prioritize_num();;
let FORSTER_PUZZLE = prove
 (`(!n. f(n + 1) > f(f(n))) ==> !n. f(n) = n`,
  REWRITE_TAC[
GT; GSYM 
ADD1] THEN STRIP_TAC THEN
  SUBGOAL_THEN `!n m. f(m) < n ==> m <= f m` ASSUME_TAC THENL
   [INDUCT_TAC THEN REWRITE_TAC[
LT] THEN
    INDUCT_TAC THEN ASM_MESON_TAC[
LE_0; 
LE_SUC_LT; 
LET_TRANS]; ALL_TAC] THEN
  SUBGOAL_THEN `!n. n <= f n` ASSUME_TAC THENL
   [ASM_MESON_TAC[
LT]; ALL_TAC] THEN
  SUBGOAL_THEN `!n. f(n) < f(SUC n)` ASSUME_TAC THENL
   [ASM_MESON_TAC[
LET_TRANS]; ALL_TAC] THEN
  SUBGOAL_THEN `!m n. m < n ==> f(m) < f(n)` ASSUME_TAC THENL
   [GEN_TAC THEN INDUCT_TAC THEN ASM_MESON_TAC[
LT; 
LT_TRANS]; ALL_TAC] THEN
  SUBGOAL_THEN `!m n. (f m < f n) <=> m < n` ASSUME_TAC THENL
   [ASM_MESON_TAC[
LT_CASES; 
LT_ANTISYM; 
LT_REFL]; ALL_TAC] THEN
  ASM_MESON_TAC[
LE_ANTISYM; 
LT_SUC_LE]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Alternative; shorter but less transparent and taking longer to run.       *)
(* ------------------------------------------------------------------------- *)
let FORSTER_PUZZLE = prove
 (`(!n. f(n + 1) > f(f(n))) ==> !n. f(n) = n`,
  REWRITE_TAC[
GT; GSYM 
ADD1] THEN STRIP_TAC THEN
  SUBGOAL_THEN `!n m. f(m) < n ==> m <= f m` ASSUME_TAC THENL
   [INDUCT_TAC THEN REWRITE_TAC[
LT] THEN
    INDUCT_TAC THEN ASM_MESON_TAC[
LE_0; 
LE_SUC_LT; 
LET_TRANS]; ALL_TAC] THEN
  SUBGOAL_THEN `!n. n <= f n` ASSUME_TAC THENL
   [ASM_MESON_TAC[
LT]; ALL_TAC] THEN
  SUBGOAL_THEN `!n. f(n) < f(SUC n)` ASSUME_TAC THENL
   [ASM_MESON_TAC[
LET_TRANS]; ALL_TAC] THEN
  SUBGOAL_THEN `!m n. m < n ==> f(m) < f(n)` ASSUME_TAC THENL
   [GEN_TAC THEN INDUCT_TAC THEN ASM_MESON_TAC[
LT; 
LT_TRANS]; ALL_TAC] THEN
  ASM_MESON_TAC[
LE_ANTISYM; 
LT_CASES; 
LT_ANTISYM; 
LT_REFL; 
LT_SUC_LE]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Robin Milner's proof.                                                     *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A variant of Robin's proof avoiding explicit use of addition.             *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* The shortest?                                                             *)
(* ------------------------------------------------------------------------- *)