(* ======================================================================== *)
(* Infinite Ramsey's theorem. *)
(* *)
(* Port to HOL Light of a HOL88 proof done on 9th May 1994 *)
(* ======================================================================== *)
(* ------------------------------------------------------------------------- *)
(* HOL88 compatibility. *)
(* ------------------------------------------------------------------------- *)
let is_neg_imp tm =
is_neg tm or is_imp tm;;
let dest_neg_imp tm =
try dest_imp tm with Failure _ ->
try (dest_neg tm,mk_const("F",[]))
with Failure _ -> failwith "dest_neg_imp";;
(* ------------------------------------------------------------------------- *)
(* These get overwritten by the subgoal stuff. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* The quantifier movement conversions. *)
(* ------------------------------------------------------------------------- *)
let (CONV_OF_RCONV: conv -> conv) =
let rec get_bv tm =
if is_abs tm then bndvar tm
else if is_comb tm then try get_bv (rand tm) with Failure _ -> get_bv (rator tm)
else failwith "" in
fun conv tm ->
let v = get_bv tm in
let th1 = conv tm in
let th2 = ONCE_DEPTH_CONV (GEN_ALPHA_CONV v) (rhs(concl th1)) in
TRANS th1 th2;;
let (CONV_OF_THM: thm -> conv) =
CONV_OF_RCONV o REWR_CONV;;
let (X_FUN_EQ_CONV:term->conv) =
fun v -> (REWR_CONV FUN_EQ_THM) THENC GEN_ALPHA_CONV v;;
let (FUN_EQ_CONV:conv) =
fun tm ->
let vars = frees tm in
let op,[ty1;ty2] = dest_type(type_of (lhs tm)) in
if op = "fun"
then let varnm =
if (is_vartype ty1) then "x" else
hd(explode(fst(dest_type ty1))) in
let x = variant vars (mk_var(varnm,ty1)) in
X_FUN_EQ_CONV x tm
else failwith "FUN_EQ_CONV";;
let (SINGLE_DEPTH_CONV:conv->conv) =
let rec SINGLE_DEPTH_CONV conv tm =
try conv tm with Failure _ ->
(SUB_CONV (SINGLE_DEPTH_CONV conv) THENC (TRY_CONV conv)) tm in
SINGLE_DEPTH_CONV;;
let (SKOLEM_CONV:conv) =
SINGLE_DEPTH_CONV (REWR_CONV SKOLEM_THM);;
let (X_SKOLEM_CONV:term->conv) =
fun v -> SKOLEM_CONV THENC GEN_ALPHA_CONV v;;
let EXISTS_UNIQUE_CONV tm =
let v = bndvar(rand tm) in
let th1 = REWR_CONV EXISTS_UNIQUE_THM tm in
let tm1 = rhs(concl th1) in
let vars = frees tm1 in
let v = variant vars v in
let v' = variant (v::vars) v in
let th2 =
(LAND_CONV(GEN_ALPHA_CONV v) THENC
RAND_CONV(BINDER_CONV(GEN_ALPHA_CONV v') THENC
GEN_ALPHA_CONV v)) tm1 in
TRANS th1 th2;;
let NOT_FORALL_CONV = CONV_OF_THM NOT_FORALL_THM;;
let NOT_EXISTS_CONV = CONV_OF_THM NOT_EXISTS_THM;;
let RIGHT_IMP_EXISTS_CONV = CONV_OF_THM RIGHT_IMP_EXISTS_THM;;
let FORALL_IMP_CONV = CONV_OF_RCONV
(REWR_CONV TRIV_FORALL_IMP_THM ORELSEC
REWR_CONV RIGHT_FORALL_IMP_THM ORELSEC
REWR_CONV LEFT_FORALL_IMP_THM);;
let EXISTS_AND_CONV = CONV_OF_RCONV
(REWR_CONV TRIV_EXISTS_AND_THM ORELSEC
REWR_CONV LEFT_EXISTS_AND_THM ORELSEC
REWR_CONV RIGHT_EXISTS_AND_THM);;
let LEFT_IMP_EXISTS_CONV = CONV_OF_THM LEFT_IMP_EXISTS_THM;;
let LEFT_AND_EXISTS_CONV tm =
let v = bndvar(rand(rand(rator tm))) in
(REWR_CONV LEFT_AND_EXISTS_THM THENC TRY_CONV (GEN_ALPHA_CONV v)) tm;;
let RIGHT_AND_EXISTS_CONV =
CONV_OF_THM RIGHT_AND_EXISTS_THM;;
let AND_FORALL_CONV = CONV_OF_THM AND_FORALL_THM;;
(* ------------------------------------------------------------------------- *)
(* The slew of named tautologies. *)
(* ------------------------------------------------------------------------- *)
let AND1_THM = TAUT `!t1 t2. t1 /\ t2 ==> t1`;;
let AND2_THM = TAUT `!t1 t2. t1 /\ t2 ==> t2`;;
let AND_IMP_INTRO = TAUT `!t1 t2 t3. t1 ==> t2 ==> t3 = t1 /\ t2 ==> t3`;;
let AND_INTRO_THM = TAUT `!t1 t2. t1 ==> t2 ==> t1 /\ t2`;;
let BOOL_EQ_DISTINCT = TAUT `~(T <=> F) /\ ~(F <=> T)`;;
let EQ_EXPAND = TAUT `!t1 t2. (t1 <=> t2) <=> t1 /\ t2 \/ ~t1 /\ ~t2`;;
let EQ_IMP_THM = TAUT `!t1 t2. (t1 <=> t2) <=> (t1 ==> t2) /\ (t2 ==> t1)`;;
let FALSITY = TAUT `!t. F ==> t`;;
let F_IMP = TAUT `!t. ~t ==> t ==> F`;;
let IMP_DISJ_THM = TAUT `!t1 t2. t1 ==> t2 <=> ~t1 \/ t2`;;
let IMP_F = TAUT `!t. (t ==> F) ==> ~t`;;
let IMP_F_EQ_F = TAUT `!t. t ==> F <=> (t <=> F)`;;
let LEFT_AND_OVER_OR = TAUT
`!t1 t2 t3. t1 /\ (t2 \/ t3) <=> t1 /\ t2 \/ t1 /\ t3`;;
let LEFT_OR_OVER_AND = TAUT
`!t1 t2 t3. t1 \/ t2 /\ t3 <=> (t1 \/ t2) /\ (t1 \/ t3)`;;
let NOT_AND = TAUT `~(t /\ ~t)`;;
let NOT_F = TAUT `!t. ~t ==> (t <=> F)`;;
let OR_ELIM_THM = TAUT
`!t t1 t2. t1 \/ t2 ==> (t1 ==> t) ==> (t2 ==> t) ==> t`;;
let OR_IMP_THM = TAUT `!t1 t2. (t1 <=> t2 \/ t1) <=> t2 ==> t1`;;
let OR_INTRO_THM1 = TAUT `!t1 t2. t1 ==> t1 \/ t2`;;
let OR_INTRO_THM2 = TAUT `!t1 t2. t2 ==> t1 \/ t2`;;
let RIGHT_AND_OVER_OR = TAUT
`!t1 t2 t3. (t2 \/ t3) /\ t1 <=> t2 /\ t1 \/ t3 /\ t1`;;
let RIGHT_OR_OVER_AND = TAUT
`!t1 t2 t3. t2 /\ t3 \/ t1 <=> (t2 \/ t1) /\ (t3 \/ t1)`;;
(* ------------------------------------------------------------------------- *)
(* This is an overwrite -- is there any point in what I have? *)
(* ------------------------------------------------------------------------- *)
let is_type = can get_type_arity;;
(* ------------------------------------------------------------------------- *)
(* I suppose this is also useful. *)
(* ------------------------------------------------------------------------- *)
let is_constant = can get_const_type;;
(* ------------------------------------------------------------------------- *)
(* Misc. *)
(* ------------------------------------------------------------------------- *)
let null l = l = [];;
(* ------------------------------------------------------------------------- *)
(* Syntax. *)
(* ------------------------------------------------------------------------- *)
let type_tyvars = type_vars_in_term o curry mk_var "x";;
let find_match u =
let rec find_mt t =
try term_match [] u t with Failure _ ->
try find_mt(rator t) with Failure _ ->
try find_mt(rand t) with Failure _ ->
try find_mt(snd(dest_abs t))
with Failure _ -> failwith "find_match" in
fun t -> let _,tmin,tyin = find_mt t in
tmin,tyin;;
let rec mk_primed_var(name,ty) =
if can get_const_type name then mk_primed_var(name^"'",ty)
else mk_var(name,ty);;
let subst_occs =
let rec subst_occs slist tm =
let applic,noway = partition (fun (i,(t,x)) -> aconv tm x) slist in
let sposs = map (fun (l,z) -> let l1,l2 = partition ((=) 1) l in
(l1,z),(l2,z)) applic in
let racts,rrest = unzip sposs in
let acts = filter (fun t -> not (fst t = [])) racts in
let trest = map (fun (n,t) -> (map (C (-) 1) n,t)) rrest in
let urest = filter (fun t -> not (fst t = [])) trest in
let tlist = urest @ noway in
if acts = [] then
if is_comb tm then
let l,r = dest_comb tm in
let l',s' = subst_occs tlist l in
let r',s'' = subst_occs s' r in
mk_comb(l',r'),s''
else if is_abs tm then
let bv,bod = dest_abs tm in
let gv = genvar(type_of bv) in
let nbod = vsubst[gv,bv] bod in
let tm',s' = subst_occs tlist nbod in
alpha bv (mk_abs(gv,tm')),s'
else
tm,tlist
else
let tm' = (fun (n,(t,x)) -> subst[t,x] tm) (hd acts) in
tm',tlist in
fun ilist slist tm -> fst(subst_occs (zip ilist slist) tm);;
(* ------------------------------------------------------------------------- *)
(* Note that the all-instantiating INST and INST_TYPE are not overwritten. *)
(* ------------------------------------------------------------------------- *)
let INST_TY_TERM(substl,insttyl) th =
let th' = INST substl (INST_TYPE insttyl th) in
if hyp th' = hyp th then th'
else failwith "INST_TY_TERM: Free term and/or type variables in hypotheses";;
(* ------------------------------------------------------------------------- *)
(* Conversions stuff. *)
(* ------------------------------------------------------------------------- *)
let RIGHT_CONV_RULE (conv:conv) th =
TRANS th (conv(rhs(concl th)));;
(* ------------------------------------------------------------------------- *)
(* Derived rules. *)
(* ------------------------------------------------------------------------- *)
let NOT_EQ_SYM =
let pth = GENL [`a:A`; `b:A`]
(GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] (DISCH_ALL(SYM(ASSUME`a:A = b`))))
and aty = `:A` in
fun th -> try let l,r = dest_eq(dest_neg(concl th)) in
MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th
with Failure _ -> failwith "NOT_EQ_SYM";;
let NOT_MP thi th =
try MP thi th with Failure _ ->
try let t = dest_neg (concl thi) in
MP(MP (SPEC t F_IMP) thi) th
with Failure _ -> failwith "NOT_MP";;
let FORALL_EQ x =
let mkall = AP_TERM (mk_const("!",[type_of x,mk_vartype "A"])) in
fun th -> try mkall (ABS x th)
with Failure _ -> failwith "FORALL_EQ";;
let EXISTS_EQ x =
let mkex = AP_TERM (mk_const("?",[type_of x,mk_vartype "A"])) in
fun th -> try mkex (ABS x th)
with Failure _ -> failwith "EXISTS_EQ";;
let SELECT_EQ x =
let mksel = AP_TERM (mk_const("@",[type_of x,mk_vartype "A"])) in
fun th -> try mksel (ABS x th)
with Failure _ -> failwith "SELECT_EQ";;
let RIGHT_BETA th =
try TRANS th (BETA_CONV(rhs(concl th)))
with Failure _ -> failwith "RIGHT_BETA";;
let rec LIST_BETA_CONV tm =
try let rat,rnd = dest_comb tm in
RIGHT_BETA(AP_THM(LIST_BETA_CONV rat)rnd)
with Failure _ -> REFL tm;;
let RIGHT_LIST_BETA th = TRANS th (LIST_BETA_CONV(snd(dest_eq(concl th))));;
let LIST_CONJ = end_itlist CONJ ;;
let rec CONJ_LIST n th =
try if n=1 then [th] else (CONJUNCT1 th)::(CONJ_LIST (n-1) (CONJUNCT2 th))
with Failure _ -> failwith "CONJ_LIST";;
let rec BODY_CONJUNCTS th =
if is_forall(concl th) then
BODY_CONJUNCTS (SPEC_ALL th) else
if is_conj (concl th) then
BODY_CONJUNCTS (CONJUNCT1 th) @ BODY_CONJUNCTS (CONJUNCT2 th)
else [th];;
let rec IMP_CANON th =
let w = concl th in
if is_conj w then IMP_CANON (CONJUNCT1 th) @ IMP_CANON (CONJUNCT2 th)
else if is_imp w then
let ante,conc = dest_neg_imp w in
if is_conj ante then
let a,b = dest_conj ante in
IMP_CANON
(DISCH a (DISCH b (NOT_MP th (CONJ (ASSUME a) (ASSUME b)))))
else if is_disj ante then
let a,b = dest_disj ante in
IMP_CANON (DISCH a (NOT_MP th (DISJ1 (ASSUME a) b))) @
IMP_CANON (DISCH b (NOT_MP th (DISJ2 a (ASSUME b))))
else if is_exists ante then
let x,body = dest_exists ante in
let x' = variant (thm_frees th) x in
let body' = subst [x',x] body in
IMP_CANON
(DISCH body' (NOT_MP th (EXISTS (ante, x') (ASSUME body'))))
else
map (DISCH ante) (IMP_CANON (UNDISCH th))
else if is_forall w then
IMP_CANON (SPEC_ALL th)
else [th];;
let LIST_MP = rev_itlist (fun x y -> MP y x);;
let DISJ_IMP =
let pth = TAUT`!t1 t2. t1 \/ t2 ==> ~t1 ==> t2` in
fun th ->
try let a,b = dest_disj(concl th) in MP (SPECL [a;b] pth) th
with Failure _ -> failwith "DISJ_IMP";;
let IMP_ELIM =
let pth = TAUT`!t1 t2. (t1 ==> t2) ==> ~t1 \/ t2` in
fun th ->
try let a,b = dest_imp(concl th) in MP (SPECL [a;b] pth) th
with Failure _ -> failwith "IMP_ELIM";;
let DISJ_CASES_UNION dth ath bth =
DISJ_CASES dth (DISJ1 ath (concl bth)) (DISJ2 (concl ath) bth);;
let MK_ABS qth =
try let ov = bndvar(rand(concl qth)) in
let bv,rth = SPEC_VAR qth in
let sth = ABS bv rth in
let cnv = ALPHA_CONV ov in
CONV_RULE(BINOP_CONV cnv) sth
with Failure _ -> failwith "MK_ABS";;
let HALF_MK_ABS th =
try let th1 = MK_ABS th in
CONV_RULE(LAND_CONV ETA_CONV) th1
with Failure _ -> failwith "HALF_MK_ABS";;
let MK_EXISTS qth =
try let ov = bndvar(rand(concl qth)) in
let bv,rth = SPEC_VAR qth in
let sth = EXISTS_EQ bv rth in
let cnv = GEN_ALPHA_CONV ov in
CONV_RULE(BINOP_CONV cnv) sth
with Failure _ -> failwith "MK_EXISTS";;
let LIST_MK_EXISTS l th = itlist (fun x th -> MK_EXISTS(GEN x th)) l th;;
let IMP_CONJ th1 th2 =
let A1,C1 = dest_imp (concl th1) and A2,C2 = dest_imp (concl th2) in
let a1,a2 = CONJ_PAIR (ASSUME (mk_conj(A1,A2))) in
DISCH (mk_conj(A1,A2)) (CONJ (MP th1 a1) (MP th2 a2));;
let EXISTS_IMP x =
if not (is_var x) then failwith "EXISTS_IMP: first argument not a variable"
else fun th ->
try let ante,cncl = dest_imp(concl th) in
let th1 = EXISTS (mk_exists(x,cncl),x) (UNDISCH th) in
let asm = mk_exists(x,ante) in
DISCH asm (CHOOSE (x,ASSUME asm) th1)
with Failure _ -> failwith "EXISTS_IMP: variable free in assumptions";;
let CONJUNCTS_CONV (t1,t2) =
let rec build_conj thl t =
try let l,r = dest_conj t in
CONJ (build_conj thl l) (build_conj thl r)
with Failure _ -> find (fun th -> concl th = t) thl in
try IMP_ANTISYM_RULE
(DISCH t1 (build_conj (CONJUNCTS (ASSUME t1)) t2))
(DISCH t2 (build_conj (CONJUNCTS (ASSUME t2)) t1))
with Failure _ -> failwith "CONJUNCTS_CONV";;
let CONJ_SET_CONV l1 l2 =
try CONJUNCTS_CONV (list_mk_conj l1, list_mk_conj l2)
with Failure _ -> failwith "CONJ_SET_CONV";;
let FRONT_CONJ_CONV tml t =
let rec remove x l =
if hd l = x then tl l else (hd l)::(remove x (tl l)) in
try CONJ_SET_CONV tml (t::(remove t tml))
with Failure _ -> failwith "FRONT_CONJ_CONV";;
let CONJ_DISCH =
let pth = TAUT`!t t1 t2. (t ==> (t1 <=> t2)) ==> (t /\ t1 <=> t /\ t2)` in
fun t th ->
try let t1,t2 = dest_eq(concl th) in
MP (SPECL [t; t1; t2] pth) (DISCH t th)
with Failure _ -> failwith "CONJ_DISCH";;
let rec CONJ_DISCHL l th =
if l = [] then th else CONJ_DISCH (hd l) (CONJ_DISCHL (tl l) th);;
let rec GSPEC th =
let wl,w = dest_thm th in
if is_forall w then
GSPEC (SPEC (genvar (type_of (fst (dest_forall w)))) th)
else th;;
let ANTE_CONJ_CONV tm =
try let (a1,a2),c = (dest_conj F_F I) (dest_imp tm) in
let imp1 = MP (ASSUME tm) (CONJ (ASSUME a1) (ASSUME a2)) and
imp2 = LIST_MP [CONJUNCT1 (ASSUME (mk_conj(a1,a2)));
CONJUNCT2 (ASSUME (mk_conj(a1,a2)))]
(ASSUME (mk_imp(a1,mk_imp(a2,c)))) in
IMP_ANTISYM_RULE (DISCH_ALL (DISCH a1 (DISCH a2 imp1)))
(DISCH_ALL (DISCH (mk_conj(a1,a2)) imp2))
with Failure _ -> failwith "ANTE_CONJ_CONV";;
let bool_EQ_CONV =
let check = let boolty = `:bool` in check (fun tm -> type_of tm = boolty) in
let clist = map (GEN `b:bool`)
(CONJUNCTS(SPEC `b:bool` EQ_CLAUSES)) in
let tb = hd clist and bt = hd(tl clist) in
let T = `T` and F = `F` in
fun tm ->
try let l,r = (I F_F check) (dest_eq tm) in
if l = r then EQT_INTRO (REFL l) else
if l = T then SPEC r tb else
if r = T then SPEC l bt else fail()
with Failure _ -> failwith "bool_EQ_CONV";;
let COND_CONV =
let T = `T` and F = `F` and vt = genvar`:A` and vf = genvar `:A` in
let gen = GENL [vt;vf] in
let CT,CF = (gen F_F gen) (CONJ_PAIR (SPECL [vt;vf] COND_CLAUSES)) in
fun tm ->
let P,(u,v) = try dest_cond tm
with Failure _ -> failwith "COND_CONV: not a conditional" in
let ty = type_of u in
if (P=T) then SPEC v (SPEC u (INST_TYPE [ty,`:A`] CT)) else
if (P=F) then SPEC v (SPEC u (INST_TYPE [ty,`:A`] CF)) else
if (u=v) then SPEC u (SPEC P (INST_TYPE [ty,`:A`] COND_ID)) else
if (aconv u v) then
let cnd = AP_TERM (rator tm) (ALPHA v u) in
let thm = SPEC u (SPEC P (INST_TYPE [ty,`:A`] COND_ID)) in
TRANS cnd thm else
failwith "COND_CONV: can't simplify conditional";;
let SUBST_MATCH eqth th =
let tm_inst,ty_inst = find_match (lhs(concl eqth)) (concl th) in
SUBS [INST tm_inst (INST_TYPE ty_inst eqth)] th;;
let SUBST thl pat th =
let eqs,vs = unzip thl in
let gvs = map (genvar o type_of) vs in
let gpat = subst (zip gvs vs) pat in
let ls,rs = unzip (map (dest_eq o concl) eqs) in
let ths = map (ASSUME o mk_eq) (zip gvs rs) in
let th1 = ASSUME gpat in
let th2 = SUBS ths th1 in
let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
let th4 = INST (zip ls gvs) th3 in
MP (rev_itlist (C MP) eqs th4) th;;
(* let GSUBS = ... *)
(* let SUBS_OCCS = ... *)
(* A poor thing but mine own. The old ones use mk_thm and the commented
out functions are bogus. *)
let SUBST_CONV thvars template tm =
let thms,vars = unzip thvars in
let gvs = map (genvar o type_of) vars in
let gtemplate = subst (zip gvs vars) template in
SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);;
(* ------------------------------------------------------------------------- *)
(* Filtering rewrites. *)
(* ------------------------------------------------------------------------- *)
let FILTER_PURE_ASM_REWRITE_RULE f thl th =
PURE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th
and FILTER_ASM_REWRITE_RULE f thl th =
REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th
and FILTER_PURE_ONCE_ASM_REWRITE_RULE f thl th =
PURE_ONCE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th
and FILTER_ONCE_ASM_REWRITE_RULE f thl th =
ONCE_REWRITE_RULE ((map ASSUME (filter f (hyp th))) @ thl) th;;
let (FILTER_PURE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
PURE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)
and (FILTER_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)
and (FILTER_PURE_ONCE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
PURE_ONCE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w)
and (FILTER_ONCE_ASM_REWRITE_TAC: (term->bool) -> thm list -> tactic) =
fun f thl (asl,w) ->
ONCE_REWRITE_TAC (filter (f o concl) (map snd asl) @ thl) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Tacticals. *)
(* ------------------------------------------------------------------------- *)
let (X_CASES_THENL: term list list -> thm_tactic list -> thm_tactic) =
fun varsl ttacl ->
end_itlist DISJ_CASES_THEN2
(map (fun (vars,ttac) -> EVERY_TCL (map X_CHOOSE_THEN vars) ttac)
(zip varsl ttacl));;
let (X_CASES_THEN: term list list -> thm_tactical) =
fun varsl ttac ->
end_itlist DISJ_CASES_THEN2
(map (fun vars -> EVERY_TCL (map X_CHOOSE_THEN vars) ttac) varsl);;
let (CASES_THENL: thm_tactic list -> thm_tactic) =
fun ttacl -> end_itlist DISJ_CASES_THEN2 (map (REPEAT_TCL CHOOSE_THEN) ttacl);;
(* ------------------------------------------------------------------------- *)
(* Tactics. *)
(* ------------------------------------------------------------------------- *)
let (DISCARD_TAC: thm_tactic) =
let truth = `T` in
fun th (asl,w) ->
if exists (aconv (concl th)) (truth::(map (concl o snd) asl))
then ALL_TAC (asl,w)
else failwith "DISCARD_TAC";;
let (CHECK_ASSUME_TAC: thm_tactic) =
fun gth ->
FIRST [CONTR_TAC gth; ACCEPT_TAC gth;
DISCARD_TAC gth; ASSUME_TAC gth];;
let (FILTER_GEN_TAC: term -> tactic) =
fun tm (asl,w) ->
if is_forall w & not (tm = fst(dest_forall w)) then
GEN_TAC (asl,w)
else failwith "FILTER_GEN_TAC";;
let (FILTER_DISCH_THEN: thm_tactic -> term -> tactic) =
fun ttac tm (asl,w) ->
if is_neg_imp w & not (free_in tm (fst(dest_neg_imp w))) then
DISCH_THEN ttac (asl,w)
else failwith "FILTER_DISCH_THEN";;
let FILTER_STRIP_THEN ttac tm =
FIRST [FILTER_GEN_TAC tm; FILTER_DISCH_THEN ttac tm; CONJ_TAC];;
let FILTER_DISCH_TAC = FILTER_DISCH_THEN STRIP_ASSUME_TAC;;
let FILTER_STRIP_TAC = FILTER_STRIP_THEN STRIP_ASSUME_TAC;;
(* ------------------------------------------------------------------------- *)
(* Conversions for quantifier movement using proforma theorems. *)
(* ------------------------------------------------------------------------- *)
(* let ....... *)
(* ------------------------------------------------------------------------- *)
(* Resolution stuff. *)
(* ------------------------------------------------------------------------- *)
let RES_CANON =
let not_elim th =
if is_neg (concl th) then true,(NOT_ELIM th) else (false,th) in
let rec canon fl th =
let w = concl th in
if (is_conj w) then
let (th1,th2) = CONJ_PAIR th in (canon fl th1) @ (canon fl th2) else
if ((is_imp w) & not(is_neg w)) then
let ante,conc = dest_neg_imp w in
if (is_conj ante) then
let a,b = dest_conj ante in
let cth = NOT_MP th (CONJ (ASSUME a) (ASSUME b)) in
let th1 = DISCH b cth and th2 = DISCH a cth in
(canon true (DISCH a th1)) @ (canon true (DISCH b th2)) else
if (is_disj ante) then
let a,b = dest_disj ante in
let ath = DISJ1 (ASSUME a) b and bth = DISJ2 a (ASSUME b) in
let th1 = DISCH a (NOT_MP th ath) and
th2 = DISCH b (NOT_MP th bth) in
(canon true th1) @ (canon true th2) else
if (is_exists ante) then
let v,body = dest_exists ante in
let newv = variant (thm_frees th) v in
let newa = subst [newv,v] body in
let th1 = NOT_MP th (EXISTS (ante, newv) (ASSUME newa)) in
canon true (DISCH newa th1) else
map (GEN_ALL o (DISCH ante)) (canon true (UNDISCH th)) else
if (is_eq w & (type_of (rand w) = `:bool`)) then
let (th1,th2) = EQ_IMP_RULE th in
(if fl then [GEN_ALL th] else []) @ (canon true th1) @ (canon true th2) else
if (is_forall w) then
let vs,body = strip_forall w in
let fvs = thm_frees th in
let vfn = fun l -> variant (l @ fvs) in
let nvs = itlist (fun v nv -> let v' = vfn nv v in (v'::nv)) vs [] in
canon fl (SPECL nvs th) else
if fl then [GEN_ALL th] else [] in
fun th -> try let args = map (not_elim o SPEC_ALL) (CONJUNCTS (SPEC_ALL th)) in
let imps = flat (map (map GEN_ALL o (uncurry canon)) args) in
check (fun l -> l <> []) imps
with Failure _ ->
failwith "RES_CANON: no implication is derivable from input thm.";;
let IMP_RES_THEN,RES_THEN =
let MATCH_MP impth =
let sth = SPEC_ALL impth in
let matchfn = (fun (a,b,c) -> b,c) o
term_match [] (fst(dest_neg_imp(concl sth))) in
fun th -> NOT_MP (INST_TY_TERM (matchfn (concl th)) sth) th in
let check st l = (if l = [] then failwith st else l) in
let IMP_RES_THEN ttac impth =
let ths = try RES_CANON impth with Failure _ -> failwith "IMP_RES_THEN: no implication" in
ASSUM_LIST
(fun asl ->
let l = itlist (fun th -> (@) (mapfilter (MATCH_MP th) asl)) ths [] in
let res = check "IMP_RES_THEN: no resolvents " l in
let tacs = check "IMP_RES_THEN: no tactics" (mapfilter ttac res) in
EVERY tacs) in
let RES_THEN ttac (asl,g) =
let asm = map snd asl in
let ths = itlist (@) (mapfilter RES_CANON asm) [] in
let imps = check "RES_THEN: no implication" ths in
let l = itlist (fun th -> (@) (mapfilter (MATCH_MP th) asm)) imps [] in
let res = check "RES_THEN: no resolvents " l in
let tacs = check "RES_THEN: no tactics" (mapfilter ttac res) in
EVERY tacs (asl,g) in
IMP_RES_THEN,RES_THEN;;
let IMP_RES_TAC th g =
try IMP_RES_THEN (REPEAT_GTCL IMP_RES_THEN STRIP_ASSUME_TAC) th g
with Failure _ -> ALL_TAC g;;
let RES_TAC g =
try RES_THEN (REPEAT_GTCL IMP_RES_THEN STRIP_ASSUME_TAC) g
with Failure _ -> ALL_TAC g;;
(* ------------------------------------------------------------------------- *)
(* Stuff for handling type definitions. *)
(* ------------------------------------------------------------------------- *)
let prove_rep_fn_one_one th =
try let thm = CONJUNCT1 th in
let A,R = (I F_F rator) (dest_comb(lhs(snd(dest_forall(concl thm))))) in
let _,[aty;rty] = dest_type (type_of R) in
let a = mk_primed_var("a",aty) in let a' = variant [a] a in
let a_eq_a' = mk_eq(a,a') and
Ra_eq_Ra' = mk_eq(mk_comb(R,a),mk_comb (R,a')) in
let th1 = AP_TERM A (ASSUME Ra_eq_Ra') in
let ga1 = genvar aty and ga2 = genvar aty in
let th2 = SUBST [SPEC a thm,ga1;SPEC a' thm,ga2] (mk_eq(ga1,ga2)) th1 in
let th3 = DISCH a_eq_a' (AP_TERM R (ASSUME a_eq_a')) in
GEN a (GEN a' (IMP_ANTISYM_RULE (DISCH Ra_eq_Ra' th2) th3))
with Failure _ -> failwith "prove_rep_fn_one_one";;
let prove_rep_fn_onto th =
try let [th1;th2] = CONJUNCTS th in
let r,eq = (I F_F rhs)(dest_forall(concl th2)) in
let RE,ar = dest_comb(lhs eq) and
sr = (mk_eq o (fun (x,y) -> y,x) o dest_eq) eq in
let a = mk_primed_var ("a",type_of ar) in
let sra = mk_eq(r,mk_comb(RE,a)) in
let ex = mk_exists(a,sra) in
let imp1 = EXISTS (ex,ar) (SYM(ASSUME eq)) in
let v = genvar (type_of r) and
A = rator ar and
s' = AP_TERM RE (SPEC a th1) in
let th = SUBST[SYM(ASSUME sra),v](mk_eq(mk_comb(RE,mk_comb(A,v)),v))s' in
let imp2 = CHOOSE (a,ASSUME ex) th in
let swap = IMP_ANTISYM_RULE (DISCH eq imp1) (DISCH ex imp2) in
GEN r (TRANS (SPEC r th2) swap)
with Failure _ -> failwith "prove_rep_fn_onto";;
let prove_abs_fn_onto th =
try let [th1;th2] = CONJUNCTS th in
let a,(A,R) = (I F_F ((I F_F rator)o dest_comb o lhs))
(dest_forall(concl th1)) in
let thm1 = EQT_ELIM(TRANS (SPEC (mk_comb (R,a)) th2)
(EQT_INTRO (AP_TERM R (SPEC a th1)))) in
let thm2 = SYM(SPEC a th1) in
let r,P = (I F_F (rator o lhs)) (dest_forall(concl th2)) in
let ex = mk_exists(r,mk_conj(mk_eq(a,mk_comb(A,r)),mk_comb(P,r))) in
GEN a (EXISTS(ex,mk_comb(R,a)) (CONJ thm2 thm1))
with Failure _ -> failwith "prove_abs_fn_onto";;
let prove_abs_fn_one_one th =
try let [th1;th2] = CONJUNCTS th in
let r,P = (I F_F (rator o lhs)) (dest_forall(concl th2)) and
A,R = (I F_F rator) (dest_comb(lhs(snd(dest_forall(concl th1))))) in
let r' = variant [r] r in
let as1 = ASSUME(mk_comb(P,r)) and as2 = ASSUME(mk_comb(P,r')) in
let t1 = EQ_MP (SPEC r th2) as1 and t2 = EQ_MP (SPEC r' th2) as2 in
let eq = (mk_eq(mk_comb(A,r),mk_comb(A,r'))) in
let v1 = genvar(type_of r) and v2 = genvar(type_of r) in
let i1 = DISCH eq
(SUBST [t1,v1;t2,v2] (mk_eq(v1,v2)) (AP_TERM R (ASSUME eq))) and
i2 = DISCH (mk_eq(r,r')) (AP_TERM A (ASSUME (mk_eq(r,r')))) in
let thm = IMP_ANTISYM_RULE i1 i2 in
let disch = DISCH (mk_comb(P,r)) (DISCH (mk_comb(P,r')) thm) in
GEN r (GEN r' disch)
with Failure _ -> failwith "prove_abs_fn_one_one";;
(* ------------------------------------------------------------------------- *)
(* AC rewriting needs to be wrapped up as a special conversion. *)
(* ------------------------------------------------------------------------- *)
let AC_CONV(assoc,sym) =
let th1 = SPEC_ALL assoc
and th2 = SPEC_ALL sym in
let th3 = GEN_REWRITE_RULE (RAND_CONV o LAND_CONV) [th2] th1 in
let th4 = SYM th1 in
let th5 = GEN_REWRITE_RULE RAND_CONV [th4] th3 in
EQT_INTRO o AC(end_itlist CONJ [th2; th4; th5]);;
let AC_RULE ths = EQT_ELIM o AC_CONV ths;;
(* ------------------------------------------------------------------------- *)
(* The order of picking conditionals is different! *)
(* ------------------------------------------------------------------------- *)
let (COND_CASES_TAC :tactic) =
let is_good_cond tm =
try not(is_const(fst(dest_cond tm)))
with Failure _ -> false in
fun (asl,w) ->
let cond = find_term (fun tm -> is_good_cond tm & free_in tm w) w in
let p,(t,u) = dest_cond cond in
let inst = INST_TYPE [type_of t, `:A`] COND_CLAUSES in
let (ct,cf) = CONJ_PAIR (SPEC u (SPEC t inst)) in
DISJ_CASES_THEN2
(fun th -> SUBST1_TAC (EQT_INTRO th) THEN
SUBST1_TAC ct THEN ASSUME_TAC th)
(fun th -> SUBST1_TAC (EQF_INTRO th) THEN
SUBST1_TAC cf THEN ASSUME_TAC th)
(SPEC p EXCLUDED_MIDDLE)
(asl,w) ;;
(* ------------------------------------------------------------------------- *)
(* MATCH_MP_TAC allows universals on the right of implication. *)
(* Here's a crude hack to allow it. *)
(* ------------------------------------------------------------------------- *)
let MATCH_MP_TAC th =
MATCH_MP_TAC th ORELSE
MATCH_MP_TAC(PURE_REWRITE_RULE[RIGHT_IMP_FORALL_THM] th);;
(* ------------------------------------------------------------------------- *)
(* Various theorems have different names. *)
(* ------------------------------------------------------------------------- *)
let ZERO_LESS_EQ = LE_0;;
let LESS_EQ_MONO = LE_SUC;;
let NOT_LESS = NOT_LT;;
let LESS_0 = LT_0;;
let LESS_EQ_REFL = LE_REFL;;
let LESS_EQUAL_ANTISYM = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_ANTISYM)));;
let NOT_LESS_0 = GEN_ALL(EQF_ELIM(SPEC_ALL(CONJUNCT1 LT)));;
let LESS_TRANS = LT_TRANS;;
let LESS_LEMMA1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL(CONJUNCT2 LT))));;
let FACT_LESS = FACT_LT;;
let LESS_EQ_ADD = LE_ADD;;
let GREATER_EQ = GE;;
let LESS_EQUAL_ADD = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_EXISTS)));;
let LESS_EQ_IMP_LESS_SUC = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_SUC_LE)));;
let LESS_IMP_LESS_OR_EQ = LT_IMP_LE;;
let LESS_MONO_ADD = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_ADD_RCANCEL)));;
let LESS_CASES = LTE_CASES;;
let LESS_EQ = GSYM LE_SUC_LT;;
let LESS_OR_EQ = LE_LT;;
let LESS_ADD_1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL
(REWRITE_RULE[ADD1] LT_EXISTS))));;
let LESS_MONO_EQ = LT_SUC;;
let LESS_REFL = LT_REFL;;
let INV_SUC_EQ = SUC_INJ;;
let LESS_EQ_CASES = LE_CASES;;
let LESS_EQ_TRANS = LE_TRANS;;
let LESS_THM = CONJUNCT2 LT;;
let GREATER = GT;;
let LESS_EQ_0 = CONJUNCT1 LE;;
let OR_LESS = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_SUC_LT)));;
let SUB_EQUAL_0 = SUB_REFL;;
let SUB_MONO_EQ = SUB_SUC;;
let SUC_NOT = GSYM NOT_SUC;;
let NOT_LESS_EQUAL = NOT_LE;;
let LESS_EQ_EXISTS = LE_EXISTS;;
let LESS_MONO_ADD_EQ = LT_ADD_RCANCEL;;
let LESS_LESS_EQ_TRANS = LTE_TRANS;;
let SUB_SUB = ARITH_RULE
`!b c. c <= b ==> (!a:num. a - (b - c) = (a + c) - b)`;;
let SUB_EQ_EQ_0 = ARITH_RULE
`!m n:num. (m - n = m) <=> (m = 0) \/ (n = 0)`;;
let LESS_EQ_LESS_TRANS = LET_TRANS;;
let LESS_OR = ARITH_RULE `!m n. m < n ==> (SUC m) <= n`;;
let SUB = ARITH_RULE
`(!m. 0 - m = 0) /\
(!m n. (SUC m) - n = (if m < n then 0 else SUC(m - n)))`;;
let ANTE_RES_THEN ttac th = FIRST_ASSUM(fun t -> ttac (MATCH_MP t th));;
let IMP_RES_THEN ttac th = FIRST_ASSUM(fun t -> ttac (MATCH_MP th t));;
(* ------------------------------------------------------------------------ *)
(* Set theory lemmas. *)
(* ------------------------------------------------------------------------ *)
let INFINITE_CHOOSE = prove(
`!s:A->bool.
INFINITE(s) ==> ((@) s)
IN s`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP
INFINITE_MEMBER) THEN
DISCH_THEN(MP_TAC o SELECT_RULE) THEN REWRITE_TAC[
IN] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[]);;
let IMAGE_WOP_LEMMA = prove(
`!N (t:num->bool) (u:A->bool).
u
SUBSET (
IMAGE f t) /\ u
HAS_SIZE (SUC N) ==>
?n v. (u = (f n)
INSERT v) /\
!y. y
IN v ==> ?m. (y = f m) /\ n < m`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\n:num. ?y:A. y
IN u /\ (y = f n)`
num_WOP) THEN BETA_TAC THEN
DISCH_THEN(MP_TAC o fst o EQ_IMP_RULE) THEN
FIRST_ASSUM(X_CHOOSE_TAC `y:A` o MATCH_MP
SIZE_EXISTS) THEN
FIRST_ASSUM(MP_TAC o SPEC `y:A` o REWRITE_RULE[
SUBSET]) THEN
ASM_REWRITE_TAC[
IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN
W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o
funpow 2 (fst o dest_imp) o snd) THENL
[MAP_EVERY EXISTS_TAC [`n:num`; `y:A`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`m:num`; `u
DELETE (x:A)`] THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC
INSERT_DELETE THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN
FIRST_ASSUM MATCH_ACCEPT_TAC;
X_GEN_TAC `z:A` THEN REWRITE_TAC[
IN_DELETE] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `z:A` o REWRITE_RULE[
SUBSET]) THEN
ASM_REWRITE_TAC[
IN_IMAGE] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[GSYM NOT_LESS_EQUAL] THEN
REWRITE_TAC[LESS_OR_EQ; DE_MORGAN_THM] THEN CONJ_TAC THENL
[DISCH_THEN(ANTE_RES_THEN (MP_TAC o CONV_RULE NOT_EXISTS_CONV)) THEN
DISCH_THEN(MP_TAC o SPEC `z:A`) THEN REWRITE_TAC[] THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `~(z:A = x)` THEN ASM_REWRITE_TAC[]]]);;
(* ------------------------------------------------------------------------ *)
(* Lemma about finite colouring of natural numbers. *)
(* ------------------------------------------------------------------------ *)
let COLOURING_LEMMA = prove(
`!M col s. (
INFINITE(s) /\ !n:A. n
IN s ==> col(n) <= M) ==>
?c t. t
SUBSET s /\
INFINITE(t) /\ !n:A. n
IN t ==> (col(n) = c)`,
INDUCT_TAC THENL
[REWRITE_TAC[
LESS_EQ_0] THEN REPEAT STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`0`; `s:A->bool`] THEN
ASM_REWRITE_TAC[
SUBSET_REFL];
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`
INFINITE { x:A | x
IN s /\ (col x = SUC M) } \/
INFINITE { x:A | x
IN s /\ col x <= M}`
DISJ_CASES_TAC THENL
[UNDISCH_TAC `
INFINITE(s:A->bool)` THEN
REWRITE_TAC[
INFINITE; GSYM DE_MORGAN_THM; GSYM
FINITE_UNION] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN(MATCH_MP_TAC o MATCH_MP
SUBSET_FINITE) THEN
REWRITE_TAC[
SUBSET;
IN_UNION] THEN
REWRITE_TAC[
IN_ELIM_THM] THEN
GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[GSYM
LESS_EQ_SUC] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
MAP_EVERY EXISTS_TAC [`SUC M`; `{ x:A | x
IN s /\ (col x = SUC M)}`] THEN
ASM_REWRITE_TAC[
SUBSET] THEN REWRITE_TAC[
IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[];
SUBGOAL_THEN `!n:A. n
IN { x | x
IN s /\ col x <= M } ==> col(n) <= M`
MP_TAC THENL
[GEN_TAC THEN REWRITE_TAC[
IN_ELIM_THM] THEN
DISCH_THEN(MATCH_ACCEPT_TAC o CONJUNCT2);
FIRST_X_ASSUM(MP_TAC o SPECL [`col:A->num`;
`{ x:A | x
IN s /\ col x <= M}`]) THEN
ASM_SIMP_TAC[] THEN
MATCH_MP_TAC(TAUT `(c ==> d) ==> (b ==> c) ==> b ==> d`) THEN
DISCH_THEN(X_CHOOSE_THEN `c:num` (X_CHOOSE_TAC `t:A->bool`)) THEN
MAP_EVERY EXISTS_TAC [`c:num`; `t:A->bool`] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
SUBSET_TRANS THEN
EXISTS_TAC `{ x:A | x
IN s /\ col x <= M }` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
SUBSET] THEN REWRITE_TAC[
IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]]]);;
let COLOURING_THM = prove(
`!M col. (!n. col n <= M) ==>
?c s.
INFINITE(s) /\ !n:num. n
IN s ==> (col(n) = c)`,
REPEAT STRIP_TAC THEN MP_TAC
(ISPECL [`M:num`; `col:num->num`; `UNIV:num->bool`]
COLOURING_LEMMA) THEN
ASM_REWRITE_TAC[
num_INFINITE] THEN
DISCH_THEN(X_CHOOSE_THEN `c:num` (X_CHOOSE_TAC `t:num->bool`)) THEN
MAP_EVERY EXISTS_TAC [`c:num`; `t:num->bool`] THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Simple approach via lemmas then induction over size of coloured sets. *)
(* ------------------------------------------------------------------------ *)
let RAMSEY_LEMMA1 = prove(
`(!C s.
INFINITE(s:A->bool) /\
(!t. t
SUBSET s /\ t
HAS_SIZE N ==> C(t) <= M)
==> ?t c.
INFINITE(t) /\ t
SUBSET s /\
(!u. u
SUBSET t /\ u
HAS_SIZE N ==> (C(u) = c)))
==> !C s.
INFINITE(s:A->bool) /\
(!t. t
SUBSET s /\ t
HAS_SIZE (SUC N) ==> C(t) <= M)
==> ?t c.
INFINITE(t) /\ t
SUBSET s /\ ~(((@) s)
IN t) /\
(!u. u
SUBSET t /\ u
HAS_SIZE N
==> (C(((@) s)
INSERT u) = c))`,
DISCH_THEN((THEN) (REPEAT STRIP_TAC) o MP_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `\u. C (((@) s :A)
INSERT u):num`) THEN
DISCH_THEN(MP_TAC o SPEC `s
DELETE ((@)s:A)`) THEN BETA_TAC THEN
ASM_REWRITE_TAC[
INFINITE_DELETE] THEN
W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o
funpow 2 (fst o dest_imp) o snd) THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
[UNDISCH_TAC `t
SUBSET (s
DELETE ((@) s :A))` THEN
REWRITE_TAC[
SUBSET;
IN_INSERT;
IN_DELETE;
NOT_IN_EMPTY] THEN
DISCH_TAC THEN GEN_TAC THEN DISCH_THEN DISJ_CASES_TAC THEN
ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC
INFINITE_CHOOSE;
FIRST_ASSUM(ANTE_RES_THEN ASSUME_TAC)] THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC
SIZE_INSERT THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN UNDISCH_TAC `t
SUBSET (s
DELETE ((@) s :A))` THEN
ASM_REWRITE_TAC[
SUBSET;
IN_DELETE] THEN
DISCH_THEN(MP_TAC o SPEC `(@)s:A`) THEN ASM_REWRITE_TAC[]];
DISCH_THEN(X_CHOOSE_THEN `t:A->bool` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `c:num` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`t:A->bool`; `c:num`] THEN ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[
SUBSET;
IN_DELETE]) THEN CONJ_TAC THENL
[REWRITE_TAC[
SUBSET] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN(fun th -> REWRITE_TAC[th]));
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]);;
let RAMSEY_LEMMA2 = prove(
`(!C s.
INFINITE(s:A->bool) /\
(!t. t
SUBSET s /\ t
HAS_SIZE (SUC N) ==> C(t) <= M)
==> ?t c.
INFINITE(t) /\ t
SUBSET s /\ ~(((@) s)
IN t) /\
(!u. u
SUBSET t /\ u
HAS_SIZE N
==> (C(((@) s)
INSERT u) = c)))
==> !C s.
INFINITE(s:A->bool) /\
(!t. t
SUBSET s /\ t
HAS_SIZE (SUC N) ==> C(t) <= M)
==> ?t x col. (!n. col n <= M) /\
(!n. (t n)
SUBSET s) /\
(!n. t(SUC n)
SUBSET (t n)) /\
(!n. ~((x n)
IN (t n))) /\
(!n. x(SUC n)
IN (t n)) /\
(!n. (x n)
IN s) /\
(!n u. u
SUBSET (t n) /\ u
HAS_SIZE N
==> (C((x n)
INSERT u) = col n))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`s:A->bool`; `\s (n:num). @t:A->bool. ?c:num.
INFINITE(t) /\
t
SUBSET s /\
~(((@) s)
IN t) /\
!u. u
SUBSET t /\ u
HAS_SIZE N ==> (C(((@) s)
INSERT u) = c)`]
num_Axiom) THEN DISCH_THEN(MP_TAC o BETA_RULE o EXISTENCE) THEN
DISCH_THEN(X_CHOOSE_THEN `f:num->(A->bool)` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`!n:num. (f n)
SUBSET (s:A->bool) /\
?c.
INFINITE(f(SUC n)) /\ f(SUC n)
SUBSET (f n) /\
~(((@)(f n))
IN (f(SUC n))) /\
!u. u
SUBSET (f(SUC n)) /\ u
HAS_SIZE N ==>
(C(((@)(f n))
INSERT u) = c:num)`
MP_TAC THENL
[MATCH_MP_TAC
num_INDUCTION THEN REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC[
SUBSET_REFL];
FIRST_ASSUM(SUBST1_TAC o SPEC `0`) THEN CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC
SUBSET_TRANS THEN EXISTS_TAC `f(n:num):A->bool` THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
FIRST_ASSUM(SUBST1_TAC o SPEC `SUC n`) THEN CONV_TAC SELECT_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THEN
TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
REPEAT(MATCH_MP_TAC
SUBSET_TRANS THEN
FIRST_ASSUM(fun th -> EXISTS_TAC(rand(concl th)) THEN
CONJ_TAC THENL [FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC])) THEN
MATCH_ACCEPT_TAC
SUBSET_REFL];
PURE_REWRITE_TAC[
LEFT_EXISTS_AND_THM;
RIGHT_EXISTS_AND_THM;
FORALL_AND_THM] THEN
DISCH_THEN(REPEAT_TCL (CONJUNCTS_THEN2 ASSUME_TAC) MP_TAC) THEN
DISCH_THEN(X_CHOOSE_TAC `col:num->num` o CONV_RULE SKOLEM_CONV) THEN
MAP_EVERY EXISTS_TAC
[`\n:num. f(SUC n):A->bool`; `\n:num. (@)(f n):A`] THEN
BETA_TAC THEN EXISTS_TAC `col:num->num` THEN CONJ_TAC THENL
[X_GEN_TAC `n:num` THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
INFINITE_FINITE_CHOICE o SPEC `n:num`) THEN
DISCH_THEN(CHOOSE_THEN MP_TAC o SPEC `N:num`) THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
ANTE_RES_THEN MP_TAC th) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THENL
[REWRITE_TAC[
INSERT_SUBSET] THEN CONJ_TAC THENL
[FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[
SUBSET]) THEN
EXISTS_TAC `n:num` THEN MATCH_MP_TAC
INFINITE_CHOOSE THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC
SUBSET_TRANS THEN
EXISTS_TAC `f(SUC n):A->bool` THEN ASM_REWRITE_TAC[]];
MATCH_MP_TAC
SIZE_INSERT THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `!n:num. ~(((@)(f n):A)
IN (f(SUC n)))` THEN
DISCH_THEN(MP_TAC o SPEC `n:num`) THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_ACCEPT_TAC o REWRITE_RULE[
SUBSET])];
REPEAT CONJ_TAC THEN TRY (FIRST_ASSUM MATCH_ACCEPT_TAC) THENL
[GEN_TAC; INDUCT_TAC THENL
[ASM_REWRITE_TAC[];
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[
SUBSET]) THEN
EXISTS_TAC `SUC n`]] THEN
MATCH_MP_TAC
INFINITE_CHOOSE THEN ASM_REWRITE_TAC[]]]);;
let RAMSEY_LEMMA3 = prove(
`(!C s.
INFINITE(s:A->bool) /\
(!t. t
SUBSET s /\ t
HAS_SIZE (SUC N) ==> C(t) <= M)
==> ?t x col. (!n. col n <= M) /\
(!n. (t n)
SUBSET s) /\
(!n. t(SUC n)
SUBSET (t n)) /\
(!n. ~((x n)
IN (t n))) /\
(!n. x(SUC n)
IN (t n)) /\
(!n. (x n)
IN s) /\
(!n u. u
SUBSET (t n) /\ u
HAS_SIZE N
==> (C((x n)
INSERT u) = col n)))
==> !C s.
INFINITE(s:A->bool) /\
(!t. t
SUBSET s /\ t
HAS_SIZE (SUC N) ==> C(t) <= M)
==> ?t c.
INFINITE(t) /\ t
SUBSET s /\
(!u. u
SUBSET t /\ u
HAS_SIZE (SUC N) ==> (C(u) = c))`,
DISCH_THEN((THEN) (REPEAT STRIP_TAC) o MP_TAC) THEN
DISCH_THEN(MP_TAC o SPECL [`C:(A->bool)->num`; `s:A->bool`]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `t:num->(A->bool)` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `x:num->A` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `col:num->num` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`M:num`; `col:num->num`; `UNIV:num->bool`]
COLOURING_LEMMA) THEN ASM_REWRITE_TAC[
num_INFINITE] THEN
DISCH_THEN(X_CHOOSE_THEN `c:num` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `t:num->bool` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`
IMAGE (x:num->A) t`; `c:num`] THEN
SUBGOAL_THEN `!m n. m <= n ==> (t n:A->bool)
SUBSET (t m)` ASSUME_TAC THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[LESS_EQ_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[
ADD_CLAUSES;
SUBSET_REFL] THEN
MATCH_MP_TAC
SUBSET_TRANS THEN EXISTS_TAC `t(m + d):A->bool` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!m n. m < n ==> (x n:A)
IN (t m)` ASSUME_TAC THENL
[REPEAT GEN_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP
LESS_ADD_1) THEN
FIRST_ASSUM(MP_TAC o SPECL [`m:num`; `m + d`]) THEN
REWRITE_TAC[LESS_EQ_ADD;
SUBSET] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[GSYM
ADD1;
ADD_CLAUSES]; ALL_TAC] THEN
SUBGOAL_THEN `!m n. ((x:num->A) m = x n) <=> (m = n)` ASSUME_TAC THENL
[REPEAT GEN_TAC THEN EQ_TAC THENL
[REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL [`m:num`; `n:num`]
LESS_LESS_CASES) THEN
ASM_REWRITE_TAC[] THEN REPEAT DISCH_TAC THEN
FIRST_ASSUM(ANTE_RES_THEN MP_TAC) THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REFL_TAC]; ALL_TAC] THEN
REPEAT CONJ_TAC THENL
[UNDISCH_TAC `
INFINITE(t:num->bool)` THEN
MATCH_MP_TAC
INFINITE_IMAGE_INJ THEN ASM_REWRITE_TAC[];
REWRITE_TAC[
SUBSET;
IN_IMAGE] THEN GEN_TAC THEN
DISCH_THEN(CHOOSE_THEN (SUBST1_TAC o CONJUNCT1)) THEN ASM_REWRITE_TAC[];
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o MATCH_MP
IMAGE_WOP_LEMMA) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` (X_CHOOSE_THEN `v:A->bool` MP_TAC)) THEN
DISCH_THEN STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `c = (col:num->num) n` SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `u
SUBSET (
IMAGE (x:num->A) t)` THEN
REWRITE_TAC[
SUBSET;
IN_IMAGE] THEN
DISCH_THEN(MP_TAC o SPEC `(x:num->A) n`) THEN
ASM_REWRITE_TAC[
IN_INSERT] THEN
DISCH_THEN(CHOOSE_THEN STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[
SUBSET] THEN GEN_TAC THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
SUBGOAL_THEN `v = u
DELETE ((x:num->A) n)` SUBST1_TAC THENL
[ASM_REWRITE_TAC[] THEN REWRITE_TAC[
DELETE_INSERT] THEN
REWRITE_TAC[
EXTENSION;
IN_DELETE;
TAUT `(a <=> a /\ b) <=> a ==> b`] THEN
GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(CHOOSE_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_REWRITE_TAC[LESS_REFL];
MATCH_MP_TAC
SIZE_DELETE THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[
IN_INSERT]; FIRST_ASSUM MATCH_ACCEPT_TAC]]]]]);;