(* ========================================================================= *)
(* Sum of reciprocals of triangular numbers. *)
(* ========================================================================= *)
needs "Multivariate/misc.ml";; (*** Just for REAL_ARCH_INV! ***)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Definition of triangular numbers. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Mapping them into the reals: division is exact. *)
(* ------------------------------------------------------------------------- *)
let REAL_TRIANGLE = prove
(`&(triangle n) = (&n * (&n + &1)) / &2`,
MATCH_MP_TAC(REAL_ARITH `&2 * x = y ==> x = y / &2`) THEN
REWRITE_TAC[triangle; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
SUBGOAL_THEN `
EVEN(n * (n + 1))` MP_TAC THENL
[REWRITE_TAC[
EVEN_MULT;
EVEN_ADD; ARITH] THEN CONV_TAC TAUT;
REWRITE_TAC[
EVEN_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
AP_TERM_TAC THEN MATCH_MP_TAC DIV_MULT THEN REWRITE_TAC[ARITH]]);;
(* ------------------------------------------------------------------------- *)
(* Sum of a finite number of terms. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Hence limit. *)
(* ------------------------------------------------------------------------- *)
let TRIANGLE_CONVERGES = prove
(`!e. &0 < e
==> ?N. !n. n >= N
==> abs(sum(1..n) (\k. &1 / &(triangle k)) - &2) < e`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [
REAL_ARCH_INV] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `2 * N + 1` THEN REWRITE_TAC[
GE] THEN REPEAT STRIP_TAC THEN
REWRITE_TAC[
TRIANGLE_FINITE_SUM; REAL_ARITH `abs(x - y - x) = abs y`] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `inv(&N)` THEN
ASM_SIMP_TAC[
REAL_ABS_DIV;
REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[GSYM
REAL_INV_DIV] THEN MATCH_MP_TAC
REAL_LE_INV2 THEN
SIMP_TAC[
REAL_LE_RDIV_EQ;
REAL_OF_NUM_LT; ARITH] THEN
REWRITE_TAC[REAL_ARITH `abs(&n + &1) = &n + &1`] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* In terms of limits. *)
(* ------------------------------------------------------------------------- *)
needs "Library/analysis.ml";;
override_interface ("-->",`(tends_num_real)`);;