(* ========================================================================= *)
(* The law of cosines, of sines, and sum of angles of a triangle.            *)
(* ========================================================================= *)
needs "Multivariate/transcendentals.ml";;
prioritize_vector();;
(* ------------------------------------------------------------------------- *)
(* Angle between vectors (always 0 <= angle <= pi).                          *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Traditional geometric notion of angle (but always 0 <= theta <= pi).      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Lemmas (more than we need for this result).                               *)
(* ------------------------------------------------------------------------- *)
let VANGLE = prove
 (`!x y:real^N. x dot y = norm(x) * norm(y) * cos(vangle x y)`,
 
let ANGLE_EQ_PI = prove
 (`!A B C:real^N. angle(A,B,C) = pi ==> dist(A,C) = dist(A,B) + dist(B,C)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[angle] THEN
  DISCH_THEN(MP_TAC o MATCH_MP 
VANGLE_EQ_PI) THEN
  REWRITE_TAC[VECTOR_ARITH `a + x % (b - c) = vec 0 <=> a = x % (c - b)`] THEN
  GEN_REWRITE_TAC (funpow 3 LAND_CONV) [
NORM_SUB] THEN
  REWRITE_TAC[GSYM 
NORM_TRIANGLE_EQ] THEN
  REWRITE_TAC[VECTOR_ARITH `(B - A) + (C - B):real^N = C - A`] THEN
  REWRITE_TAC[dist; 
NORM_SUB]);;
 
let ANGLE = prove
 (`!A B C. (A - C) dot (B - C) = dist(A,C) * dist(B,C) * cos(angle(A,C,B))`,
  REWRITE_TAC[angle; dist; GSYM 
VANGLE]);;
 
let LAW_OF_COSINES = prove
 (`!A B C:real^N.
     dist(B,C) pow 2 = dist(A,B) pow 2 + dist(A,C) pow 2 -
                         &2 * dist(A,B) * dist(A,C) * cos(angle(B,A,C))`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[angle; ONCE_REWRITE_RULE[
NORM_SUB] dist; GSYM 
VANGLE;
              
NORM_POW_2] THEN
  VECTOR_ARITH_TAC);;
 
let LAW_OF_SINES = prove
 (`!A B C:real^N.
      sin(angle(A,B,C)) * dist(B,C) = sin(angle(B,A,C)) * dist(A,C)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC 
REAL_POW_EQ THEN EXISTS_TAC `2` THEN
  SIMP_TAC[
SIN_ANGLE_POS; 
DIST_POS_LE; 
REAL_LE_MUL; ARITH] THEN
  REWRITE_TAC[
REAL_POW_MUL; MATCH_MP
   (REAL_ARITH `x + y = &1 ==> x = &1 - y`) (SPEC_ALL 
SIN_CIRCLE)] THEN
  ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[
ANGLE_REFL; 
COS_PI2] THEN
  RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM 
VECTOR_SUB_EQ]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[GSYM 
NORM_EQ_0]) THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_RING
   `~(a = &0) ==> a pow 2 * x = a pow 2 * y ==> x = y`)) THEN
  ONCE_REWRITE_TAC[
DIST_SYM] THEN REWRITE_TAC[GSYM dist] THEN
  GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [
DIST_SYM] THEN
  REWRITE_TAC[REAL_RING
   `a * (&1 - x) * b = c * (&1 - y) * d <=>
    a * b - a * b * x = c * d - c * d * y`] THEN
  REWRITE_TAC[GSYM 
REAL_POW_MUL; GSYM 
ANGLE] THEN
  REWRITE_TAC[
REAL_POW_MUL; dist; 
NORM_POW_2] THEN
  REWRITE_TAC[
DOT_LSUB; 
DOT_RSUB; 
DOT_SYM] THEN CONV_TAC REAL_RING);;
 
let COS_MINUS1_LEMMA = prove
 (`!x. cos(x) = -- &1 /\ &0 <= x /\ x < &3 * pi ==> x = pi`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?n. integer n /\ x = n * pi`
   (X_CHOOSE_THEN `nn:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
  REWRITE_TAC[GSYM 
SIN_EQ_0] THENL
   [MP_TAC(SPEC `x:real` 
SIN_CIRCLE) THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC REAL_RING;
    ALL_TAC] THEN
  SUBGOAL_THEN `?n. nn = &n` (X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
REAL_MUL_POS_LE]) THEN
    SIMP_TAC[
PI_POS; REAL_ARITH `&0 < p ==> ~(p < &0) /\ ~(p = &0)`] THEN
    ASM_MESON_TAC[
INTEGER_POS; 
REAL_LT_LE];
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_RING `n = &1 ==> n * p = p`) THEN
  REWRITE_TAC[REAL_OF_NUM_EQ] THEN
  MATCH_MP_TAC(ARITH_RULE `n < 3 /\ ~(n = 0) /\ ~(n = 2) ==> n = 1`) THEN
  RULE_ASSUM_TAC(SIMP_RULE[
REAL_LT_RMUL_EQ; 
PI_POS; 
REAL_OF_NUM_LT]) THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
  REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[
COS_0; 
REAL_MUL_LZERO; 
COS_NPI] THEN
  REAL_ARITH_TAC);;
 
let TRIANGLE_ANGLE_SUM = prove
 (`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
                  ==> angle(B,A,C) + angle(A,B,C) + angle(B,C,A) = pi`,