(* ========================================================================= *) (* Convenient library functions. *) (* *) (* John Harrison, University of Cambridge Computer Laboratory *) (* *) (* (c) Copyright, University of Cambridge 1998 *) (* (c) Copyright, John Harrison 1998-2007 *) (* ========================================================================= *) module Lib = struct let fail() = failwith "";; (* ------------------------------------------------------------------------- *) (* Combinators. *) (* ------------------------------------------------------------------------- *) let curry f x y = f(x,y);; let uncurry f(x,y) = f x y;; let I x = x;; let K x y = x;; let C f x y = f y x;; let W f x = f x x;; let (o) = fun f g x -> f(g x);; let (F_F) = fun f g (x,y) -> (f x,g y);; (* ------------------------------------------------------------------------- *) (* List basics. *) (* ------------------------------------------------------------------------- *) let hd l = match l with h::t -> h | _ -> failwith "hd";; let tl l = match l with h::t -> t | _ -> failwith "tl";; let map f = let rec mapf l = match l with [] -> [] | (x::t) -> let y = f x in y::(mapf t) in mapf;; let rec last l = match l with [x] -> x | (h::t) -> last t | [] -> failwith "last";; let rec butlast l = match l with [_] -> [] | (h::t) -> h::(butlast t) | [] -> failwith "butlast";; let rec el n l = if n = 0 then hd l else el (n - 1) (tl l);; let rev = let rec rev_append acc l = match l with [] -> acc | h::t -> rev_append (h::acc) t in fun l -> rev_append [] l;; let rec map2 f l1 l2 = match (l1,l2) with [],[] -> [] | (h1::t1),(h2::t2) -> let h = f h1 h2 in h::(map2 f t1 t2) | _ -> failwith "map2: length mismatch";; (* ------------------------------------------------------------------------- *) (* Attempting function or predicate applications. *) (* ------------------------------------------------------------------------- *) let can f x = try (f x; true) with Failure _ -> false;; let check p x = if p x then x else failwith "check";; (* ------------------------------------------------------------------------- *) (* Repetition of a function. *) (* ------------------------------------------------------------------------- *) let rec funpow n f x = if n < 1 then x else funpow (n-1) f (f x);; let rec repeat f x = try let y = f x in repeat f y with Failure _ -> x;; (* ------------------------------------------------------------------------- *) (* To avoid consing in various situations, we propagate this exception. *) (* I should probably eliminate this and use pointer EQ tests instead. *) (* ------------------------------------------------------------------------- *) exception Unchanged;; (* ------------------------------------------------------------------------- *) (* Various versions of list iteration. *) (* ------------------------------------------------------------------------- *) let rec itlist f l b = match l with [] -> b | (h::t) -> f h (itlist f t b);; let rec rev_itlist f l b = match l with [] -> b | (h::t) -> rev_itlist f t (f h b);; let rec end_itlist f l = match l with [] -> failwith "end_itlist" | [x] -> x | (h::t) -> f h (end_itlist f t);; let rec itlist2 f l1 l2 b = match (l1,l2) with ([],[]) -> b | (h1::t1,h2::t2) -> f h1 h2 (itlist2 f t1 t2 b) | _ -> failwith "itlist2";; let rec rev_itlist2 f l1 l2 b = match (l1,l2) with ([],[]) -> b | (h1::t1,h2::t2) -> rev_itlist2 f t1 t2 (f h1 h2 b) | _ -> failwith "rev_itlist2";; (* ------------------------------------------------------------------------- *) (* Iterative splitting (list) and stripping (tree) via destructor. *) (* ------------------------------------------------------------------------- *) let rec splitlist dest x = try let l,r = dest x in let ls,res = splitlist dest r in (l::ls,res) with Failure _ -> ([],x);; let rev_splitlist dest = let rec rsplist ls x = try let l,r = dest x in rsplist (r::ls) l with Failure _ -> (x,ls) in fun x -> rsplist [] x;; let striplist dest = let rec strip x acc = try let l,r = dest x in strip l (strip r acc) with Failure _ -> x::acc in fun x -> strip x [];; (* ------------------------------------------------------------------------- *) (* Apply a destructor as many times as elements in list. *) (* ------------------------------------------------------------------------- *) let rec nsplit dest clist x = if clist = [] then [],x else let l,r = dest x in let ll,y = nsplit dest (tl clist) r in l::ll,y;; (* ------------------------------------------------------------------------- *) (* Replication and sequences. *) (* ------------------------------------------------------------------------- *) let rec replicate x n = if n < 1 then [] else x::(replicate x (n - 1));; let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);; (* ------------------------------------------------------------------------- *) (* Various useful list operations. *) (* ------------------------------------------------------------------------- *) let rec forall p l = match l with [] -> true | h::t -> p(h) & forall p t;; let rec forall2 p l1 l2 = match (l1,l2) with [],[] -> true | (h1::t1,h2::t2) -> p h1 h2 & forall2 p t1 t2 | _ -> false;; let rec exists p l = match l with [] -> false | h::t -> p(h) or exists p t;; let length = let rec len k l = if l = [] then k else len (k + 1) (tl l) in fun l -> len 0 l;; let rec filter p l = match l with [] -> l | h::t -> let t' = filter p t in if p(h) then if t'==t then l else h::t' else t';; let rec partition p l = match l with [] -> [],l | h::t -> let yes,no = partition p t in if p(h) then (if yes == t then l,[] else h::yes,no) else (if no == t then [],l else yes,h::no);; let rec mapfilter f l = match l with [] -> [] | (h::t) -> let rest = mapfilter f t in try (f h)::rest with Failure _ -> rest;; let rec find p l = match l with [] -> failwith "find" | (h::t) -> if p(h) then h else find p t;; let rec tryfind f l = match l with [] -> failwith "tryfind" | (h::t) -> try f h with Failure _ -> tryfind f t;; let flat l = itlist (@) l [];; let rec remove p l = match l with [] -> failwith "remove" | (h::t) -> if p(h) then h,t else let y,n = remove p t in y,h::n;; let rec chop_list n l = if n = 0 then [],l else try let m,l' = chop_list (n-1) (tl l) in (hd l)::m,l' with Failure _ -> failwith "chop_list";; let index x = let rec ind n l = match l with [] -> failwith "index" | (h::t) -> if Pervasives.compare x h = 0 then n else ind (n + 1) t in ind 0;; (* ------------------------------------------------------------------------- *) (* "Set" operations on lists. *) (* ------------------------------------------------------------------------- *) let rec mem x lis = match lis with [] -> false | (h::t) -> Pervasives.compare x h = 0 or mem x t;; let insert x l = if mem x l then l else x::l;; let union l1 l2 = itlist insert l1 l2;; let unions l = itlist union l [];; let intersect l1 l2 = filter (fun x -> mem x l2) l1;; let subtract l1 l2 = filter (fun x -> not (mem x l2)) l1;; let subset l1 l2 = forall (fun t -> mem t l2) l1;; let set_eq l1 l2 = subset l1 l2 & subset l2 l1;; (* ------------------------------------------------------------------------- *) (* Association lists. *) (* ------------------------------------------------------------------------- *) let rec assoc a l = match l with (x,y)::t -> if Pervasives.compare x a = 0 then y else assoc a t | [] -> failwith "find";; let rec rev_assoc a l = match l with (x,y)::t -> if Pervasives.compare y a = 0 then x else rev_assoc a t | [] -> failwith "find";; (* ------------------------------------------------------------------------- *) (* Zipping, unzipping etc. *) (* ------------------------------------------------------------------------- *) let rec zip l1 l2 = match (l1,l2) with ([],[]) -> [] | (h1::t1,h2::t2) -> (h1,h2)::(zip t1 t2) | _ -> failwith "zip";; let rec unzip = function [] -> [],[] | ((a,b)::rest) -> let alist,blist = unzip rest in (a::alist,b::blist);; (* ------------------------------------------------------------------------- *) (* Sharing out a list according to pattern in list-of-lists. *) (* ------------------------------------------------------------------------- *) let rec shareout pat all = if pat = [] then [] else let l,r = chop_list (length (hd pat)) all in l::(shareout (tl pat) r);; (* ------------------------------------------------------------------------- *) (* Iterating functions over lists. *) (* ------------------------------------------------------------------------- *) let rec do_list f l = match l with [] -> () | (h::t) -> (f h; do_list f t);; (* ------------------------------------------------------------------------- *) (* Sorting. *) (* ------------------------------------------------------------------------- *) let rec sort cmp lis = match lis with [] -> [] | piv::rest -> let r,l = partition (cmp piv) rest in (sort cmp l) @ (piv::(sort cmp r));; (* ------------------------------------------------------------------------- *) (* Removing adjacent (NB!) equal elements from list. *) (* ------------------------------------------------------------------------- *) let rec uniq l = match l with x::(y::_ as t) -> let t' = uniq t in if Pervasives.compare x y = 0 then t' else if t'==t then l else x::t' | _ -> l;; (* ------------------------------------------------------------------------- *) (* Convert list into set by eliminating duplicates. *) (* ------------------------------------------------------------------------- *) let setify s = uniq (sort (fun x y -> Pervasives.compare x y <= 0) s);; (* ------------------------------------------------------------------------- *) (* String operations (surely there is a better way...) *) (* ------------------------------------------------------------------------- *) let implode l = itlist (^) l "";; let explode s = let rec exap n l = if n < 0 then l else exap (n - 1) ((String.sub s n 1)::l) in exap (String.length s - 1) [];; (* ------------------------------------------------------------------------- *) (* Greatest common divisor. *) (* ------------------------------------------------------------------------- *) let gcd = let rec gxd x y = if y = 0 then x else gxd y (x mod y) in fun x y -> let x' = abs x and y' = abs y in if x' < y' then gxd y' x' else gxd x' y';; (* ------------------------------------------------------------------------- *) (* Some useful functions on "num" type. *) (* ------------------------------------------------------------------------- *) let num_0 = Int 0 and num_1 = Int 1 and num_2 = Int 2 and num_10 = Int 10;; let pow2 n = power_num num_2 (Int n);; let pow10 n = power_num num_10 (Int n);; let numdom r = let r' = Ratio.normalize_ratio (ratio_of_num r) in num_of_big_int(Ratio.numerator_ratio r'), num_of_big_int(Ratio.denominator_ratio r');; let numerator = fst o numdom and denominator = snd o numdom;; let gcd_num n1 n2 = num_of_big_int(Big_int.gcd_big_int (big_int_of_num n1) (big_int_of_num n2));; let lcm_num x y = if x =/ num_0 & y =/ num_0 then num_0 else abs_num((x */ y) // gcd_num x y);; (* ------------------------------------------------------------------------- *) (* All pairs arising from applying a function over two lists. *) (* ------------------------------------------------------------------------- *) let rec allpairs f l1 l2 = match l1 with h1::t1 -> itlist (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2) | [] -> [];; (* ------------------------------------------------------------------------- *) (* Issue a report with a newline. *) (* ------------------------------------------------------------------------- *) let report s = Format.print_string s; Format.print_newline();; (* ------------------------------------------------------------------------- *) (* Convenient function for issuing a warning. *) (* ------------------------------------------------------------------------- *) let warn cond s = if cond then report ("Warning: "^s) else ();; (* ------------------------------------------------------------------------- *) (* Flags to switch on verbose mode. *) (* ------------------------------------------------------------------------- *) let verbose = ref true;; let report_timing = ref true;; (* ------------------------------------------------------------------------- *) (* Switchable version of "report". *) (* ------------------------------------------------------------------------- *) let remark s = if !verbose then report s else ();; (* ------------------------------------------------------------------------- *) (* Time a function. *) (* ------------------------------------------------------------------------- *) let time f x = if not (!report_timing) then f x else let start_time = Sys.time() in try let result = f x in let finish_time = Sys.time() in report("CPU time (user): "^(string_of_float(finish_time -. start_time))); result with e -> let finish_time = Sys.time() in Format.print_string("Failed after (user) CPU time of "^ (string_of_float(finish_time -. start_time))^": "); raise e;; (* ------------------------------------------------------------------------- *) (* Versions of assoc and rev_assoc with default rather than failure. *) (* ------------------------------------------------------------------------- *) let rec assocd a l d = match l with [] -> d | (x,y)::t -> if Pervasives.compare x a = 0 then y else assocd a t d;; let rec rev_assocd a l d = match l with [] -> d | (x,y)::t -> if Pervasives.compare y a = 0 then x else rev_assocd a t d;; (* ------------------------------------------------------------------------- *) (* Version of map that avoids rebuilding unchanged subterms. *) (* ------------------------------------------------------------------------- *) let rec qmap f l = match l with h::t -> let h' = f h and t' = qmap f t in if h' == h & t' == t then l else h'::t' | _ -> l;; (* ------------------------------------------------------------------------- *) (* Merging and bottom-up mergesort. *) (* ------------------------------------------------------------------------- *) let rec merge ord l1 l2 = match l1 with [] -> l2 | h1::t1 -> match l2 with [] -> l1 | h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2) else h2::(merge ord l1 t2);; let mergesort ord = let rec mergepairs l1 l2 = match (l1,l2) with ([s],[]) -> s | (l,[]) -> mergepairs [] l | (l,[s1]) -> mergepairs (s1::l) [] | (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);; (* ------------------------------------------------------------------------- *) (* Common measure predicates to use with "sort". *) (* ------------------------------------------------------------------------- *) let increasing f x y = Pervasives.compare (f x) (f y) < 0;; let decreasing f x y = Pervasives.compare (f x) (f y) > 0;; (* ------------------------------------------------------------------------- *) (* Polymorphic finite partial functions via Patricia trees. *) (* *) (* The point of this strange representation is that it is canonical (equal *) (* functions have the same encoding) yet reasonably efficient on average. *) (* *) (* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10). *) (* ------------------------------------------------------------------------- *) type ('a,'b)func = Empty | Leaf of int * ('a*'b)list | Branch of int * int * ('a,'b)func * ('a,'b)func;; (* ------------------------------------------------------------------------- *) (* Undefined function. *) (* ------------------------------------------------------------------------- *) let undefined = Empty;; (* ------------------------------------------------------------------------- *) (* In case of equality comparison worries, better use this. *) (* ------------------------------------------------------------------------- *) let is_undefined f = match f with Empty -> true | _ -> false;; (* ------------------------------------------------------------------------- *) (* Operation analagous to "map" for lists. *) (* ------------------------------------------------------------------------- *) let mapf = let rec map_list f l = match l with [] -> [] | (x,y)::t -> (x,f(y))::(map_list f t) in let rec mapf f t = match t with Empty -> Empty | Leaf(h,l) -> Leaf(h,map_list f l) | Branch(p,b,l,r) -> Branch(p,b,mapf f l,mapf f r) in mapf;; (* ------------------------------------------------------------------------- *) (* Operations analogous to "fold" for lists. *) (* ------------------------------------------------------------------------- *) let foldl = let rec foldl_list f a l = match l with [] -> a | (x,y)::t -> foldl_list f (f a x y) t in let rec foldl f a t = match t with Empty -> a | Leaf(h,l) -> foldl_list f a l | Branch(p,b,l,r) -> foldl f (foldl f a l) r in foldl;; let foldr = let rec foldr_list f l a = match l with [] -> a | (x,y)::t -> f x y (foldr_list f t a) in let rec foldr f t a = match t with Empty -> a | Leaf(h,l) -> foldr_list f l a | Branch(p,b,l,r) -> foldr f l (foldr f r a) in foldr;; (* ------------------------------------------------------------------------- *) (* Mapping to sorted-list representation of the graph, domain and range. *) (* ------------------------------------------------------------------------- *) let graph f = setify (foldl (fun a x y -> (x,y)::a) [] f);; let dom f = setify(foldl (fun a x y -> x::a) [] f);; let ran f = setify(foldl (fun a x y -> y::a) [] f);; (* ------------------------------------------------------------------------- *) (* Application. *) (* ------------------------------------------------------------------------- *) let applyd = let rec apply_listd l d x = match l with (a,b)::t -> let c = Pervasives.compare x a in if c = 0 then b else if c > 0 then apply_listd t d x else d x | [] -> d x in fun f d x -> let k = Hashtbl.hash x in let rec look t = match t with Leaf(h,l) when h = k -> apply_listd l d x | Branch(p,b,l,r) when (k lxor p) land (b - 1) = 0 -> look (if k land b = 0 then l else r) | _ -> d x in look f;; let apply f = applyd f (fun x -> failwith "apply");; let tryapplyd f a d = applyd f (fun x -> d) a;; let defined f x = try apply f x; true with Failure _ -> false;; (* ------------------------------------------------------------------------- *) (* Undefinition. *) (* ------------------------------------------------------------------------- *) let undefine = let rec undefine_list x l = match l with (a,b as ab)::t -> let c = Pervasives.compare x a in if c = 0 then t else if c < 0 then l else let t' = undefine_list x t in if t' == t then l else ab::t' | [] -> [] in fun x -> let k = Hashtbl.hash x in let rec und t = match t with Leaf(h,l) when h = k -> let l' = undefine_list x l in if l' == l then t else if l' = [] then Empty else Leaf(h,l') | Branch(p,b,l,r) when k land (b - 1) = p -> if k land b = 0 then let l' = und l in if l' == l then t else (match l' with Empty -> r | _ -> Branch(p,b,l',r)) else let r' = und r in if r' == r then t else (match r' with Empty -> l | _ -> Branch(p,b,l,r')) | _ -> t in und;; (* ------------------------------------------------------------------------- *) (* Redefinition and combination. *) (* ------------------------------------------------------------------------- *) let (|->),combine = let newbranch p1 t1 p2 t2 = let zp = p1 lxor p2 in let b = zp land (-zp) in let p = p1 land (b - 1) in if p1 land b = 0 then Branch(p,b,t1,t2) else Branch(p,b,t2,t1) in let rec define_list (x,y as xy) l = match l with (a,b as ab)::t -> let c = Pervasives.compare x a in if c = 0 then xy::t else if c < 0 then xy::l else ab::(define_list xy t) | [] -> [xy] and combine_list op z l1 l2 = match (l1,l2) with [],_ -> l2 | _,[] -> l1 | ((x1,y1 as xy1)::t1,(x2,y2 as xy2)::t2) -> let c = Pervasives.compare x1 x2 in if c < 0 then xy1::(combine_list op z t1 l2) else if c > 0 then xy2::(combine_list op z l1 t2) else let y = op y1 y2 and l = combine_list op z t1 t2 in if z(y) then l else (x1,y)::l in let (|->) x y = let k = Hashtbl.hash x in let rec upd t = match t with Empty -> Leaf (k,[x,y]) | Leaf(h,l) -> if h = k then Leaf(h,define_list (x,y) l) else newbranch h t k (Leaf(k,[x,y])) | Branch(p,b,l,r) -> if k land (b - 1) <> p then newbranch p t k (Leaf(k,[x,y])) else if k land b = 0 then Branch(p,b,upd l,r) else Branch(p,b,l,upd r) in upd in let rec combine op z t1 t2 = match (t1,t2) with Empty,_ -> t2 | _,Empty -> t1 | Leaf(h1,l1),Leaf(h2,l2) -> if h1 = h2 then let l = combine_list op z l1 l2 in if l = [] then Empty else Leaf(h1,l) else newbranch h1 t1 h2 t2 | (Leaf(k,lis) as lf),(Branch(p,b,l,r) as br) -> if k land (b - 1) = p then if k land b = 0 then (match combine op z lf l with Empty -> r | l' -> Branch(p,b,l',r)) else (match combine op z lf r with Empty -> l | r' -> Branch(p,b,l,r')) else newbranch k lf p br | (Branch(p,b,l,r) as br),(Leaf(k,lis) as lf) -> if k land (b - 1) = p then if k land b = 0 then (match combine op z l lf with Empty -> r | l' -> Branch(p,b,l',r)) else (match combine op z r lf with Empty -> l | r' -> Branch(p,b,l,r')) else newbranch p br k lf | Branch(p1,b1,l1,r1),Branch(p2,b2,l2,r2) -> if b1 < b2 then if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2 else if p2 land b1 = 0 then (match combine op z l1 t2 with Empty -> r1 | l -> Branch(p1,b1,l,r1)) else (match combine op z r1 t2 with Empty -> l1 | r -> Branch(p1,b1,l1,r)) else if b2 < b1 then if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2 else if p1 land b2 = 0 then (match combine op z t1 l2 with Empty -> r2 | l -> Branch(p2,b2,l,r2)) else (match combine op z t1 r2 with Empty -> l2 | r -> Branch(p2,b2,l2,r)) else if p1 = p2 then (match (combine op z l1 l2,combine op z r1 r2) with (Empty,r) -> r | (l,Empty) -> l | (l,r) -> Branch(p1,b1,l,r)) else newbranch p1 t1 p2 t2 in (|->),combine;; (* ------------------------------------------------------------------------- *) (* Special case of point function. *) (* ------------------------------------------------------------------------- *) let (|=>) = fun x y -> (x |-> y) undefined;; (* ------------------------------------------------------------------------- *) (* Grab an arbitrary element. *) (* ------------------------------------------------------------------------- *) let rec choose t = match t with Empty -> failwith "choose: completely undefined function" | Leaf(h,l) -> hd l | Branch(b,p,t1,t2) -> choose t1;; (* ------------------------------------------------------------------------- *) (* Install a trivial printer for the general polymorphic case. *) (* ------------------------------------------------------------------------- *) (* let print_fpf (f:('a,'b)func) = Format.print_string "<func>";; #install_printer print_fpf;; *) (* ------------------------------------------------------------------------- *) (* Set operations parametrized by equality (from Steven Obua). *) (* ------------------------------------------------------------------------- *) let rec mem' eq = let rec mem x lis = match lis with [] -> false | (h::t) -> eq x h or mem x t in mem;; let insert' eq x l = if mem' eq x l then l else x::l;; let union' eq l1 l2 = itlist (insert' eq) l1 l2;; let unions' eq l = itlist (union' eq) l [];; let subtract' eq l1 l2 = filter (fun x -> not (mem' eq x l2)) l1;; (* ------------------------------------------------------------------------- *) (* Accepts decimal, hex or binary numeral, using C notation 0x... for hex *) (* and analogous 0b... for binary. *) (* ------------------------------------------------------------------------- *) let num_of_string = let values = ["0",0; "1",1; "2",2; "3",3; "4",4; "5",5; "6",6; "7",7; "8",8; "9",9; "a",10; "A",10; "b",11; "B",11; "c",12; "C",12; "d",13; "D",13; "e",14; "E",14; "f",15; "F",15] in let valof b s = let v = Int(assoc s values) in if v </ b then v else failwith "num_of_string: invalid digit for base" and two = num_2 and ten = num_10 and sixteen = Int 16 in let rec num_of_stringlist b l = match l with [] -> failwith "num_of_string: no digits after base indicator" | [h] -> valof b h | h::t -> valof b h +/ b */ num_of_stringlist b t in fun s -> match explode(s) with [] -> failwith "num_of_string: no digits" | "0"::"x"::hexdigits -> num_of_stringlist sixteen (rev hexdigits) | "0"::"b"::bindigits -> num_of_stringlist two (rev bindigits) | decdigits -> num_of_stringlist ten (rev decdigits);; (* ------------------------------------------------------------------------- *) (* Convenient conversion between files and (lists of) strings. *) (* ------------------------------------------------------------------------- *) let strings_of_file filename = let fd = try Pervasives.open_in filename with Sys_error _ -> failwith("strings_of_file: can't open "^filename) in let rec suck_lines acc = try let l = Pervasives.input_line fd in suck_lines (l::acc) with End_of_file -> rev acc in let data = suck_lines [] in (Pervasives.close_in fd; data);; let string_of_file filename = end_itlist (fun s t -> s^"\n"^t) (strings_of_file filename);; let file_of_string filename s = let fd = Pervasives.open_out filename in output_string fd s; close_out fd;; end;;