needs "../formal_lp/formal_interval/more_float.hl";;
let x_var_num = `x:num` and
y_var_num = `y:num`;;
let amp_op_real = `(&):num->real`;;
(* Creates an interval approximation of the given decimal term *)
let mk_float_interval_decimal =
let DECIMAL' = SPEC_ALL DECIMAL in
fun pp decimal_tm ->
let n_tm, d_tm = dest_binary "DECIMAL" decimal_tm in
let n, d = dest_numeral n_tm, dest_numeral d_tm in
let n_int, d_int = mk_float_interval_num n, mk_float_interval_num d in
let int = float_interval_div pp n_int d_int in
let eq_th = INST[n_tm, x_var_num; d_tm, y_var_num] DECIMAL' in
norm_interval int eq_th;;
(* Unary interval operations *)
let unary_interval_operations =
let table = Hashtbl.create 10 in
let add = Hashtbl.add in
add table `--` (fun pp -> float_interval_neg);
add table `inv` float_interval_inv;
add table `sqrt` float_interval_sqrt;
add table `atn` float_interval_atn;
add table `acs` float_interval_acs;
table;;
(* Binary interval operations *)
let binary_interval_operations =
let table = Hashtbl.create 10 in
let add = Hashtbl.add in
add table `+` float_interval_add;
add table `-` float_interval_sub;
add table `*` float_interval_mul;
add table `/` float_interval_div;
table;;
(* Interval approximations of constants *)
let interval_constants =
let table = Hashtbl.create 10 in
let add = Hashtbl.add in
add table `pi` (fun pp -> pi_approx_array.(pp));
table;;
(* Type of an interval function *)
type interval_fun =
| Int_ref of int
| Int_var of term
| Int_const of thm
| Int_decimal_const of term
| Int_named_const of term
| Int_pow of int * interval_fun
| Int_unary of term * interval_fun
| Int_binary of term * interval_fun * interval_fun;;
(* Evaluates the given interval function at the point
defined by the given list of variables *)
let eval_interval_fun pp ifun vars refs =
let u_find = Hashtbl.find unary_interval_operations and
b_find = Hashtbl.find binary_interval_operations and
c_find = Hashtbl.find interval_constants in
let rec rec_eval f =
match f with
| Int_ref i -> List.nth refs i
| Int_var tm -> assoc tm vars
| Int_const th -> th
| Int_decimal_const tm -> mk_float_interval_decimal pp tm
| Int_named_const tm -> c_find tm pp
| Int_pow (n,f1) -> float_interval_pow_simple pp n (rec_eval f1)
| Int_unary (tm,f1) -> u_find tm pp (rec_eval f1)
| Int_binary (tm,f1,f2) -> b_find tm pp (rec_eval f1) (rec_eval f2) in
rec_eval ifun;;
(* Evaluates all sub-expressions involving constants in the given interval function *)
let eval_constants pp ifun =
let u_find = Hashtbl.find unary_interval_operations and
b_find = Hashtbl.find binary_interval_operations and
c_find = Hashtbl.find interval_constants in
let rec rec_eval f =
match f with
| Int_decimal_const tm -> Int_const (mk_float_interval_decimal pp tm)
| Int_named_const tm -> Int_const (c_find tm pp)
| Int_pow (n,f1) ->
(let f1_val = rec_eval f1 in
match f1_val with
| Int_const th -> Int_const (float_interval_pow_simple pp n th)
| _ -> Int_pow (n,f1_val))
| Int_unary (tm,f1) ->
(let f1_val = rec_eval f1 in
match f1_val with
| Int_const th -> Int_const (u_find tm pp th)
| _ -> Int_unary (tm, f1_val))
| Int_binary (tm,f1,f2) ->
(let f1_val, f2_val = rec_eval f1, rec_eval f2 in
match f1_val with
| Int_const th1 ->
(match f2_val with
| Int_const th2 -> Int_const (b_find tm pp th1 th2)
| _ -> Int_binary (tm, f1_val, f2_val))
| _ -> Int_binary (tm, f1_val, f2_val))
| _ -> f in
rec_eval ifun;;
(**************************************)
(* Builds an interval function from the given term expression *)
let rec build_interval_fun expr_tm =
if is_const expr_tm then
(* Constant *)
Int_named_const expr_tm
else if is_var expr_tm then
(* Variable *)
Int_var expr_tm
else
let ltm, r_tm = dest_comb expr_tm in
(* Unary operations *)
if is_const ltm then
(* & *)
if ltm = amp_op_real then
let n = dest_numeral r_tm in
Int_const (mk_float_interval_num n)
else
let r_fun = build_interval_fun r_tm in
Int_unary (ltm, r_fun)
else
(* Binary operations *)
let op, l_tm = dest_comb ltm in
let name = (fst o dest_const) op in
if name = "DECIMAL" then
(* DECIMAL *)
Int_decimal_const expr_tm
else if name = "real_pow" then
(* pow *)
let n = dest_small_numeral r_tm in
Int_pow (n, build_interval_fun l_tm)
else if name = "$" then
(* $ *)
Int_var expr_tm
else
let lhs = build_interval_fun l_tm and
rhs = build_interval_fun r_tm in
Int_binary (op, lhs, rhs);;
(*
let test_vars = [`x:real`, two_interval];;
let f = build_interval_fun `(&1 + &3 * pi) + sqrt (#3.13525238353 * x)`;;
let f2 = eval_constants pp f;;
eval_interval_fun pp f test_vars;;
eval_interval_fun pp f2 test_vars;;
test 100 (eval_interval_fun pp f) test_vars;;
test 100 (eval_interval_fun pp f2) test_vars;;
*)
(* Replaces the given subexpression with the given reference index
in all interval functions in the list.
Returns the number of replaces and a new list of interval functions *)
let replace_subexpr expr expr_index f_list =
let rec replace f =
if f = expr then
1, Int_ref expr_index
else
match f with
| Int_pow (k, f1) ->
let c, f1' = replace f1 in
c, Int_pow (k, f1')
| Int_unary (tm, f1) ->
let c, f1' = replace f1 in
c, Int_unary (tm, f1')
| Int_binary (tm, f1, f2) ->
let c1, f1' = replace f1 in
let c2, f2' = replace f2 in
c1 + c2, Int_binary (tm, f1', f2')
| _ -> 0, f in
let cs, fs = unzip (map replace f_list) in
itlist (+) cs 0, fs;;
let is_leaf f =
match f with
| Int_pow _ -> false
| Int_unary _ -> false
| Int_binary _ -> false
| _ -> true;;
let find_and_replace_all f_list acc =
let rec find_and_replace f i f_list =
if is_leaf f then
f, (0, f_list)
else
let expr, (c, fs) =
match f with
| Int_pow (k, f1) -> find_and_replace f1 i f_list
| Int_unary (tm, f1) -> find_and_replace f1 i f_list
| Int_binary (tm, f1, f2) ->
let expr, (c1, fs) = find_and_replace f1 i f_list in
if c1 > 1 then expr, (c1, fs) else find_and_replace f2 i f_list
| _ -> f, (0, f_list) in
if c > 1 then expr, (c, fs) else f, replace_subexpr f i f_list in
let rec iterate fs acc =
let i = length acc in
let expr, (c, fs') = find_and_replace (hd fs) i fs in
if c > 1 then iterate fs' (acc @ [expr]) else fs, acc in
let rec iterate_all f_list ref_acc f_acc =
match f_list with
| [] -> f_acc, ref_acc
| f :: fs ->
let fs', acc' = iterate f_list ref_acc in
iterate_all (tl fs') acc' (f_acc @ [hd fs']) in
iterate_all f_list acc [];;
let eval_interval_fun_list pp (f_list, refs) vars =
let rec eval_refs refs acc =
match refs with
| [] -> acc
| r :: rs ->
let v = eval_interval_fun pp r vars acc in
eval_refs rs (acc @ [v]) in
let rs = eval_refs refs [] in
map (fun f -> eval_interval_fun pp f vars rs) f_list;;
(*
let pp = 5;;
let test_vars = [`x:real`, two_interval];;
let test_expr1 = `x * x + (&3 * x) * x * x + &3 * x + &3 * x`;;
let test_expr2 = `(x * x) * (x * &2) + x * &2`;;
let subexpr1 = `x * x` and subexpr2 = `&3 * x`;;
let test_f1 = build_interval_fun test_expr1 and
test_f2 = build_interval_fun test_expr2;;
let sub1 = build_interval_fun subexpr1 and sub2 = build_interval_fun subexpr2;;
let v = find_and_replace_all [test_f1; test_f2] [];;
eval_interval_fun_list pp v test_vars;;
map (fun f -> eval_interval_fun pp f test_vars []) [test_f1; test_f2];;
(* 0.712 *)
test 100 (map (fun f -> eval_interval_fun pp f test_vars [])) [test_f1; test_f2];;
(* 0.432 *)
test 100 (eval_interval_fun_list pp v) test_vars;;
*)