(* ========================================================================= *)
(* Calculation with rational-valued reals.                                   *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "real.ml";;

(* ------------------------------------------------------------------------- *)
(* Constant for decimal fractions written #xxx.yyy                           *)
(* ------------------------------------------------------------------------- *)

let DECIMAL = new_definition
  `DECIMAL x y = &x / &y`;;
(* ------------------------------------------------------------------------- *) (* Various handy lemmas. *) (* ------------------------------------------------------------------------- *)
let RAT_LEMMA1 = 
prove (`~(y1 = &0) /\ ~(y2 = &0) ==> ((x1 / y1) + (x2 / y2) = (x1 * y2 + x2 * y1) * inv(y1) * inv(y2))`,
STRIP_TAC THEN REWRITE_TAC[real_div; REAL_ADD_RDISTRIB] THEN BINOP_TAC THENL [REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC [AC REAL_MUL_AC `a * b * c = (b * a) * c`]; REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN DISJ2_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV THEN ASM_REWRITE_TAC[]);;
let RAT_LEMMA2 = 
prove (`&0 < y1 /\ &0 < y2 ==> ((x1 / y1) + (x2 / y2) = (x1 * y2 + x2 * y1) * inv(y1) * inv(y2))`,
DISCH_TAC THEN MATCH_MP_TAC RAT_LEMMA1 THEN POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_LT_REFL]);;
let RAT_LEMMA3 = 
prove (`&0 < y1 /\ &0 < y2 ==> ((x1 / y1) - (x2 / y2) = (x1 * y2 - x2 * y1) * inv(y1) * inv(y2))`,
DISCH_THEN(MP_TAC o GEN_ALL o MATCH_MP RAT_LEMMA2) THEN REWRITE_TAC[real_div] THEN DISCH_TAC THEN ASM_REWRITE_TAC[real_sub; GSYM REAL_MUL_LNEG]);;
let RAT_LEMMA4 = 
prove (`&0 < y1 /\ &0 < y2 ==> (x1 / y1 <= x2 / y2 <=> x1 * y2 <= x2 * y1)`,
let lemma = prove
   (`&0 < y ==> (&0 <= x * y <=> &0 <= x)`,
    DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THENL
     [SUBGOAL_THEN `&0 <= x * (y * inv y)` MP_TAC THENL
       [REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_MUL THEN
        ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV THEN
        MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
        SUBGOAL_THEN `y * inv y = &1` (fun th ->
          REWRITE_TAC[th; REAL_MUL_RID]) THEN
        MATCH_MP_TAC REAL_MUL_RINV THEN
        UNDISCH_TAC `&0 < y` THEN REAL_ARITH_TAC];
      MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]) in
  ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_TAC THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a <= b <=> &0 <= b - a`] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP RAT_LEMMA3 th]) THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `&0 <= (x2 * y1 - x1 * y2) * inv y2` THEN
  REWRITE_TAC[REAL_MUL_ASSOC] THEN CONJ_TAC THEN
  MATCH_MP_TAC lemma THEN MATCH_MP_TAC REAL_LT_INV THEN
  ASM_REWRITE_TAC[]);;
let RAT_LEMMA5 = 
prove (`&0 < y1 /\ &0 < y2 ==> ((x1 / y1 = x2 / y2) <=> (x1 * y2 = x2 * y1))`,
REPEAT DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN MATCH_MP_TAC(TAUT `(a <=> a') /\ (b <=> b') ==> (a /\ b <=> a' /\ b')`) THEN CONJ_TAC THEN MATCH_MP_TAC RAT_LEMMA4 THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Create trivial rational from integer or decimal, and postconvert back. *) (* ------------------------------------------------------------------------- *) let REAL_INT_RAT_CONV =
let pth = 
prove (`(&x = &x / &1) /\ (--(&x) = --(&x) / &1) /\ (DECIMAL x y = &x / &y) /\ (--(DECIMAL x y) = --(&x) / &y)`,
REWRITE_TAC[REAL_DIV_1; DECIMAL] THEN REWRITE_TAC[real_div; REAL_MUL_LNEG]) in TRY_CONV(GEN_REWRITE_CONV I [pth]);;
(* ------------------------------------------------------------------------- *) (* Relational operations. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_LE_CONV =
let pth = 
prove (`&0 < y1 ==> &0 < y2 ==> (x1 / y1 <= x2 / y2 <=> x1 * y2 <= x2 * y1)`,
REWRITE_TAC[IMP_IMP; RAT_LEMMA4]) and x1 = `x1:real` and x2 = `x2:real` and y1 = `y1:real` and y2 = `y2:real` and dest_le = dest_binop `(<=)` and dest_div = dest_binop `(/)` in let RAW_REAL_RAT_LE_CONV tm = let l,r = dest_le tm in let lx,ly = dest_div l and rx,ry = dest_div r in let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_LE_CONV) (rand(concl th1)) in TRANS th1 th2 in BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_LE_CONV;;
let REAL_RAT_LT_CONV =
let pth = 
prove (`&0 < y1 ==> &0 < y2 ==> (x1 / y1 < x2 / y2 <=> x1 * y2 < x2 * y1)`,
REWRITE_TAC[IMP_IMP] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_NOT_LE] THEN SIMP_TAC[TAUT `(~a <=> ~b) <=> (a <=> b)`; RAT_LEMMA4]) and x1 = `x1:real` and x2 = `x2:real` and y1 = `y1:real` and y2 = `y2:real` and dest_lt = dest_binop `(<)` and dest_div = dest_binop `(/)` in let RAW_REAL_RAT_LT_CONV tm = let l,r = dest_lt tm in let lx,ly = dest_div l and rx,ry = dest_div r in let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_LT_CONV) (rand(concl th1)) in TRANS th1 th2 in BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_LT_CONV;;
let REAL_RAT_GE_CONV = GEN_REWRITE_CONV I [real_ge] THENC REAL_RAT_LE_CONV;; let REAL_RAT_GT_CONV = GEN_REWRITE_CONV I [real_gt] THENC REAL_RAT_LT_CONV;; let REAL_RAT_EQ_CONV =
let pth = 
prove (`&0 < y1 ==> &0 < y2 ==> ((x1 / y1 = x2 / y2) <=> (x1 * y2 = x2 * y1))`,
REWRITE_TAC[IMP_IMP; RAT_LEMMA5]) and x1 = `x1:real` and x2 = `x2:real` and y1 = `y1:real` and y2 = `y2:real` and dest_eq = dest_binop `(=) :real->real->bool` and dest_div = dest_binop `(/)` in let RAW_REAL_RAT_EQ_CONV tm = let l,r = dest_eq tm in let lx,ly = dest_div l and rx,ry = dest_div r in let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_EQ_CONV) (rand(concl th1)) in TRANS th1 th2 in BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_EQ_CONV;;
(* ------------------------------------------------------------------------- *) (* The unary operations; all easy. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_NEG_CONV =
let pth = 
prove (`(--(&0) = &0) /\ (--(--(&n)) = &n) /\ (--(&m / &n) = --(&m) / &n) /\ (--(--(&m) / &n) = &m / &n) /\ (--(DECIMAL m n) = --(&m) / &n)`,
REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_LNEG; REAL_NEG_NEG; REAL_NEG_0; DECIMAL]) and ptm = `(--)` in let conv1 = GEN_REWRITE_CONV I [pth] in fun tm -> try conv1 tm with Failure _ -> try let l,r = dest_comb tm in if l = ptm & is_realintconst r & dest_realintconst r >/ num_0 then REFL tm else fail() with Failure _ -> failwith "REAL_RAT_NEG_CONV";
; let REAL_RAT_ABS_CONV =
let pth = 
prove (`(abs(&n) = &n) /\ (abs(--(&n)) = &n) /\ (abs(&m / &n) = &m / &n) /\ (abs(--(&m) / &n) = &m / &n) /\ (abs(DECIMAL m n) = &m / &n) /\ (abs(--(DECIMAL m n)) = &m / &n)`,
REWRITE_TAC[DECIMAL; REAL_ABS_DIV; REAL_ABS_NEG; REAL_ABS_NUM]) in GEN_REWRITE_CONV I [pth];;
let REAL_RAT_INV_CONV =
let pth1 = 
prove (`(inv(&0) = &0) /\ (inv(&1) = &1) /\ (inv(-- &1) = --(&1)) /\ (inv(&1 / &n) = &n) /\ (inv(-- &1 / &n) = -- &n)`,
REWRITE_TAC[REAL_INV_0; REAL_INV_1; REAL_INV_NEG; REAL_INV_DIV; REAL_DIV_1] THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_RNEG; REAL_INV_1; REAL_MUL_RID]) and pth2 = prove (`(inv(&n) = &1 / &n) /\ (inv(--(&n)) = --(&1) / &n) /\ (inv(&m / &n) = &n / &m) /\ (inv(--(&m) / &n) = --(&n) / &m) /\ (inv(DECIMAL m n) = &n / &m) /\ (inv(--(DECIMAL m n)) = --(&n) / &m)`, REWRITE_TAC[DECIMAL; REAL_INV_DIV] THEN REWRITE_TAC[REAL_INV_NEG; real_div; REAL_MUL_RNEG; REAL_MUL_AC; REAL_MUL_LID; REAL_MUL_LNEG; REAL_INV_MUL; REAL_INV_INV]) in GEN_REWRITE_CONV I [pth1] ORELSEC GEN_REWRITE_CONV I [pth2];;
(* ------------------------------------------------------------------------- *) (* Addition. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_ADD_CONV =
let pth = 
prove (`&0 < y1 ==> &0 < y2 ==> &0 < y3 ==> ((x1 * y2 + x2 * y1) * y3 = x3 * y1 * y2) ==> (x1 / y1 + x2 / y2 = x3 / y3)`,
REPEAT DISCH_TAC THEN MP_TAC RAT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[GSYM REAL_INV_MUL; GSYM real_div] THEN SUBGOAL_THEN `&0 < y1 * y2 /\ &0 < y3` MP_TAC THENL [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[]; DISCH_THEN(fun th -> ASM_REWRITE_TAC[MATCH_MP RAT_LEMMA5 th])]) and dest_divop = dest_binop `(/)` and dest_addop = dest_binop `(+)` and x1 = `x1:real` and x2 = `x2:real` and x3 = `x3:real` and y1 = `y1:real` and y2 = `y2:real` and y3 = `y3:real` in let RAW_REAL_RAT_ADD_CONV tm = let r1,r2 = dest_addop tm in let x1',y1' = dest_divop r1 and x2',y2' = dest_divop r2 in let x1n = dest_realintconst x1' and y1n = dest_realintconst y1' and x2n = dest_realintconst x2' and y2n = dest_realintconst y2' in let x3n = x1n */ y2n +/ x2n */ y1n and y3n = y1n */ y2n in let d = gcd_num x3n y3n in let x3n' = quo_num x3n d and y3n' = quo_num y3n d in let x3n'',y3n'' = if y3n' >/ Int 0 then x3n',y3n' else minus_num x3n',minus_num y3n' in let x3' = mk_realintconst x3n'' and y3' = mk_realintconst y3n'' in let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2; x3',x3; y3',y3] pth in let th1 = funpow 3 (MP_CONV REAL_INT_LT_CONV) th0 in let tm2,tm3 = dest_eq(fst(dest_imp(concl th1))) in let th2 = (LAND_CONV (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_ADD_CONV) THENC REAL_INT_MUL_CONV) tm2 and th3 = (RAND_CONV REAL_INT_MUL_CONV THENC REAL_INT_MUL_CONV) tm3 in MP th1 (TRANS th2 (SYM th3)) in BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_ADD_CONV THENC TRY_CONV(GEN_REWRITE_CONV I [REAL_DIV_1]);;
(* ------------------------------------------------------------------------- *) (* Subtraction. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_SUB_CONV =
let pth = 
prove (`x - y = x + --y`,
REWRITE_TAC[real_sub]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV REAL_RAT_NEG_CONV THENC REAL_RAT_ADD_CONV;;
(* ------------------------------------------------------------------------- *) (* Multiplication. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_MUL_CONV =
let pth_nocancel = 
prove (`(x1 / y1) * (x2 / y2) = (x1 * x2) / (y1 * y2)`,
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_MUL_AC]) and pth_cancel = prove (`~(d1 = &0) /\ ~(d2 = &0) /\ (d1 * u1 = x1) /\ (d2 * u2 = x2) /\ (d2 * v1 = y1) /\ (d1 * v2 = y2) ==> ((x1 / y1) * (x2 / y2) = (u1 * u2) / (v1 * v2))`, DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN ASM_REWRITE_TAC[real_div; REAL_INV_MUL] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `((d1 * u1) * (id2 * iv1)) * ((d2 * u2) * id1 * iv2) = (u1 * u2) * (iv1 * iv2) * (id2 * d2) * (id1 * d1)`] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_RID]) and dest_divop = dest_binop `(/)` and dest_mulop = dest_binop `(*)` and x1 = `x1:real` and x2 = `x2:real` and y1 = `y1:real` and y2 = `y2:real` and u1 = `u1:real` and u2 = `u2:real` and v1 = `v1:real` and v2 = `v2:real` and d1 = `d1:real` and d2 = `d2:real` in let RAW_REAL_RAT_MUL_CONV tm = let r1,r2 = dest_mulop tm in let x1',y1' = dest_divop r1 and x2',y2' = dest_divop r2 in let x1n = dest_realintconst x1' and y1n = dest_realintconst y1' and x2n = dest_realintconst x2' and y2n = dest_realintconst y2' in let d1n = gcd_num x1n y2n and d2n = gcd_num x2n y1n in if d1n = num_1 & d2n = num_1 then let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2] pth_nocancel in let th1 = BINOP_CONV REAL_INT_MUL_CONV (rand(concl th0)) in TRANS th0 th1 else let u1n = quo_num x1n d1n and u2n = quo_num x2n d2n and v1n = quo_num y1n d2n and v2n = quo_num y2n d1n in let u1' = mk_realintconst u1n and u2' = mk_realintconst u2n and v1' = mk_realintconst v1n and v2' = mk_realintconst v2n and d1' = mk_realintconst d1n and d2' = mk_realintconst d2n in let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2; u1',u1; v1',v1; u2',u2; v2',v2; d1',d1; d2',d2] pth_cancel in let th1 = EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th0))) in let th2 = MP th0 th1 in let th3 = BINOP_CONV REAL_INT_MUL_CONV (rand(concl th2)) in TRANS th2 th3 in BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_MUL_CONV THENC TRY_CONV(GEN_REWRITE_CONV I [REAL_DIV_1]);; (* ------------------------------------------------------------------------- *) (* Division. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_DIV_CONV =
let pth = prove
   (`x / y = x * inv(y)`,
    REWRITE_TAC[real_div]) in
  GEN_REWRITE_CONV I [pth] THENC
  RAND_CONV REAL_RAT_INV_CONV THENC REAL_RAT_MUL_CONV;;
(* ------------------------------------------------------------------------- *) (* Powers. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_POW_CONV =
let pth = 
prove (`(x / y) pow n = (x pow n) / (y pow n)`,
REWRITE_TAC[REAL_POW_DIV]) in REAL_INT_POW_CONV ORELSEC (LAND_CONV REAL_INT_RAT_CONV THENC GEN_REWRITE_CONV I [pth] THENC BINOP_CONV REAL_INT_POW_CONV);;
(* ------------------------------------------------------------------------- *) (* Max and min. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_MAX_CONV = REWR_CONV real_max THENC RATOR_CONV(RATOR_CONV(RAND_CONV REAL_RAT_LE_CONV)) THENC GEN_REWRITE_CONV I [COND_CLAUSES];; let REAL_RAT_MIN_CONV = REWR_CONV real_min THENC RATOR_CONV(RATOR_CONV(RAND_CONV REAL_RAT_LE_CONV)) THENC GEN_REWRITE_CONV I [COND_CLAUSES];; (* ------------------------------------------------------------------------- *) (* Everything. *) (* ------------------------------------------------------------------------- *) let REAL_RAT_RED_CONV = let gconv_net = itlist (uncurry net_of_conv) [`x <= y`,REAL_RAT_LE_CONV; `x < y`,REAL_RAT_LT_CONV; `x >= y`,REAL_RAT_GE_CONV; `x > y`,REAL_RAT_GT_CONV; `x:real = y`,REAL_RAT_EQ_CONV; `--x`,CHANGED_CONV REAL_RAT_NEG_CONV; `abs(x)`,REAL_RAT_ABS_CONV; `inv(x)`,REAL_RAT_INV_CONV; `x + y`,REAL_RAT_ADD_CONV; `x - y`,REAL_RAT_SUB_CONV; `x * y`,REAL_RAT_MUL_CONV; `x / y`,CHANGED_CONV REAL_RAT_DIV_CONV; `x pow n`,REAL_RAT_POW_CONV; `max x y`,REAL_RAT_MAX_CONV; `min x y`,REAL_RAT_MIN_CONV] (basic_net()) in REWRITES_CONV gconv_net;; let REAL_RAT_REDUCE_CONV = DEPTH_CONV REAL_RAT_RED_CONV;; (* ------------------------------------------------------------------------- *) (* Real normalizer dealing with rational constants. *) (* ------------------------------------------------------------------------- *) let REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_SUB_CONV, REAL_POLY_MUL_CONV,REAL_POLY_POW_CONV,REAL_POLY_CONV = SEMIRING_NORMALIZERS_CONV REAL_POLY_CLAUSES REAL_POLY_NEG_CLAUSES (is_ratconst, REAL_RAT_ADD_CONV,REAL_RAT_MUL_CONV,REAL_RAT_POW_CONV) (<);; (* ------------------------------------------------------------------------- *) (* Extend normalizer to handle "inv" and division by rational constants, and *) (* normalize inside nested "max", "min" and "abs" terms. *) (* ------------------------------------------------------------------------- *) let REAL_POLY_CONV = let neg_tm = `(--):real->real` and inv_tm = `inv:real->real` and add_tm = `(+):real->real->real` and sub_tm = `(-):real->real->real` and mul_tm = `(*):real->real->real` and div_tm = `(/):real->real->real` and pow_tm = `(pow):real->num->real` and abs_tm = `abs:real->real` and max_tm = `max:real->real->real` and min_tm = `min:real->real->real` and div_conv = REWR_CONV real_div in let rec REAL_POLY_CONV tm = if not(is_comb tm) or is_ratconst tm then REFL tm else let lop,r = dest_comb tm in if lop = neg_tm then let th1 = AP_TERM lop (REAL_POLY_CONV r) in TRANS th1 (REAL_POLY_NEG_CONV (rand(concl th1))) else if lop = inv_tm then let th1 = AP_TERM lop (REAL_POLY_CONV r) in TRANS th1 (TRY_CONV REAL_RAT_INV_CONV (rand(concl th1))) else if lop = abs_tm then AP_TERM lop (REAL_POLY_CONV r) else if not(is_comb lop) then REFL tm else let op,l = dest_comb lop in if op = pow_tm then let th1 = AP_THM (AP_TERM op (REAL_POLY_CONV l)) r in TRANS th1 (TRY_CONV REAL_POLY_POW_CONV (rand(concl th1))) else if op = add_tm or op = mul_tm or op = sub_tm then let th1 = MK_COMB(AP_TERM op (REAL_POLY_CONV l), REAL_POLY_CONV r) in let fn = if op = add_tm then REAL_POLY_ADD_CONV else if op = mul_tm then REAL_POLY_MUL_CONV else REAL_POLY_SUB_CONV in TRANS th1 (fn (rand(concl th1))) else if op = div_tm then let th1 = div_conv tm in TRANS th1 (REAL_POLY_CONV (rand(concl th1))) else if op = min_tm or op = max_tm then MK_COMB(AP_TERM op (REAL_POLY_CONV l),REAL_POLY_CONV r) else REFL tm in REAL_POLY_CONV;; (* ------------------------------------------------------------------------- *) (* Basic ring and ideal conversions. *) (* ------------------------------------------------------------------------- *) let REAL_RING,real_ideal_cofactors =
let REAL_INTEGRAL = 
prove (`(!x. &0 * x = &0) /\ (!x y z. (x + y = x + z) <=> (y = z)) /\ (!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN REWRITE_TAC[GSYM REAL_ENTIRE] THEN REAL_ARITH_TAC) and REAL_RABINOWITSCH = prove (`!x y:real. ~(x = y) <=> ?z. (x - y) * z = &1`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_SUB_0] THEN MESON_TAC[REAL_MUL_RINV; REAL_MUL_LZERO; REAL_ARITH `~(&1 = &0)`]) and init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL] and real_ty = `:real` in let pure,ideal = RING_AND_IDEAL_CONV (rat_of_term,term_of_rat,REAL_RAT_EQ_CONV, `(--):real->real`,`(+):real->real->real`,`(-):real->real->real`, `(inv):real->real`,`(*):real->real->real`,`(/):real->real->real`, `(pow):real->num->real`, REAL_INTEGRAL,REAL_RABINOWITSCH,REAL_POLY_CONV) in (fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))), (fun tms tm -> if forall (fun t -> type_of t = real_ty) (tm::tms) then ideal tms tm else failwith "real_ideal_cofactors: not all terms have type :real");; (* ------------------------------------------------------------------------- *) (* Conversion for ideal membership. *) (* ------------------------------------------------------------------------- *) let REAL_IDEAL_CONV = let mk_add = mk_binop `( + ):real->real->real` and mk_mul = mk_binop `( * ):real->real->real` in fun tms tm -> let cfs = real_ideal_cofactors tms tm in let tm' = end_itlist mk_add (map2 mk_mul cfs tms) in let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in TRANS th (SYM th');;
(* ------------------------------------------------------------------------- *) (* Further specialize GEN_REAL_ARITH and REAL_ARITH (final versions). *) (* ------------------------------------------------------------------------- *) let GEN_REAL_ARITH PROVER = GEN_REAL_ARITH (term_of_rat, REAL_RAT_EQ_CONV,REAL_RAT_GE_CONV,REAL_RAT_GT_CONV, REAL_POLY_CONV,REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_MUL_CONV, PROVER);; let REAL_ARITH = let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL] and pure = GEN_REAL_ARITH REAL_LINEAR_PROVER in fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));; let REAL_ARITH_TAC = CONV_TAC REAL_ARITH;; let ASM_REAL_ARITH_TAC = REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN REAL_ARITH_TAC;; (* ------------------------------------------------------------------------- *) (* A simple "field" rule. *) (* ------------------------------------------------------------------------- *) let REAL_FIELD = let prenex_conv = TOP_DEPTH_CONV BETA_CONV THENC PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div; REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC PRENEX_CONV THENC ONCE_REWRITE_CONV[REAL_ARITH `x < y <=> x < y /\ ~(x = y)`] and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV and core_rule t = try REAL_RING t with Failure _ -> REAL_ARITH t and is_inv = let inv_tm = `inv:real->real` and is_div = is_binop `(/):real->real->real` in fun tm -> (is_div tm or (is_comb tm & rator tm = inv_tm)) & not(is_ratconst(rand tm)) in let BASIC_REAL_FIELD tm = let is_freeinv t = is_inv t & free_in t tm in let itms = setify(map rand (find_terms is_freeinv tm)) in let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in let th1 = setup_conv tm' in let cjs = conjuncts(rand(concl th1)) in let ths = map core_rule cjs in let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in rev_itlist (C MP) hyps th2 in fun tm -> let th0 = prenex_conv tm in let tm0 = rand(concl th0) in let avs,bod = strip_forall tm0 in let th1 = setup_conv bod in let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;