(* ========================================================================== *)
(* FLYSPECK - BOOK FORMALIZATION *)
(* *)
(* Chapter: Local Fan *)
(* Author: Hoang Le Truong *)
(* Date: 2012-04-01 *)
(* ========================================================================= *)
(*
remaining conclusions from appendix to Local Fan chapter
*)
module Yrtafyh = struct
open Polyhedron;;
open Sphere;;
open Topology;;
open Fan_misc;;
open Planarity;;
open Conforming;;
open Hypermap;;
open Fan;;
open Topology;;
open Wrgcvdr_cizmrrh;;
open Local_lemmas;;
open Collect_geom;;
open Dih2k_hypermap;;
open Wjscpro;;
open Tecoxbm;;
open Hdplygy;;
open Nkezbfc_local;;
open Flyspeck_constants;;
open Gbycpxs;;
open Pcrttid;;
open Local_lemmas1;;
open Pack_defs;;
open Hales_tactic;;
open Appendix;;
open Hypermap;;
open Fan;;
open Wrgcvdr_cizmrrh;;
open Local_lemmas;;
open Flyspeck_constants;;
open Pack_defs;;
open Hales_tactic;;
open Appendix;;
open Zithlqn;;
open Xwitccn;;
open Ayqjtmd;;
open Jkqewgv;;
open Mtuwlun;;
open Uxckfpe;;
open Sgtrnaf;;
open Yxionxl;;
open Qknvmlb;;
open Odxlstcv2;;
open Yxionxl2;;
open Eyypqdw;;
open Ocbicby;;
open Imjxphr;;
open Nuxcoea;;
open Fektyiy;;
let SUR_MOD_FUN=prove(`~(k=0)==> ?i. (i+p) MOD k = p' MOD k`,
STRIP_TAC
THEN MP_TAC(ARITH_RULE`p MOD k<= p' MOD k\/ p' MOD k< p MOD k`)
THEN RESA_TAC
THENL[
EXISTS_TAC`p' MOD k- p MOD k`
THEN MRESA_TAC
DIVISION[`p'`;`k`]
THEN MP_TAC(ARITH_RULE`p' MOD k< k /\ p MOD k<= p' MOD k ==> p' MOD k - p MOD k < k /\ p' MOD k - p MOD k + p MOD k= p' MOD k`)
THEN RESA_TAC
THEN MRESAS_TAC
MOD_LT[`p' MOD k- p MOD k`;`k`][
DIVISION]
THEN MRESAS_TAC
MOD_ADD_MOD[`p' MOD k- p MOD k`;`p`;`k`][
DIVISION;
MOD_REFL]
THEN POP_ASSUM(fun th-> REWRITE_TAC[SYM
th]);
EXISTS_TAC`p' MOD k +k - p MOD k`
THEN MRESA_TAC
DIVISION[`p`;`k`]
THEN MP_TAC(ARITH_RULE`p MOD k< k /\ p' MOD k< p MOD k ==> p' MOD k +k - p MOD k < k /\ (p' MOD k + k - p MOD k) + p MOD k=1*k+ p' MOD k`)
THEN RESA_TAC
THEN MRESAS_TAC
MOD_LT[`p' MOD k+k- p MOD k`;`k`][
DIVISION]
THEN MRESAS_TAC
MOD_ADD_MOD[`p' MOD k+k- p MOD k`;`p`;`k`][
DIVISION;
MOD_REFL;
MOD_MULT_ADD]
THEN POP_ASSUM(fun th-> REWRITE_TAC[SYM
th])]);;
let TRANS_DIAG=prove(`~(k=0)/\ (i+p) MOD k = p' MOD k /\ p' + q = p + q'
==> (i+q) MOD k= q' MOD k `,
STRIP_TAC
THEN MATCH_MP_TAC Hdplygy.MOD_EQ_MOD
THEN EXISTS_TAC`p:num`
THEN ASM_REWRITE_TAC[]
THEN ONCE_REWRITE_TAC[ARITH_RULE`p + i + q= (i +p)+ q:num`]
THEN MRESA_TAC
MOD_ADD_MOD[`i+p:num`;`q`;`k`]
THEN POP_ASSUM(fun th-> ASM_SIMP_TAC[SYM
th;
MOD_ADD_MOD]));;
(*************)
(*******************)
let scs_components = prove_by_refinement(
`!s. dest_scs_v39 s = (
scs_k_v39 s,
scs_d_v39 s,
scs_a_v39
s,
scs_am_v39 s ,
scs_bm_v39 s,
scs_b_v39 s,
scs_J_v39 s,
scs_lo_v39 s,
scs_hi_v39 s,
scs_str_v39 s)`,
(* {{{ proof *)
[
REWRITE_TAC[Wrgcvdr_cizmrrh.PAIR_EQ2;
scs_k_v39;
scs_d_v39;
scs_a_v39;];
REWRITE_TAC[
scs_am_v39;
scs_bm_v39;
scs_b_v39;];
REWRITE_TAC[
scs_J_v39;
scs_hi_v39;
scs_lo_v39;];
REWRITE_TAC[
scs_str_v39];
BY(REWRITE_TAC[Misc_defs_and_lemmas.part1;Misc_defs_and_lemmas.part2;Misc_defs_and_lemmas.part3;Misc_defs_and_lemmas.part4;
Misc_defs_and_lemmas.part5;Misc_defs_and_lemmas.part6;Misc_defs_and_lemmas.part7;Misc_defs_and_lemmas.drop0;Misc_defs_and_lemmas.drop3;Misc_defs_and_lemmas.drop1;Misc_defs_and_lemmas.part0;Misc_defs_and_lemmas.part8;Misc_defs_and_lemmas.drop2])
]);;
(* }}} *)
(* }}} *)
let DIAG_PSORT1=prove_by_refinement(` ~(k=0) /\ (i+p) MOD k = p' MOD k /\
p' + q = p + q' /\ ~(k=0) /\ (psort k (i',j) = psort k (p,q))
==> (psort k (i+i',i+j) = psort k (p',q'))`,
[
REWRITE_TAC[psort;
LET_DEF;
LET_END_DEF;
COND_EXPAND
]
THEN RESA_TAC
THEN POP_ASSUM MP_TAC
THEN MP_TAC
TRANS_DIAG
THEN RESA_TAC
THEN MP_TAC(SET_RULE`i' MOD k <= j MOD k \/ ~(i' MOD k <= j MOD k)`)
THEN RESA_TAC;
MP_TAC(SET_RULE`p MOD k <= q MOD k \/ ~(p MOD k <= q MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`p`;`i`]
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`q`;`i`];
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`q`;`i`]
THEN MRESAS_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`p`;`i`][]
THEN MP_TAC(ARITH_RULE`(~(p' MOD k<= q' MOD k))\/ (p' MOD k < q' MOD k ) \/ (p' MOD k = q' MOD k )`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` ~(p' MOD k<= q' MOD k)==> q' MOD k <= p' MOD k`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` (p' MOD k< q' MOD k)==> ~(q' MOD k <= p' MOD k)/\ (p' MOD k<= q' MOD k)`)
THEN RESA_TAC;
MP_TAC(SET_RULE`p MOD k <= q MOD k \/ ~(p MOD k <= q MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`q`;`i`]
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`p`;`i`];
MP_TAC(ARITH_RULE`(~(p' MOD k<= q' MOD k))\/ (p' MOD k < q' MOD k ) \/ (p' MOD k = q' MOD k )`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` ~(p' MOD k<= q' MOD k)==> q' MOD k <= p' MOD k`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` (p' MOD k< q' MOD k)==> ~(q' MOD k <= p' MOD k)/\ (p' MOD k<= q' MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`p`;`i`]
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`q`;`i`]]);;
let DIAG_PSORT2=prove_by_refinement(` ~(k=0) /\ (i+p) MOD k = p' MOD k /\
p' + q = p + q' /\ ~(k=0) /\ (psort k (i+i',i+j) = psort k (p',q'))
==>
(psort k (i',j) = psort k (p,q))`,
[
REWRITE_TAC[psort;
LET_DEF;
LET_END_DEF;
COND_EXPAND
]
THEN RESA_TAC
THEN POP_ASSUM MP_TAC
THEN MP_TAC
TRANS_DIAG
THEN RESA_TAC
THEN MP_TAC(SET_RULE`(i+i') MOD k <= (i+j) MOD k \/ ~((i+i') MOD k <= (i+j) MOD k)`)
THEN RESA_TAC;
MP_TAC(SET_RULE`p' MOD k <= q' MOD k \/ ~(p' MOD k <= q' MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`p`;`i`]
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`q`;`i`];
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`q`;`i`]
THEN MRESAS_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`p`;`i`][];
MP_TAC(ARITH_RULE`(~(p MOD k<= q MOD k))\/ (p MOD k < q MOD k ) \/ (p MOD k = q MOD k )`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` ~(p MOD k<= q MOD k)==> q MOD k <= p MOD k`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` (p MOD k< q MOD k)==> ~(q MOD k <= p MOD k)/\ (p MOD k<= q MOD k)`)
THEN RESA_TAC;
MP_TAC(SET_RULE`p' MOD k <= q' MOD k \/ ~(p' MOD k <= q' MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`q`;`i`]
THEN MRESAS_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`p`;`i`][];
MP_TAC(ARITH_RULE`(~(p MOD k<= q MOD k))\/ (p MOD k < q MOD k ) \/ (p MOD k = q MOD k )`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` ~(p MOD k<= q MOD k)==> q MOD k <= p MOD k`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE` (p MOD k< q MOD k)==> ~(q MOD k <= p MOD k)/\ (p MOD k<= q MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN RESA_TAC
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`i'`;`p`;`i`]
THEN MRESA_TAC Ocbicby.MOD_EQ_MOD_SHIFT[`k`;`j`;`q`;`i`]]);;
let DIAG_PSORT=prove(
` ~(k=0) /\ (i+p) MOD k = p' MOD k /\
p' + q = p + q' /\ ~(k=0)
==>
((psort k (i+i',i+j) = psort k (p',q'))
<=>
(psort k (i',j) = psort k (p,q)))`,
STRIP_TAC
THEN EQ_TAC
THEN STRIP_TAC
THENL[
MATCH_MP_TAC
DIAG_PSORT2
THEN RESA_TAC;
MATCH_MP_TAC
DIAG_PSORT1
THEN RESA_TAC]);;
let PSORT_PERIODIC=prove(`~(k=0) ==> psort (k) (i + k,j) = psort (k) (i,j)
/\ psort (k) (i,j+k) = psort (k) (i,j)`,
let DIAG_NOT_PSORT = prove_by_refinement(
`~(k=0) /\
scs_diag k i j ==> !i'. ~(psort k (i,j) = psort k (i',SUC i'))`,
[
REWRITE_TAC[
scs_diag;psort;
LET_DEF;
LET_END_DEF]
THEN STRIP_TAC
THEN GEN_TAC
THEN MP_TAC(ARITH_RULE`i MOD k <= j MOD k\/ ~(i MOD k <= j MOD k)`)
THEN RESA_TAC;
MP_TAC(ARITH_RULE`i' MOD k <= SUC i' MOD k\/ ~(i' MOD k <= SUC i' MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN STRIP_TAC
THEN MRESA_TAC Zithlqn.IMP_SUC_MOD_EQ[`i'`;`i`;`k`]
THEN POP_ASSUM MP_TAC
THEN SYM_ASSUM_TAC
THEN ASM_REWRITE_TAC[];
REWRITE_TAC[
PAIR_EQ]
THEN STRIP_TAC
THEN MRESA_TAC Zithlqn.IMP_SUC_MOD_EQ[`j`;`i'`;`k`]
THEN POP_ASSUM MP_TAC
THEN REMOVE_ASSUM_TAC
THEN SYM_ASSUM_TAC
THEN ASM_REWRITE_TAC[];
MP_TAC(ARITH_RULE`i' MOD k <= SUC i' MOD k\/ ~(i' MOD k <= SUC i' MOD k)`)
THEN RESA_TAC;
REWRITE_TAC[
PAIR_EQ]
THEN STRIP_TAC
THEN MRESA_TAC Zithlqn.IMP_SUC_MOD_EQ[`j`;`i'`;`k`]
THEN POP_ASSUM MP_TAC
THEN SYM_ASSUM_TAC
THEN ASM_REWRITE_TAC[];
REWRITE_TAC[
PAIR_EQ]
THEN STRIP_TAC
THEN MRESA_TAC Zithlqn.IMP_SUC_MOD_EQ[`i'`;`i`;`k`]
THEN POP_ASSUM MP_TAC
THEN REMOVE_ASSUM_TAC
THEN SYM_ASSUM_TAC
THEN ASM_REWRITE_TAC[]]);;
let YRTAFYH_concl =
`!s i j.
is_scs_v39 s /\
scs_basic_v39 s /\
3 < scs_k_v39 s /\
scs_diag (scs_k_v39 s) i j /\
scs_a_v39 s i j <= cstab ==>
is_scs_v39 (scs_stab_diag_v39 s i j) /\ scs_basic_v39 (scs_stab_diag_v39 s i j)
`;;
let YRTAFYH= prove_by_refinement(YRTAFYH_concl,
[
REPEAT RESA_TAC
THEN MP_TAC PROPERTY_OF_K_SCS
THEN RESA_TAC;
DICH_TAC 8
THEN STRIP_TAC
THEN POP_ASSUM(fun th-> MP_TAC th THEN ASSUME_TAC(th))
THEN REWRITE_TAC[LET_DEF;LET_END_DEF;scs_stab_diag_v39;is_scs_v39;scs_v39_explicit;mk_unadorned_v39;scs_basic;periodic;periodic2]
THEN REPEAT RESA_TAC
THEN ABBREV_TAC`k= scs_k_v39 s`;
SET_TAC[];
SET_TAC[];
SET_TAC[];
SET_TAC[];
ASM_SIMP_TAC[PSORT_PERIODIC];
ASM_SIMP_TAC[PSORT_PERIODIC];
ASM_SIMP_TAC[PSORT_PERIODIC];
ASM_SIMP_TAC[PSORT_PERIODIC];
ASM_SIMP_TAC[Terminal.psort_sym];
REAL_ARITH_TAC;
MP_TAC(SET_RULE`psort k (i,j) = psort k (i',j') \/ ~(psort k (i,j) = psort k (i',j'))`)
THEN RESA_TAC;
MRESAL_TAC A_EQ_PSORT[`i'`;`j'`;`s`;`i`;`j`][];
THAYTHE_TAC (30-21)[`i'`;`j'`]
THEN DICH_TAC 0
THEN DICH_TAC 0
THEN DICH_TAC 0
THEN REAL_ARITH_TAC;
MP_TAC(SET_RULE`psort k (i,j) = psort k (i',j') \/ ~(psort k (i,j) = psort k (i',j'))`)
THEN RESA_TAC
THEN REAL_ARITH_TAC;
MP_TAC(SET_RULE`psort 3 (i,j) = psort 3 (i',SUC i') \/ ~(psort 3 (i,j) = psort 3 (i', SUC i'))`)
THEN RESA_TAC;
REWRITE_TAC[cstab]
THEN REAL_ARITH_TAC;
MATCH_DICH_TAC (31-24)
THEN ASM_REWRITE_TAC[];
MP_TAC(SET_RULE`psort k (i,j) = psort k (i',SUC i') \/ ~(psort k (i,j) = psort k (i', SUC i'))`)
THEN RESA_TAC;
REAL_ARITH_TAC;
MP_TAC DIAG_NOT_PSORT
THEN RESA_TAC;
REWRITE_TAC[scs_basic;scs_stab_diag_v39;LET_DEF;LET_END_DEF;unadorned_v39;mk_unadorned_v39;scs_v39_explicit]]);;
end;;
(*
let check_completeness_claimA_concl =
Ineq.mk_tplate `\x. scs_arrow_v13 (set_of_list x)
*)