labels_flag:= true;;
let min_least = prove_by_refinement (
`!(X:num->bool) c. (X c) ==> (X (
min_num X) /\ (
min_num X <=| c))`,
(* {{{ proof *)
[
REWRITE_TAC[
min_num;
IN];
REPEAT GEN_TAC;
DISCH_TAC;
SUBGOAL_THEN `?n. (X:num->bool) n /\ (!m. m <| n ==> ~X m)` MP_TAC;
REWRITE_TAC[(GSYM (ISPEC `X:num->bool`
num_WOP))];
ASM_MESON_TAC[];
DISCH_THEN CHOOSE_TAC;
ASSUME_TAC (select_thm `\m. (X:num->bool) m /\ (!n. X n ==> m <=| n)` `n:num`);
ABBREV_TAC `r = @m. (X:num->bool) m /\ (!n. X n ==> m <=| n)`;
ASM_MESON_TAC[ ARITH_RULE `~(n' < n) ==> (n <=| n') `]
]);;
(* }}} *)
let square_le = prove_by_refinement(
`!x y. (&.0 <=. x) /\ (&.0 <=. y) /\ (x*.x <=. y*.y) ==> (x <=. y)`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
UNDISCH_FIND_TAC `( *. )` ;
ONCE_REWRITE_TAC[REAL_ARITH `(a <=. b) <=> (&.0 <= (b - a))`];
REWRITE_TAC[GSYM
REAL_DIFFSQ];
DISCH_TAC;
DISJ_CASES_TAC (REAL_ARITH `&.0 < (y+x) \/ (y+x <=. (&.0))`);
MATCH_MP_TAC (SPEC `(y+x):real`
REAL_LE_LCANCEL_IMP);
ASM_REWRITE_TAC [REAL_ARITH `x * (&.0) = (&.0)`];
CLEAN_ASSUME_TAC (REAL_ARITH `(&.0 <= y) /\ (&.0 <=. x) /\ (y+x <= (&.0)) ==> ((x= &.0) /\ (y= &.0))`);
ASM_REWRITE_TAC[REAL_ARITH `&.0 <=. (&.0 -. (&.0))`];
]);;
(* }}} *)
let max_num_sequence = prove_by_refinement(
`!(t:num->num). (?n. !m. (n <=| m) ==> (t m = 0)) ==>
(?M. !i. (t i <=| M))`,
(* {{{ proof *)
[
GEN_TAC;
REWRITE_TAC[GSYM
LEFT_FORALL_IMP_THM];
GEN_TAC;
SPEC_TAC (`t:num->num`,`t:num->num`);
SPEC_TAC (`n:num`,`n:num`);
INDUCT_TAC;
GEN_TAC;
REWRITE_TAC[ARITH_RULE `0<=|m`];
DISCH_TAC;
EXISTS_TAC `0`;
ASM_MESON_TAC[ARITH_RULE`(a=0) ==> (a <=|0)`];
DISCH_ALL_TAC;
ABBREV_TAC `b = \m. (if (m=n) then 0 else (t (m:num)) )`;
FIRST_ASSUM (fun t-> ASSUME_TAC (SPEC `b:num->num` t));
SUBGOAL_TAC `((b:num->num) (n) = 0) /\ (!m. ~(m=n) ==> (b m = t m))`;
EXPAND_TAC "b";
CONJ_TAC;
COND_CASES_TAC;
REWRITE_TAC[];
ASM_MESON_TAC[];
GEN_TAC;
COND_CASES_TAC;
REWRITE_TAC[];
REWRITE_TAC[];
DISCH_ALL_TAC;
FIRST_ASSUM (fun t-> MP_TAC(SPEC `b:num->num` t));
SUBGOAL_TAC `!m. (n<=|m) ==> (b m =0)`;
GEN_TAC;
ASM_CASES_TAC `m = (n:num)`;
ASM_REWRITE_TAC[];
SUBGOAL_TAC ( `(n <=| m) /\ (~(m = n)) ==> (SUC n <=| m)`);
ARITH_TAC;
ASM_REWRITE_TAC[];
DISCH_ALL_TAC;
ASM_MESON_TAC[]; (* good *)
DISCH_THEN (fun t-> REWRITE_TAC[t]);
DISCH_THEN CHOOSE_TAC;
EXISTS_TAC `(M:num) + (t:num->num) n`;
GEN_TAC;
ASM_CASES_TAC `(i:num) = n`;
ASM_REWRITE_TAC[];
ARITH_TAC;
MATCH_MP_TAC (ARITH_RULE `x <=| M ==> (x <=| M+ u)`);
ASM_MESON_TAC[];
]);;
(* }}} *)
(* }}} *)
let REAL_MUL_NN = prove_by_refinement(
`!x y. (&.0 <= x*y) <=>
((&.0 <= x /\ (&.0 <=. y)) \/ ((x <= &.0) /\ (y <= &.0) ))`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
SUBGOAL_TAC `! x y. ((&.0 < x) ==> ((&.0 <= x*y) <=> ((&.0 <= x /\ (&.0 <=. y)) \/ ((x <= &.0) /\ (y <= &.0) ))))`;
DISCH_ALL_TAC;
ASM_SIMP_TAC[REAL_ARITH `((&.0 <. x) ==> (&.0 <=. x))`;REAL_ARITH `(&.0 <. x) ==> ~(x <=. &.0)`];
EQ_TAC;
ASM_MESON_TAC[
REAL_PROP_NN_LCANCEL];
ASM_MESON_TAC[
REAL_LE_MUL;
REAL_LT_IMP_LE];
DISCH_TAC;
DISJ_CASES_TAC (REAL_ARITH `(&.0 < x) \/ (x = &.0) \/ (x < &.0)`);
ASM_MESON_TAC[];
UND 1 THEN DISCH_THEN DISJ_CASES_TAC;
ASM_REWRITE_TAC[];
REAL_ARITH_TAC;
ASM_SIMP_TAC[REAL_ARITH `((x <. &.0) ==> ~(&.0 <=. x))`;REAL_ARITH `(x <. &.0) ==> (x <=. &.0)`];
USE 0 (SPECL [`--. (x:real)`;`--. (y:real)`]);
UND 0;
REDUCE_TAC;
ASM_REWRITE_TAC[];
ASM_SIMP_TAC[REAL_ARITH `((x <. &.0) ==> ~(&.0 <=. x))`;REAL_ARITH `(x <. &.0) ==> (x <=. &.0)`];
]);;
(* }}} *)
let ABS_SQUARE = prove_by_refinement(
`!t u. abs(t) <. u ==> t*t <. u*u`,
(* {{{ proof *)
[
REP_GEN_TAC;
CONV_TAC (SUBS_CONV[SPEC `t:real` (REWRITE_RULE[
POW_2] (GSYM
REAL_POW2_ABS))]);
ASSUME_TAC
REAL_ABS_POS;
USE 0 (SPEC `t:real`);
ABBREV_TAC `(b:real) = (abs t)`;
KILL 1;
DISCH_ALL_TAC;
MATCH_MP_TAC REAL_PROP_LT_LRMUL;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
let ABS_SQUARE_LE = prove_by_refinement(
`!t u. abs(t) <=. u ==> t*t <=. u*u`,
(* {{{ proof *)
[
REP_GEN_TAC;
CONV_TAC (SUBS_CONV[SPEC `t:real` (REWRITE_RULE[
POW_2] (GSYM
REAL_POW2_ABS))]);
ASSUME_TAC
REAL_ABS_POS;
USE 0 (SPEC `t:real`);
ABBREV_TAC `(b:real) = (abs t)`;
KILL 1;
DISCH_ALL_TAC;
MATCH_MP_TAC REAL_PROP_LE_LRMUL;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
(* }}} *)
(* ------------------------------------------------------------------ *)
(* finite products, in imitation of finite sums *)
(* ------------------------------------------------------------------ *)
let prod_EXISTS = prove_by_refinement(
`?prod. (!f n. prod(n,0) f = &1) /\
(!f m n. prod(n,SUC m) f = prod(n,m) f * f(n + m))`,
(* {{{ proof *)
[
(CHOOSE_TAC o prove_recursive_functions_exist num_RECURSION) `(!f n. sm n 0 f = &1) /\ (!f m n. sm n (SUC m) f = sm n m f * f(n + m))` ;
EXISTS_TAC `\(n,m) f. (sm:num->num->(num->real)->real) n m f`;
CONV_TAC(DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[]
]);;
(* }}} *)
let prod = prove
(`!n m. (prod(n,0) f = &1) /\
(prod(n,SUC m) f = prod(n,m) f * f(n + m))`,
(* {{{ proof *)
REWRITE_TAC[
prod_DEF]);;
(* }}} *)
let PROD_TWO = prove_by_refinement(
`!f n p. prod(0,n) f * prod(n,p) f = prod(0,n + p) f`,
(* {{{ proof *)
[
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[prod;
REAL_MUL_RID;
MULT_CLAUSES;
ADD_0];
REWRITE_TAC[ARITH_RULE `n+| (SUC p) = (SUC (n+|p))`;prod;ARITH_RULE `0+|n = n`];
ASM_REWRITE_TAC[REAL_MUL_ASSOC];
]);;
(* }}} *)
let ABS_PROD = prove_by_refinement(
`!f m n. abs(prod(m,n) f) = prod(m,n) (\n. abs(f n))`,
(* {{{ proof *)
[
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC;
REWRITE_TAC[prod];
REAL_ARITH_TAC;
ASM_REWRITE_TAC[prod;
ABS_MUL]
]);;
(* }}} *)
let PROD_EQ = prove_by_refinement
(`!f g m n. (!r. m <= r /\ r < (n + m) ==> (f(r) = g(r)))
==> (prod(m,n) f = prod(m,n) g)`,
(* {{{ proof *)
[
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[prod];
REWRITE_TAC[prod];
DISCH_THEN (fun th -> MP_TAC th THEN (MP_TAC (SPEC `m+|n` th)));
REWRITE_TAC[ARITH_RULE `(m<=| (m+|n))/\ (m +| n <| (SUC n +| m))`];
DISCH_ALL_TAC;
ASM_REWRITE_TAC[];
AP_THM_TAC THEN AP_TERM_TAC;
FIRST_X_ASSUM MATCH_MP_TAC;
GEN_TAC THEN DISCH_TAC;
FIRST_X_ASSUM MATCH_MP_TAC;
ASM_MESON_TAC[ARITH_RULE `r <| (n+| m) ==> (r <| (SUC n +| m))`]
]);;
(* }}} *)
let PROD_POS = prove_by_refinement
(`!f. (!n. &0 <= f(n)) ==> !m n. &0 <= prod(m,n) f`,
(* {{{ proof *)
[
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[prod];
REAL_ARITH_TAC;
ASM_MESON_TAC[
REAL_LE_MUL]
]);;
(* }}} *)
let PROD_POS_GEN = prove_by_refinement
(`!f m n.
(!n. m <= n ==> &0 <= f(n))
==> &0 <= prod(m,n) f`,
(* {{{ proof *)
[
REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[prod];
REAL_ARITH_TAC;
ASM_MESON_TAC[
REAL_LE_MUL;ARITH_RULE `m <=| (m +| n)`]
]);;
(* }}} *)
let PROD_ABS = prove
(`!f m n. abs(prod(m,n) (\m. abs(f m))) = prod(m,n) (\m. abs(f m))`,
(* {{{ proof *)
REWRITE_TAC[
ABS_PROD;REAL_ARITH `||. (||. x) = (||. x)`]);;
(* }}} *)
let PROD_ZERO = prove_by_refinement
(`!f m n. (?p. (m <= p /\ (p < (n+| m)) /\ (f p = (&.0)))) ==>
(prod(m,n) f = &0)`,
(* {{{ proof *)
[
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN (REWRITE_TAC[prod]);
ARITH_TAC;
DISCH_THEN CHOOSE_TAC;
ASM_CASES_TAC `p <| (n+| m)`;
MATCH_MP_TAC (
prove (`(x = (&.0)) ==> (x *. y = (&.0))`,(DISCH_THEN (fun th -> (REWRITE_TAC[th]))) THEN REAL_ARITH_TAC));
FIRST_X_ASSUM MATCH_MP_TAC;
ASM_MESON_TAC[];
POP_ASSUM (fun th -> ASSUME_TAC (MATCH_MP (ARITH_RULE `(~(p <| (n+|m)) ==> ((p <| ((SUC n) +| m)) ==> (p = ((m +| n)))))`) th));
MATCH_MP_TAC (
prove (`(x = (&.0)) ==> (y *. x = (&.0))`,(DISCH_THEN (fun th -> (REWRITE_TAC[th]))) THEN REAL_ARITH_TAC));
ASM_MESON_TAC[]
]);;
(* }}} *)
let PROD_MUL = prove_by_refinement(
`!f g m n. prod(m,n) (\n. f(n) * g(n)) = prod(m,n) f * prod(m,n) g`,
(* {{{ proof *)
[
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[prod];
REAL_ARITH_TAC;
REWRITE_TAC[
REAL_MUL_AC];
]);;
(* }}} *)
let PROD_CMUL = prove_by_refinement(
`!f c m n. prod(m,n) (\n. c * f(n)) = (c **. n) * prod(m,n) f`,
(* {{{ proof *)
[
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[prod;pow];
REAL_ARITH_TAC;
REWRITE_TAC[
REAL_MUL_AC];
]);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* LEMMAS ABOUT SETS *)
(* ------------------------------------------------------------------ *)
(* IN_ELIM_THM produces garbled results at times. I like this better: *)
(*** JRH replaced this with the "new" IN_ELIM_THM; see how it works.
let IN_ELIM_THM' = prove_by_refinement(
`(!P. !x:A. x IN (GSPEC P) <=> P x) /\
(!P. !x:A. x IN (\x. P x) <=> P x) /\
(!P. !x:A. (GSPEC P) x <=> P x) /\
(!P (x:A) (t:A). (\t. (?y:A. P y /\ (t = y))) x <=> P x)`,
(* {{{ proof *)
[
REWRITE_TAC[IN; GSPEC];
MESON_TAC[];
]);;
(* }}} *)
****)
let IN_ELIM_THM' = IN_ELIM_THM;;
(* }}} *)
let BIJ_INVERSE = prove_by_refinement(
`!a b (f:A->B). (
SURJ f a b) ==> (?(g:B->A). (
INJ g b a))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
SUBGOAL_THEN `!y. ?u. ((y
IN b) ==> ((u
IN a) /\ ((f:A->B) u = y)))` ASSUME_TAC;
ASM_MESON_TAC[
SURJ];
LABEL_ALL_TAC;
H_REWRITE_RULE[THM
SKOLEM_THM] (HYP "1");
LABEL_ALL_TAC;
H_UNDISCH_TAC (HYP"2");
DISCH_THEN CHOOSE_TAC;
EXISTS_TAC `u:B->A`;
REWRITE_TAC[
INJ] THEN CONJ_TAC THEN (ASM_MESON_TAC[])
]
(* }}} *)
);;
(* complement of an intersection is a union of complements *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* nested union can flatten from outside in, or inside out *)
let UNIONS_IMAGE_UNIONS = prove_by_refinement(
`!(X:((A->bool)->bool)->bool).
UNIONS (
UNIONS X) = (
UNIONS (
IMAGE UNIONS X))`,
(* {{{ proof *)
[
GEN_TAC;
REWRITE_TAC[
EXTENSION;
IN_UNIONS];
GEN_TAC;
REWRITE_TAC[
EXTENSION;
IN_UNIONS];
EQ_TAC;
DISCH_THEN (CHOOSE_THEN MP_TAC);
DISCH_ALL_TAC;
FIRST_ASSUM MP_TAC;
DISCH_THEN CHOOSE_TAC;
EXISTS_TAC `
UNIONS (t':(A->bool)->bool)`;
REWRITE_TAC[
IN_UNIONS;
IN_IMAGE];
CONJ_TAC;
EXISTS_TAC `(t':(A->bool)->bool)`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
DISCH_THEN CHOOSE_TAC;
FIRST_ASSUM MP_TAC;
REWRITE_TAC[
IN_IMAGE];
DISCH_ALL_TAC;
FIRST_ASSUM MP_TAC;
DISCH_THEN CHOOSE_TAC;
UNDISCH_TAC `(x:A)
IN t`;
FIRST_ASSUM (fun t-> REWRITE_TAC[t]);
REWRITE_TAC[
IN_UNIONS];
DISCH_THEN (CHOOSE_TAC);
EXISTS_TAC `t':(A->bool)`;
CONJ_TAC;
EXISTS_TAC `x':(A->bool)->bool`;
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[];
]);;
(* }}} *)
(* }}} *)
(**** New proof by JRH; old one breaks because of new set comprehensions
let INTERS_EMPTY = prove_by_refinement(
`INTERS EMPTY = (UNIV:A->bool)`,
(* {{{ proof *)
[
REWRITE_TAC[INTERS;NOT_IN_EMPTY;IN_ELIM_THM';];
REWRITE_TAC[UNIV;GSPEC];
MATCH_MP_TAC EQ_EXT;
GEN_TAC;
REWRITE_TAC[IN_ELIM_THM'];
MESON_TAC[];
]);;
(* }}} *)
****)
(* }}} *)
(* Partial functions, which we identify with functions that
take the canonical choice of element outside the domain. *)
(* relations *)
(* We do not introduce the equivalence class of f explicitly, because
it is represented directly in HOL by (f a) *)
let partition_DEF = new_definition
`partition (A:A->bool) SA <=> (UNIONS SA = A) /\
(!a b. ((a IN SA) /\ (b IN SA) /\ (~(a = b)) ==> ({} = (a INTER b))))`;;
(*** Old proof replaced by JRH: no longer UNWIND_THM[12] clause in IN_ELIM_THM
let GSPEC_THM = prove_by_refinement(
`!P (x:A). (?y. P y /\ (x = y)) <=> P x`,
[REWRITE_TAC[IN_ELIM_THM]]);;
***)
let CARD_GE_REFL = prove
(`!s:A->bool. s >=_c s`,
GEN_TAC THEN REWRITE_TAC[
GE_C] THEN
EXISTS_TAC `\x:A. x` THEN MESON_TAC[]);;
let FINITE_HAS_SIZE_LEMMA = prove
(`!s:A->bool.
FINITE s ==> ?n:num. {x | x < n} >=_c s`,
MATCH_MP_TAC
FINITE_INDUCT THEN CONJ_TAC THENL
[EXISTS_TAC `0` THEN REWRITE_TAC[
NOT_IN_EMPTY;
GE_C;
IN_ELIM_THM];
REPEAT GEN_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
EXISTS_TAC `SUC N` THEN POP_ASSUM MP_TAC THEN PURE_REWRITE_TAC[
GE_C] THEN
DISCH_THEN(X_CHOOSE_TAC `f:num->A`) THEN
EXISTS_TAC `\n:num. if n = N then x:A else f n` THEN
X_GEN_TAC `y:A` THEN PURE_REWRITE_TAC[
IN_INSERT] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC (ANTE_RES_THEN MP_TAC)) THENL
[EXISTS_TAC `N:num` THEN ASM_REWRITE_TAC[
IN_ELIM_THM] THEN ARITH_TAC;
DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN
REWRITE_TAC[
IN_ELIM_THM] THEN STRIP_TAC THEN
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `n:num < N` THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[
LT_REFL] THEN ARITH_TAC]]);;
(* }}} *)
let NUM2_COUNTABLE = prove_by_refinement(
`
COUNTABLE {((x:num),(y:num)) | T}`,
(* {{{ proof *)
[
CHOOSE_TAC (ISPECL[`(0,0)`;`(\ (a:num,b:num) (n:num) . if (b=0) then (0,a+b+1) else (a+1,b-1))`] num_RECURSION);
REWRITE_TAC[
COUNTABLE;
GE_C;IN_ELIM_THM'];
NAME_CONFLICT_TAC;
EXISTS_TAC `fn:num -> (num#num)`;
X_GEN_TAC `p:num#num`;
REPEAT (DISCH_THEN (CHOOSE_THEN MP_TAC));
DISCH_THEN (fun t->REWRITE_TAC[t]);
REWRITE_TAC[
IN_UNIV];
SUBGOAL_TAC `?t. t = x'+|y'`;
MESON_TAC[];
SPEC_TAC (`x':num`,`a:num`);
SPEC_TAC (`y':num`,`b:num`);
CONV_TAC (quant_left_CONV "t");
CONV_TAC (quant_left_CONV "t");
CONV_TAC (quant_left_CONV "t");
INDUCT_TAC;
REDUCE_TAC;
REP_GEN_TAC;
DISCH_THEN (fun t -> REWRITE_TAC[t]);
EXISTS_TAC `0`;
ASM_REWRITE_TAC[];
CONV_TAC (quant_left_CONV "a");
INDUCT_TAC;
REDUCE_TAC;
GEN_TAC;
USE 1 (SPECL [`0`;`t:num`]);
UND 1 THEN REDUCE_TAC;
DISCH_THEN (X_CHOOSE_TAC `n:num`);
AND 0;
USE 0 (SPEC `n:num`);
UND 0;
UND 1;
DISCH_THEN (fun t-> REWRITE_TAC[GSYM t]);
CONV_TAC (ONCE_DEPTH_CONV GEN_BETA_CONV);
BETA_TAC;
REDUCE_TAC;
DISCH_ALL_TAC;
EXISTS_TAC `SUC n`;
EXPAND_TAC "b";
KILL 0;
ASM_REWRITE_TAC[];
REWRITE_TAC [ARITH_RULE `SUC t = t+|1`];
GEN_TAC;
ABBREV_TAC `t' = SUC t`;
USE 2 (SPEC `SUC b`);
DISCH_TAC;
UND 2;
ASM_REWRITE_TAC[];
REWRITE_TAC[ARITH_RULE `SUC a +| b = a +| SUC b`];
DISCH_THEN (X_CHOOSE_TAC `n:num`);
EXISTS_TAC `SUC n`;
AND 0;
USE 0 (SPEC `n:num`);
UND 0;
UND 2;
DISCH_THEN (fun t->REWRITE_TAC[GSYM t]);
CONV_TAC (ONCE_DEPTH_CONV GEN_BETA_CONV);
BETA_TAC;
REDUCE_TAC;
DISCH_THEN (fun t->REWRITE_TAC[t]);
REWRITE_TAC[ARITH_RULE `SUC a = a+| 1`];
]);;
(* }}} *)
let COUNTABLE_UNIONS = prove_by_refinement(
`!A:(A->bool)->bool. (
COUNTABLE A) /\
(!a. (a
IN A) ==> (
COUNTABLE a)) ==> (
COUNTABLE (
UNIONS A))`,
(* {{{ proof *)
[
GEN_TAC;
DISCH_ALL_TAC;
USE 0 (REWRITE_RULE[
COUNTABLE;
GE_C;
IN_UNIV]);
CHO 0;
USE 0 (CONV_RULE (quant_left_CONV "x"));
USE 0 (CONV_RULE (quant_left_CONV "x"));
CHO 0;
USE 1 (REWRITE_RULE[
COUNTABLE;
GE_C;
IN_UNIV]);
USE 1 (CONV_RULE (quant_left_CONV "f"));
USE 1 (CONV_RULE (quant_left_CONV "f"));
UND 1;
DISCH_THEN (X_CHOOSE_TAC `g:(A->bool)->num->A`);
SUBGOAL_TAC `!a y. (a
IN (A:(A->bool)->bool)) /\ (y
IN a) ==> (? (u:num) (v:num). ( a = f u) /\ (y = g a v))`;
REP_GEN_TAC;
DISCH_ALL_TAC;
USE 1 (SPEC `a:A->bool`);
USE 0 (SPEC `a:A->bool`);
EXISTS_TAC `(x:(A->bool)->num) a`;
ASM_SIMP_TAC[];
ASSUME_TAC
NUM2_COUNTABLE;
USE 2 (REWRITE_RULE[
COUNTABLE;
GE_C;IN_ELIM_THM';
IN_UNIV]);
USE 2 (CONV_RULE NAME_CONFLICT_CONV);
UND 2 THEN (DISCH_THEN (X_CHOOSE_TAC `h:num->(num#num)`));
DISCH_TAC;
REWRITE_TAC[COUNTABLE;GE_C;IN_ELIM_THM';IN_UNIV;IN_UNIONS];
EXISTS_TAC `(\p. (g:(A->bool)->num->A) ((f:num->(A->bool)) (FST ((h:num->(num#num)) p))) (SND (h p)))`;
BETA_TAC;
GEN_TAC;
DISCH_THEN (CHOOSE_THEN MP_TAC);
DISCH_ALL_TAC;
USE 3 (SPEC `t:A->bool`);
USE 3 (SPEC `y:A`);
UND 3 THEN (ASM_REWRITE_TAC[]);
REPEAT (DISCH_THEN(CHOOSE_THEN (MP_TAC)));
DISCH_ALL_TAC;
USE 2 (SPEC `(u:num,v:num)`);
SUBGOAL_TAC `?x' y'. (u:num,v:num) = (x',y')`;
MESON_TAC[];
DISCH_TAC;
UND 2;
ASM_REWRITE_TAC[];
DISCH_THEN (CHOOSE_THEN (ASSUME_TAC o GSYM));
EXISTS_TAC `x':num`;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
SUBSET];
DISCH_ALL_TAC;
CHO 0;
USE 1 (REWRITE_RULE[IMAGE;IN_ELIM_THM']);
CHO 1;
USE 1 (REWRITE_RULE[IN_ELIM_THM']);
USE 1 (CONV_RULE NAME_CONFLICT_CONV);
EXISTS_TAC `(f':A->B) o (f:num->A)`;
REWRITE_TAC[o_DEF];
DISCH_ALL_TAC;
USE 1 (SPEC `y:B`);
UND 1;
ASM_REWRITE_TAC[];
DISCH_THEN CHOOSE_TAC;
USE 0 (SPEC `x':A`);
UND 0 THEN (ASM_REWRITE_TAC[]) THEN DISCH_TAC;
ASM_MESON_TAC[];
]);;
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
let SUBSET_SUC = prove_by_refinement(
`!(f:num->A->bool). (!i. f i
SUBSET f (SUC i)) ==> (! i j. ( i <=| j) ==> (f i
SUBSET f j))`,
(* {{{ proof *)
[
GEN_TAC;
DISCH_TAC;
REP_GEN_TAC;
MP_TAC (
prove( `?n. n = j -| i`,MESON_TAC[]));
CONV_TAC (quant_left_CONV "n");
SPEC_TAC (`i:num`,`i:num`);
SPEC_TAC (`j:num`,`j:num`);
REP 2( CONV_TAC (quant_left_CONV "n"));
INDUCT_TAC;
REP_GEN_TAC;
DISCH_ALL_TAC;
JOIN 1 2;
USE 1 (CONV_RULE REDUCE_CONV);
ASM_REWRITE_TAC[
SUBSET];
REP_GEN_TAC;
DISCH_TAC;
SUBGOAL_TAC `?j'. j = SUC j'`;
DISJ_CASES_TAC (SPEC `j:num`
num_CASES);
UND 2;
ASM_REWRITE_TAC[];
REDUCE_TAC;
ASM_REWRITE_TAC[];
DISCH_THEN CHOOSE_TAC;
ASM_REWRITE_TAC[];
USE 0 (SPEC `j':num`);
USE 1(SPECL [`j':num`;`i:num`]);
DISCH_TAC;
SUBGOAL_TAC `(n = j'-|i)`;
UND 2;
ASM_REWRITE_TAC[];
ARITH_TAC;
DISCH_TAC;
SUBGOAL_TAC `(i<=| j')`;
USE 2 (MATCH_MP(ARITH_RULE `(SUC n = j -| i) ==> (0 < j -| i)`));
UND 2;
ASM_REWRITE_TAC[];
ARITH_TAC;
UND 1;
ASM_REWRITE_TAC [];
DISCH_ALL_TAC;
REWR 6;
ASM_MESON_TAC[
SUBSET_TRANS];
]);;
(* }}} *)
let SUBSET_SUC2 = prove_by_refinement(
`!(f:num->A->bool). (!i. f (SUC i)
SUBSET (f i)) ==> (! i j. ( i <=| j) ==> (f j
SUBSET f i))`,
(* {{{ proof *)
[
GEN_TAC;
DISCH_TAC;
REP_GEN_TAC;
MP_TAC (
prove( `?n. n = j -| i`,MESON_TAC[]));
CONV_TAC (quant_left_CONV "n");
SPEC_TAC (`i:num`,`i:num`);
SPEC_TAC (`j:num`,`j:num`);
REP 2( CONV_TAC (quant_left_CONV "n"));
INDUCT_TAC;
REP_GEN_TAC;
DISCH_ALL_TAC;
JOIN 1 2;
USE 1 (CONV_RULE REDUCE_CONV);
ASM_REWRITE_TAC[
SUBSET];
REP_GEN_TAC;
DISCH_TAC;
SUBGOAL_TAC `?j'. j = SUC j'`;
DISJ_CASES_TAC (SPEC `j:num`
num_CASES);
UND 2;
ASM_REWRITE_TAC[];
REDUCE_TAC;
ASM_REWRITE_TAC[];
DISCH_THEN CHOOSE_TAC;
ASM_REWRITE_TAC[];
USE 0 (SPEC `j':num`);
USE 1(SPECL [`j':num`;`i:num`]);
DISCH_TAC;
SUBGOAL_TAC `(n = j'-|i)`;
UND 2;
ASM_REWRITE_TAC[];
ARITH_TAC;
DISCH_TAC;
SUBGOAL_TAC `(i<=| j')`;
USE 2 (MATCH_MP(ARITH_RULE `(SUC n = j -| i) ==> (0 < j -| i)`));
UND 2;
ASM_REWRITE_TAC[];
ARITH_TAC;
UND 1;
ASM_REWRITE_TAC [];
DISCH_ALL_TAC;
REWR 6;
ASM_MESON_TAC[
SUBSET_TRANS];
]);;
(* }}} *)
let INFINITE_PIGEONHOLE = prove_by_refinement(
`!I (f:A->B) B C. (~(
FINITE {i | (I i) /\ (C (f i))})) /\ (
FINITE B) /\
(C
SUBSET (
UNIONS B)) ==>
(?b. (B b) /\ ~(
FINITE {i | (I i) /\ (C
INTER b) (f i) }))`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
PROOF_BY_CONTR_TAC;
USE 3 ( CONV_RULE (quant_left_CONV "b"));
UND 0;
TAUT_TAC `P ==> (~P ==> F)`;
SUBGOAL_TAC `{i | I' i /\ (C ((f:A->B) i))} =
UNIONS (
IMAGE (\b. {i | I' i /\ ((C
INTER b) (f i))}) B)`;
REWRITE_TAC[
UNIONS;
IN_IMAGE];
MATCH_MP_TAC
EQ_EXT;
GEN_TAC;
REWRITE_TAC[IN_ELIM_THM'];
ABBREV_TAC `j = (x:A)`;
EQ_TAC;
DISCH_ALL_TAC;
USE 2 (REWRITE_RULE [
SUBSET;
UNIONS]);
USE 2 (REWRITE_RULE[IN_ELIM_THM']);
USE 2 (SPEC `(f:A->B) j`);
USE 2 (REWRITE_RULE[
IN]);
REWR 2;
CHO 2;
CONV_TAC (quant_left_CONV "x");
CONV_TAC (quant_left_CONV "x");
EXISTS_TAC (`u:B->bool`);
NAME_CONFLICT_TAC;
EXISTS_TAC (`{i' | I' i' /\ (C
INTER u) ((f:A->B) i')}`);
ASM_REWRITE_TAC[];
REWRITE_TAC[IN_ELIM_THM';
INTER];
REWRITE_TAC[IN];
ASM_REWRITE_TAC[];
DISCH_TAC;
CHO 4;
AND 4;
CHO 5;
REWR 4;
USE 4 (REWRITE_RULE[IN_ELIM_THM';INTER]);
USE 4 (REWRITE_RULE[IN]);
ASM_REWRITE_TAC[];
DISCH_TAC;
ASM_REWRITE_TAC[];
SUBGOAL_TAC `FINITE (IMAGE (\b. {i | I' i /\ (C INTER b) ((f:A->B) i)}) B)`;
MATCH_MP_TAC FINITE_IMAGE;
ASM_REWRITE_TAC[];
SIMP_TAC[FINITE_UNIONS];
DISCH_TAC;
GEN_TAC;
REWRITE_TAC[IN_IMAGE];
DISCH_THEN (X_CHOOSE_TAC `b:B->bool`);
ASM_REWRITE_TAC[];
USE 3 (SPEC `b:B->bool`);
UND 3;
AND 5;
UND 3;
ABBREV_TAC `r = {i | I' i /\ (C INTER b) ((f:A->B) i)}`;
MESON_TAC[IN];
]);;
(* }}} *)
let real_FINITE = prove_by_refinement(
`!(s:real->bool).
FINITE s ==> (?a. !x. x
IN s ==> (x <=. a))`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
ASSUME_TAC
REAL_ARCH_SIMPLE;
USE 1 (CONV_RULE (quant_left_CONV "n"));
CHO 1;
SUBGOAL_TAC `
FINITE (
IMAGE (n:real->num) s)`;
ASM_MESON_TAC[
FINITE_IMAGE];
(*** JRH -- num_FINITE is now an equivalence not an implication
ASSUME_TAC (SPEC `IMAGE (n:real->num) s` num_FINITE);
***)
ASSUME_TAC(fst(EQ_IMP_RULE(SPEC `
IMAGE (n:real->num) s`
num_FINITE)));
DISCH_TAC;
REWR 2;
CHO 2;
USE 2 (REWRITE_RULE[
IN_IMAGE]);
USE 2 (CONV_RULE NAME_CONFLICT_CONV);
EXISTS_TAC `&.a`;
GEN_TAC;
USE 2 (CONV_RULE (quant_left_CONV "x'"));
USE 2 (CONV_RULE (quant_left_CONV "x'"));
USE 2 (SPEC `x:real`);
USE 2 (SPEC `(n:real->num) x`);
DISCH_TAC;
REWR 2;
USE 1 (SPEC `x:real`);
UND 1;
MATCH_MP_TAC (REAL_ARITH `a<=b ==> ((x <= a) ==> (x <=. b))`);
REDUCE_TAC;
ASM_REWRITE_TAC [];
]);;
(* }}} *)
(* }}} *)
(* ------------------------------------------------------------------ *)
(* Partial functions, which we identify with functions that
take the canonical choice of element outside the domain. *)
(* ------------------------------------------------------------------ *)
let SUPP = new_definition
`SUPP (f:A->B) = \ x. ~(f x = (CHOICE (UNIV:B ->bool)) )`;;
(* ------------------------------------------------------------------ *)
(* compositions *)
(* ------------------------------------------------------------------ *)
let COMP_ASSOC = prove_by_refinement(
`!(f:num ->num) (g:num->num) (h:num->num).
(compose f (compose g h)) = (compose (compose f g) h)`,
(* {{{ proof *)
[
REPEAT GEN_TAC THEN REWRITE_TAC[compose];
]);;
(* }}} *)
let COMP_INJ = prove (`!(f:A->B) (g:B->C) s t u.
INJ f s t /\ (
INJ g t u) ==>
(
INJ (compose g f) s u)`,
(* {{{ proof *)
EVERY[REPEAT GEN_TAC;
REWRITE_TAC[
INJ;compose];
DISCH_ALL_TAC;
ASM_MESON_TAC[]]);;
(* }}} *)
let COMP_SURJ = prove (`!(f:A->B) (g:B->C) s t u.
SURJ f s t /\ (
SURJ g t u) ==> (
SURJ (compose g f) s u)`,
(* {{{ proof *)
EVERY[REWRITE_TAC[
SURJ;compose];
DISCH_ALL_TAC;
ASM_MESON_TAC[]]);;
(* }}} *)
(* }}} *)
(* ------------------------------------------------------------------ *)
(* general construction of an inverse function on a domain *)
(* ------------------------------------------------------------------ *)
let INVERSE_FN = prove_by_refinement(
`?INV. (! (f:A->B) a b. (
SURJ f a b) ==> ((
INJ (
INV f a b) b a) /\
(!(x:B). (x
IN b) ==> (f ((
INV f a b) x) = x))))`,
(* {{{ proof *)
[
REWRITE_TAC[GSYM
SKOLEM_THM];
REPEAT GEN_TAC;
MATCH_MP_TAC (prove_by_refinement( `!A B. (A ==> (?x. (B x))) ==> (?(x:B->A). (A ==> (B x)))`,[MESON_TAC[]])) ;
REWRITE_TAC[
SURJ;
INJ];
DISCH_ALL_TAC;
SUBGOAL_TAC `?u. !y. ((y
IN b)==> ((u y
IN a) /\ ((f:A->B) (u y) = y)))`;
REWRITE_TAC[GSYM
SKOLEM_THM];
GEN_TAC;
ASM_MESON_TAC[];
DISCH_THEN CHOOSE_TAC;
EXISTS_TAC `u:B->A`;
REPEAT CONJ_TAC;
ASM_MESON_TAC[];
REPEAT GEN_TAC;
DISCH_ALL_TAC;
FIRST_X_ASSUM (fun th -> ASSUME_TAC (AP_TERM `f:A->B` th));
ASM_MESON_TAC[];
ASM_MESON_TAC[]
]);;
(* }}} *)
let INVERSE_BIJ = prove_by_refinement(
`!(f:A->B) a b. (
BIJ f a b) ==> ((
BIJ (
INV f a b) b a))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
REWRITE_TAC[
BIJ];
DISCH_ALL_TAC;
ASM_SIMP_TAC[
INVERSE_DEF];
REWRITE_TAC[
SURJ];
CONJ_TAC;
ASM_MESON_TAC[
INVERSE_DEF;
INJ];
GEN_TAC THEN DISCH_TAC;
EXISTS_TAC `(f:A->B) x`;
CONJ_TAC;
ASM_MESON_TAC[
INJ];
SUBGOAL_THEN `((f:A->B) x)
IN b` ASSUME_TAC;
ASM_MESON_TAC[
INJ];
SUBGOAL_THEN `(f:A->B) (
INV f a b (f x)) = (f x)` ASSUME_TAC;
ASM_MESON_TAC[
INVERSE_DEF];
H_UNDISCH_TAC (HYP "0");
REWRITE_TAC[
INJ];
DISCH_ALL_TAC;
FIRST_X_ASSUM (fun th -> MP_TAC (SPECL [`
INV (f:A->B) a b (f x)`;`x:A`] th));
ASM_REWRITE_TAC[];
DISCH_ALL_TAC;
SUBGOAL_THEN `
INV (f:A->B) a b (f x)
IN a` ASSUME_TAC;
ASM_MESON_TAC[
INVERSE_DEF;
INJ];
ASM_MESON_TAC[];
]);;
(* }}} *)
let INVERSE_XY = prove_by_refinement(
`!(f:A->B) a b x y. (
BIJ f a b) /\ (x
IN a) /\ (y
IN b) ==> ((
INV f a b y = x) <=> (f x = y))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
EQ_TAC;
FIRST_X_ASSUM (fun th -> (ASSUME_TAC th THEN (ASSUME_TAC (MATCH_MP
INVERSE_DEF (CONJUNCT2 (REWRITE_RULE[
BIJ] th))))));
ASM_MESON_TAC[];
POP_ASSUM (fun th -> (ASSUME_TAC th THEN (ASSUME_TAC (CONJUNCT2 (REWRITE_RULE[
INJ] (CONJUNCT1 (REWRITE_RULE[
BIJ] th)))))));
DISCH_THEN (fun th -> ASSUME_TAC th THEN (REWRITE_TAC[GSYM th]));
FIRST_X_ASSUM MATCH_MP_TAC;
REPEAT CONJ_TAC;
ASM_REWRITE_TAC[];
IMP_RES_THEN ASSUME_TAC
INVERSE_BIJ;
ASM_MESON_TAC[
BIJ;
INJ];
ASM_REWRITE_TAC[];
FIRST_X_ASSUM (fun th -> (ASSUME_TAC (CONJUNCT2 (REWRITE_RULE[
BIJ] th))));
IMP_RES_THEN (fun th -> ASSUME_TAC (CONJUNCT2 th))
INVERSE_DEF;
ASM_MESON_TAC[];
]);;
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
(* }}} *)
let NUM_INTRO = prove_by_refinement(
`!f P.((!(n:num). !(g:A). (f g = n) ==> (P g)) ==> (!g. (P g)))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
GEN_TAC;
H_VAL (SPECL [`(f:A->num) (g:A)`; `g:A`]) (HYP "0");
ASM_MESON_TAC[];
]);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* Lemmas about the support of a function *)
(* ------------------------------------------------------------------ *)
(* Law of cardinal exponents B^0 = 1 *)
(* }}} *)
(* Law of cardinal exponents B^A * B = B^(A+1) *)
let DOMAIN_INSERT = prove_by_refinement(
`!a b s. (~((s:A)
IN a) ==>
(?F. (
BIJ F (
FUN (s
INSERT a) b)
{ (u,v) | (u
IN (
FUN a b)) /\ ((v:B)
IN b) }
)))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_TAC;
EXISTS_TAC `\ f. ((\ x. (if (x=(s:A)) then (
CHOICE (UNIV:B->bool)) else (f x))),(f s))`;
REWRITE_TAC[
BIJ;
INJ;
SURJ];
TAUT_TAC `(A /\ (A ==> B) /\ (A ==>C)) ==> ((A/\ B) /\ (A /\ C))`;
REPEAT CONJ_TAC;
X_GEN_TAC `(f:A->B)`;
REWRITE_TAC[
FUN;
IN_ELIM_THM];
REWRITE_TAC[
INSERT;
SUBSET];
REWRITE_TAC[
IN_ELIM_THM;
SUPP];
STRIP_TAC;
ABBREV_TAC `g = \ x. (if (x=(s:A)) then (
CHOICE (UNIV:B->bool)) else (f x)) `;
EXISTS_TAC `g:A->B`;
EXISTS_TAC `(f:A->B) s`;
REWRITE_TAC[];
REPEAT CONJ_TAC;
EXPAND_TAC "g" THEN BETA_TAC;
GEN_TAC;
REWRITE_TAC[
IN;
COND_ELIM_THM];
ASM_MESON_TAC[
IN];
(* next *) ALL_TAC;
EXPAND_TAC "g" THEN BETA_TAC;
GEN_TAC;
ASM_CASES_TAC `(x:A) = s`;
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* next *) ALL_TAC;
ASM_MESON_TAC[];
(* INJ *) ALL_TAC;
REWRITE_TAC[
FUN;
SUPP];
DISCH_TAC;
X_GEN_TAC `f1:A->B`;
X_GEN_TAC `f2:A->B`;
REWRITE_TAC[
IN];
DISCH_ALL_TAC;
MATCH_MP_TAC
EQ_EXT;
GEN_TAC;
ASM_CASES_TAC `(x:A) = s`;
POPL_TAC[1;2;3;4;6;7];
ASM_REWRITE_TAC[];
ASM_MESON_TAC[
PAIR;
FST;
SND];
POPL_TAC[1;2;3;4;6;7];
FIRST_X_ASSUM (fun th -> ASSUME_TAC (REWRITE_RULE[
FST] (AP_TERM `FST:((A->B)#B)->(A->B)` th))) ;
FIRST_X_ASSUM (fun th -> ASSUME_TAC (REWRITE_RULE[
COND_ELIM_THM] (BETA_RULE (AP_THM th `x:A`))));
LABEL_ALL_TAC;
H_UNDISCH_TAC (HYP "0");
COND_CASES_TAC;
ASM_MESON_TAC[];
ASM_MESON_TAC[];
(* SURJ *) ALL_TAC;
REWRITE_TAC[
FUN;
SUPP;
IN_ELIM_THM];
REWRITE_TAC[
IN;
INSERT;
SUBSET];
DISCH_ALL_TAC;
X_GEN_TAC `p:(A->B)#B`;
DISCH_THEN CHOOSE_TAC;
FIRST_X_ASSUM (fun th -> MP_TAC th);
DISCH_THEN CHOOSE_TAC;
FIRST_X_ASSUM MP_TAC;
DISCH_ALL_TAC;
ASM_REWRITE_TAC[];
EXISTS_TAC `\ (x:A). if (x = s) then (v:B) else (u x)`;
REPEAT CONJ_TAC;
X_GEN_TAC `t:A`;
BETA_TAC;
REWRITE_TAC[
IN_ELIM_THM;
COND_ELIM_THM];
POPL_TAC[1;3;4;5];
ASM_MESON_TAC[];
X_GEN_TAC `t:A`;
BETA_TAC;
REWRITE_TAC[
IN_ELIM_THM;
COND_ELIM_THM];
ASM_CASES_TAC `(t:A) = s`;
POPL_TAC[1;3;4;5;6];
ASM_REWRITE_TAC[];
POPL_TAC[1;3;4;5;6];
FIRST_X_ASSUM (fun th -> ASSUME_TAC (SPEC `t:A` th));
ASM_SIMP_TAC[
prove(`~((t:A)=s) ==> ((t=s)=F)`,MESON_TAC[])];
BETA_TAC;
REWRITE_TAC[];
POPL_TAC[0;2;3;4];
AP_THM_TAC;
AP_TERM_TAC;
MATCH_MP_TAC
EQ_EXT;
X_GEN_TAC `t:A`;
BETA_TAC;
DISJ_CASES_TAC (
prove(`(((t:A)=s) <=> T) \/ ((t=s) <=> F)`,MESON_TAC[]));
ASM_REWRITE_TAC[];
ASM_MESON_TAC[
IN];
ASM_REWRITE_TAC[]
]);;
(* }}} *)
(* }}} *)
(*
let dets_flag = ref true;;
dets_flag:= !labels_flag;;
*)
labels_flag:=false;;
(* Law of cardinals |B^A| = |B|^|A| *)
(* }}} *)
labels_flag:= true;;
(* ------------------------------------------------------------------ *)
(* ------------------------------------------------------------------ *)
(* Definitions in math tend to be n-tuples of data. Let's make it
easy to pick out the individual components of a definition *)
(* pick out the rest of n-tuples. Indexing consistent with lib.drop *)
(* pick out parts of n-tuples *)
(* ------------------------------------------------------------------ *)
(* Basic Definitions of Euclidean Space, Metric Spaces, and Topology *)
(* ------------------------------------------------------------------ *)
(* ------------------------------------------------------------------ *)
(* Interface *)
(* ------------------------------------------------------------------ *)
let euclid_def = local_definition "euclid";;
mk_local_interface "euclid";;
overload_interface
("+", `euclid'euclid_plus:(num->real)->(num->real)->(num->real)`);;
make_overloadable "*#" `:A -> B -> B`;;
let euclid_scale = euclid_def
`euclid_scale t f = \ (i:num). (t*. (f i))`;;
overload_interface ("*#",`euclid'euclid_scale`);;
parse_as_infix("*#",(20,"right"));;
let euclid_neg = euclid_def `euclid_neg f = \ (i:num). (--. (f i))`;;
(* This is highly ambiguous: -- f x can be read as
(-- f) x or as -- (f x). *)
overload_interface ("--",`euclid'euclid_neg`);;
overload_interface
("-", `euclid'euclid_minus:(num->real)->(num->real)->(num->real)`);;
(* ------------------------------------------------------------------ *)
(* Euclidean Space *)
(* ------------------------------------------------------------------ *)
let euclid_plus = euclid_def
`euclid_plus f g = \ (i:num). (f i) +. (g i)`;;
let euclid = euclid_def `euclid n v <=> !m. (n <=| m) ==> (v m = &.0)`;;
let euclidean = euclid_def `euclidean v <=> ?n. euclid n v`;;
let euclid_minus = euclid_def
`euclid_minus f g = \(i:num). (f i) -. (g i)`;;
let euclid0 = euclid_def `euclid0 = \(i:num). &.0`;;
let coord = euclid_def `coord i (f:num->real) = f i`;;
let dot = euclid_def `dot f g =
let (n = (min_num (\m. (euclid m f) /\ (euclid m g)))) in
sum (0,n) (\i. (f i)*(g i))`;;
let norm = euclid_def `norm f = sqrt(dot f f)`;;
let d_euclid = euclid_def `d_euclid f g = norm (f - g)`;;
(* ------------------------------------------------------------------ *)
(* Euclidean and Convex geometry *)
(* ------------------------------------------------------------------ *)
let sum_vector_EXISTS = prove_by_refinement(
`?sum_vector. (!f n.
sum_vector(n,0) f = (\n. &.0)) /\
(!f m n.
sum_vector(n,SUC m) f =
sum_vector(n,m) f + f(n + m))`,
(* {{{ proof *)
[
(CHOOSE_TAC o prove_recursive_functions_exist num_RECURSION) `(!f n. sm n 0 f = (\n. &0)) /\ (!f m n. sm n (SUC m) f = sm n m f + f(n + m))`;
EXISTS_TAC `\(n,m) f. (sm:num->num->(num->(num->real))->(num->real)) n m f`;
CONV_TAC(DEPTH_CONV GEN_BETA_CONV);
ASM_REWRITE_TAC[];
]);;
(* }}} *)
let mk_segment = euclid_def
`mk_segment x y = { u | ?a. (&.0 <=. a) /\ (a <=. &.1) /\
(u = a *# x + (&.1 - a) *# y) }`;;
let mk_open_segment = euclid_def
`mk_open_segment x y = { u | ?a. (&.0 <. a) /\ (a <. &.1) /\
(u = a *# x + (&.1 - a) *# y) }`;;
let convex = euclid_def
`convex S <=> !x y. (S x) /\ (S y) ==> (mk_segment x y SUBSET S)`;;
let convex_hull = euclid_def
`convex_hull S = { u | ?f alpha m. (!n. (n< m) ==> (S (f n))) /\
(sum(0,m) alpha = &.1) /\ (!n. (n< m) ==> (&.0 <=. (alpha n))) /\
(u = sum_vector(0,m) (\n. (alpha n) *# (f n)))}`;;
let affine_hull = euclid_def
`affine_hull S = { u | ?f alpha m. (!n. (n< m) ==> (S (f n))) /\
(sum(0,m) alpha = &.1) /\
(u = sum_vector(0,m) (\n. (alpha n) *# (f n)))}`;;
let mk_line = euclid_def `mk_line x y =
{z| ?t. (z = (t *# x) + ((&.1 - t) *# y)) }`;;
let affine = euclid_def
`affine S <=> !x y. (S x ) /\ (S y) ==> (mk_line x y SUBSET S)`;;
let affine_dim = euclid_def
`affine_dim n S <=>
(?T. (T HAS_SIZE (SUC n)) /\ (affine_hull T = affine_hull S)) /\
(!T m. (T HAS_SIZE (SUC m)) /\ (m < n) ==> ~(affine_hull T = affine_hull S))`;;
let collinear = euclid_def
`collinear S <=> (?n. affine_dim n S /\ (n < 2))`;;
let coplanar = euclid_def
`coplanar S <=> (?n. affine_dim n S /\ (n < 3))`;;
let line = euclid_def
`line L <=> (affine L) /\ (affine_dim 1 L)`;;
let plane = euclid_def
`plane P <=> (affine P) /\ (affine_dim 2 P)`;;
let space = euclid_def
`space R <=> (affine R) /\ (affine_dim 3 R)`;;
(*
General constructor of conical objects, including
rays, cones, half-planes, etc.
L is the edge. C is the set of generators in the positive
direction.
If L is a line, and C = {c}, we get the half-plane bounded by
L and containing c.
If L is a point, and C is general, we get the cone at L generated
by C.
If L and C are both singletons, we get the ray ending at L.
*)
let mk_open_half_set = euclid_def
`mk_open_half_set L S =
{ u | ?t v c. (L v) /\ (S c) /\ (&.0 < t) /\
(u = (t *# (c - v) + (&.1 - t) *# v)) }`;;
let mk_half_set = euclid_def
`mk_half_set L S =
{ u | ?t v c. (L v) /\ (S c) /\ (&.0 <=. t) /\
(u = (t *# (c - v) + (&.1 - t) *# v)) }`;;
let mk_angle = euclid_def `mk_angle x y z =
(mk_half_set {x} {y}) UNION (mk_half_set {x} {z})`;;
let mk_signed_angle = euclid_def `mk_signed_angle x y z =
(mk_half_set {x} {y} , mk_half_set {x} {z})`;;
let mk_convex_cone = euclid_def
`mk_convex_cone v (S:(num->real)->bool) =
mk_half_set {v} (convex_hull S)`;;
(* we always normalize the radius of balls in a packing to 1 *)
let packing = euclid_def(`packing (S:(num->real)->bool) <=>
!x y. ( ((S x) /\ (S y) /\ ((d_euclid x y) < (&.2))) ==>
(x = y))`);;
let saturated_packing = euclid_def(`saturated_packing S <=>
(( packing S) /\
(!z. (affine_hull S z) ==>
(?x. ((S x) /\ ((d_euclid x z) < (&.2))))))`);;
(* 3 dimensions specific: *)
let cross_product3 = euclid_def(`cross_product3 v1 v2 =
let (x1 = v1 0) and (x2 = v1 1) and (x3 = v1 2) in
let (y1 = v2 0) and (y2 = v2 1) and (y3 = v2 2) in
(\k.
(if (k=0) then (x2*y3-x3*y2)
else if (k=1) then (x3*y1-x1*y3)
else if (k=2) then (x1*y2-x2*y1)
else (&0)))`);;
let triple_product = euclid_def(`triple_product v1 v2 v3 =
dot v1 (cross_product3 v2 v3)`);;
(* the bounding edge *)
let mk_triangle = euclid_def `mk_triangle v1 v2 v3 =
(mk_segment v1 v2) UNION (mk_segment v2 v3) UNION (mk_segment v3 v1)`;;
(* the interior *)
let mk_interior_triangle = euclid_def
`mk_interior_triangle v1 v2 v3 =
mk_open_half_set (mk_line v1 v2) {v3} INTER
(mk_open_half_set (mk_line v2 v3) {v1}) INTER
(mk_open_half_set (mk_line v3 v1) {v2})`;;
let mk_triangular_region = euclid_def
`mk_triangular_region v1 v2 v3 =
(mk_triangle v1 v2 v3) UNION (mk_interior_triangle v1 v2 v3)`;;
(* ------------------------------------------------------------------ *)
(* Statements of Theorems in Euclidean Geometry (no proofs *)
(* ------------------------------------------------------------------ *)
let half_set_convex = `!L S. convex (mk_half_set L S)`;;
let open_half_set_convex = `!L S . convex (mk_open_half_set L S )`;;
let affine_dim0 = `!S. (affine_dim 0 S) = (SING S)`;;
let hull_convex = `!S. (convex (convex_hull S))`;;
let hull_minimal = `!S T. (convex T) /\ (S SUBSET T) ==>
(convex_hull S) SUBSET T`;;
let affine_hull_affine = `!S. (affine (affine_hull S))`;;
let affine_hull_minimal = `!S T. (affine T) /\ (S SUBSET T) ==>
(affine_hull S) SUBSET T`;;
let mk_line_dim = `!x y. ~(x = y) ==> affine_dim 1 (mk_line x y)`;;
let affine_convex_hull = `!S. (affine_hull S) = (affine_hull (convex_hull S))`;;
let convex_hull_hull = `!S. (convex_hull S) = (convex_hull (convex_hull S))`;;
let euclid_affine_dim = `!n. affine_dim n (euclid n)`;;
let affine_dim_subset = `!m n T S.
(affine_dim m T) /\ (affine_dim n S) /\ (T SUBSET S) ==> (m <= n)`;;
(* A few of the Birkhoff postulates of Geometry (incomplete) *)
let line_postulate = `!x y. ~(x = y) ==>
(?!L. (L x) /\ (L y) /\ (line L))`;;
let ruler_postulate = `!L. (line L) ==>
(?f. (BIJ f L UNIV) /\
(!x y. (L x /\ L y ==> (d_euclid x y = abs(f x -. f y)))))`;;
let affine_postulate = `!n. (affine_dim n P) ==> (?S.
(S SUBSET P) /\ (S HAS_SIZE n) /\ (affine_dim n S))`;;
let line_plane = `!P x y. (plane P) /\ (P x) /\ (P y) ==>
(mk_line x y SUBSET P)`;;
let plane_of_pt = `!S. (S HAS_SIZE 3) ==> (?P. (plane P) /\
(S SUBSET P))`;;
let plane_of_pt_unique = `!S. (S HAS_SIZE 3) ==> (collinear S) \/
(?! P. (plane P) /\ (S SUBSET P))`;;
let plane_inter = `!P Q. (plane P) /\ (plane Q) ==>
(P INTER Q = EMPTY) \/ (line (P INTER Q)) \/ (P = Q)`;;
(* each line separates a plane into two half-planes *)
let plane_separation =
`!P L. (plane P) /\ (line L) /\ (L SUBSET P) ==>
(?A B. (A INTER B = EMPTY) /\ (A INTER L = EMPTY) /\
(B INTER L = EMPTY) /\ (L UNION A UNION B = P) /\
(!c u. (P c) /\ (u = mk_open_half_set L {c}) ==>
(u = A) \/ (u = B) \/ (u = L)) /\
(!a b. (A a) /\ (B b) ==> ~(segment a b INTER L = EMPTY)))`;;
let space_separation =
`!R P. (space R) /\ (plane P) /\ (P SUBSET R) ==>
(?A B. (A INTER B = EMRTY) /\ (A INTER P = EMRTY) /\
(B INTER P = EMRTY) /\ (P UNION A UNION B = R) /\
(!c u. (R c) /\ (u = mk_open_half_set P {c}) ==>
(u = A) \/ (u = B) \/ (u = P)) /\
(!a b. (A a) /\ (B b) ==> ~(segment a b INTER L = EMPTY)))`;;
(* ------------------------------------------------------------------ *)
(* Metric Space *)
(* ------------------------------------------------------------------ *)
let metric_space = euclid_def `metric_space (X:A->bool,d:A->A->real)
<=>
!x y z.
(X x) /\ (X y) /\ (X z) ==>
(((&.0) <=. (d x y)) /\
((&.0 = d x y) = (x = y)) /\
(d x y = d y x) /\
(d x z <=. d x y + d y z))`;;
(* ------------------------------------------------------------------ *)
(* Measure *)
(* ------------------------------------------------------------------ *)
let set_translate = euclid_def
`set_translate v X = { z | ?x. (X x) /\ (z = v + x) }`;;
let set_scale = euclid_def
`set_scale r X = { z | ?x. (X x) /\ (z = r *# x) }`;;
let mk_rectangle = euclid_def
`mk_rectangle a b = { z | !(i:num). (a i <=. z i) /\ (z i <. b i) }`;;
let one_vec = euclid_def
`one_vec n = (\i. if (i<| n) then (&.1) else (&.0))`;;
let mk_cube = euclid_def
`mk_cube n k v =
let (r = twopow (--: (&: k))) in
let (vv = (\i. (real_of_int (v i)))) in
mk_rectangle (r *# vv) (r *# (vv + (one_vec n)))`;;
let inner_cube = euclid_def
`inner_cube n k A =
{ v | (mk_cube n k v SUBSET A) /\
(!i. (n <| i) ==> (&:0 = v i)) }`;;
let outer_cube = euclid_def
`outer_cube n k A =
{ v | ~((mk_cube n k v) INTER A = EMPTY) /\
(!i. (n <| i) ==> (&:0 = v i)) }`;;
let inner_vol = euclid_def
`inner_vol n k A =
(&. (CARD (inner_cube n k A)))*(twopow (--: (&: (n*k))))`;;
let outer_vol = euclid_def
`outer_vol n k A =
(&. (CARD (outer_cube n k A)))*(twopow (--: (&: (n*k))))`;;
let euclid_bounded = euclid_def
`euclid_bounded A = (?R. !(x:num->real) i. (A x) ==> (x i <. R))`;;
let vol = euclid_def
`vol n A = lim (\k. outer_vol n k A)`;;
(* ------------------------------------------------------------------ *)
(* COMPUTING PI *)
(* ------------------------------------------------------------------ *)
unambiguous_interface();;
prioritize_real();;
(* ------------------------------------------------------------------ *)
(* general series approximations *)
(* ------------------------------------------------------------------ *)
let SER_APPROX1 = prove_by_refinement(
`!s f g. (f sums s) /\ (summable g) ==>
(!k. ((!n. (||. (f (n+k)) <=. (g (n+k)))) ==>
( (s - (sum(0,k) f)) <=. (suminf (\n. (g (n +| k)))))))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
GEN_TAC;
DISCH_TAC;
IMP_RES_THEN ASSUME_TAC
SUM_SUMMABLE;
IMP_RES_THEN (fun th -> (ASSUME_TAC (SPEC `k:num` th)))
SER_OFFSET;
IMP_RES_THEN ASSUME_TAC
SUM_UNIQ;
SUBGOAL_THEN `(\n. (f (n+ k))) sums (s - (sum(0,k) f))` ASSUME_TAC;
ASM_MESON_TAC[];
SUBGOAL_THEN `summable (\n. (f (n+k))) /\ (suminf (\n. (f (n+k))) <=. (suminf (\n. (g (n+k)))))` ASSUME_TAC;
MATCH_MP_TAC
SER_LE2;
BETA_TAC;
ASM_REWRITE_TAC[];
IMP_RES_THEN ASSUME_TAC
SER_OFFSET;
FIRST_X_ASSUM (fun th -> ACCEPT_TAC (MATCH_MP
SUM_SUMMABLE (((SPEC `k:num`) th))));
ASM_MESON_TAC[
SUM_UNIQ]
]);;
(* }}} *)
let SER_APPROX = prove_by_refinement(
`!s f g. (f sums s) /\ (!n. (||. (f n) <=. (g n))) /\
(summable g) ==>
(!k. (abs (s - (sum(0,k) f)) <=. (suminf (\n. (g (n +| k))))))`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
GEN_TAC;
REWRITE_TAC[
REAL_ABS_BOUNDS];
CONJ_TAC;
SUBGOAL_THEN `(!k. ((!n. (||. ((\p. (--. (f p))) (n+k))) <=. (g (n+k)))) ==> ((--.s) - (sum(0,k) (\p. (--. (f p)))) <=. (suminf (\n. (g (n +k))))))` ASSUME_TAC;
MATCH_MP_TAC
SER_APPROX1;
ASM_REWRITE_TAC[];
MATCH_MP_TAC
SER_NEG ;
ASM_REWRITE_TAC[];
MATCH_MP_TAC (REAL_ARITH (`(--. s -. (--. u) <=. x) ==> (--. x <=. (s -. u))`));
ONCE_REWRITE_TAC[GSYM
SUM_NEG];
FIRST_X_ASSUM (fun th -> (MATCH_MP_TAC th));
BETA_TAC;
ASM_REWRITE_TAC[
REAL_ABS_NEG];
H_VAL2 CONJ (HYP "0") (HYP "2");
IMP_RES_THEN MATCH_MP_TAC
SER_APPROX1 ;
GEN_TAC;
ASM_MESON_TAC[];
]);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* now for pi calculation stuff *)
(* ------------------------------------------------------------------ *)
let local_def = local_definition "trig";;
let PI_EST = prove_by_refinement(
`!n. (1 <=| n) ==> (abs(&4 / &(8 * n + 1) -
&2 / &(8 * n + 4) -
&1 / &(8 * n + 5) -
&1 / &(8 * n + 6)) <= &.622/(&.819))`,
(* {{{ proof *)
[
GEN_TAC THEN DISCH_ALL_TAC;
REWRITE_TAC[
real_div];
MATCH_MP_TAC (REWRITE_RULE[
real_div] (REWRITE_RULE[REAL_RAT_REDUCE_CONV `(&.4/(&.9) +(&.2/(&.12)) + (&.1/(&.13))+ (&.1/(&.14)))`] (REAL_ARITH `(abs((&.4)*.u)<=. (&.4)/(&.9)) /\ (abs((&.2)*.v)<=. (&.2)/(&.12)) /\ (abs((&.1)*w) <=. (&.1)/(&.13)) /\ (abs((&.1)*x) <=. (&.1)/(&.14)) ==> (abs((&.4)*u -(&.2)*v - (&.1)*w - (&.1)*x) <= (&.4/(&.9) +(&.2/(&.12)) + (&.1/(&.13))+ (&.1/(&.14))))`)));
IMP_RES_THEN ASSUME_TAC (ARITH_RULE `1 <=| n ==> (0 < n)`);
FIRST_X_ASSUM (fun th -> ASSUME_TAC (REWRITE_RULE[GSYM
REAL_OF_NUM_LT] th));
ASSUME_TAC (
prove(`(a<=.b) ==> (&.n*a <=. (&.n)*b)`,MESON_TAC[REAL_PROP_LE_LMUL;
REAL_POS]));
REWRITE_TAC[
REAL_ABS_MUL;
REAL_ABS_INV;
prove(`||.(&.n) = (&.n)`,MESON_TAC[
REAL_POS;
REAL_ABS_REFL])];
REPEAT CONJ_TAC THEN (POP_ASSUM (fun th -> MATCH_MP_TAC th)) THEN (MATCH_MP_TAC (
prove(`((&.0 <. (&.n)) /\ (&.n <=. a)) ==> (inv(a)<=. (inv(&.n)))`,MESON_TAC[
REAL_ABS_REFL;
REAL_ABS_INV;
REAL_LE_INV2]))) THEN
REWRITE_TAC[
REAL_LT;
REAL_LE] THEN (H_UNDISCH_TAC (HYP"0")) THEN
ARITH_TAC]);;
(* }}} *)
let pi_fun = local_def `pi_fun n = inv (&.16 **. n) *.
(&.4 / &.(8 *| n +| 1) -.
&.2 / &.(8 *| n +| 4) -.
&.1 / &.(8 *| n +| 5) -.
&.1 / &.(8 *| n +| 6))`;;
let pi_bound_fun = local_def `pi_bound_fun n = if (n=0) then (&.8) else
(((&.15)/(&.16))*(inv(&.16 **. n))) `;;
let PI_EST2 = prove_by_refinement(
`!k. abs(pi_fun k) <=. (pi_bound_fun k)`,
(* {{{ proof *)
[
GEN_TAC;
REWRITE_TAC[pi_fun;pi_bound_fun];
COND_CASES_TAC;
ASM_REWRITE_TAC[];
CONV_TAC (NUM_REDUCE_CONV);
(CONV_TAC (REAL_RAT_REDUCE_CONV));
CONV_TAC (RAND_CONV (REWR_CONV (REAL_ARITH `a*b = b*.a`)));
REWRITE_TAC[
REAL_ABS_MUL;
REAL_ABS_INV;
REAL_ABS_POW;
prove(`||.(&.n) = (&.n)`,MESON_TAC[
REAL_POS;
REAL_ABS_REFL])];
MATCH_MP_TAC (
prove(`!x y z. (&.0 <. z /\ (y <=. x) ==> (z*y <=. (z*x)))`,MESON_TAC[
REAL_LE_LMUL_EQ]));
ASSUME_TAC (REWRITE_RULE[] (REAL_RAT_REDUCE_CONV `(&.622)/(&.819) <=. (&.15)/(&.16)`));
IMP_RES_THEN ASSUME_TAC (ARITH_RULE `~(k=0) ==> (1<=| k)`);
IMP_RES_THEN ASSUME_TAC (
PI_EST);
CONJ_TAC;
SIMP_TAC[
REAL_POW_LT;
REAL_LT_INV;ARITH_RULE `&.0 < (&.16)`];
ASM_MESON_TAC[
REAL_LE_TRANS];
]);;
(* }}} *)
let GP16 = prove_by_refinement(
`!k. (\n. inv (&16 pow k) * inv (&16 pow n)) sums
inv (&16 pow k) * &16 / &15`,
(* {{{ proof *)
[
GEN_TAC;
ASSUME_TAC (REWRITE_RULE[] (REAL_RAT_REDUCE_CONV `abs (&.1 / (&. 16)) <. (&.1)`));
IMP_RES_THEN (fun th -> ASSUME_TAC (CONV_RULE REAL_RAT_REDUCE_CONV th))
GP;
MATCH_MP_TAC
SER_CMUL;
ASM_REWRITE_TAC[GSYM
REAL_POW_INV;REAL_INV_1OVER];
]);;
(* }}} *)
let GP16a = prove_by_refinement(
`!k. (0<|k) ==> (\n. (pi_bound_fun (n+k))) sums (inv(&.16 **. k))`,
(* {{{ proof *)
[
GEN_TAC;
DISCH_TAC;
SUBGOAL_THEN `(\n. pi_bound_fun (n+k)) = (\n. ((&.15/(&.16))* (inv(&.16)**. k) *. inv(&.16 **. n)))` (fun th-> REWRITE_TAC[th]);
MATCH_MP_TAC
EQ_EXT;
X_GEN_TAC `n:num` THEN BETA_TAC;
REWRITE_TAC[pi_bound_fun];
COND_CASES_TAC;
ASM_MESON_TAC[ARITH_RULE `0<| k ==> (~(n+k = 0))`];
REWRITE_TAC[GSYM REAL_MUL_ASSOC];
AP_TERM_TAC;
REWRITE_TAC[
REAL_INV_MUL;
REAL_POW_ADD;
REAL_POW_INV;
REAL_MUL_AC];
SUBGOAL_THEN `(\n. (&.15/(&.16)) *. ((inv(&.16)**. k)*. inv(&.16 **. n))) sums ((&.15/(&.16)) *.(inv(&.16**. k)*. ((&.16)/(&.15))))` ASSUME_TAC;
MATCH_MP_TAC
SER_CMUL;
REWRITE_TAC[
REAL_POW_INV];
ACCEPT_TAC (SPEC `k:num`
GP16);
FIRST_X_ASSUM MP_TAC;
REWRITE_TAC[REAL_MUL_ASSOC];
MATCH_MP_TAC (
prove (`(x=y) ==> ((a sums x) ==> (a sums y))`,MESON_TAC[]));
MATCH_MP_TAC (REAL_ARITH `(b*(a*c) = (b*(&.1))) ==> ((a*b)*c = b)`);
AP_TERM_TAC;
CONV_TAC (REAL_RAT_REDUCE_CONV);
]);;
(* }}} *)
let PI_SER = prove_by_refinement(
`!k. (0<|k) ==> (abs(pi - (sum(0,k) pi_fun)) <=. (inv(&.16 **. (k))))`,
(* {{{ proof *)
[
GEN_TAC THEN DISCH_TAC;
ASSUME_TAC (ONCE_REWRITE_RULE[ETA_AX] (REWRITE_RULE[GSYM pi_fun]
POLYLOG_THM));
ASSUME_TAC
PI_EST2;
IMP_RES_THEN (ASSUME_TAC)
GP16a;
IMP_RES_THEN (ASSUME_TAC)
SUM_SUMMABLE;
IMP_RES_THEN (ASSUME_TAC)
SER_OFFSET_REV;
IMP_RES_THEN (ASSUME_TAC)
SUM_SUMMABLE;
MP_TAC (SPECL [`pi`;`pi_fun`;`pi_bound_fun` ]
SER_APPROX);
ASM_REWRITE_TAC[];
DISCH_THEN (fun th -> MP_TAC (SPEC `k:num` th));
SUBGOAL_THEN `suminf (\n. pi_bound_fun (n + k)) = inv (&.16 **. k)` (fun th -> (MESON_TAC[th]));
ASM_MESON_TAC[
SUM_UNIQ];
]);;
(* }}} *)
(* replace 3 by SUC (SUC (SUC 0)) *)
let SUC_EXPAND_CONV tm =
let count = dest_numeral tm in
let rec add_suc i r =
if (i <=/ (Int 0)) then r
else add_suc (i -/ (Int 1)) (mk_comb (`SUC`,r)) in
let tm' = add_suc count `0` in
REWRITE_RULE[] (ARITH_REWRITE_CONV[] (mk_eq (tm,tm')));;
let PI_SERn n =
let SUM_EXPAND_CONV =
(ARITH_REWRITE_CONV[]) THENC
(TOP_DEPTH_CONV SUC_EXPAND_CONV) THENC
(REWRITE_CONV[sum]) THENC
(ARITH_REWRITE_CONV[REAL_ADD_LID;GSYM REAL_ADD_ASSOC]) in
let sum_thm = SUM_EXPAND_CONV (vsubst [n,`i:num`] `sum(0,i) f`) in
let gt_thm = ARITH_RULE (vsubst [n,`i:num`] `0 <| i`) in
((* CONV_RULE REAL_RAT_REDUCE_CONV *)(CONV_RULE (ARITH_REWRITE_CONV[]) (BETA_RULE (REWRITE_RULE[sum_thm;pi_fun;inv_twopow] (MATCH_MP PI_SER gt_thm)))));;
(* abs(pi - u ) < e *)
let recompute_pi bprec =
let n = (bprec /4) in
let pi_ser = PI_SERn (mk_numeral (Int n)) in
let _ = remove_real_constant `pi` in
(add_real_constant pi_ser; INTERVAL_OF_TERM bprec `pi`);;
(* ------------------------------------------------------------------ *)
(* restore defaults *)
(* ------------------------------------------------------------------ *)
reduce_local_interface("trig");;
pop_priority();;