR_ADD_COMPONENT] THEN ASM_SIMP_TAC[VSUM_COMPONENT] THEN MATCH_MP_TAC SUM_POS_LE THEN ASM_SIMP_TAC[FINITE_INTER; IN_INTER; FINITE_NUMSEG]]);;
let PARTIAL_SUMS_DROP_LE_INFSUM = 
prove (`!f s n. (!i. i IN s ==> &0 <= drop(f i)) /\ summable s f ==> drop(vsum (s INTER (0..n)) f) <= drop(infsum s f)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[drop] THEN MATCH_MP_TAC PARTIAL_SUMS_COMPONENT_LE_INFSUM THEN ASM_REWRITE_TAC[DIMINDEX_1; LE_REFL; GSYM drop]);;
(* ------------------------------------------------------------------------- *) (* Cauchy criterion for series. *) (* ------------------------------------------------------------------------- *)
let SEQUENCE_CAUCHY_WLOG = 
prove (`!P s. (!m n:num. P m /\ P n ==> dist(s m,s n) < e) <=> (!m n. P m /\ P n /\ m <= n ==> dist(s m,s n) < e)`,
MESON_TAC[DIST_SYM; LE_CASES]);;
let VSUM_DIFF_LEMMA = 
prove (`!f:num->real^N k m n. m <= n ==> vsum(k INTER (0..n)) f - vsum(k INTER (0..m)) f = vsum(k INTER (m+1..n)) f`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:num->real^N`; `k INTER (0..n)`; `k INTER (0..m)`] VSUM_DIFF) THEN ANTS_TAC THENL [SIMP_TAC[FINITE_INTER; FINITE_NUMSEG] THEN MATCH_MP_TAC (SET_RULE `s SUBSET t ==> (u INTER s SUBSET u INTER t)`) THEN REWRITE_TAC[SUBSET; IN_NUMSEG] THEN POP_ASSUM MP_TAC THEN ARITH_TAC; DISCH_THEN(SUBST1_TAC o SYM) THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `(k INTER s) DIFF (k INTER t) = k INTER (s DIFF t)`] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_NUMSEG] THEN POP_ASSUM MP_TAC THEN ARITH_TAC]);;
let NORM_VSUM_TRIVIAL_LEMMA = 
prove (`!e. &0 < e ==> (P ==> norm(vsum(s INTER (m..n)) f) < e <=> P ==> n < m \/ norm(vsum(s INTER (m..n)) f) < e)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n:num < m` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o GEN_REWRITE_RULE I [GSYM NUMSEG_EMPTY]) THEN ASM_REWRITE_TAC[VSUM_CLAUSES; NORM_0; INTER_EMPTY]);;
let SERIES_CAUCHY = 
prove (`!f s. (?l. (f sums l) s) = !e. &0 < e ==> ?N. !m n. m >= N ==> norm(vsum(s INTER (m..n)) f) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums; CONVERGENT_EQ_CAUCHY; cauchy] THEN REWRITE_TAC[SEQUENCE_CAUCHY_WLOG] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN SIMP_TAC[dist; VSUM_DIFF_LEMMA; NORM_VSUM_TRIVIAL_LEMMA] THEN REWRITE_TAC[GE; TAUT `a ==> b \/ c <=> a /\ ~b ==> c`] THEN REWRITE_TAC[NOT_LT; ARITH_RULE `(N <= m /\ N <= n /\ m <= n) /\ m + 1 <= n <=> N + 1 <= m + 1 /\ m + 1 <= n`] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THENL [EXISTS_TAC `N + 1`; EXISTS_TAC `N:num`] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ARITH_RULE `N + 1 <= m + 1 ==> N <= m + 1`] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`m - 1`; `n:num`]) THEN SUBGOAL_THEN `m - 1 + 1 = m` SUBST_ALL_TAC THENL [ALL_TAC; ANTS_TAC THEN SIMP_TAC[]] THEN ASM_ARITH_TAC);;
let SUMMABLE_CAUCHY = 
prove (`!f s. summable s f <=> !e. &0 < e ==> ?N. !m n. m >= N ==> norm(vsum(s INTER (m..n)) f) < e`,
REWRITE_TAC[summable; GSYM SERIES_CAUCHY]);;
let SUMMABLE_IFF_EVENTUALLY = 
prove (`!f g k. (?N. !n. N <= n /\ n IN k ==> f n = g n) ==> (summable k f <=> summable k g)`,
REWRITE_TAC[summable; SERIES_CAUCHY] THEN REPEAT GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `N0:num` STRIP_ASSUME_TAC) THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` (fun th -> EXISTS_TAC `N0 + N1:num` THEN MP_TAC th)) THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN (ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[IN_INTER; IN_NUMSEG] THEN REPEAT STRIP_TAC THENL [ALL_TAC; CONV_TAC SYM_CONV] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let SUMMABLE_EQ_EVENTUALLY = 
prove (`!f g k. (?N. !n. N <= n /\ n IN k ==> f n = g n) /\ summable k f ==> summable k g`,
let SUMMABLE_IFF_COFINITE = 
prove (`!f s t. FINITE((s DIFF t) UNION (t DIFF s)) ==> (summable s f <=> summable t f)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM SUMMABLE_RESTRICT] THEN MATCH_MP_TAC SUMMABLE_IFF_EVENTUALLY THEN FIRST_ASSUM(MP_TAC o ISPEC `\x:num.x` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN REWRITE_TAC[IN_UNIV] THEN DISCH_TAC THEN EXISTS_TAC `N + 1` THEN REWRITE_TAC[ARITH_RULE `N + 1 <= n <=> ~(n <= N)`] THEN ASM SET_TAC[]);;
let SUMMABLE_EQ_COFINITE = 
prove (`!f s t. FINITE((s DIFF t) UNION (t DIFF s)) /\ summable s f ==> summable t f`,
MESON_TAC[SUMMABLE_IFF_COFINITE]);;
let SUMMABLE_FROM_ELSEWHERE = 
prove (`!f m n. summable (from m) f ==> summable (from n) f`,
REPEAT GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUMMABLE_EQ_COFINITE) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..(m+n)` THEN SIMP_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_UNION; IN_DIFF; IN_FROM] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Uniform vesion of Cauchy criterion. *) (* ------------------------------------------------------------------------- *)
let SERIES_CAUCHY_UNIFORM = 
prove (`!P f:A->num->real^N k. (?l. !e. &0 < e ==> ?N. !n x. N <= n /\ P x ==> dist(vsum(k INTER (0..n)) (f x), l x) < e) <=> (!e. &0 < e ==> ?N. !m n x. N <= m /\ P x ==> norm(vsum(k INTER (m..n)) (f x)) < e)`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums; UNIFORMLY_CONVERGENT_EQ_CAUCHY; cauchy] THEN ONCE_REWRITE_TAC[MESON[] `(!m n:num y. N <= m /\ N <= n /\ P y ==> Q m n y) <=> (!y. P y ==> !m n. N <= m /\ N <= n ==> Q m n y)`] THEN REWRITE_TAC[SEQUENCE_CAUCHY_WLOG] THEN ONCE_REWRITE_TAC[DIST_SYM] THEN SIMP_TAC[dist; VSUM_DIFF_LEMMA; NORM_VSUM_TRIVIAL_LEMMA] THEN REWRITE_TAC[GE; TAUT `a ==> b \/ c <=> a /\ ~b ==> c`] THEN REWRITE_TAC[NOT_LT; ARITH_RULE `(N <= m /\ N <= n /\ m <= n) /\ m + 1 <= n <=> N + 1 <= m + 1 /\ m + 1 <= n`] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THENL [EXISTS_TAC `N + 1`; EXISTS_TAC `N:num`] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ARITH_RULE `N + 1 <= m + 1 ==> N <= m + 1`] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`m - 1`; `n:num`]) THEN SUBGOAL_THEN `m - 1 + 1 = m` SUBST_ALL_TAC THENL [ALL_TAC; ANTS_TAC THEN SIMP_TAC[]] THEN ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* So trivially, terms of a convergent series go to zero. *) (* ------------------------------------------------------------------------- *)
let SERIES_GOESTOZERO = 
prove (`!s x. summable s x ==> !e. &0 < e ==> eventually (\n. n IN s ==> norm(x n) < e) sequentially`,
REPEAT GEN_TAC THEN REWRITE_TAC[summable; SERIES_CAUCHY] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `n:num`]) THEN ASM_SIMP_TAC[NUMSEG_SING; GE; SET_RULE `n IN s ==> s INTER {n} = {n}`] THEN REWRITE_TAC[VSUM_SING]);;
let SUMMABLE_IMP_TOZERO = 
prove (`!f:num->real^N k. summable k f ==> ((\n. if n IN k then f(n) else vec 0) --> vec 0) sequentially`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM SUMMABLE_RESTRICT] THEN REWRITE_TAC[summable; LIM_SEQUENTIALLY; INTER_UNIV; sums] THEN DISCH_THEN(X_CHOOSE_TAC `l:real^N`) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN EXISTS_TAC `N + 1` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `n - 1` th) THEN MP_TAC(SPEC `n:num` th)) THEN ASM_SIMP_TAC[ARITH_RULE `N + 1 <= n ==> N <= n /\ N <= n - 1`] THEN ABBREV_TAC `m = n - 1` THEN SUBGOAL_THEN `n = SUC m` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[VSUM_CLAUSES_NUMSEG; LE_0] THEN REWRITE_TAC[NORM_ARITH `dist(x,vec 0) = norm x`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NORM_0] THEN CONV_TAC NORM_ARITH);;
let SUMMABLE_IMP_BOUNDED = 
prove (`!f:num->real^N k. summable k f ==> bounded (IMAGE f k)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_IMP_TOZERO) THEN DISCH_THEN(MP_TAC o MATCH_MP CONVERGENT_IMP_BOUNDED) THEN REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; IN_UNIV] THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[REAL_LT_IMP_LE; NORM_0]);;
let SUMMABLE_IMP_SUMS_BOUNDED = 
prove (`!f:num->real^N k. summable (from k) f ==> bounded { vsum(k..n) f | n IN (:num) }`,
REWRITE_TAC[summable; sums; LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONVERGENT_IMP_BOUNDED) THEN REWRITE_TAC[FROM_INTER_NUMSEG; SIMPLE_IMAGE]);;
(* ------------------------------------------------------------------------- *) (* Comparison test. *) (* ------------------------------------------------------------------------- *)
let SERIES_COMPARISON = 
prove (`!f g s. (?l. ((lift o g) sums l) s) /\ (?N. !n. n >= N /\ n IN s ==> norm(f n) <= g n) ==> ?l:real^N. (f sums l) s`,
REPEAT GEN_TAC THEN REWRITE_TAC[SERIES_CAUCHY] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_TAC `N1:num`)) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `norm (vsum (s INTER (m .. n)) (lift o g))` THEN CONJ_TAC THENL [SIMP_TAC[GSYM LIFT_SUM; FINITE_INTER_NUMSEG; NORM_LIFT] THEN MATCH_MP_TAC(REAL_ARITH `x <= a ==> x <= abs(a)`) THEN MATCH_MP_TAC VSUM_NORM_LE THEN REWRITE_TAC[FINITE_INTER_NUMSEG; IN_INTER; IN_NUMSEG] THEN ASM_MESON_TAC[ARITH_RULE `m >= N1 + N2:num /\ m <= x ==> x >= N1`]; ASM_MESON_TAC[ARITH_RULE `m >= N1 + N2:num ==> m >= N2`]]);;
let SUMMABLE_COMPARISON = 
prove (`!f g s. summable s (lift o g) /\ (?N. !n. n >= N /\ n IN s ==> norm(f n) <= g n) ==> summable s f`,
REWRITE_TAC[summable; SERIES_COMPARISON]);;
let SERIES_LIFT_ABSCONV_IMP_CONV = 
prove (`!x:num->real^N k. summable k (\n. lift(norm(x n))) ==> summable k x`,
REWRITE_TAC[summable] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_COMPARISON THEN EXISTS_TAC `\n:num. norm(x n:real^N)` THEN ASM_REWRITE_TAC[o_DEF; REAL_LE_REFL] THEN ASM_MESON_TAC[]);;
let SUMMABLE_SUBSET_ABSCONV = 
prove (`!x:num->real^N s t. summable s (\n. lift(norm(x n))) /\ t SUBSET s ==> summable t (\n. lift(norm(x n)))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUMMABLE_SUBSET THEN EXISTS_TAC `s:num->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[summable] THEN MATCH_MP_TAC SERIES_COMPARISON THEN EXISTS_TAC `\n:num. norm(x n:real^N)` THEN ASM_REWRITE_TAC[o_DEF; GSYM summable] THEN EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL; NORM_LIFT; REAL_ABS_NORM; NORM_0; NORM_POS_LE]);;
(* ------------------------------------------------------------------------- *) (* Uniform version of comparison test. *) (* ------------------------------------------------------------------------- *)
let SERIES_COMPARISON_UNIFORM = 
prove (`!f g P s. (?l. ((lift o g) sums l) s) /\ (?N. !n x. N <= n /\ n IN s /\ P x ==> norm(f x n) <= g n) ==> ?l:A->real^N. !e. &0 < e ==> ?N. !n x. N <= n /\ P x ==> dist(vsum(s INTER (0..n)) (f x), l x) < e`,
REPEAT GEN_TAC THEN SIMP_TAC[GE; SERIES_CAUCHY; SERIES_CAUCHY_UNIFORM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_TAC `N1:num`)) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:A`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `norm (vsum (s INTER (m .. n)) (lift o g))` THEN CONJ_TAC THENL [SIMP_TAC[GSYM LIFT_SUM; FINITE_INTER_NUMSEG; NORM_LIFT] THEN MATCH_MP_TAC(REAL_ARITH `x <= a ==> x <= abs(a)`) THEN MATCH_MP_TAC VSUM_NORM_LE THEN REWRITE_TAC[FINITE_INTER_NUMSEG; IN_INTER; IN_NUMSEG] THEN ASM_MESON_TAC[ARITH_RULE `N1 + N2:num <= m /\ m <= x ==> N1 <= x`]; ASM_MESON_TAC[ARITH_RULE `N1 + N2:num <= m ==> N2 <= m`]]);;
(* ------------------------------------------------------------------------- *) (* Ratio test. *) (* ------------------------------------------------------------------------- *)
let SERIES_RATIO = 
prove (`!c a s N. c < &1 /\ (!n. n >= N ==> norm(a(SUC n)) <= c * norm(a(n))) ==> ?l:real^N. (a sums l) s`,
REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_COMPARISON THEN DISJ_CASES_TAC(REAL_ARITH `c <= &0 \/ &0 < c`) THENL [EXISTS_TAC `\n:num. &0` THEN REWRITE_TAC[o_DEF; LIFT_NUM] THEN CONJ_TAC THENL [MESON_TAC[SERIES_0]; ALL_TAC] THEN EXISTS_TAC `N + 1` THEN REWRITE_TAC[GE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c * norm(a(n - 1):real^N)` THEN CONJ_TAC THENL [ASM_MESON_TAC[ARITH_RULE `N + 1 <= n ==> SUC(n - 1) = n /\ N <= n - 1`]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= --c * x ==> c * x <= &0`) THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[NORM_POS_LE] THEN UNDISCH_TAC `c <= &0` THEN REAL_ARITH_TAC; ASSUME_TAC(MATCH_MP REAL_LT_IMP_LE (ASSUME `&0 < c`))] THEN EXISTS_TAC `\n. norm(a(N):real^N) * c pow (n - N)` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; EXISTS_TAC `N:num` THEN SIMP_TAC[GE; LE_EXISTS; IMP_CONJ; ADD_SUB2; LEFT_IMP_EXISTS_THM] THEN SUBGOAL_THEN `!d:num. norm(a(N + d):real^N) <= norm(a N) * c pow d` (fun th -> MESON_TAC[th]) THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; real_pow; REAL_MUL_RID; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c * norm((a:num->real^N) (N + d))` THEN ASM_SIMP_TAC[LE_ADD] THEN ASM_MESON_TAC[REAL_LE_LMUL; REAL_MUL_AC]] THEN GEN_REWRITE_TAC I [SERIES_CAUCHY] THEN X_GEN_TAC `e:real` THEN SIMP_TAC[GSYM LIFT_SUM; FINITE_INTER; NORM_LIFT; FINITE_NUMSEG] THEN DISCH_TAC THEN SIMP_TAC[SUM_LMUL; FINITE_INTER; FINITE_NUMSEG] THEN ASM_CASES_TAC `(a:num->real^N) N = vec 0` THENL [ASM_REWRITE_TAC[NORM_0; REAL_MUL_LZERO; REAL_ABS_NUM]; ALL_TAC] THEN MP_TAC(SPECL [`c:real`; `((&1 - c) * e) / norm((a:num->real^N) N)`] REAL_ARCH_POW_INV) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_MUL; REAL_SUB_LT; NORM_POS_LT; GE] THEN DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN EXISTS_TAC `N + M:num` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(norm((a:num->real^N) N) * sum(m..n) (\i. c pow (i - N)))` THEN CONJ_TAC THENL [REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= abs y`) THEN ASM_SIMP_TAC[SUM_POS_LE; FINITE_INTER_NUMSEG; REAL_POW_LE] THEN MATCH_MP_TAC SUM_SUBSET THEN ASM_SIMP_TAC[REAL_POW_LE] THEN REWRITE_TAC[FINITE_INTER_NUMSEG; FINITE_NUMSEG] THEN REWRITE_TAC[IN_INTER; IN_DIFF] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NORM] THEN DISJ_CASES_TAC(ARITH_RULE `n:num < m \/ m <= n`) THENL [ASM_SIMP_TAC[SUM_TRIV_NUMSEG; REAL_ABS_NUM; REAL_MUL_RZERO]; ALL_TAC] THEN SUBGOAL_THEN `m = 0 + m /\ n = (n - m) + m` (CONJUNCTS_THEN SUBST1_TAC) THENL [UNDISCH_TAC `m:num <= n` THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[SUM_OFFSET] THEN UNDISCH_TAC `N + M:num <= m` THEN SIMP_TAC[LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN REWRITE_TAC[ARITH_RULE `(i + (N + M) + d) - N:num = (M + d) + i`] THEN ONCE_REWRITE_TAC[REAL_POW_ADD] THEN REWRITE_TAC[SUM_LMUL; SUM_GP] THEN ASM_SIMP_TAC[LT; REAL_LT_IMP_NE] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; NORM_POS_LT; REAL_ABS_MUL] THEN REWRITE_TAC[REAL_ABS_POW] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_ABS_DIV; REAL_POW_LT; REAL_ARITH `&0 < c /\ c < &1 ==> &0 < abs c /\ &0 < abs(&1 - c)`; REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x /\ x <= &1 /\ &1 <= e ==> abs(c pow 0 - x) < e`) THEN ASM_SIMP_TAC[REAL_POW_LT; REAL_POW_1_LE; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[REAL_ARITH `c < &1 ==> x * abs(&1 - c) = (&1 - c) * x`] THEN REWRITE_TAC[real_div; REAL_INV_MUL; REAL_POW_ADD; REAL_MUL_ASSOC] THEN REWRITE_TAC[REAL_ARITH `(((a * b) * c) * d) * e = (e * ((a * b) * c)) * d`] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LE_RDIV_EQ; REAL_POW_LT; REAL_MUL_LID; REAL_ARITH `&0 < c ==> abs c = c`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `xm < e ==> &0 <= (d - &1) * e ==> xm <= d * e`)) THEN MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL [REWRITE_TAC[REAL_SUB_LE; GSYM REAL_POW_INV] THEN MATCH_MP_TAC REAL_POW_LE_1 THEN MATCH_MP_TAC REAL_INV_1_LE THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]; MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_SIMP_TAC[REAL_SUB_LT; REAL_LT_MUL; REAL_LT_DIV; NORM_POS_LT]]);;
(* ------------------------------------------------------------------------- *) (* Ostensibly weaker versions of the boundedness of partial sums. *) (* ------------------------------------------------------------------------- *)
let BOUNDED_PARTIAL_SUMS = 
prove (`!f:num->real^N k. bounded { vsum(k..n) f | n IN (:num) } ==> bounded { vsum(m..n) f | m IN (:num) /\ n IN (:num) }`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `bounded { vsum(0..n) f:real^N | n IN (:num) }` MP_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN REWRITE_TAC[bounded] THEN REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `sum { i:num | i < k} (\i. norm(f i:real^N)) + B` THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i:num < k` THENL [MATCH_MP_TAC(REAL_ARITH `!y. x <= y /\ y <= a /\ &0 < b ==> x <= a + b`) THEN EXISTS_TAC `sum (0..i) (\i. norm(f i:real^N))` THEN ASM_SIMP_TAC[VSUM_NORM; FINITE_NUMSEG] THEN MATCH_MP_TAC SUM_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG; FINITE_NUMSEG_LT; NORM_POS_LE] THEN REWRITE_TAC[IN_DIFF; IN_NUMSEG; IN_ELIM_THM] THEN ASM_ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `k = 0` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC(REAL_ARITH `x <= B /\ &0 <= b ==> x <= b + B`) THEN ASM_SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG_LT; NORM_POS_LE]; ALL_TAC] THEN MP_TAC(ISPECL [`f:num->real^N`; `0`; `k:num`; `i:num`] VSUM_COMBINE_L) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[NUMSEG_LT] THEN MATCH_MP_TAC(NORM_ARITH `norm(x) <= a /\ norm(y) <= b ==> norm(x + y) <= a + b`) THEN ASM_SIMP_TAC[VSUM_NORM; FINITE_NUMSEG]; ALL_TAC] THEN DISCH_THEN(fun th -> MP_TAC(MATCH_MP BOUNDED_DIFFS (W CONJ th)) THEN MP_TAC th) THEN REWRITE_TAC[IMP_IMP; GSYM BOUNDED_UNION] THEN MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`] BOUNDED_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION; LEFT_IMP_EXISTS_THM; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `m:num`; `n:num`] THEN DISCH_THEN SUBST1_TAC THEN ASM_CASES_TAC `m = 0` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `n:num < m` THENL [DISJ2_TAC THEN REPEAT(EXISTS_TAC `vsum(0..0) (f:num->real^N)`) THEN ASM_SIMP_TAC[VSUM_TRIV_NUMSEG; VECTOR_SUB_REFL] THEN MESON_TAC[]; ALL_TAC] THEN DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`vsum(0..n) (f:num->real^N)`; `vsum(0..(m-1)) (f:num->real^N)`] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`f:num->real^N`; `0`; `m:num`; `n:num`] VSUM_COMBINE_L) THEN ANTS_TAC THENL [ASM_ARITH_TAC; VECTOR_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *) (* General Dirichlet convergence test (could make this uniform on a set). *) (* ------------------------------------------------------------------------- *)
let SUMMABLE_BILINEAR_PARTIAL_PRE = 
prove (`!f g h:real^M->real^N->real^P l k. bilinear h /\ ((\n. h (f(n + 1)) (g(n))) --> l) sequentially /\ summable (from k) (\n. h (f(n + 1) - f(n)) (g(n))) ==> summable (from k) (\n. h (f n) (g(n) - g(n - 1)))`,
REPEAT GEN_TAC THEN REWRITE_TAC[summable; sums; FROM_INTER_NUMSEG] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP BILINEAR_VSUM_PARTIAL_PRE th]) THEN DISCH_THEN(X_CHOOSE_TAC `l':real^P`) THEN EXISTS_TAC `l - (h:real^M->real^N->real^P) (f k) (g(k - 1)) - l'` THEN REWRITE_TAC[LIM_CASES_SEQUENTIALLY] THEN REPEAT(MATCH_MP_TAC LIM_SUB THEN ASM_REWRITE_TAC[LIM_CONST]));;
let SERIES_DIRICHLET_BILINEAR = 
prove (`!f g h:real^M->real^N->real^P k m p l. bilinear h /\ bounded { vsum (m..n) f | n IN (:num)} /\ summable (from p) (\n. lift(norm(g(n + 1) - g(n)))) /\ ((\n. h (g(n + 1)) (vsum(1..n) f)) --> l) sequentially ==> summable (from k) (\n. h (g n) (f n))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUMMABLE_FROM_ELSEWHERE THEN EXISTS_TAC `1` THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP BOUNDED_PARTIAL_SUMS) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN SIMP_TAC[IN_ELIM_THM; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[MESON[] `(!x a b. x = f a b ==> p a b) <=> (!a b. p a b)`] THEN X_GEN_TAC `B:real` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP BILINEAR_BOUNDED_POS) THEN DISCH_THEN(X_CHOOSE_THEN `C:real` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC SUMMABLE_EQ THEN EXISTS_TAC `\n. (h:real^M->real^N->real^P) (g n) (vsum (1..n) f - vsum (1..n-1) f)` THEN SIMP_TAC[IN_FROM; GSYM NUMSEG_RREC] THEN SIMP_TAC[VSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG; ARITH_RULE `1 <= n ==> ~(n <= n - 1)`] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_SIMP_TAC[BILINEAR_RADD; BILINEAR_RSUB] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC SUMMABLE_FROM_ELSEWHERE THEN EXISTS_TAC `p:num` THEN MP_TAC(ISPECL [`g:num->real^M`; `\n. vsum(1..n) f:real^N`; `h:real^M->real^N->real^P`; `l:real^P`; `p:num`] SUMMABLE_BILINEAR_PARTIAL_PRE) THEN REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `summable (from p) (lift o (\n. C * B * norm(g(n + 1) - g(n):real^M)))` MP_TAC THENL [ASM_SIMP_TAC[o_DEF; LIFT_CMUL; SUMMABLE_CMUL]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUMMABLE_COMPARISON) THEN EXISTS_TAC `0` THEN REWRITE_TAC[IN_FROM; GE; LE_0] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `C * norm(g(n + 1) - g(n):real^M) * norm(vsum (1..n) f:real^N)` THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN ASM_SIMP_TAC[REAL_LE_LMUL; NORM_POS_LE]);;
let SERIES_DIRICHLET = 
prove (`!f:num->real^N g N k m. bounded { vsum (m..n) f | n IN (:num)} /\ (!n. N <= n ==> g(n + 1) <= g(n)) /\ ((lift o g) --> vec 0) sequentially ==> summable (from k) (\n. g(n) % f(n))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:num->real^N`; `lift o (g:num->real)`; `\x y:real^N. drop x % y`] SERIES_DIRICHLET_BILINEAR) THEN REWRITE_TAC[o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`m:num`; `N:num`; `vec 0:real^N`] THEN CONJ_TAC THENL [REWRITE_TAC[bilinear; linear; DROP_ADD; DROP_CMUL] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM LIFT_SUB; NORM_LIFT] THEN FIRST_ASSUM(MP_TAC o SPEC `1` o MATCH_MP SEQ_OFFSET) THEN REWRITE_TAC[o_THM] THEN DISCH_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC SUMMABLE_EQ_EVENTUALLY THEN EXISTS_TAC `\n. lift(g(n) - g(n + 1))` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_ARITH `b <= a ==> abs(b - a) = a - b`]; REWRITE_TAC[summable; sums; FROM_INTER_NUMSEG; VSUM_DIFFS; LIFT_SUB] THEN REWRITE_TAC[LIM_CASES_SEQUENTIALLY] THEN EXISTS_TAC `lift(g(N:num)) - vec 0` THEN MATCH_MP_TAC LIM_SUB THEN ASM_REWRITE_TAC[LIM_CONST]]; MATCH_MP_TAC LIM_NULL_VMUL_BOUNDED THEN ASM_REWRITE_TAC[o_DEF] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP BOUNDED_PARTIAL_SUMS) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN SIMP_TAC[IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Rearranging absolutely convergent series. *) (* ------------------------------------------------------------------------- *)
let SERIES_INJECTIVE_IMAGE_STRONG = 
prove (`!x:num->real^N s f. summable (IMAGE f s) (\n. lift(norm(x n))) /\ (!m n. m IN s /\ n IN s /\ f m = f n ==> m = n) ==> ((\n. vsum (IMAGE f s INTER (0..n)) x - vsum (s INTER (0..n)) (x o f)) --> vec 0) sequentially`,
let lemma = prove
   (`!f:A->real^N s t.
          FINITE s /\ FINITE t
          ==> vsum s f - vsum t f = vsum (s DIFF t) f - vsum (t DIFF s) f`,
    REPEAT STRIP_TAC THEN
    ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s DIFF (s INTER t)`] THEN
    ASM_SIMP_TAC[VSUM_DIFF; INTER_SUBSET] THEN
    REWRITE_TAC[INTER_COMM] THEN VECTOR_ARITH_TAC) in
  REPEAT STRIP_TAC THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN
  X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUMMABLE_CAUCHY]) THEN
  SIMP_TAC[VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [o_DEF] THEN
  REWRITE_TAC[NORM_LIFT; LIFT_DROP] THEN
  SIMP_TAC[real_abs; SUM_POS_LE; NORM_POS_LE; FINITE_INTER; FINITE_NUMSEG] THEN
  DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
  ASM_REWRITE_TAC[dist; GE; VECTOR_SUB_RZERO; REAL_HALF] THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
  DISCH_THEN(X_CHOOSE_TAC `g:num->num`) THEN
  MP_TAC(ISPECL [`g:num->num`; `0..N`] UPPER_BOUND_FINITE_SET) THEN
  REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
  DISCH_THEN(X_CHOOSE_TAC `P:num`) THEN
  EXISTS_TAC `MAX N P` THEN X_GEN_TAC `n:num` THEN
  SIMP_TAC[ARITH_RULE `MAX a b <= c <=> a <= c /\ b <= c`] THEN DISCH_TAC THEN
  W(MP_TAC o PART_MATCH (rand o rand) VSUM_IMAGE o rand o
    rand o lhand o snd) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[FINITE_INTER; FINITE_NUMSEG; IN_INTER];
    DISCH_THEN(SUBST1_TAC o SYM)] THEN
  W(MP_TAC o PART_MATCH (lhand o rand) lemma o rand o lhand o snd) THEN
  SIMP_TAC[FINITE_INTER; FINITE_IMAGE; FINITE_NUMSEG] THEN
  DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC(NORM_ARITH
   `norm a < e / &2 /\ norm b < e / &2 ==> norm(a - b:real^N) < e`) THEN
  CONJ_TAC THEN
  W(MP_TAC o PART_MATCH (lhand o rand) VSUM_NORM o lhand o snd) THEN
  SIMP_TAC[FINITE_DIFF; FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG] THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN
  MATCH_MP_TAC REAL_LET_TRANS THENL
   [EXISTS_TAC
     `sum(IMAGE (f:num->num) s INTER (N..n)) (\i. norm(x i :real^N))` THEN
    ASM_SIMP_TAC[LE_REFL] THEN MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
    SIMP_TAC[NORM_POS_LE; FINITE_INTER; FINITE_NUMSEG] THEN
    MATCH_MP_TAC(SET_RULE
     `(!x. x IN s /\ f(x) IN n /\ ~(x IN m) ==> f x IN t)
      ==> (IMAGE f s INTER n) DIFF (IMAGE f (s INTER m)) SUBSET
          IMAGE f s INTER t`) THEN
    ASM_SIMP_TAC[IN_NUMSEG; LE_0; NOT_LE] THEN
    X_GEN_TAC `i:num` THEN STRIP_TAC THEN
    MATCH_MP_TAC LT_IMP_LE THEN ONCE_REWRITE_TAC[GSYM NOT_LE] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE BINDER_CONV
     [GSYM CONTRAPOS_THM]) THEN
    ASM_SIMP_TAC[] THEN ASM_ARITH_TAC;
    MP_TAC(ISPECL [`f:num->num`; `0..n`] UPPER_BOUND_FINITE_SET) THEN
    REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN
    DISCH_THEN(X_CHOOSE_TAC `p:num`) THEN
    EXISTS_TAC
     `sum(IMAGE (f:num->num) s INTER (N..p)) (\i. norm(x i :real^N))` THEN
    ASM_SIMP_TAC[LE_REFL] THEN MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
    SIMP_TAC[NORM_POS_LE; FINITE_INTER; FINITE_NUMSEG] THEN
    MATCH_MP_TAC(SET_RULE
     `(!x. x IN s /\ x IN n /\ ~(f x IN m) ==> f x IN t)
      ==> (IMAGE f (s INTER n) DIFF (IMAGE f s) INTER m) SUBSET
          (IMAGE f s INTER t)`) THEN
    ASM_SIMP_TAC[IN_NUMSEG; LE_0] THEN ASM_ARITH_TAC]);;
let SERIES_INJECTIVE_IMAGE = 
prove (`!x:num->real^N s f l. summable (IMAGE f s) (\n. lift(norm(x n))) /\ (!m n. m IN s /\ n IN s /\ f m = f n ==> m = n) ==> (((x o f) sums l) s <=> (x sums l) (IMAGE f s))`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[sums] THEN MATCH_MP_TAC LIM_TRANSFORM_EQ THEN REWRITE_TAC[] THEN MATCH_MP_TAC SERIES_INJECTIVE_IMAGE_STRONG THEN ASM_REWRITE_TAC[]);;
let SERIES_REARRANGE_EQ = 
prove (`!x:num->real^N s p l. summable s (\n. lift(norm(x n))) /\ p permutes s ==> (((x o p) sums l) s <=> (x sums l) s)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`x:num->real^N`; `s:num->bool`; `p:num->num`; `l:real^N`] SERIES_INJECTIVE_IMAGE) THEN ASM_SIMP_TAC[PERMUTES_IMAGE] THEN ASM_MESON_TAC[PERMUTES_INJECTIVE]);;
let SERIES_REARRANGE = 
prove (`!x:num->real^N s p l. summable s (\n. lift(norm(x n))) /\ p permutes s /\ (x sums l) s ==> ((x o p) sums l) s`,
MESON_TAC[SERIES_REARRANGE_EQ]);;
let SUMMABLE_REARRANGE = 
prove (`!x s p. summable s (\n. lift(norm(x n))) /\ p permutes s ==> summable s (x o p)`,
(* ------------------------------------------------------------------------- *) (* Banach fixed point theorem (not really topological...) *) (* ------------------------------------------------------------------------- *)
let BANACH_FIX = 
prove (`!f s c. complete s /\ ~(s = {}) /\ &0 <= c /\ c < &1 /\ (IMAGE f s) SUBSET s /\ (!x y. x IN s /\ y IN s ==> dist(f(x),f(y)) <= c * dist(x,y)) ==> ?!x:real^N. x IN s /\ (f x = x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL [ALL_TAC; MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN SUBGOAL_THEN `dist((f:real^N->real^N) x,f y) <= c * dist(x,y)` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[REAL_ARITH `a <= c * a <=> &0 <= --a * (&1 - c)`] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_SUB_LT; real_div] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_ARITH `&0 <= --x <=> ~(&0 < x)`] THEN MESON_TAC[DIST_POS_LT]] THEN STRIP_ASSUME_TAC(prove_recursive_functions_exist num_RECURSION `(z 0 = @x:real^N. x IN s) /\ (!n. z(SUC n) = f(z n))`) THEN SUBGOAL_THEN `!n. (z:num->real^N) n IN s` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; SUBSET; IN_IMAGE]; ALL_TAC] THEN UNDISCH_THEN `z 0 = @x:real^N. x IN s` (K ALL_TAC) THEN SUBGOAL_THEN `?x:real^N. x IN s /\ (z --> x) sequentially` MP_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ABBREV_TAC `e = dist(f(a:real^N),a)` THEN SUBGOAL_THEN `~(&0 < e)` (fun th -> ASM_MESON_TAC[th; DIST_POS_LT]) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_SEQUENTIALLY]) THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN SUBGOAL_THEN `dist(f(z N),a:real^N) < e / &2 /\ dist(f(z(N:num)),f(a)) < e / &2` (fun th -> ASM_MESON_TAC[th; DIST_TRIANGLE_HALF_R; REAL_LT_REFL]) THEN CONJ_TAC THENL [ASM_MESON_TAC[ARITH_RULE `N <= SUC N`]; ALL_TAC] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `c * dist((z:num->real^N) N,a)` THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `x < y /\ c * x <= &1 * x ==> c * x < y`) THEN ASM_SIMP_TAC[LE_REFL; REAL_LE_RMUL; DIST_POS_LE; REAL_LT_IMP_LE]] THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [complete]) THEN ASM_REWRITE_TAC[CAUCHY] THEN SUBGOAL_THEN `!n. dist(z(n):real^N,z(SUC n)) <= c pow n * dist(z(0),z(1))` ASSUME_TAC THENL [INDUCT_TAC THEN REWRITE_TAC[real_pow; ARITH; REAL_MUL_LID; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c * dist(z(n):real^N,z(SUC n))` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_LE_LMUL]; ALL_TAC] THEN SUBGOAL_THEN `!m n:num. (&1 - c) * dist(z(m):real^N,z(m+n)) <= c pow m * dist(z(0),z(1)) * (&1 - c pow n)` ASSUME_TAC THENL [GEN_TAC THEN INDUCT_TAC THENL [REWRITE_TAC[ADD_CLAUSES; DIST_REFL; REAL_MUL_RZERO] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POW_LE; DIST_POS_LE; REAL_SUB_LE; REAL_POW_1_LE; REAL_LT_IMP_LE]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 - c) * (dist(z m:real^N,z(m + n)) + dist(z(m + n),z(m + SUC n)))` THEN ASM_SIMP_TAC[REAL_LE_LMUL; REAL_SUB_LE; REAL_LT_IMP_LE; DIST_TRIANGLE] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `c * x <= y ==> c * x' + y <= y' ==> c * (x + x') <= y'`)) THEN REWRITE_TAC[REAL_ARITH `q + a * b * (&1 - x) <= a * b * (&1 - y) <=> q <= a * b * (x - y)`] THEN REWRITE_TAC[ADD_CLAUSES; real_pow] THEN REWRITE_TAC[REAL_ARITH `a * b * (d - c * d) = (&1 - c) * a * d * b`] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_SUB_LE; REAL_LT_IMP_LE] THEN REWRITE_TAC[GSYM REAL_POW_ADD; REAL_MUL_ASSOC] THEN ASM_MESON_TAC[]; ALL_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN ASM_CASES_TAC `(z:num->real^N) 0 = z 1` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN EXISTS_TAC `0` THEN REWRITE_TAC[GE; LE_0] THEN X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o SPECL [`0`; `n:num`]) THEN REWRITE_TAC[ADD_CLAUSES; DIST_REFL; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN ASM_CASES_TAC `(z:num->real^N) 0 = z n` THEN ASM_REWRITE_TAC[DIST_REFL; REAL_NOT_LE] THEN ASM_SIMP_TAC[REAL_LT_MUL; DIST_POS_LT; REAL_SUB_LT]; ALL_TAC] THEN MP_TAC(SPECL [`c:real`; `e * (&1 - c) / dist((z:num->real^N) 0,z 1)`] REAL_ARCH_POW_INV) THEN ASM_SIMP_TAC[REAL_LT_MUL; REAL_LT_DIV; REAL_SUB_LT; DIST_POS_LT] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[real_div; GE; REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; GSYM real_div; DIST_POS_LT] THEN ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_SUB_LT] THEN DISCH_TAC THEN REWRITE_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `d:num` THEN DISCH_THEN SUBST_ALL_TAC THEN ONCE_REWRITE_TAC[DIST_SYM] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REAL_ARITH `d < e ==> x <= d ==> x < e`)) THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_SUB_LT] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`N:num`; `d:num`]) THEN MATCH_MP_TAC(REAL_ARITH `(c * d) * e <= (c * d) * &1 ==> x * y <= c * d * e ==> y * x <= c * d`) THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POW_LE; DIST_POS_LE; REAL_ARITH `&0 <= x ==> &1 - x <= &1`]);;
(* ------------------------------------------------------------------------- *) (* Edelstein fixed point theorem. *) (* ------------------------------------------------------------------------- *)
let EDELSTEIN_FIX = 
prove (`!f s. compact s /\ ~(s = {}) /\ (IMAGE f s) SUBSET s /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> dist(f(x),f(y)) < dist(x,y)) ==> ?!x:real^N. x IN s /\ f x = x`,
MAP_EVERY X_GEN_TAC [`g:real^N->real^N`; `s:real^N->bool`] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LT_REFL]] THEN SUBGOAL_THEN `!x y. x IN s /\ y IN s ==> dist((g:real^N->real^N)(x),g(y)) <= dist(x,y)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN ASM_CASES_TAC `x:real^N = y` THEN ASM_SIMP_TAC[DIST_REFL; REAL_LE_LT]; ALL_TAC] THEN ASM_CASES_TAC `?x:real^N. x IN s /\ ~(g x = x)` THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(X_CHOOSE_THEN `x:real^N` STRIP_ASSUME_TAC) THEN ABBREV_TAC `y = (g:real^N->real^N) x` THEN SUBGOAL_THEN `(y:real^N) IN s` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_PCROSS o W CONJ) THEN REWRITE_TAC[compact; PCROSS] THEN (STRIP_ASSUME_TAC o prove_general_recursive_function_exists) `?f:num->real^N->real^N. (!z. f 0 z = z) /\ (!z n. f (SUC n) z = g(f n z))` THEN SUBGOAL_THEN `!n z. z IN s ==> (f:num->real^N->real^N) n z IN s` STRIP_ASSUME_TAC THENL [INDUCT_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!m n w z. m <= n /\ w IN s /\ z IN s ==> dist((f:num->real^N->real^N) n w,f n z) <= dist(f m w,f m z)` ASSUME_TAC THENL [REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[REAL_LE_REFL] THEN MESON_TAC[REAL_LE_TRANS]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `\n:num. pastecart (f n (x:real^N)) (f n y:real^N)`) THEN ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`l:real^(N,N)finite_sum`; `s:num->num`] THEN REWRITE_TAC[o_DEF; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC SUBST_ALL_TAC) THEN SUBGOAL_THEN `(\x:real^(N,N)finite_sum. fstcart x) continuous_on UNIV /\ (\x:real^(N,N)finite_sum. sndcart x) continuous_on UNIV` MP_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN REWRITE_TAC[ETA_AX; LINEAR_FSTCART; LINEAR_SNDCART]; ALL_TAC] THEN REWRITE_TAC[CONTINUOUS_ON_SEQUENTIALLY; IN_UNIV] THEN DISCH_THEN(CONJUNCTS_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th))) THEN REWRITE_TAC[o_DEF; FSTCART_PASTECART; SNDCART_PASTECART; IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_THEN(fun th -> CONJUNCTS_THEN2 (LABEL_TAC "A") (LABEL_TAC "B") th THEN MP_TAC(MATCH_MP LIM_SUB th)) THEN REWRITE_TAC[] THEN DISCH_THEN(LABEL_TAC "AB") THEN SUBGOAL_THEN `!n. dist(a:real^N,b) <= dist((f:num->real^N->real^N) n x,f n y)` STRIP_ASSUME_TAC THENL [X_GEN_TAC `N:num` THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN DISCH_TAC THEN USE_THEN "AB" (MP_TAC o REWRITE_RULE[LIM_SEQUENTIALLY]) THEN DISCH_THEN(fun th -> FIRST_X_ASSUM(MP_TAC o MATCH_MP th)) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `M:num` THEN DISCH_THEN(MP_TAC o SPEC `M + N:num`) THEN REWRITE_TAC[LE_ADD] THEN MATCH_MP_TAC(NORM_ARITH `dist(fx,fy) <= dist(x,y) ==> ~(dist(fx - fy,a - b) < dist(a,b) - dist(x,y))`) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `M + N:num` o MATCH_MP MONOTONE_BIGGER) THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `b:real^N = a` SUBST_ALL_TAC THENL [MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN ABBREV_TAC `e = dist(a,b) - dist((g:real^N->real^N) a,g b)` THEN SUBGOAL_THEN `&0 < e` ASSUME_TAC THENL [ASM_MESON_TAC[REAL_SUB_LT]; ALL_TAC] THEN SUBGOAL_THEN `?n. dist((f:num->real^N->real^N) n x,a) < e / &2 /\ dist(f n y,b) < e / &2` STRIP_ASSUME_TAC THENL [MAP_EVERY (fun s -> USE_THEN s (MP_TAC o SPEC `e / &2` o REWRITE_RULE[LIM_SEQUENTIALLY])) ["A";
"B"] THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `(s:num->num) (M + N)` THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `dist(f (SUC n) x,(g:real^N->real^N) a) + dist((f:num->real^N->real^N) (SUC n) y,g b) < e` MP_TAC THENL [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `x < e / &2 /\ y < e / &2 ==> x + y < e`) THEN CONJ_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `dist(x,y) < e ==> dist(g x,g y) <= dist(x,y) ==> dist(g x,g y) < e`)) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN MP_TAC(SPEC `SUC n` (ASSUME `!n. dist (a:real^N,b) <= dist ((f:num->real^N->real^N) n x,f n y)`)) THEN EXPAND_TAC "e" THEN NORM_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN EXISTS_TAC `\n:num. (f:num->real^N->real^N) (SUC(s n)) x` THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(g:real^N->real^N) continuous_on s` MP_TAC THENL [REWRITE_TAC[continuous_on] THEN ASM_MESON_TAC[REAL_LET_TRANS]; ALL_TAC] THEN REWRITE_TAC[CONTINUOUS_ON_SEQUENTIALLY; o_DEF] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[]; SUBGOAL_THEN `!n. (f:num->real^N->real^N) (SUC n) x = f n y` (fun th -> ASM_SIMP_TAC[th]) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Dini's theorem. *) (* ------------------------------------------------------------------------- *)
let DINI = 
prove (`!f:num->real^N->real^1 g s. compact s /\ (!n. (f n) continuous_on s) /\ g continuous_on s /\ (!x. x IN s ==> ((\n. (f n x)) --> g x) sequentially) /\ (!n x. x IN s ==> drop(f n x) <= drop(f (n + 1) x)) ==> !e. &0 < e ==> eventually (\n. !x. x IN s ==> norm(f n x - g x) < e) sequentially`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x:real^N m n:num. x IN s /\ m <= n ==> drop(f m x) <= drop(f n x)` ASSUME_TAC THENL [GEN_TAC THEN ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_SIMP_TAC[ADD1] THEN REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `!n:num x:real^N. x IN s ==> drop(f n x) <= drop(g x)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LE) THEN EXISTS_TAC `\m:num. (f:num->real^N->real^1) n x` THEN EXISTS_TAC `\m:num. (f:num->real^N->real^1) m x` THEN ASM_SIMP_TAC[LIM_CONST; TRIVIAL_LIMIT_SEQUENTIALLY] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[LIM_SEQUENTIALLY; dist]) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (\n. { x | x IN s /\ norm((f:num->real^N->real^1) n x - g x) < e}) (:num)`) THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE; SUBSET_UNION; UNIONS_IMAGE] THEN REWRITE_TAC[IN_UNIV; IN_ELIM_THM; EVENTUALLY_SEQUENTIALLY] THEN SIMP_TAC[SUBSET; IN_UNIV; IN_ELIM_THM] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[LE_REFL]] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GSYM IN_BALL_0] THEN MATCH_MP_TAC CONTINUOUS_OPEN_IN_PREIMAGE THEN ASM_SIMP_TAC[OPEN_BALL; CONTINUOUS_ON_SUB; ETA_AX]; DISCH_THEN(X_CHOOSE_THEN `k:num->bool` (CONJUNCTS_THEN2 (MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) (LABEL_TAC "*"))) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN REWRITE_TAC[] THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REMOVE_THEN "*" (MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB] THEN MATCH_MP_TAC(REAL_ARITH `m <= n /\ n <= g ==> abs(m - g) < e ==> abs(n - g) < e`) THEN ASM_MESON_TAC[LE_TRANS]]);;
(* ------------------------------------------------------------------------- *) (* Closest point of a (closed) set to a point. *) (* ------------------------------------------------------------------------- *)
let closest_point = new_definition
 `closest_point s a = @x. x IN s /\ !y. y IN s ==> dist(a,x) <= dist(a,y)`;;
let CLOSEST_POINT_EXISTS = 
prove (`!s a. closed s /\ ~(s = {}) ==> (closest_point s a) IN s /\ !y. y IN s ==> dist(a,closest_point s a) <= dist(a,y)`,
REWRITE_TAC[closest_point] THEN CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN REWRITE_TAC[DISTANCE_ATTAINS_INF]);;
let CLOSEST_POINT_IN_SET = 
prove (`!s a. closed s /\ ~(s = {}) ==> (closest_point s a) IN s`,
MESON_TAC[CLOSEST_POINT_EXISTS]);;
let CLOSEST_POINT_LE = 
prove (`!s a x. closed s /\ x IN s ==> dist(a,closest_point s a) <= dist(a,x)`,
let CLOSEST_POINT_SELF = 
prove (`!s x:real^N. x IN s ==> closest_point s x = x`,
REPEAT STRIP_TAC THEN REWRITE_TAC[closest_point] THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN GEN_TAC THEN EQ_TAC THENL [STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_SIMP_TAC[DIST_LE_0; DIST_REFL]; STRIP_TAC THEN ASM_REWRITE_TAC[DIST_REFL; DIST_POS_LE]]);;
let CLOSEST_POINT_REFL = 
prove (`!s x:real^N. closed s /\ ~(s = {}) ==> (closest_point s x = x <=> x IN s)`,
let DIST_CLOSEST_POINT_LIPSCHITZ = 
prove (`!s x y:real^N. closed s /\ ~(s = {}) ==> abs(dist(x,closest_point s x) - dist(y,closest_point s y)) <= dist(x,y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSEST_POINT_EXISTS) THEN DISCH_THEN(fun th -> CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `closest_point s (y:real^N)`) (SPEC `x:real^N` th) THEN CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `closest_point s (x:real^N)`) (SPEC `y:real^N` th)) THEN ASM_REWRITE_TAC[] THEN NORM_ARITH_TAC);;
let CONTINUOUS_AT_DIST_CLOSEST_POINT = 
prove (`!s x:real^N. closed s /\ ~(s = {}) ==> (\x. lift(dist(x,closest_point s x))) continuous (at x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_at; DIST_LIFT] THEN ASM_MESON_TAC[DIST_CLOSEST_POINT_LIPSCHITZ; REAL_LET_TRANS]);;
let CONTINUOUS_ON_DIST_CLOSEST_POINT = 
prove (`!s t. closed s /\ ~(s = {}) ==> (\x. lift(dist(x,closest_point s x))) continuous_on t`,
let UNIFORMLY_CONTINUOUS_ON_DIST_CLOSEST_POINT = 
prove (`!s t:real^N->bool. closed s /\ ~(s = {}) ==> (\x. lift(dist(x,closest_point s x))) uniformly_continuous_on t`,
REPEAT STRIP_TAC THEN REWRITE_TAC[uniformly_continuous_on; DIST_LIFT] THEN ASM_MESON_TAC[DIST_CLOSEST_POINT_LIPSCHITZ; REAL_LET_TRANS]);;
let SEGMENT_TO_CLOSEST_POINT = 
prove (`!s a:real^N. closed s /\ ~(s = {}) ==> segment(a,closest_point s a) INTER s = {}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `s INTER t = {} <=> !x. x IN s ==> ~(x IN t)`] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIST_IN_OPEN_SEGMENT) THEN MATCH_MP_TAC(TAUT `(r ==> ~p) ==> p /\ q ==> ~r`) THEN ASM_MESON_TAC[CLOSEST_POINT_EXISTS; REAL_NOT_LT; DIST_SYM]);;
let SEGMENT_TO_POINT_EXISTS = 
prove (`!s a:real^N. closed s /\ ~(s = {}) ==> ?b. b IN s /\ segment(a,b) INTER s = {}`,
let CLOSEST_POINT_IN_INTERIOR = 
prove (`!s x:real^N. closed s /\ ~(s = {}) ==> ((closest_point s x) IN interior s <=> x IN interior s)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_SIMP_TAC[CLOSEST_POINT_SELF] THEN MATCH_MP_TAC(TAUT `~q /\ ~p ==> (p <=> q)`) THEN CONJ_TAC THENL [ASM_MESON_TAC[INTERIOR_SUBSET; SUBSET]; STRIP_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERIOR_CBALL]) THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `closest_point s (x:real^N) IN s` ASSUME_TAC THENL [ASM_MESON_TAC[INTERIOR_SUBSET; SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `~(closest_point s (x:real^N) = x)` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`; `closest_point s x - (min (&1) (e / norm(closest_point s x - x))) % (closest_point s x - x):real^N`] CLOSEST_POINT_LE) THEN ASM_REWRITE_TAC[dist; NOT_IMP; VECTOR_ARITH `x - (y - e % (y - x)):real^N = (&1 - e) % (x - y)`] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[IN_CBALL; NORM_ARITH `dist(a:real^N,a - x) = norm x`] THEN REWRITE_TAC[NORM_MUL; REAL_ABS_DIV; REAL_ABS_NORM] THEN ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; NORM_POS_LT; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= a ==> abs(min (&1) a) <= a`) THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_DIV; NORM_POS_LE]; REWRITE_TAC[NORM_MUL; REAL_ARITH `~(n <= a * n) <=> &0 < (&1 - a) * n`] THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_SIMP_TAC[NORM_POS_LT; VECTOR_SUB_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ e <= &1 ==> &0 < &1 - abs(&1 - e)`) THEN REWRITE_TAC[REAL_MIN_LE; REAL_LT_MIN; REAL_LT_01; REAL_LE_REFL] THEN ASM_SIMP_TAC[REAL_LT_DIV; NORM_POS_LT; VECTOR_SUB_EQ]]);;
let CLOSEST_POINT_IN_FRONTIER = 
prove (`!s x:real^N. closed s /\ ~(s = {}) /\ ~(x IN interior s) ==> (closest_point s x) IN frontier s`,
SIMP_TAC[frontier; IN_DIFF; CLOSEST_POINT_IN_INTERIOR] THEN SIMP_TAC[CLOSEST_POINT_IN_SET; CLOSURE_CLOSED]);;
(* ------------------------------------------------------------------------- *) (* More general infimum of distance between two sets. *) (* ------------------------------------------------------------------------- *)
let setdist = new_definition
 `setdist(s,t) =
        if s = {} \/ t = {} then &0
        else inf {dist(x,y) | x IN s /\ y IN t}`;;
let SETDIST_EMPTY = 
prove (`(!t. setdist({},t) = &0) /\ (!s. setdist(s,{}) = &0)`,
REWRITE_TAC[setdist]);;
let SETDIST_POS_LE = 
prove (`!s t. &0 <= setdist(s,t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[setdist] THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_INF THEN REWRITE_TAC[FORALL_IN_GSPEC; DIST_POS_LE] THEN ASM SET_TAC[]);;
let REAL_LE_SETDIST = 
prove (`!s t:real^N->bool d. ~(s = {}) /\ ~(t = {}) /\ (!x y. x IN s /\ y IN t ==> d <= dist(x,y)) ==> d <= setdist(s,t)`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[setdist] THEN MP_TAC(ISPEC `{dist(x:real^N,y) | x IN s /\ y IN t}` INF) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM SET_TAC[]; MESON_TAC[DIST_POS_LE]]; ALL_TAC] THEN ASM_MESON_TAC[]);;
let SETDIST_LE_DIST = 
prove (`!s t x y:real^N. x IN s /\ y IN t ==> setdist(s,t) <= dist(x,y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[setdist] THEN COND_CASES_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPEC `{dist(x:real^N,y) | x IN s /\ y IN t}` INF) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM SET_TAC[]; MESON_TAC[DIST_POS_LE]]; ALL_TAC] THEN ASM_MESON_TAC[]);;
let REAL_LE_SETDIST_EQ = 
prove (`!d s t:real^N->bool. d <= setdist(s,t) <=> (!x y. x IN s /\ y IN t ==> d <= dist(x,y)) /\ (s = {} \/ t = {} ==> d <= &0)`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^N->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[SETDIST_EMPTY; NOT_IN_EMPTY] THEN ASM_MESON_TAC[REAL_LE_SETDIST; SETDIST_LE_DIST; REAL_LE_TRANS]);;
let SETDIST_REFL = 
prove (`!s:real^N->bool. setdist(s,s) = &0`,
GEN_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM; SETDIST_POS_LE] THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[setdist; REAL_LE_REFL]; ALL_TAC] THEN ASM_MESON_TAC[SETDIST_LE_DIST; MEMBER_NOT_EMPTY; DIST_REFL]);;
let SETDIST_SYM = 
prove (`!s t. setdist(s,t) = setdist(t,s)`,
REPEAT GEN_TAC THEN REWRITE_TAC[setdist; DISJ_SYM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[DIST_SYM]);;
let SETDIST_TRIANGLE = 
prove (`!s a t:real^N->bool. setdist(s,t) <= setdist(s,{a}) + setdist({a},t)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THEN ASM_REWRITE_TAC[SETDIST_EMPTY; REAL_ADD_LID; SETDIST_POS_LE] THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[SETDIST_EMPTY; REAL_ADD_RID; SETDIST_POS_LE] THEN ONCE_REWRITE_TAC[GSYM REAL_LE_SUB_RADD] THEN MATCH_MP_TAC REAL_LE_SETDIST THEN ASM_REWRITE_TAC[NOT_INSERT_EMPTY; IN_SING; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `x - y <= z <=> x - z <= y`] THEN MATCH_MP_TAC REAL_LE_SETDIST THEN ASM_REWRITE_TAC[NOT_INSERT_EMPTY; IN_SING; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN REWRITE_TAC[REAL_LE_SUB_RADD] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `dist(x:real^N,y)` THEN ASM_SIMP_TAC[SETDIST_LE_DIST] THEN CONV_TAC NORM_ARITH);;
let SETDIST_SINGS = 
prove (`!x y. setdist({x},{y}) = dist(x,y)`,
REWRITE_TAC[setdist; NOT_INSERT_EMPTY] THEN REWRITE_TAC[SET_RULE `{f x y | x IN {a} /\ y IN {b}} = {f a b}`] THEN SIMP_TAC[INF_INSERT_FINITE; FINITE_EMPTY]);;
let SETDIST_LIPSCHITZ = 
prove (`!s t x y:real^N. abs(setdist({x},s) - setdist({y},s)) <= dist(x,y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SETDIST_SINGS] THEN REWRITE_TAC[REAL_ARITH `abs(x - y) <= z <=> x <= z + y /\ y <= z + x`] THEN MESON_TAC[SETDIST_TRIANGLE; SETDIST_SYM]);;
let CONTINUOUS_AT_LIFT_SETDIST = 
prove (`!s x:real^N. (\y. lift(setdist({y},s))) continuous (at x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[continuous_at; DIST_LIFT] THEN ASM_MESON_TAC[SETDIST_LIPSCHITZ; REAL_LET_TRANS]);;
let CONTINUOUS_ON_LIFT_SETDIST = 
prove (`!s t:real^N->bool. (\y. lift(setdist({y},s))) continuous_on t`,
let UNIFORMLY_CONTINUOUS_ON_LIFT_SETDIST = 
prove (`!s t:real^N->bool. (\y. lift(setdist({y},s))) uniformly_continuous_on t`,
REPEAT GEN_TAC THEN REWRITE_TAC[uniformly_continuous_on; DIST_LIFT] THEN ASM_MESON_TAC[SETDIST_LIPSCHITZ; REAL_LET_TRANS]);;
let SETDIST_DIFFERENCES = 
prove (`!s t. setdist(s,t) = setdist({vec 0},{x - y:real^N | x IN s /\ y IN t})`,
REPEAT GEN_TAC THEN REWRITE_TAC[setdist; NOT_INSERT_EMPTY; SET_RULE `{f x y | x IN s /\ y IN t} = {} <=> s = {} \/ t = {}`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM2; DIST_0] THEN REWRITE_TAC[dist] THEN MESON_TAC[]);;
let SETDIST_SUBSET_RIGHT = 
prove (`!s t u:real^N->bool. ~(t = {}) /\ t SUBSET u ==> setdist(s,u) <= setdist(s,t)`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^N->bool = {}`; `u:real^N->bool = {}`] THEN ASM_REWRITE_TAC[SETDIST_EMPTY; SETDIST_POS_LE; REAL_LE_REFL] THEN ASM_REWRITE_TAC[setdist] THEN MATCH_MP_TAC REAL_LE_INF_SUBSET THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; SUBSET] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN MESON_TAC[DIST_POS_LE]);;
let SETDIST_SUBSET_LEFT = 
prove (`!s t u:real^N->bool. ~(s = {}) /\ s SUBSET t ==> setdist(t,u) <= setdist(s,u)`,
let SETDIST_CLOSURE = 
prove (`(!s t:real^N->bool. setdist(closure s,t) = setdist(s,t)) /\ (!s t:real^N->bool. setdist(s,closure t) = setdist(s,t))`,
GEN_REWRITE_TAC RAND_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [SETDIST_SYM] THEN REWRITE_TAC[] THEN REWRITE_TAC[MESON[REAL_LE_ANTISYM] `x:real = y <=> !d. d <= x <=> d <= y`] THEN REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_SETDIST_EQ] THEN MAP_EVERY ASM_CASES_TAC [`s:real^N->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[CLOSURE_EQ_EMPTY; CLOSURE_EMPTY; NOT_IN_EMPTY] THEN MATCH_MP_TAC(SET_RULE `s SUBSET c /\ (!y. Q y /\ (!x. x IN s ==> P x y) ==> (!x. x IN c ==> P x y)) ==> ((!x y. x IN c /\ Q y ==> P x y) <=> (!x y. x IN s /\ Q y ==> P x y))`) THEN REWRITE_TAC[CLOSURE_SUBSET] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_GE_ON_CLOSURE THEN ASM_REWRITE_TAC[o_DEF; dist] THEN MATCH_MP_TAC CONTINUOUS_ON_LIFT_NORM_COMPOSE THEN SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; CONTINUOUS_ON_ID]);;
let SETDIST_COMPACT_CLOSED = 
prove (`!s t:real^N->bool. compact s /\ closed t /\ ~(s = {}) /\ ~(t = {}) ==> ?x y. x IN s /\ y IN t /\ dist(x,y) = setdist(s,t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN MATCH_MP_TAC(MESON[] `(!x y. P x /\ Q y ==> S x y) /\ (?x y. P x /\ Q y /\ R x y) ==> ?x y. P x /\ Q y /\ R x y /\ S x y`) THEN SIMP_TAC[SETDIST_LE_DIST] THEN ASM_REWRITE_TAC[REAL_LE_SETDIST_EQ] THEN MP_TAC(ISPECL [`{x - y:real^N | x IN s /\ y IN t}`; `vec 0:real^N`] DISTANCE_ATTAINS_INF) THEN ASM_SIMP_TAC[COMPACT_CLOSED_DIFFERENCES; EXISTS_IN_GSPEC; FORALL_IN_GSPEC; DIST_0; GSYM CONJ_ASSOC] THEN REWRITE_TAC[dist] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]);;
let SETDIST_CLOSED_COMPACT = 
prove (`!s t:real^N->bool. closed s /\ compact t /\ ~(s = {}) /\ ~(t = {}) ==> ?x y. x IN s /\ y IN t /\ dist(x,y) = setdist(s,t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN MATCH_MP_TAC(MESON[] `(!x y. P x /\ Q y ==> S x y) /\ (?x y. P x /\ Q y /\ R x y) ==> ?x y. P x /\ Q y /\ R x y /\ S x y`) THEN SIMP_TAC[SETDIST_LE_DIST] THEN ASM_REWRITE_TAC[REAL_LE_SETDIST_EQ] THEN MP_TAC(ISPECL [`{x - y:real^N | x IN s /\ y IN t}`; `vec 0:real^N`] DISTANCE_ATTAINS_INF) THEN ASM_SIMP_TAC[CLOSED_COMPACT_DIFFERENCES; EXISTS_IN_GSPEC; FORALL_IN_GSPEC; DIST_0; GSYM CONJ_ASSOC] THEN REWRITE_TAC[dist] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]);;
let SETDIST_EQ_0_COMPACT_CLOSED = 
prove (`!s t:real^N->bool. compact s /\ closed t ==> (setdist(s,t) = &0 <=> s = {} \/ t = {} \/ ~(s INTER t = {}))`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^N->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[SETDIST_EMPTY] THEN EQ_TAC THENL [MP_TAC(ISPECL [`s:real^N->bool`; `t:real^N->bool`] SETDIST_COMPACT_CLOSED) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN MESON_TAC[DIST_EQ_0]; REWRITE_TAC[GSYM REAL_LE_ANTISYM; SETDIST_POS_LE] THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN MESON_TAC[SETDIST_LE_DIST; DIST_EQ_0]]);;
let SETDIST_EQ_0_CLOSED_COMPACT = 
prove (`!s t:real^N->bool. closed s /\ compact t ==> (setdist(s,t) = &0 <=> s = {} \/ t = {} \/ ~(s INTER t = {}))`,
ONCE_REWRITE_TAC[SETDIST_SYM] THEN SIMP_TAC[SETDIST_EQ_0_COMPACT_CLOSED] THEN SET_TAC[]);;
let SETDIST_EQ_0_BOUNDED = 
prove (`!s t:real^N->bool. (bounded s \/ bounded t) ==> (setdist(s,t) = &0 <=> s = {} \/ t = {} \/ ~(closure(s) INTER closure(t) = {}))`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`s:real^N->bool = {}`; `t:real^N->bool = {}`] THEN ASM_REWRITE_TAC[SETDIST_EMPTY] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[MESON[SETDIST_CLOSURE] `setdist(s,t) = setdist(closure s,closure t)`] THEN ASM_SIMP_TAC[SETDIST_EQ_0_COMPACT_CLOSED; SETDIST_EQ_0_CLOSED_COMPACT; COMPACT_CLOSURE; CLOSED_CLOSURE; CLOSURE_EQ_EMPTY]);;
let SETDIST_TRANSLATION = 
prove (`!a:real^N s t. setdist(IMAGE (\x. a + x) s,IMAGE (\x. a + x) t) = setdist(s,t)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SETDIST_DIFFERENCES] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `{f x y | x IN IMAGE g s /\ y IN IMAGE g t} = {f (g x) (g y) | x IN s /\ y IN t}`] THEN REWRITE_TAC[VECTOR_ARITH `(a + x) - (a + y):real^N = x - y`]);;
add_translation_invariants [SETDIST_TRANSLATION];;
let SETDIST_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s t. linear f /\ (!x. norm(f x) = norm x) ==> setdist(IMAGE f s,IMAGE f t) = setdist(s,t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[setdist; IMAGE_EQ_EMPTY] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[dist] THEN AP_TERM_TAC THEN REWRITE_TAC[SET_RULE `{f x y | x IN IMAGE g s /\ y IN IMAGE g t} = {f (g x) (g y) | x IN s /\ y IN t}`] THEN FIRST_X_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_SUB th)]) THEN ASM_REWRITE_TAC[]);;
add_linear_invariants [SETDIST_LINEAR_IMAGE];;
let SETDIST_UNIQUE = 
prove (`!s t a b:real^N d. a IN s /\ b IN t /\ dist(a,b) = d /\ (!x y. x IN s /\ y IN t ==> dist(a,b) <= dist(x,y)) ==> setdist(s,t) = d`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL [ASM_MESON_TAC[SETDIST_LE_DIST]; MATCH_MP_TAC REAL_LE_SETDIST THEN ASM SET_TAC[]]);;
let SETDIST_CLOSEST_POINT = 
prove (`!a:real^N s. closed s /\ ~(s = {}) ==> setdist({a},s) = dist(a,closest_point s a)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SETDIST_UNIQUE THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; IN_SING; UNWIND_THM2] THEN EXISTS_TAC `closest_point s (a:real^N)` THEN ASM_MESON_TAC[CLOSEST_POINT_EXISTS; DIST_SYM]);;
let SETDIST_EQ_0_SING = 
prove (`(!s x:real^N. setdist({x},s) = &0 <=> s = {} \/ x IN closure s) /\ (!s x:real^N. setdist(s,{x}) = &0 <=> s = {} \/ x IN closure s)`,
SIMP_TAC[SETDIST_EQ_0_BOUNDED; BOUNDED_SING; CLOSURE_SING] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Use set distance for an easy proof of separation properties. *) (* ------------------------------------------------------------------------- *)
let SEPARATION_CLOSURES = 
prove (`!s t:real^N->bool. s INTER closure(t) = {} /\ t INTER closure(s) = {} ==> ?u v. DISJOINT u v /\ open u /\ open v /\ s SUBSET u /\ t SUBSET v`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`{}:real^N->bool`; `(:real^N)`] THEN ASM_REWRITE_TAC[OPEN_EMPTY; OPEN_UNIV] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `t:real^N->bool = {}` THENL [MAP_EVERY EXISTS_TAC [`(:real^N)`; `{}:real^N->bool`] THEN ASM_REWRITE_TAC[OPEN_EMPTY; OPEN_UNIV] THEN ASM SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `{x | x IN (:real^N) /\ lift(setdist({x},t) - setdist({x},s)) IN {x | &0 < x$1}}` THEN EXISTS_TAC `{x | x IN (:real^N) /\ lift(setdist({x},t) - setdist({x},s)) IN {x | x$1 < &0}}` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SET_RULE `DISJOINT s t <=> !x. x IN s /\ x IN t ==> F`] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN REAL_ARITH_TAC; MATCH_MP_TAC CONTINUOUS_OPEN_PREIMAGE THEN SIMP_TAC[REWRITE_RULE[real_gt] OPEN_HALFSPACE_COMPONENT_GT; OPEN_UNIV] THEN SIMP_TAC[LIFT_SUB; CONTINUOUS_ON_SUB; CONTINUOUS_ON_LIFT_SETDIST]; MATCH_MP_TAC CONTINUOUS_OPEN_PREIMAGE THEN SIMP_TAC[OPEN_HALFSPACE_COMPONENT_LT; OPEN_UNIV] THEN SIMP_TAC[LIFT_SUB; CONTINUOUS_ON_SUB; CONTINUOUS_ON_LIFT_SETDIST]; REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIV; GSYM drop; LIFT_DROP] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ y = &0 /\ ~(x = &0) ==> &0 < x - y`); REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIV; GSYM drop; LIFT_DROP] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ x = &0 /\ ~(y = &0) ==> x - y < &0`)] THEN ASM_SIMP_TAC[SETDIST_POS_LE; SETDIST_EQ_0_BOUNDED; BOUNDED_SING] THEN ASM_SIMP_TAC[CLOSED_SING; CLOSURE_CLOSED; NOT_INSERT_EMPTY; REWRITE_RULE[SUBSET] CLOSURE_SUBSET; SET_RULE `{a} INTER s = {} <=> ~(a IN s)`] THEN ASM SET_TAC[]);;
let SEPARATION_NORMAL = 
prove (`!s t:real^N->bool. closed s /\ closed t /\ s INTER t = {} ==> ?u v. open u /\ open v /\ s SUBSET u /\ t SUBSET v /\ u INTER v = {}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM DISJOINT] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e <=> e /\ a /\ b /\ c /\ d`] THEN MATCH_MP_TAC SEPARATION_CLOSURES THEN ASM_SIMP_TAC[CLOSURE_CLOSED] THEN ASM SET_TAC[]);;
let SEPARATION_NORMAL_COMPACT = 
prove (`!s t:real^N->bool. compact s /\ closed t /\ s INTER t = {} ==> ?u v. open u /\ compact(closure u) /\ open v /\ s SUBSET u /\ t SUBSET v /\ u INTER v = {}`,
REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED; CLOSED_CLOSURE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `vec 0:real^N` o MATCH_MP BOUNDED_SUBSET_BALL) THEN DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`s:real^N->bool`; `t UNION ((:real^N) DIFF ball(vec 0,r))`] SEPARATION_NORMAL) THEN ASM_SIMP_TAC[CLOSED_UNION; GSYM OPEN_CLOSED; OPEN_BALL] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC BOUNDED_CLOSURE; ASM SET_TAC[]] THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `ball(vec 0:real^N,r)` THEN REWRITE_TAC[BOUNDED_BALL] THEN ASM SET_TAC[]);;
let SEPARATION_HAUSDORFF = 
prove (`!x:real^N y. ~(x = y) ==> ?u v. open u /\ open v /\ x IN u /\ y IN v /\ (u INTER v = {})`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`{x:real^N}`; `{y:real^N}`] SEPARATION_NORMAL) THEN REWRITE_TAC[SING_SUBSET; CLOSED_SING] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]);;
let SEPARATION_T2 = 
prove (`!x:real^N y. ~(x = y) <=> ?u v. open u /\ open v /\ x IN u /\ y IN v /\ (u INTER v = {})`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[SEPARATION_HAUSDORFF] THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let SEPARATION_T1 = 
prove (`!x:real^N y. ~(x = y) <=> ?u v. open u /\ open v /\ x IN u /\ ~(y IN u) /\ ~(x IN v) /\ y IN v`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_SIMP_TAC[SEPARATION_T2; EXTENSION; NOT_IN_EMPTY; IN_INTER]; ALL_TAC] THEN MESON_TAC[]);;
let SEPARATION_T0 = 
prove (`!x:real^N y. ~(x = y) <=> ?u. open u /\ ~(x IN u <=> y IN u)`,
MESON_TAC[SEPARATION_T1]);;
let CLOSED_COMPACT_PROJECTION = 
prove (`!s:real^M->bool t:real^(M,N)finite_sum->bool. compact s /\ closed t ==> closed {y | ?x. x IN s /\ (pastecart x y) IN t}`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THEN ASM_CASES_TAC `t:real^(M,N)finite_sum->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; CLOSED_EMPTY] THEN REWRITE_TAC[closed; open_def; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN EXISTS_TAC `setdist({pastecart (x:real^M) (y:real^N) | x IN s},t)` THEN CONJ_TAC THENL [REWRITE_TAC[REAL_LT_LE; SETDIST_POS_LE] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN W(MP_TAC o PART_MATCH (lhs o rand) SETDIST_EQ_0_COMPACT_CLOSED o rand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[SET_RULE `{pastecart x y | P x} = {pastecart x z | P x /\ z IN {y}}`] THEN REWRITE_TAC[GSYM PCROSS] THEN ASM_SIMP_TAC[COMPACT_PCROSS; COMPACT_SING]; DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]; X_GEN_TAC `z:real^N` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REAL_NOT_LT] THEN DISCH_THEN(X_CHOOSE_THEN `w:real^M` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `dist(pastecart (w:real^M) (y:real^N),pastecart w z)` THEN CONJ_TAC THENL [MATCH_MP_TAC SETDIST_LE_DIST THEN ASM SET_TAC[]; REWRITE_TAC[DIST_PASTECART_CANCEL; REAL_LE_REFL; DIST_SYM]]]);;
let CLOSED_IN_COMPACT_PROJECTION = 
prove (`!s:real^M->bool t:real^N->bool u. compact s /\ closed_in (subtopology euclidean (s PCROSS t)) u ==> closed_in (subtopology euclidean t) {y | ?x. x IN s /\ pastecart x y IN u}`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS; CLOSED_IN_CLOSED] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; CONJ_ASSOC] THEN DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN DISCH_THEN(MP_TAC o MATCH_MP CLOSED_COMPACT_PROJECTION) THEN MATCH_MP_TAC(MESON[] `P p==> (closed p ==> ?t. closed t /\ P t)`) THEN REWRITE_TAC[IN_ELIM_PASTECART_THM; IN_INTER] THEN SET_TAC[]);;
let TUBE_LEMMA = 
prove (`!s:real^M->bool t:real^N->bool u a. compact s /\ ~(s = {}) /\ {pastecart x a | x IN s} SUBSET u /\ open_in(subtopology euclidean (s PCROSS t)) u ==> ?v. open_in (subtopology euclidean t) v /\ a IN v /\ (s PCROSS v) SUBSET u`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN REWRITE_TAC[OPEN_IN_CLOSED_IN_EQ] THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT; PCROSS] CLOSED_IN_COMPACT_PROJECTION)) THEN ASM_REWRITE_TAC[IN_ELIM_PASTECART_THM; IN_DIFF] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(MESON[] `(closed_in top t ==> s DIFF (s DIFF t) = t) /\ s DIFF t SUBSET s /\ P(s DIFF t) ==> closed_in top t ==> ?v. v SUBSET s /\ closed_in top (s DIFF v) /\ P v`) THEN REWRITE_TAC[SET_RULE `s DIFF (s DIFF t) = t <=> t SUBSET s`] THEN REWRITE_TAC[SUBSET_DIFF] THEN SIMP_TAC[closed_in; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET])) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_SING; FORALL_PASTECART] THEN REWRITE_TAC[IN_ELIM_PASTECART_THM] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]);;
(* ------------------------------------------------------------------------- *) (* Urysohn's lemma (for real^N, where the proof is easy using distances). *) (* ------------------------------------------------------------------------- *)
let URYSOHN_LOCAL_STRONG = 
prove (`!s t u a b. closed_in (subtopology euclidean u) s /\ closed_in (subtopology euclidean u) t /\ s INTER t = {} /\ ~(a = b) ==> ?f:real^N->real^M. f continuous_on u /\ (!x. x IN u ==> f(x) IN segment[a,b]) /\ (!x. x IN u ==> (f x = a <=> x IN s)) /\ (!x. x IN u ==> (f x = b <=> x IN t))`,
let lemma = prove
   (`!s t u a b.
          closed_in (subtopology euclidean u) s /\
          closed_in (subtopology euclidean u) t /\
          s INTER t = {} /\ ~(s = {}) /\ ~(t = {}) /\ ~(a = b)
          ==> ?f:real^N->real^M.
                 f continuous_on u /\
                 (!x. x IN u ==> f(x) IN segment[a,b]) /\
                 (!x. x IN u ==> (f x = a <=> x IN s)) /\
                 (!x. x IN u ==> (f x = b <=> x IN t))`,
    REPEAT STRIP_TAC THEN EXISTS_TAC
      `\x:real^N. a + setdist({x},s) / (setdist({x},s) + setdist({x},t)) %
                      (b - a:real^M)` THEN REWRITE_TAC[] THEN
    SUBGOAL_THEN
     `(!x:real^N. x IN u ==> (setdist({x},s) = &0 <=> x IN s)) /\
      (!x:real^N. x IN u ==> (setdist({x},t) = &0 <=> x IN t))`
    STRIP_ASSUME_TAC THENL
     [ASM_REWRITE_TAC[SETDIST_EQ_0_SING] THEN CONJ_TAC THENL
       [MP_TAC(ISPEC `s:real^N->bool` CLOSED_IN_CLOSED);
        MP_TAC(ISPEC `t:real^N->bool` CLOSED_IN_CLOSED)] THEN
      DISCH_THEN(MP_TAC o SPEC `u:real^N->bool`) THEN
      ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `v:real^N->bool`
       (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
      ASM_MESON_TAC[CLOSURE_CLOSED; INTER_SUBSET; SUBSET_CLOSURE; SUBSET;
                    IN_INTER; CLOSURE_SUBSET];
      ALL_TAC] THEN
    SUBGOAL_THEN `!x:real^N. x IN u ==> &0 < setdist({x},s) + setdist({x},t)`
    ASSUME_TAC THENL
     [REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
        `&0 <= x /\ &0 <= y /\ ~(x = &0 /\ y = &0) ==> &0 < x + y`) THEN
      REWRITE_TAC[SETDIST_POS_LE] THEN ASM SET_TAC[];
      ALL_TAC] THEN
    REPEAT CONJ_TAC THENL
     [MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN
      REWRITE_TAC[real_div; GSYM VECTOR_MUL_ASSOC] THEN
      REPEAT(MATCH_MP_TAC CONTINUOUS_ON_MUL THEN CONJ_TAC) THEN
      REWRITE_TAC[CONTINUOUS_ON_CONST; o_DEF] THEN
      REWRITE_TAC[CONTINUOUS_ON_LIFT_SETDIST] THEN
      MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_INV) THEN
      ASM_SIMP_TAC[REAL_LT_IMP_NZ] THEN
      REWRITE_TAC[LIFT_ADD] THEN MATCH_MP_TAC CONTINUOUS_ON_ADD THEN
      REWRITE_TAC[CONTINUOUS_ON_LIFT_SETDIST];
      X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
      REWRITE_TAC[segment; IN_ELIM_THM] THEN
      REWRITE_TAC[VECTOR_MUL_EQ_0; LEFT_OR_DISTRIB; VECTOR_ARITH
       `a + x % (b - a):real^N = (&1 - u) % a + u % b <=>
        (x - u) % (b - a) = vec 0`;
       EXISTS_OR_THM] THEN
      DISJ1_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN
      REWRITE_TAC[REAL_SUB_0; UNWIND_THM1] THEN
      ASM_SIMP_TAC[REAL_LE_DIV; REAL_LE_ADD; SETDIST_POS_LE; REAL_LE_LDIV_EQ;
                   REAL_ARITH `a <= &1 * (a + b) <=> &0 <= b`];
      REWRITE_TAC[VECTOR_ARITH `a + x:real^N = a <=> x = vec 0`];
      REWRITE_TAC[VECTOR_ARITH `a + x % (b - a):real^N = b <=>
                                (x - &1) % (b - a) = vec 0`]] THEN
    ASM_REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_SUB_EQ] THEN
    ASM_SIMP_TAC[REAL_SUB_0; REAL_EQ_LDIV_EQ;
                 REAL_MUL_LZERO; REAL_MUL_LID] THEN
    REWRITE_TAC[REAL_ARITH `x:real = x + y <=> y = &0`] THEN
    ASM_REWRITE_TAC[]) in
  MATCH_MP_TAC(MESON[]
   `(!s t. P s t <=> P t s) /\
    (!s t. ~(s = {}) /\ ~(t = {}) ==> P s t) /\
    P {} {} /\ (!t. ~(t = {}) ==> P {} t)
    ==> !s t. P s t`) THEN
  REPEAT CONJ_TAC THENL
   [REPEAT GEN_TAC THEN
    GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN
    REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
    REWRITE_TAC[SEGMENT_SYM; INTER_COMM; CONJ_ACI; EQ_SYM_EQ];
    SIMP_TAC[lemma];
    REPEAT STRIP_TAC THEN EXISTS_TAC `(\x. midpoint(a,b)):real^N->real^M` THEN
    ASM_SIMP_TAC[NOT_IN_EMPTY; CONTINUOUS_ON_CONST; MIDPOINT_IN_SEGMENT] THEN
    REWRITE_TAC[midpoint] THEN CONJ_TAC THEN GEN_TAC THEN DISCH_TAC THEN
    UNDISCH_TAC `~(a:real^M = b)` THEN REWRITE_TAC[CONTRAPOS_THM] THEN
    VECTOR_ARITH_TAC;
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `t:real^N->bool = u` THENL
     [EXISTS_TAC `(\x. b):real^N->real^M` THEN
      ASM_REWRITE_TAC[NOT_IN_EMPTY; ENDS_IN_SEGMENT; IN_UNIV;
                      CONTINUOUS_ON_CONST];
      SUBGOAL_THEN `?c:real^N. c IN u /\ ~(c IN t)` STRIP_ASSUME_TAC THENL
       [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN
        REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN ASM SET_TAC[];
        ALL_TAC] THEN
      MP_TAC(ISPECL [`{c:real^N}`; `t:real^N->bool`; `u:real^N->bool`;
                     `midpoint(a,b):real^M`; `b:real^M`] lemma) THEN
      ASM_REWRITE_TAC[CLOSED_IN_SING; MIDPOINT_EQ_ENDPOINT] THEN
      ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
      MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[NOT_IN_EMPTY] THEN
      X_GEN_TAC `f:real^N->real^M` THEN STRIP_TAC THEN CONJ_TAC THENL
       [SUBGOAL_THEN
         `segment[midpoint(a,b):real^M,b] SUBSET segment[a,b]` MP_TAC
        THENL
         [REWRITE_TAC[SUBSET; IN_SEGMENT; midpoint] THEN GEN_TAC THEN
          DISCH_THEN(X_CHOOSE_THEN `u:real` STRIP_ASSUME_TAC) THEN
          EXISTS_TAC `(&1 + u) / &2` THEN ASM_REWRITE_TAC[] THEN
          REPEAT(CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN
          VECTOR_ARITH_TAC;
          ASM SET_TAC[]];
        SUBGOAL_THEN `~(a IN segment[midpoint(a,b):real^M,b])` MP_TAC THENL
         [ALL_TAC; ASM_MESON_TAC[]] THEN
        DISCH_THEN(MP_TAC o CONJUNCT2 o MATCH_MP DIST_IN_CLOSED_SEGMENT) THEN
        REWRITE_TAC[DIST_MIDPOINT] THEN
        UNDISCH_TAC `~(a:real^M = b)` THEN NORM_ARITH_TAC]]]);;
let URYSOHN_LOCAL = 
prove (`!s t u a b. closed_in (subtopology euclidean u) s /\ closed_in (subtopology euclidean u) t /\ s INTER t = {} ==> ?f:real^N->real^M. f continuous_on u /\ (!x. x IN u ==> f(x) IN segment[a,b]) /\ (!x. x IN s ==> f x = a) /\ (!x. x IN t ==> f x = b)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `a:real^M = b` THENL [EXISTS_TAC `(\x. b):real^N->real^M` THEN ASM_REWRITE_TAC[ENDS_IN_SEGMENT; CONTINUOUS_ON_CONST]; MP_TAC(ISPECL [`s:real^N->bool`; `t:real^N->bool`; `u:real^N->bool`; `a:real^M`; `b:real^M`] URYSOHN_LOCAL_STRONG) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_SUBSET)) THEN REWRITE_TAC[TOPSPACE_EUCLIDEAN_SUBTOPOLOGY] THEN SET_TAC[]]);;
let URYSOHN_STRONG = 
prove (`!s t a b. closed s /\ closed t /\ s INTER t = {} /\ ~(a = b) ==> ?f:real^N->real^M. f continuous_on (:real^N) /\ (!x. f(x) IN segment[a,b]) /\ (!x. f x = a <=> x IN s) /\ (!x. f x = b <=> x IN t)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN DISCH_THEN(MP_TAC o MATCH_MP URYSOHN_LOCAL_STRONG) THEN REWRITE_TAC[IN_UNIV]);;
let URYSOHN = 
prove (`!s t a b. closed s /\ closed t /\ s INTER t = {} ==> ?f:real^N->real^M. f continuous_on (:real^N) /\ (!x. f(x) IN segment[a,b]) /\ (!x. x IN s ==> f x = a) /\ (!x. x IN t ==> f x = b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CLOSED_IN] THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_UNIV] THEN DISCH_THEN (MP_TAC o ISPECL [`a:real^M`; `b:real^M`] o MATCH_MP URYSOHN_LOCAL) THEN REWRITE_TAC[IN_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Tietze extension theorem, likewise just for real^N. *) (* ------------------------------------------------------------------------- *)
let TIETZE_STEP = 
prove (`!f:real^N->real^1 u s B. &0 < B /\ closed_in (subtopology euclidean u) s /\ f continuous_on s /\ (!x. x IN s ==> norm(f x) <= B) ==> ?g. g continuous_on u /\ (!x. x IN u ==> norm(g x) <= B / &3) /\ (!x. x IN s ==> norm(f x - g x) <= &2 / &3 * B)`,
REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{x:real^N | x IN s /\ f x IN {y | drop y <= --(B / &3)}}`; `{x:real^N | x IN s /\ f x IN {y | drop y >= B / &3}}`; `u:real^N->bool`; `lift(--(B / &3))`; `lift(B / &3)`] URYSOHN_LOCAL) THEN ANTS_TAC THENL [REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_INTER] THEN ASM_REAL_ARITH_TAC] THEN CONJ_TAC THEN MATCH_MP_TAC CLOSED_IN_TRANS THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN ASM_REWRITE_TAC[] THENL [MP_TAC(ISPECL [`lift(&1)`; `--(B / &3)`] CLOSED_HALFSPACE_LE); MP_TAC(ISPECL [`lift(&1)`; `B / &3`] CLOSED_HALFSPACE_GE)] THEN REWRITE_TAC[DOT_1; GSYM drop; LIFT_DROP; REAL_MUL_LID]; ASM_SIMP_TAC[SEGMENT_1; IN_ELIM_THM; LIFT_DROP; IN_INTERVAL_1; REAL_ARITH `&0 < B ==> --(B / &3) <= B / &3`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^1` THEN STRIP_TAC THEN ASM_REWRITE_TAC[NORM_REAL; GSYM drop] THEN ASM_SIMP_TAC[GSYM REAL_BOUNDS_LE] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[DROP_SUB; REAL_BOUNDS_LE] THEN FIRST_ASSUM(ASSUME_TAC o REWRITE_RULE[SUBSET] o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `drop(f x) <= --(B / &3) \/ drop(f x) >= B / &3 \/ abs(drop(f(x:real^N))) <= B / &3`) THENL [UNDISCH_THEN `!x:real^N. x IN s /\ drop(f x) <= --(B / &3) ==> g x = lift(--(B / &3))` (MP_TAC o SPEC `x:real^N`); UNDISCH_THEN `!x:real^N. x IN s /\ drop(f x) >= B / &3 ==> g x = lift(B / &3)` (MP_TAC o SPEC `x:real^N`); MATCH_MP_TAC(REAL_ARITH `abs(f) <= B / &3 /\ --(B / &3) <= g /\ g <= B / &3 ==> abs(f - g) <= &2 / &3 * B`)] THEN ASM_SIMP_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_THEN `!x:real^N. x IN s ==> abs(drop(f x)) <= B` (MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[LIFT_DROP] THEN ASM_REAL_ARITH_TAC]);;
let TIETZE = 
prove (`!f:real^N->real^1 u s B. &0 <= B /\ closed_in (subtopology euclidean u) s /\ f continuous_on s /\ (!x. x IN s ==> norm(f x) <= B) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x) /\ (!x. x IN u ==> norm(g x) <= B)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH `&0 <= B ==> B = &0 \/ &0 < B`)) THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THENL [EXISTS_TAC `\x:real^N. (vec 0:real^1)` THEN ASM_SIMP_TAC[CONTINUOUS_ON_CONST; NORM_0; REAL_LE_REFL] THEN ASM_MESON_TAC[NORM_LE_0]; ALL_TAC] THEN MP_TAC(ISPECL [`f:real^N->real^1`; `u:real^N->bool`; `s:real^N->bool`; `B:real`] TIETZE_STEP) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `g0:real^N->real^1` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?g. (g 0 = (g0:real^N->real^1)) /\ (!n. g(SUC n) = @h. h continuous_on u /\ (!x. x IN u ==> norm(h x) <= &2 pow SUC n * B / &3 pow (SUC n + 1)) /\ (!x. x IN s ==> norm(f x - vsum(0..n) (\i. g i x) - h x) <= &2 pow (SUC n + 1) * B / &3 pow (SUC n + 1)))` STRIP_ASSUME_TAC THENL [SIMP_TAC[VSUM_REAL; FINITE_NUMSEG; o_DEF] THEN W(ACCEPT_TAC o prove_general_recursive_function_exists o snd); ALL_TAC] THEN SUBGOAL_THEN `!n. (!m. m < n ==> g m continuous_on u) /\ g n continuous_on u /\ (!x. x IN u ==> norm(g n x:real^1) <= &2 pow n * B / &3 pow (n + 1)) /\ (!x:real^N. x IN s ==> norm(f x - vsum(0..n) (\i. g i x)) <= &2 pow (n + 1) * B / &3 pow (n + 1))` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[VSUM_CLAUSES_NUMSEG; LT] THENL [CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[REAL_MUL_LID; REAL_ARITH `&2 * B / &3 = &2 / &3 * B`]; ALL_TAC] THEN ASM_REWRITE_TAC[MESON[] `(!m:num. m = n \/ m < n ==> P m) <=> (!m. m < n ==> P m) /\ P n`] THEN REWRITE_TAC[LE_0; VECTOR_ARITH `f - (g + h):real^1 = f - g - h`] THEN CONV_TAC SELECT_CONV THEN REWRITE_TAC[REAL_POW_ADD; REAL_ARITH `(&2 pow (SUC n) * &2 pow 1) * B = &2 * &2 pow (SUC n) * B`] THEN REWRITE_TAC[real_div; REAL_INV_MUL; REAL_POW_1] THEN REWRITE_TAC[REAL_ARITH `a * b * inv c * inv d = (a * b / c) / d`] THEN REWRITE_TAC[REAL_ARITH `&2 * x / &3 = &2 / &3 * x`] THEN MATCH_MP_TAC TIETZE_STEP THEN ASM_SIMP_TAC[REAL_LT_DIV; ADD1; REAL_LT_MUL; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN ASM_REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC CONTINUOUS_ON_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; LE_0] THEN REWRITE_TAC[LE_LT] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN ABBREV_TAC `(h:num->real^N->real^1) = \n x. vsum(0..n) (\i. g i x)` THEN SUBGOAL_THEN `?k:real^N->real^1. !e. &0 < e ==> ?N:num. !n x. N <= n /\ x IN u ==> dist(vsum (from 0 INTER (0..n)) (\i. g i x),k x) < e` MP_TAC THENL [REWRITE_TAC[SERIES_CAUCHY_UNIFORM]; ALL_TAC] THEN REWRITE_TAC[FROM_0; INTER_UNIV; IN_UNIV] THENL [X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC(ISPECL [`&2 / &3`; `e / B`] REAL_ARCH_POW_INV) THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:real^N`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(m..n) (\i. &2 pow i * B / &3 pow (i + 1))` THEN ASM_SIMP_TAC[VSUM_NORM_LE; FINITE_NUMSEG] THEN REWRITE_TAC[REAL_POW_ADD; real_div; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `x * B * inv y * inv(&3 pow 1) = B / &3 * x / y`; SUM_LMUL; GSYM REAL_POW_DIV] THEN REWRITE_TAC[SUM_GP] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN COND_CASES_TAC THENL [ASM_REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO]; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `B / &3 * x / (&1 / &3) < e <=> x * B < e`] THEN ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC(REAL_ARITH `&0 < y /\ x < e ==> x - y < e`) THEN ASM_SIMP_TAC[REAL_POW_LT; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `(&2 / &3) pow N` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_POW_MONO_INV THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real^N->real^1` THEN DISCH_TAC THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(ISPEC `sequentially` CONTINUOUS_UNIFORM_LIMIT) THEN EXISTS_TAC `\n x:real^N. vsum (0..n) (\i. g i x :real^1)` THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_SEQUENTIALLY] THEN ASM_REWRITE_TAC[IN_UNIV; IMP_IMP; RIGHT_IMP_FORALL_THM; GSYM dist] THEN EXISTS_TAC `0` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_VSUM THEN ASM_REWRITE_TAC[FINITE_NUMSEG]; X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC(NORM_ARITH `~(&0 < norm(x - y)) ==> x = y`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `norm((k:real^N->real^1) x - f x) / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; NOT_EXISTS_THM] THEN X_GEN_TAC `N1:num` THEN DISCH_THEN(LABEL_TAC "*") THEN MP_TAC(ISPECL [`&2 / &3`; `norm((k:real^N->real^1) x - f x) / &2 / B`] REAL_ARCH_POW_INV) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_HALF] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN DISCH_THEN(X_CHOOSE_THEN `N2:num` (LABEL_TAC "+")) THEN REMOVE_THEN "*" (MP_TAC o SPECL [`N1 + N2:num`; `x:real^N`]) THEN REWRITE_TAC[LE_ADD; NOT_IMP] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(NORM_ARITH `norm(f - s) < norm(k - f) / &2 ==> ~(dist(s,k) < norm(k - f) / &2)`) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `B * (&2 / &3) pow N2` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2 pow ((N1 + N2) + 1) * B / &3 pow ((N1 + N2) + 1)` THEN ASM_SIMP_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * B / y = B * x / y`] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; GSYM REAL_POW_DIV] THEN MATCH_MP_TAC REAL_POW_MONO_INV THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ARITH_TAC; X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN EXISTS_TAC `\n. vsum(0..n) (\i. (g:num->real^N->real^1) i x)` THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_SEQUENTIALLY] THEN CONJ_TAC THENL [REWRITE_TAC[LIM_SEQUENTIALLY] THEN ASM_MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(0..n) (\i. &2 pow i * B / &3 pow (i + 1))` THEN ASM_SIMP_TAC[VSUM_NORM_LE; FINITE_NUMSEG] THEN REWRITE_TAC[REAL_POW_ADD; real_div; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `x * B * inv y * inv(&3 pow 1) = B / &3 * x / y`; SUM_LMUL; GSYM REAL_POW_DIV] THEN REWRITE_TAC[REAL_ARITH `B / &3 * x <= B <=> B * x / &3 <= B * &1`] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN REWRITE_TAC[SUM_GP] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN COND_CASES_TAC THENL [SIMP_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_POS]; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `x / (&1 / &3) <= &3 <=> x <= &1`] THEN REWRITE_TAC[REAL_ARITH `&1 - x <= &1 <=> &0 <= x`] THEN MATCH_MP_TAC REAL_POW_LE THEN CONV_TAC REAL_RAT_REDUCE_CONV]);;
(* ------------------------------------------------------------------------- *) (* The same result for intervals in real^1. *) (* ------------------------------------------------------------------------- *)
let TIETZE_CLOSED_INTERVAL_1 = 
prove (`!f:real^N->real^1 u s a b. drop a <= drop b /\ closed_in (subtopology euclidean u) s /\ f continuous_on s /\ (!x. x IN s ==> f x IN interval[a,b]) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x) /\ (!x. x IN u ==> g(x) IN interval[a,b])`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x. (f:real^N->real^1)(x) - inv(&2) % (a + b)`; `u:real^N->bool`; `s:real^N->bool`; `(drop(b) - drop(a)) / &2`] TIETZE) THEN ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_INTERVAL_1; NORM_REAL; GSYM drop] THEN REWRITE_TAC[DROP_ADD; DROP_CMUL; DROP_SUB] THEN REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^1` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\x. (g:real^N->real^1)(x) + inv(&2) % (a + b)` THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[CONTINUOUS_ON_ADD; CONTINUOUS_ON_CONST]; REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN VECTOR_ARITH_TAC; X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN UNDISCH_TAC `!x. x IN u ==> norm((g:real^N->real^1) x) <= (drop b - drop a) / &2` THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_INTERVAL_1; NORM_REAL; GSYM drop] THEN REWRITE_TAC[DROP_ADD; DROP_CMUL; DROP_SUB] THEN REAL_ARITH_TAC]);;
let TIETZE_OPEN_INTERVAL_1 = 
prove (`!f:real^N->real^1 u s a b. drop a < drop b /\ closed_in (subtopology euclidean u) s /\ f continuous_on s /\ (!x. x IN s ==> f x IN interval(a,b)) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x) /\ (!x. x IN u ==> g(x) IN interval(a,b))`,
REWRITE_TAC[IN_INTERVAL_1] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^N->real^1`; `u:real^N->bool`; `s:real^N->bool`; `a:real^1`; `b:real^1`] TIETZE_CLOSED_INTERVAL_1) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[IN_INTERVAL_1; REAL_LT_IMP_LE]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^1` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`s:real^N->bool`; `{x | x IN u /\ (g:real^N->real^1) x IN {a,b}}`; `u:real^N->bool`; `vec 1:real^1`; `vec 0:real^1`] URYSOHN_LOCAL) THEN ASM_REWRITE_TAC[SEGMENT_1; DROP_VEC; REAL_OF_NUM_LE; ARITH] THEN REWRITE_TAC[IN_INTERVAL_1; DROP_VEC] THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_CLOSED_IN_PREIMAGE THEN ASM_SIMP_TAC[FINITE_IMP_CLOSED; FINITE_INSERT; FINITE_EMPTY] THEN ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_UNIV; IN_UNIV]; RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL_1]) THEN ASM SET_TAC[REAL_LT_REFL]]; REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `h:real^N->real^1` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. &1 / &2 % (a + b) + drop(h x) % (g x - &1 / &2 % (a + b))):real^N->real^1` THEN ASM_SIMP_TAC[DROP_CMUL; DROP_VEC; VECTOR_MUL_LID] THEN REWRITE_TAC[VECTOR_ARITH `a + x - a:real^N = x`] THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_ADD THEN REWRITE_TAC[CONTINUOUS_ON_CONST] THEN MATCH_MP_TAC CONTINUOUS_ON_MUL THEN ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; ETA_AX] THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]; ALL_TAC] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[DROP_ADD; DROP_CMUL; DROP_SUB] THEN REWRITE_TAC[REAL_ARITH `a < &1 / &2 * (a + b) + x /\ &1 / &2 * (a + b) + x < b <=> abs(x) < &1 * (b - a) / &2`] THEN ASM_CASES_TAC `(g:real^N->real^1) x IN {a,b}` THENL [ASM_SIMP_TAC[DROP_VEC; REAL_MUL_LZERO] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC(REAL_ARITH `y < a /\ abs(x) * y <= &1 * y ==> abs(x) * y < a`) THEN CONJ_TAC THENL [REWRITE_TAC[REAL_MUL_LID] THEN MATCH_MP_TAC(REAL_ARITH `a < x /\ x < b ==> abs(x - &1 / &2 * (a + b)) < (b - a) / &2`) THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL_1]) THEN ASM_REWRITE_TAC[REAL_LT_LE; DROP_EQ] THEN ASM SET_TAC[]; MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`)) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CLOSED_IN_IMP_SUBSET) THEN ASM_SIMP_TAC[SUBSET] THEN REAL_ARITH_TAC]]]);;
let TIETZE_UNBOUNDED_1 = 
prove (`!f:real^N->real^1 u s. closed_in (subtopology euclidean u) s /\ f continuous_on s ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`vec 0:real^1`; `vec 1:real^1`] HOMEOMORPHIC_OPEN_INTERVAL_UNIV) THEN REWRITE_TAC[INTERVAL_NE_EMPTY; VEC_COMPONENT; REAL_LT_01] THEN REWRITE_TAC[HOMEOMORPHIC_MINIMAL; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`h:real^1->real^1`; `k:real^1->real^1`] THEN REWRITE_TAC[IN_UNIV] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(k:real^1->real^1) o (f:real^N->real^1)`; `u:real^N->bool`; `s:real^N->bool`; `vec 0:real^1`; `vec 1:real^1`] TIETZE_OPEN_INTERVAL_1) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[DROP_VEC; REAL_LT_01; o_THM] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `(:real^1)` THEN ASM_REWRITE_TAC[SUBSET_UNIV]; DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^1` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(h:real^1->real^1) o (g:real^N->real^1)` THEN ASM_SIMP_TAC[o_THM] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `interval(vec 0:real^1,vec 1)` THEN ASM_REWRITE_TAC[SUBSET_UNIV] THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Now for general intervals in real^N by componentwise extension. *) (* ------------------------------------------------------------------------- *)
let TIETZE_CLOSED_INTERVAL = 
prove (`!f:real^M->real^N u s a b. ~(interval[a,b] = {}) /\ closed_in (subtopology euclidean u) s /\ f continuous_on s /\ (!x. x IN s ==> f x IN interval[a,b]) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x) /\ (!x. x IN u ==> g(x) IN interval[a,b])`,
REWRITE_TAC[INTERVAL_NE_EMPTY] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = lift((f:real^M->real^N)(x)$i)) /\ (!x. x IN u ==> g(x) IN interval[lift((a:real^N)$i),lift((b:real^N)$i)])` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC TIETZE_CLOSED_INTERVAL_1 THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL]) THEN ASM_SIMP_TAC[IN_INTERVAL_1; LIFT_DROP] THEN SUBGOAL_THEN `(\x. lift((f:real^M->real^N) x$i)) = (\x. lift(x$i)) o f` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT; CONTINUOUS_ON_COMPOSE]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; IN_INTERVAL_1; LIFT_DROP] THEN DISCH_THEN(X_CHOOSE_TAC `g:num->real^M->real^1`) THEN EXISTS_TAC `(\x. lambda i. drop(g i x)):real^M->real^N` THEN SIMP_TAC[CART_EQ; IN_INTERVAL; LAMBDA_BETA] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN ASM_SIMP_TAC[LAMBDA_BETA; LIFT_DROP; ETA_AX]; ASM_SIMP_TAC[LIFT_DROP]]);;
let TIETZE_OPEN_INTERVAL = 
prove (`!f:real^M->real^N u s a b. ~(interval(a,b) = {}) /\ closed_in (subtopology euclidean u) s /\ f continuous_on s /\ (!x. x IN s ==> f x IN interval(a,b)) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x) /\ (!x. x IN u ==> g(x) IN interval(a,b))`,
REWRITE_TAC[INTERVAL_NE_EMPTY] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = lift((f:real^M->real^N)(x)$i)) /\ (!x. x IN u ==> g(x) IN interval(lift((a:real^N)$i),lift((b:real^N)$i)))` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC TIETZE_OPEN_INTERVAL_1 THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL]) THEN ASM_SIMP_TAC[IN_INTERVAL_1; LIFT_DROP] THEN SUBGOAL_THEN `(\x. lift((f:real^M->real^N) x$i)) = (\x. lift(x$i)) o f` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT; CONTINUOUS_ON_COMPOSE]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; IN_INTERVAL_1; LIFT_DROP] THEN DISCH_THEN(X_CHOOSE_TAC `g:num->real^M->real^1`) THEN EXISTS_TAC `(\x. lambda i. drop(g i x)):real^M->real^N` THEN SIMP_TAC[CART_EQ; IN_INTERVAL; LAMBDA_BETA] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN ASM_SIMP_TAC[LAMBDA_BETA; LIFT_DROP; ETA_AX]; ASM_SIMP_TAC[LIFT_DROP]]);;
let TIETZE_UNBOUNDED = 
prove (`!f:real^M->real^N u s. closed_in (subtopology euclidean u) s /\ f continuous_on s ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = f x)`,
REWRITE_TAC[INTERVAL_NE_EMPTY] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?g. g continuous_on u /\ (!x. x IN s ==> g x = lift((f:real^M->real^N)(x)$i))` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC TIETZE_UNBOUNDED_1 THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL]) THEN ASM_SIMP_TAC[IN_INTERVAL_1; LIFT_DROP] THEN SUBGOAL_THEN `(\x. lift((f:real^M->real^N) x$i)) = (\x. lift(x$i)) o f` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN ASM_SIMP_TAC[CONTINUOUS_ON_LIFT_COMPONENT; CONTINUOUS_ON_COMPOSE]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; IN_INTERVAL_1; LIFT_DROP] THEN DISCH_THEN(X_CHOOSE_TAC `g:num->real^M->real^1`) THEN EXISTS_TAC `(\x. lambda i. drop(g i x)):real^M->real^N` THEN SIMP_TAC[CART_EQ; IN_INTERVAL; LAMBDA_BETA] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN ASM_SIMP_TAC[LAMBDA_BETA; LIFT_DROP; ETA_AX]; ASM_SIMP_TAC[LIFT_DROP]]);;
(* ------------------------------------------------------------------------- *) (* Countability of some relevant sets. *) (* ------------------------------------------------------------------------- *)
let COUNTABLE_INTEGER = 
prove (`COUNTABLE integer`,
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `IMAGE (\n. (&n:real)) (:num) UNION IMAGE (\n. --(&n)) (:num)` THEN SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_UNION; NUM_COUNTABLE] THEN REWRITE_TAC[SUBSET; IN_UNION; IN_IMAGE; IN_UNIV] THEN REWRITE_TAC[IN; INTEGER_CASES]);;
let CARD_EQ_INTEGER = 
prove (`integer =_c (:num)`,
REWRITE_TAC[GSYM CARD_LE_ANTISYM; GSYM COUNTABLE_ALT; COUNTABLE_INTEGER] THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `real_of_num` THEN REWRITE_TAC[IN_UNIV; REAL_OF_NUM_EQ] THEN REWRITE_TAC[IN; INTEGER_CLOSED]);;
let COUNTABLE_RATIONAL = 
prove (`COUNTABLE rational`,
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `IMAGE (\(x,y). x / y) (integer CROSS integer)` THEN SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_CROSS; COUNTABLE_INTEGER] THEN REWRITE_TAC[SUBSET; IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[rational; IN] THEN MESON_TAC[]);;
let CARD_EQ_RATIONAL = 
prove (`rational =_c (:num)`,
REWRITE_TAC[GSYM CARD_LE_ANTISYM; GSYM COUNTABLE_ALT; COUNTABLE_RATIONAL] THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `real_of_num` THEN REWRITE_TAC[IN_UNIV; REAL_OF_NUM_EQ] THEN REWRITE_TAC[IN; RATIONAL_CLOSED]);;
let COUNTABLE_INTEGER_COORDINATES = 
prove (`COUNTABLE { x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) }`,
MATCH_MP_TAC COUNTABLE_CART THEN REWRITE_TAC[SET_RULE `{x | P x} = P`; COUNTABLE_INTEGER]);;
let COUNTABLE_RATIONAL_COORDINATES = 
prove (`COUNTABLE { x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i) }`,
MATCH_MP_TAC COUNTABLE_CART THEN REWRITE_TAC[SET_RULE `{x | P x} = P`; COUNTABLE_RATIONAL]);;
(* ------------------------------------------------------------------------- *) (* Density of points with rational, or just dyadic rational, coordinates. *) (* ------------------------------------------------------------------------- *)
let CLOSURE_DYADIC_RATIONALS = 
prove (`closure { inv(&2 pow n) % x |n,x| !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) } = (:real^N)`,
REWRITE_TAC[EXTENSION; CLOSURE_APPROACHABLE; IN_UNIV; EXISTS_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `e:real`] THEN DISCH_TAC THEN MP_TAC(SPECL [`inv(&2)`; `e / &(dimindex(:N))`] REAL_ARCH_POW_INV) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; DIMINDEX_GE_1; REAL_POW_INV; REAL_LT_RDIV_EQ] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN MATCH_MP_TAC MONO_EXISTS THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN EXISTS_TAC `(lambda i. floor(&2 pow n * (x:real^N)$i)):real^N` THEN ASM_SIMP_TAC[LAMBDA_BETA; FLOOR; dist; NORM_MUL] THEN MATCH_MP_TAC(MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) (SPEC_ALL NORM_LE_L1)) THEN SIMP_TAC[LAMBDA_BETA; VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&(dimindex(:N)) * inv(&2 pow n)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN SIMP_TAC[REAL_ABS_MUL; REAL_POW_EQ_0; REAL_OF_NUM_EQ; ARITH; REAL_FIELD `~(a = &0) ==> inv a * b - x = inv a * (b - a * x)`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_ABS_POS] THEN REWRITE_TAC[REAL_LE_REFL; REAL_ABS_POW; REAL_ABS_INV; REAL_ABS_NUM] THEN MP_TAC(SPEC `&2 pow n * (x:real^N)$k` FLOOR) THEN REAL_ARITH_TAC);;
let CLOSURE_RATIONAL_COORDINATES = 
prove (`closure { x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i) } = (:real^N)`,
MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ s = UNIV ==> t = UNIV`) THEN EXISTS_TAC `closure { inv(&2 pow n) % x:real^N |n,x| !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) }` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[CLOSURE_DYADIC_RATIONALS]] THEN MATCH_MP_TAC SUBSET_CLOSURE THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_ELIM_THM; VECTOR_MUL_COMPONENT] THEN ASM_SIMP_TAC[RATIONAL_CLOSED]);;
let CLOSURE_DYADIC_RATIONALS_IN_OPEN_SET = 
prove (`!s:real^N->bool. open s ==> closure(s INTER { inv(&2 pow n) % x | n,x | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) }) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_OPEN_INTER_SUPERSET THEN ASM_REWRITE_TAC[CLOSURE_DYADIC_RATIONALS; SUBSET_UNIV]);;
let CLOSURE_RATIONALS_IN_OPEN_SET = 
prove (`!s:real^N->bool. open s ==> closure(s INTER { inv(&2 pow n) % x | n,x | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) }) = closure s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CLOSURE_OPEN_INTER_SUPERSET THEN ASM_REWRITE_TAC[CLOSURE_DYADIC_RATIONALS; SUBSET_UNIV]);;
(* ------------------------------------------------------------------------- *) (* Various separability-type properties. *) (* ------------------------------------------------------------------------- *)
let UNIV_SECOND_COUNTABLE = 
prove (`?b. COUNTABLE b /\ (!c. c IN b ==> open c) /\ !s:real^N->bool. open s ==> ?u. u SUBSET b /\ s = UNIONS u`,
EXISTS_TAC `IMAGE (\(v:real^N,q). ball(v,q)) ({v | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(v$i)} CROSS rational)` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC COUNTABLE_IMAGE THEN MATCH_MP_TAC COUNTABLE_CROSS THEN REWRITE_TAC[COUNTABLE_RATIONAL] THEN MATCH_MP_TAC COUNTABLE_CART THEN REWRITE_TAC[COUNTABLE_RATIONAL; SET_RULE `{x | P x} = P`]; REWRITE_TAC[FORALL_IN_IMAGE; CROSS; FORALL_IN_GSPEC; OPEN_BALL]; REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [EXISTS_TAC `{}:(real^N->bool)->bool` THEN ASM_REWRITE_TAC[UNIONS_0; EMPTY_SUBSET]; ALL_TAC] THEN EXISTS_TAC `{c | c IN IMAGE (\(v:real^N,q). ball(v,q)) ({v | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(v$i)} CROSS rational) /\ c SUBSET s}` THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; EXISTS_IN_IMAGE] THEN REWRITE_TAC[CROSS; EXISTS_PAIR_THM; EXISTS_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_PAIR_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; SUBSET; IN_BALL] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN MP_TAC(REWRITE_RULE[EXTENSION; IN_UNIV] CLOSURE_RATIONAL_COORDINATES) THEN REWRITE_TAC[CLOSURE_APPROACHABLE] THEN DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `e / &4`]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `?x. rational x /\ e / &3 < x /\ x < e / &2` (X_CHOOSE_THEN `q:real` STRIP_ASSUME_TAC) THENL [MP_TAC(ISPECL [`&5 / &12 * e`; `e / &12`] RATIONAL_APPROXIMATION) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN SIMP_TAC[] THEN REAL_ARITH_TAC; EXISTS_TAC `q:real` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[IN]; REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN NORM_ARITH_TAC; ASM_REAL_ARITH_TAC]]]);;
let UNIV_SECOND_COUNTABLE_SEQUENCE = 
prove (`?b:num->real^N->bool. (!m n. b m = b n <=> m = n) /\ (!n. open(b n)) /\ (!s. open s ==> ?k. s = UNIONS {b n | n IN k})`,
X_CHOOSE_THEN `bb:(real^N->bool)->bool` STRIP_ASSUME_TAC UNIV_SECOND_COUNTABLE THEN MP_TAC(ISPEC `bb:(real^N->bool)->bool` COUNTABLE_AS_INJECTIVE_IMAGE) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[INFINITE] THEN DISCH_TAC THEN SUBGOAL_THEN `INFINITE {ball(vec 0:real^N,inv(&n + &1)) | n IN (:num)}` MP_TAC THENL [REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC(REWRITE_RULE [RIGHT_IMP_FORALL_THM; IMP_IMP] INFINITE_IMAGE_INJ) THEN REWRITE_TAC[num_INFINITE] THEN MATCH_MP_TAC WLOG_LT THEN SIMP_TAC[] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `inv(&n + &1) % basis 1:real^N`) THEN REWRITE_TAC[IN_BALL; DIST_0; NORM_MUL; REAL_ABS_INV] THEN SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL; REAL_MUL_RID] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN REWRITE_TAC[REAL_ARITH `abs(&n + &1) = &n + &1`; REAL_LT_REFL] THEN MATCH_MP_TAC REAL_LT_INV2 THEN REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC; REWRITE_TAC[INFINITE; SIMPLE_IMAGE] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE UNIONS {u | u SUBSET bb} :(real^N->bool)->bool` THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_POWERSET] THEN GEN_REWRITE_TAC I [SUBSET] THEN SIMP_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[OPEN_BALL]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num->real^N->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[FORALL_IN_IMAGE; IN_UNIV]) THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN X_GEN_TAC `s:real^N->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s:real^N->bool`) THEN ASM_REWRITE_TAC[SUBSET_IMAGE; LEFT_AND_EXISTS_THM; SUBSET_UNIV] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIMPLE_IMAGE]]);;
let SUBSET_SECOND_COUNTABLE = 
prove (`!s:real^N->bool. ?b. COUNTABLE b /\ (!c. c IN b ==> ~(c = {}) /\ open_in(subtopology euclidean s) c) /\ !t. open_in(subtopology euclidean s) t ==> ?u. u SUBSET b /\ t = UNIONS u`,
GEN_TAC THEN SUBGOAL_THEN `?b. COUNTABLE b /\ (!c:real^N->bool. c IN b ==> open_in(subtopology euclidean s) c) /\ !t. open_in(subtopology euclidean s) t ==> ?u. u SUBSET b /\ t = UNIONS u` STRIP_ASSUME_TAC THENL [X_CHOOSE_THEN `B:(real^N->bool)->bool` STRIP_ASSUME_TAC UNIV_SECOND_COUNTABLE THEN EXISTS_TAC `{s INTER c :real^N->bool | c IN B}` THEN ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; EXISTS_SUBSET_IMAGE; OPEN_IN_OPEN_INTER] THEN REWRITE_TAC[OPEN_IN_OPEN] THEN X_GEN_TAC `t:real^N->bool` THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN SUBGOAL_THEN `?b. b SUBSET B /\ u:real^N->bool = UNIONS b` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN EXISTS_TAC `b:(real^N->bool)->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[INTER_UNIONS] THEN AP_TERM_TAC THEN SET_TAC[]; EXISTS_TAC `b DELETE ({}:real^N->bool)` THEN ASM_SIMP_TAC[COUNTABLE_DELETE; IN_DELETE; SUBSET_DELETE] THEN X_GEN_TAC `t:real^N->bool` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `u:(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u DELETE ({}:real^N->bool)` THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS] THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[IN_DELETE] THEN SET_TAC[]]);;
let SEPARABLE = 
prove (`!s:real^N->bool. ?t. COUNTABLE t /\ t SUBSET s /\ s SUBSET closure t`,
MP_TAC SUBSET_SECOND_COUNTABLE THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `s:real^N->bool` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; LEFT_AND_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `B:(real^N->bool)->bool` (CONJUNCTS_THEN2 ASSUME_TAC (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC))) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:(real^N->bool)->real^N` THEN DISCH_TAC THEN EXISTS_TAC `IMAGE (f:(real^N->bool)->real^N) B` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `c:real^N->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEAN] THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; CLOSURE_APPROACHABLE; EXISTS_IN_IMAGE] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN UNDISCH_THEN `!t:real^N->bool. open_in (subtopology euclidean s) t ==> (?u. u SUBSET B /\ t = UNIONS u)` (MP_TAC o SPEC `s INTER ball(x:real^N,e)`) THEN SIMP_TAC[OPEN_IN_OPEN_INTER; OPEN_BALL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:(real^N->bool)->bool` THEN ASM_CASES_TAC `b:(real^N->bool)->bool = {}` THENL [MATCH_MP_TAC(TAUT `~b ==> a /\ b ==> c`) THEN ASM_REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; UNIONS_0] THEN ASM_MESON_TAC[CENTRE_IN_BALL]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N->bool` THEN DISCH_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN DISCH_THEN(MP_TAC o SPEC `(f:(real^N->bool)->real^N) c`) THEN ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[IN_INTER; IN_BALL] THEN MATCH_MP_TAC(TAUT `a /\ c ==> (a /\ b <=> c) ==> b`) THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN ANTS_TAC THENL [ASM SET_TAC[]; STRIP_TAC] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_SUBSET) THEN REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_EUCLIDEAN] THEN ASM SET_TAC[]]]);;
let OPEN_SET_RATIONAL_COORDINATES = 
prove (`!s. open s /\ ~(s = {}) ==> ?x:real^N. x IN s /\ !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(closure { x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i) } INTER (s:real^N->bool) = {})` MP_TAC THENL [ASM_REWRITE_TAC[CLOSURE_RATIONAL_COORDINATES; INTER_UNIV]; ALL_TAC] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; CLOSURE_APPROACHABLE; IN_INTER; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:real^N` o REWRITE_RULE[open_def]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let OPEN_COUNTABLE_UNION_OPEN_INTERVALS, OPEN_COUNTABLE_UNION_CLOSED_INTERVALS = (CONJ_PAIR o prove) (`(!s:real^N->bool. open s ==> ?D. COUNTABLE D /\ (!i. i IN D ==> i SUBSET s /\ ?a b. i = interval(a,b)) /\ UNIONS D = s) /\ (!s:real^N->bool. open s ==> ?D. COUNTABLE D /\ (!i. i IN D ==> i SUBSET s /\ ?a b. i = interval[a,b]) /\ UNIONS D = s)`, REPEAT STRIP_TAC THENL [EXISTS_TAC `{i | i IN IMAGE (\(a:real^N,b). interval(a,b)) ({x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i)} CROSS {x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i)}) /\ i SUBSET s}`; EXISTS_TAC `{i | i IN IMAGE (\(a:real^N,b). interval[a,b]) ({x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i)} CROSS {x | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i)}) /\ i SUBSET s}`] THEN (SIMP_TAC[COUNTABLE_RESTRICT; COUNTABLE_IMAGE; COUNTABLE_CROSS; COUNTABLE_RATIONAL_COORDINATES] THEN REWRITE_TAC[IN_ELIM_THM; UNIONS_GSPEC; IMP_CONJ; GSYM CONJ_ASSOC] THEN REWRITE_TAC[FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; IN_CROSS; IN_ELIM_THM] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [SET_TAC[]; DISCH_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N` o REWRITE_RULE[open_def]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?a b. rational a /\ rational b /\ a < (x:real^N)$i /\ (x:real^N)$i < b /\ abs(b - a) < e / &(dimindex(:N))` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC RATIONAL_APPROXIMATION_STRADDLE THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; DIMINDEX_GE_1]; REWRITE_TAC[LAMBDA_SKOLEM]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN ASM_SIMP_TAC[SUBSET; IN_INTERVAL; REAL_LT_IMP_LE] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[dist] THEN MP_TAC(ISPEC `y - x:real^N` NORM_LE_L1) THEN MATCH_MP_TAC(REAL_ARITH `s < e ==> n <= s ==> n < e`) THEN MATCH_MP_TAC SUM_BOUND_LT_GEN THEN REWRITE_TAC[FINITE_NUMSEG; NUMSEG_EMPTY; NOT_LT; CARD_NUMSEG_1] THEN REWRITE_TAC[DIMINDEX_GE_1; IN_NUMSEG; VECTOR_SUB_COMPONENT] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `k:num`)) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC));;
let LINDELOF = 
prove (`!f:(real^N->bool)->bool. (!s. s IN f ==> open s) ==> ?f'. f' SUBSET f /\ COUNTABLE f' /\ UNIONS f' = UNIONS f`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `?b. COUNTABLE b /\ (!c:real^N->bool. c IN b ==> open c) /\ (!s. open s ==> ?u. u SUBSET b /\ s = UNIONS u)` STRIP_ASSUME_TAC THENL [ASM_REWRITE_TAC[UNIV_SECOND_COUNTABLE]; ALL_TAC] THEN ABBREV_TAC `d = {s:real^N->bool | s IN b /\ ?u. u IN f /\ s SUBSET u}` THEN SUBGOAL_THEN `COUNTABLE d /\ UNIONS f :real^N->bool = UNIONS d` STRIP_ASSUME_TAC THENL [EXPAND_TAC "d" THEN ASM_SIMP_TAC[COUNTABLE_RESTRICT] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!s:real^N->bool. ?u. s IN d ==> u IN f /\ s SUBSET u` MP_TAC THENL [EXPAND_TAC "d" THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:(real^N->bool)->(real^N->bool)` THEN STRIP_TAC THEN EXISTS_TAC `IMAGE (g:(real^N->bool)->(real^N->bool)) d` THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; UNIONS_IMAGE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM SET_TAC[]);;
let LINDELOF_OPEN_IN = 
prove (`!f u:real^N->bool. (!s. s IN f ==> open_in (subtopology euclidean u) s) ==> ?f'. f' SUBSET f /\ COUNTABLE f' /\ UNIONS f' = UNIONS f`,
REPEAT GEN_TAC THEN REWRITE_TAC[OPEN_IN_OPEN] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `v:(real^N->bool)->real^N->bool` THEN DISCH_TAC THEN MP_TAC(ISPEC `IMAGE (v:(real^N->bool)->real^N->bool) f` LINDELOF) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN REWRITE_TAC[EXISTS_COUNTABLE_SUBSET_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f':(real^N->bool)->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!f'. f' SUBSET f ==> UNIONS f' = (u:real^N->bool) INTER UNIONS (IMAGE v f')` MP_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[SUBSET_REFL]]);;
let COUNTABLE_DISJOINT_OPEN_SUBSETS = 
prove (`!f. (!s:real^N->bool. s IN f ==> open s) /\ pairwise DISJOINT f ==> COUNTABLE f`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LINDELOF) THEN DISCH_THEN(X_CHOOSE_THEN `g:(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `({}:real^N->bool) INSERT g` THEN ASM_REWRITE_TAC[COUNTABLE_INSERT] THEN REWRITE_TAC[SUBSET; IN_INSERT] THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[EXTENSION; SUBSET] THEN REWRITE_TAC[IN_UNIONS; pairwise] THEN REWRITE_TAC[SET_RULE `DISJOINT s t <=> !x. ~(x IN s /\ x IN t)`] THEN REWRITE_TAC[NOT_IN_EMPTY] THEN MESON_TAC[]);;
let CARD_EQ_OPEN_SETS = 
prove (`{s:real^N->bool | open s} =_c (:real)`,
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [X_CHOOSE_THEN `b:(real^N->bool)->bool` STRIP_ASSUME_TAC UNIV_SECOND_COUNTABLE THEN TRANS_TAC CARD_LE_TRANS `{s:(real^N->bool)->bool | s SUBSET b}` THEN CONJ_TAC THENL [REWRITE_TAC[LE_C] THEN EXISTS_TAC `UNIONS:((real^N->bool)->bool)->real^N->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]; TRANS_TAC CARD_LE_TRANS `{s | s SUBSET (:num)}` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_LE_POWERSET THEN ASM_REWRITE_TAC[GSYM COUNTABLE_ALT]; REWRITE_TAC[SUBSET_UNIV; UNIV_GSPEC] THEN MESON_TAC[CARD_EQ_IMP_LE; CARD_EQ_SYM; CARD_EQ_REAL]]]; REWRITE_TAC[le_c; IN_UNIV; IN_ELIM_THM] THEN EXISTS_TAC `\x. ball(x % basis 1:real^N,&1)` THEN REWRITE_TAC[OPEN_BALL; GSYM SUBSET_ANTISYM_EQ; SUBSET_BALLS] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[NORM_ARITH `dist(p:real^N,q) + &1 <= &1 <=> p = q`] THEN REWRITE_TAC[VECTOR_MUL_RCANCEL; EQ_SYM_EQ] THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; ARITH]]);;
let CARD_EQ_CLOSED_SETS = 
prove (`{s:real^N->bool | closed s} =_c (:real)`,
SUBGOAL_THEN `{s:real^N->bool | closed s} = IMAGE (\s. (:real^N) DIFF s) {s | open s}` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM; GSYM OPEN_CLOSED] THEN MESON_TAC[SET_RULE `UNIV DIFF (UNIV DIFF s) = s`]; TRANS_TAC CARD_EQ_TRANS `{s:real^N->bool | open s}` THEN REWRITE_TAC[CARD_EQ_OPEN_SETS] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN SET_TAC[]]);;
let CARD_EQ_COMPACT_SETS = 
prove (`{s:real^N->bool | compact s} =_c (:real)`,
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `{s:real^N->bool | closed s}` THEN SIMP_TAC[CARD_EQ_IMP_LE; CARD_EQ_CLOSED_SETS] THEN MATCH_MP_TAC CARD_LE_SUBSET THEN SIMP_TAC[SUBSET; IN_ELIM_THM; COMPACT_IMP_CLOSED]; REWRITE_TAC[le_c; IN_UNIV; IN_ELIM_THM] THEN EXISTS_TAC `\x. {x % basis 1:real^N}` THEN REWRITE_TAC[COMPACT_SING; SET_RULE `{x} = {y} <=> x = y`] THEN SIMP_TAC[VECTOR_MUL_RCANCEL; BASIS_NONZERO; DIMINDEX_GE_1; ARITH]]);;
let COUNTABLE_NON_CONDENSATION_POINTS = 
prove (`!s:real^N->bool. COUNTABLE(s DIFF {x | x condensation_point_of s})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[condensation_point_of] THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN X_CHOOSE_THEN `b:(real^N->bool)->bool` STRIP_ASSUME_TAC UNIV_SECOND_COUNTABLE THEN EXISTS_TAC `s INTER UNIONS { u:real^N->bool | u IN b /\ COUNTABLE(s INTER u)}` THEN REWRITE_TAC[INTER_UNIONS; IN_ELIM_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC COUNTABLE_UNIONS THEN SIMP_TAC[FORALL_IN_GSPEC] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_RESTRICT]; SIMP_TAC[SUBSET; UNIONS_GSPEC; IN_ELIM_THM; IN_INTER; IN_DIFF] THEN X_GEN_TAC `x:real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `?u:real^N->bool. x IN u /\ u IN b /\ u SUBSET t` MP_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `s INTER t:real^N->bool` THEN ASM SET_TAC[]]);;
let CARD_EQ_CONDENSATION_POINTS_IN_SET = 
prove (`!s:real^N->bool. ~(COUNTABLE s) ==> {x | x IN s /\ x condensation_point_of s} =_c s`,
REPEAT STRIP_TAC THEN TRANS_TAC CARD_EQ_TRANS `(s DIFF {x | x condensation_point_of s}) +_c {x:real^N | x IN s /\ x condensation_point_of s}` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN MATCH_MP_TAC CARD_ADD_ABSORB THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [POP_ASSUM MP_TAC THEN REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN DISCH_THEN(MP_TAC o CONJ (SPEC `s:real^N->bool` COUNTABLE_NON_CONDENSATION_POINTS) o MATCH_MP FINITE_IMP_COUNTABLE) THEN REWRITE_TAC[GSYM COUNTABLE_UNION] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]; REWRITE_TAC[INFINITE_CARD_LE] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_TRANS) THEN REWRITE_TAC[GSYM COUNTABLE_ALT; COUNTABLE_NON_CONDENSATION_POINTS]]; ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN W(MP_TAC o PART_MATCH (rand o rand) CARD_DISJOINT_UNION o rand o snd) THEN ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* A discrete set is countable, and an uncountable set has a limit point. *) (* ------------------------------------------------------------------------- *)
let DISCRETE_IMP_COUNTABLE = 
prove (`!s:real^N->bool. (!x. x IN s ==> ?e. &0 < e /\ !y. y IN s /\ ~(y = x) ==> e <= norm(y - x)) ==> COUNTABLE s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x. x IN s ==> ?q. (!i. 1 <= i /\ i <= dimindex(:N) ==> rational(q$i)) /\ !y:real^N. y IN s /\ ~(y = x) ==> norm(x - q) < norm(y - q)` MP_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN MP_TAC(SET_RULE `x IN (:real^N)`) THEN REWRITE_TAC[GSYM CLOSURE_RATIONAL_COORDINATES] THEN REWRITE_TAC[CLOSURE_APPROACHABLE; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN NORM_ARITH_TAC; POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `q:real^N->real^N` THEN DISCH_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `{ x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i) }`; `(:num)`] CARD_LE_TRANS) THEN REWRITE_TAC[COUNTABLE; ge_c] THEN DISCH_THEN MATCH_MP_TAC THEN SIMP_TAC[REWRITE_RULE[COUNTABLE; ge_c] COUNTABLE_RATIONAL_COORDINATES] THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `q:real^N->real^N` THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[REAL_LT_ANTISYM]]);;
let UNCOUNTABLE_CONTAINS_LIMIT_POINT = 
prove (`!s. ~(COUNTABLE s) ==> ?x. x IN s /\ x limit_point_of s`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] DISCRETE_IMP_COUNTABLE)) THEN REWRITE_TAC[LIMPT_APPROACHABLE; GSYM REAL_NOT_LT; dist] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* The Brouwer reduction theorem. *) (* ------------------------------------------------------------------------- *)
let BROUWER_REDUCTION_THEOREM_GEN = 
prove (`!P s:real^N->bool. (!f. (!n. closed(f n) /\ P(f n)) /\ (!n. f(SUC n) SUBSET f(n)) ==> P(INTERS {f n | n IN (:num)})) /\ closed s /\ P s ==> ?t. t SUBSET s /\ closed t /\ P t /\ (!u. u SUBSET s /\ closed u /\ P u ==> ~(u PSUBSET t))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `?b:num->real^N->bool. (!m n. b m = b n <=> m = n) /\ (!n. open (b n)) /\ (!s. open s ==> (?k. s = UNIONS {b n | n IN k}))` STRIP_ASSUME_TAC THENL [REWRITE_TAC[UNIV_SECOND_COUNTABLE_SEQUENCE]; ALL_TAC] THEN X_CHOOSE_THEN `a:num->real^N->bool` MP_TAC (prove_recursive_functions_exist num_RECURSION `a 0 = (s:real^N->bool) /\ (!n. a(SUC n) = if ?u. u SUBSET a(n) /\ closed u /\ P u /\ u INTER (b n) = {} then @u. u SUBSET a(n) /\ closed u /\ P u /\ u INTER (b n) = {} else a(n))`) THEN DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "base") (LABEL_TAC "step")) THEN EXISTS_TAC `INTERS {a n :real^N->bool | n IN (:num)}` THEN SUBGOAL_THEN `!n. (a:num->real^N->bool)(SUC n) SUBSET a(n)` ASSUME_TAC THENL [GEN_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[SUBSET_REFL] THEN FIRST_X_ASSUM(MP_TAC o SELECT_RULE) THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!n. (a:num->real^N->bool) n SUBSET s` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_MESON_TAC[SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN SUBGOAL_THEN `!n. closed((a:num->real^N->bool) n) /\ P(a n)` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SELECT_RULE) THEN MESON_TAC[]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC CLOSED_INTERS THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN REWRITE_TAC[PSUBSET_ALT] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[INTERS_GSPEC; EXISTS_IN_GSPEC; IN_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `x:real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?n. x IN (b:num->real^N->bool)(n) /\ t INTER b n = {}` STRIP_ASSUME_TAC THENL [MP_TAC(ISPEC `(:real^N) DIFF t` OPEN_CONTAINS_BALL) THEN ASM_REWRITE_TAC[GSYM closed] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[SET_RULE `s SUBSET UNIV DIFF t <=> t INTER s = {}`] THEN X_GEN_TAC `e:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`x:real^N`; `e:real`] CENTRE_IN_BALL) THEN FIRST_X_ASSUM(MP_TAC o SPEC `ball(x:real^N,e)`) THEN ASM_REWRITE_TAC[OPEN_BALL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:num->bool` THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN_UNIONS; INTER_UNIONS; EMPTY_UNIONS; FORALL_IN_GSPEC] THEN SET_TAC[]; REMOVE_THEN "step" (MP_TAC o SPEC `n:num`) THEN COND_CASES_TAC THENL [DISCH_THEN(ASSUME_TAC o SYM) THEN FIRST_X_ASSUM(MP_TAC o SELECT_RULE) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `t:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]]]);;
let BROUWER_REDUCTION_THEOREM = 
prove (`!P s:real^N->bool. (!f. (!n. compact(f n) /\ ~(f n = {}) /\ P(f n)) /\ (!n. f(SUC n) SUBSET f(n)) ==> P(INTERS {f n | n IN (:num)})) /\ compact s /\ ~(s = {}) /\ P s ==> ?t. t SUBSET s /\ compact t /\ ~(t = {}) /\ P t /\ (!u. u SUBSET s /\ closed u /\ ~(u = {}) /\ P u ==> ~(u PSUBSET t))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\t:real^N->bool. ~(t = {}) /\ t SUBSET s /\ P t`; `s:real^N->bool`] BROUWER_REDUCTION_THEOREM_GEN) THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; SUBSET_REFL] THEN ANTS_TAC THENL [GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!n. compact((f:num->real^N->bool) n)` ASSUME_TAC THENL [ASM_MESON_TAC[COMPACT_EQ_BOUNDED_CLOSED; BOUNDED_SUBSET]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC COMPACT_NEST THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_SIMP_TAC[] THEN SET_TAC[]; ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[COMPACT_EQ_BOUNDED_CLOSED; BOUNDED_SUBSET]]);;
(* ------------------------------------------------------------------------- *) (* The Arzela-Ascoli theorem. *) (* ------------------------------------------------------------------------- *)
let SUBSEQUENCE_DIAGONALIZATION_LEMMA = 
prove (`!P:num->(num->A)->bool. (!i r:num->A. ?k. (!m n. m < n ==> k m < k n) /\ P i (r o k)) /\ (!i r:num->A k1 k2 N. P i (r o k1) /\ (!j. N <= j ==> ?j'. j <= j' /\ k2 j = k1 j') ==> P i (r o k2)) ==> !r:num->A. ?k. (!m n. m < n ==> k m < k n) /\ (!i. P i (r o k))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [SKOLEM_THM] THEN REWRITE_TAC[FORALL_AND_THM; TAUT `(p ==> q /\ r) <=> (p ==> q) /\ (p ==> r)`] THEN DISCH_THEN(X_CHOOSE_THEN `kk:num->(num->A)->num->num` STRIP_ASSUME_TAC) THEN X_GEN_TAC `r:num->A` THEN (STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION) `(rr 0 = (kk:num->(num->A)->num->num) 0 r) /\ (!n. rr(SUC n) = rr n o kk (SUC n) (r o rr n))` THEN EXISTS_TAC `\n. (rr:num->num->num) n n` THEN REWRITE_TAC[ETA_AX] THEN SUBGOAL_THEN `(!i. (!m n. m < n ==> (rr:num->num->num) i m < rr i n)) /\ (!i. (P:num->(num->A)->bool) i (r o rr i))` STRIP_ASSUME_TAC THENL [REWRITE_TAC[AND_FORALL_THM] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[o_ASSOC] THEN REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!i j n. i <= j ==> (rr:num->num->num) i n <= rr j n` ASSUME_TAC THENL [REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [LE_EXISTS] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`j:num`,`j:num`) THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN SIMP_TAC[FORALL_UNWIND_THM2] THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; LE_REFL] THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] LE_TRANS)) THEN REWRITE_TAC[o_THM] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[LE_LT] `!f:num->num. (!m n. m < n ==> f m < f n) ==> (!m n. m <= n ==> f m <= f n)`) o SPEC `i + d:num`) THEN SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC MONOTONE_BIGGER THEN ASM_SIMP_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `(rr:num->num->num) n m` THEN ASM_MESON_TAC[LT_IMP_LE]; ALL_TAC] THEN SUBGOAL_THEN `!m n i. n <= m ==> ?j. i <= j /\ (rr:num->num->num) m i = rr n j` ASSUME_TAC THENL [ALL_TAC; X_GEN_TAC `i:num` THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `(rr:num->num->num) i` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `i:num` THEN ASM_MESON_TAC[]] THEN SUBGOAL_THEN `!p d i. ?j. i <= j /\ (rr:num->num->num) (p + d) i = rr p j` (fun th -> MESON_TAC[LE_EXISTS; th]) THEN X_GEN_TAC `p:num` THEN MATCH_MP_TAC num_INDUCTION THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN CONJ_TAC THENL [MESON_TAC[LE_REFL]; ALL_TAC] THEN X_GEN_TAC `d:num` THEN DISCH_THEN(LABEL_TAC "+") THEN X_GEN_TAC `i:num` THEN ASM_REWRITE_TAC[o_THM] THEN REMOVE_THEN "+" (MP_TAC o SPEC `(kk:num->(num->A)->num->num) (SUC(p + d)) ((r:num->A) o (rr:num->num->num) (p + d)) i`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `j:num` THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LE_TRANS) THEN SPEC_TAC(`i:num`,`i:num`) THEN MATCH_MP_TAC MONOTONE_BIGGER THEN ASM_REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]);;
let FUNCTION_CONVERGENT_SUBSEQUENCE = 
prove (`!f:num->real^M->real^N s M. COUNTABLE s /\ (!n x. x IN s ==> norm(f n x) <= M) ==> ?k. (!m n:num. m < n ==> k m < k n) /\ !x. x IN s ==> ?l. ((\n. f (k n) x) --> l) sequentially`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THENL [EXISTS_TAC `\n:num. n` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY]; ALL_TAC] THEN MP_TAC(ISPEC `s:real^M->bool` COUNTABLE_AS_IMAGE) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `X:num->real^M` THEN DISCH_THEN SUBST_ALL_TAC THEN MP_TAC(ISPEC `\i r. ?l. ((\n. ((f:num->real^M->real^N) o (r:num->num)) n ((X:num->real^M) i)) --> l) sequentially` SUBSEQUENCE_DIAGONALIZATION_LEMMA) THEN REWRITE_TAC[FORALL_IN_IMAGE; o_THM; IN_UNIV] THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN MATCH_ACCEPT_TAC] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[FORALL_IN_IMAGE; IN_UNIV]) THEN MAP_EVERY X_GEN_TAC [`i:num`; `r:num->num`] THEN MP_TAC(ISPEC `cball(vec 0:real^N,M)` compact) THEN REWRITE_TAC[COMPACT_CBALL] THEN DISCH_THEN(MP_TAC o SPEC `\n. (f:num->real^M->real^N) ((r:num->num) n) (X(i:num))`) THEN ASM_REWRITE_TAC[IN_CBALL_0; o_DEF] THEN MESON_TAC[]; REPEAT GEN_TAC THEN REWRITE_TAC[LIM_SEQUENTIALLY; GE] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN ASM_MESON_TAC[LE_TRANS; ARITH_RULE `MAX a b <= c <=> a <= c /\ b <= c`]]);;
let ARZELA_ASCOLI = 
prove (`!f:num->real^M->real^N s M. compact s /\ (!n x. x IN s ==> norm(f n x) <= M) /\ (!x e. x IN s /\ &0 < e ==> ?d. &0 < d /\ !n y. y IN s /\ norm(x - y) < d ==> norm(f n x - f n y) < e) ==> ?g. g continuous_on s /\ ?r. (!m n:num. m < n ==> r m < r n) /\ !e. &0 < e ==> ?N. !n x. n >= N /\ x IN s ==> norm(f(r n) x - g x) < e`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GE] THEN MATCH_MP_TAC(MESON[] `(!k g. V k g ==> N g) /\ (?k. M k /\ ?g. V k g) ==> ?g. N g /\ ?k. M k /\ V k g`) THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`k:num->num`; `g:real^M->real^N`] THEN STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` CONTINUOUS_UNIFORM_LIMIT) THEN EXISTS_TAC `(f:num->real^M->real^N) o (k:num->num)` THEN ASM_SIMP_TAC[EVENTUALLY_SEQUENTIALLY; o_THM; TRIVIAL_LIMIT_SEQUENTIALLY; RIGHT_IMP_FORALL_THM; IMP_IMP] THEN EXISTS_TAC `0` THEN REWRITE_TAC[continuous_on; dist] THEN ASM_MESON_TAC[NORM_SUB]; ALL_TAC] THEN MP_TAC(ISPECL [`IMAGE (f:num->real^M->real^N) (:num)`; `s:real^M->bool`] COMPACT_UNIFORMLY_EQUICONTINUOUS) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; IN_UNIV] THEN ANTS_TAC THENL [REWRITE_TAC[dist] THEN ONCE_REWRITE_TAC[NORM_SUB] THEN ASM_MESON_TAC[]; ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(K ALL_TAC o SPEC `x:real^M`)] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; dist] THEN DISCH_THEN(ASSUME_TAC o ONCE_REWRITE_RULE[NORM_SUB]) THEN REWRITE_TAC[GSYM dist; UNIFORMLY_CONVERGENT_EQ_CAUCHY] THEN X_CHOOSE_THEN `r:real^M->bool` STRIP_ASSUME_TAC (ISPEC `s:real^M->bool` SEPARABLE) THEN MP_TAC(ISPECL [`f:num->real^M->real^N`; `r:real^M->bool`; `M:real`] FUNCTION_CONVERGENT_SUBSEQUENCE) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num->num` THEN REWRITE_TAC[CONVERGENT_EQ_CAUCHY; cauchy] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*")) THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &3`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL]) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE (\x:real^M. ball(x,d)) r`) THEN REWRITE_TAC[FORALL_IN_IMAGE; OPEN_BALL] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN ANTS_TAC THENL [MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `closure r:real^M->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; CLOSURE_APPROACHABLE] THEN X_GEN_TAC `x:real^M` THEN DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM; IN_BALL]; DISCH_THEN(X_CHOOSE_THEN `t:real^M->bool` STRIP_ASSUME_TAC)] THEN REMOVE_THEN "*" MP_TAC THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `M:real^M->num` THEN DISCH_THEN(LABEL_TAC "*") THEN MP_TAC(ISPECL [`M:real^M->num`; `t:real^M->bool`] UPPER_BOUND_FINITE_SET) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:real^M`] THEN STRIP_TAC THEN UNDISCH_TAC `s SUBSET UNIONS (IMAGE (\x:real^M. ball (x,d)) t)` THEN REWRITE_TAC[SUBSET; UNIONS_IMAGE; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[IN_BALL; LEFT_IMP_EXISTS_THM; dist] THEN X_GEN_TAC `y:real^M` THEN STRIP_TAC THEN MATCH_MP_TAC(NORM_ARITH `norm(f (k(m:num)) y - f (k m) x) < e / &3 /\ norm(f (k n) y - f (k n) x) < e / &3 /\ norm(f (k m) y - f (k n) y) < e / &3 ==> norm(f (k m) x - f (k n) x :real^M) < e`) THEN ASM_SIMP_TAC[] THEN REMOVE_THEN "*" (MP_TAC o SPEC `y:real^M`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPECL [`m:num`; `n:num`]) THEN ASM_REWRITE_TAC[dist; GE] THEN ASM_MESON_TAC[SUBSET; LE_TRANS]);;