(* ========================================================================= *)
(* Basic divisibility notions over the integers.                             *)
(*                                                                           *)
(* This is similar to stuff in Library/prime.ml etc. for natural numbers.    *)
(* ========================================================================= *)
prioritize_int();;
(* ------------------------------------------------------------------------- *)
(* Basic properties of divisibility.                                         *)
(* ------------------------------------------------------------------------- *)
let INT_DIVIDES_REFL = INTEGER_RULE
  `!d. d divides d`;;
let INT_DIVIDES_TRANS = INTEGER_RULE
  `!x y z. x divides y /\ y divides z ==> x divides z`;;
let INT_DIVIDES_ADD = INTEGER_RULE
  `!d a b. d divides a /\ d divides b ==> d divides (a + b)`;;
let INT_DIVIDES_SUB = INTEGER_RULE
  `!d a b. d divides a /\ d divides b ==> d divides (a - b)`;;
let INT_DIVIDES_0 = INTEGER_RULE
  `!d. d divides &0`;;
let INT_DIVIDES_ZERO = INTEGER_RULE
  `!x. &0 divides x <=> x = &0`;;
let INT_DIVIDES_LNEG = INTEGER_RULE
  `!d x. (--d) divides x <=> d divides x`;;
let INT_DIVIDES_RNEG = INTEGER_RULE
  `!d x. d divides (--x) <=> d divides x`;;
let INT_DIVIDES_RMUL = INTEGER_RULE
  `!d x y. d divides x ==> d divides (x * y)`;;
let INT_DIVIDES_LMUL = INTEGER_RULE
  `!d x y. d divides y ==> d divides (x * y)`;;
let INT_DIVIDES_1 = INTEGER_RULE
  `!x. &1 divides x`;;
let INT_DIVIDES_ADD_REVR = INTEGER_RULE
  `!d a b. d divides a /\ d divides (a + b) ==> d divides b`;;
let INT_DIVIDES_ADD_REVL = INTEGER_RULE
  `!d a b. d divides b /\ d divides (a + b) ==> d divides a`;;
let INT_DIVIDES_MUL_L = INTEGER_RULE
  `!a b c. a divides b ==> (c * a) divides (c * b)`;;
let INT_DIVIDES_MUL_R = INTEGER_RULE
  `!a b c. a divides b ==> (a * c) divides (b * c)`;;
let INT_DIVIDES_LMUL2 = INTEGER_RULE
  `!d a x. (x * d) divides a ==> d divides a`;;
let INT_DIVIDES_RMUL2 = INTEGER_RULE
  `!d a x. (d * x) divides a ==> d divides a`;;
let INT_DIVIDES_CMUL2 = INTEGER_RULE
  `!a b c. (c * a) divides (c * b) /\ ~(c = &0) ==> a divides b`;;
let INT_DIVIDES_LMUL2_EQ = INTEGER_RULE
  `!a b c. ~(c = &0) ==> ((c * a) divides (c * b) <=> a divides b)`;;
let INT_DIVIDES_RMUL2_EQ = INTEGER_RULE
  `!a b c. ~(c = &0) ==> ((a * c) divides (b * c) <=> a divides b)`;;
let INT_DIVIDES_MUL2 = INTEGER_RULE
  `!a b c d. a divides b /\ c divides d ==> (a * c) divides (b * d)`;;
let INT_DIVIDES_ABS = prove
 (`(!d n. abs(d) divides n <=> d divides n) /\
   (!d n. d divides (abs n) <=> d divides n)`,
 
let INT_DIVIDES_RPOW = prove
 (`!x y n. x divides y /\ ~(n = 0) ==> x divides (y pow n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[INT_DIVIDES_RMUL; 
INT_POW]);;
 
let INT_DIVIDES_ANTISYM_ASSOCIATED = prove
 (`!x y. x divides y /\ y divides x <=> ?u. u divides &1 /\ x = y * u`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; INTEGER_TAC] THEN
  ASM_CASES_TAC `x = &0` THEN ASM_SIMP_TAC[INT_DIVIDES_ZERO; 
INT_MUL_LZERO] THEN
  ASM_MESON_TAC[
int_divides; INT_DIVIDES_REFL;
    INTEGER_RULE `y = x * d /\ x = y * e /\ ~(y = &0) ==> d divides &1`]);;
 
let INT_GCD_UNIQUE = prove
 (`!a b d. gcd(a,b) = d <=> &0 <= d /\ d divides a /\ d divides b /\
                            !e. e divides a /\ e divides b ==> e divides d`,
 
let INT_GCD_UNIQUE_ABS = prove
 (`!a b d. gcd(a,b) = abs(d) <=>
           d divides a /\ d divides b /\
           !e. e divides a /\ e divides b ==> e divides d`,
 
let INT_GCD_ADD = prove
 (`(!a b. gcd(a + b,b) = gcd(a,b)) /\
   (!a b. gcd(b + a,b) = gcd(a,b)) /\
   (!a b. gcd(a,a + b) = gcd(a,b)) /\
   (!a b. gcd(a,b + a) = gcd(a,b))`,
 
let INT_GCD_SUB = prove
 (`(!a b. gcd(a - b,b) = gcd(a,b)) /\
   (!a b. gcd(b - a,b) = gcd(a,b)) /\
   (!a b. gcd(a,a - b) = gcd(a,b)) /\
   (!a b. gcd(a,b - a) = gcd(a,b))`,
 
let int_coprime = prove
 (`!a b. coprime(a,b) <=> !d. d divides a /\ d divides b ==> d divides &1`,
 
let COPRIME = prove
 (`!a b. coprime(a,b) <=> !d. d divides a /\ d divides b <=> d divides &1`,
  MESON_TAC[INT_DIVIDES_1; INT_DIVIDES_TRANS; 
int_coprime]);;
 
let INT_GCD_COPRIME = prove
 (`!a b a' b'. ~(gcd(a,b) = &0) /\ a = a' * gcd(a,b) /\ b = b' * gcd(a,b)
               ==> coprime(a',b')`,
  INTEGER_TAC);;
 
let INT_COPRIME_0 = prove
 (`(!a. coprime(a,&0) <=> a divides &1) /\
   (!a. coprime(&0,a) <=> a divides &1)`,
  INTEGER_TAC);;
 
let INT_DIVISION_DECOMP = prove
 (`!a b c. a divides (b * c)
           ==> ?b' c'. (a = b' * c') /\ b' divides b /\ c' divides c`,
  REPEAT STRIP_TAC THEN EXISTS_TAC `gcd(a,b)` THEN
  ASM_CASES_TAC `gcd(a,b) = &0` THEN REPEAT(POP_ASSUM MP_TAC) THENL
   [SIMP_TAC[
INT_GCD_EQ_0; 
INT_GCD_0; 
INT_ABS_NUM]; INTEGER_TAC] THEN
  REWRITE_TAC[
INT_MUL_LZERO] THEN MESON_TAC[INT_DIVIDES_REFL]);;
 
let INT_DIVIDES_MUL = prove
 (`!m n r. m divides r /\ n divides r /\ coprime(m,n) ==> (m * n) divides r`,
  INTEGER_TAC);;
 
let INT_CHINESE_REMAINDER = prove
 (`!a b u v. coprime(a,b) /\ ~(a = &0) /\ ~(b = &0)
             ==> ?x q1 q2. (x = u + q1 * a) /\ (x = v + q2 * b)`,
  INTEGER_TAC);;
 
let INT_COPRIME_NEG = prove
 (`(!a b. coprime(--a,b) <=> coprime(a,b)) /\
   (!a b. coprime(a,--b) <=> coprime(a,b))`,
  INTEGER_TAC);;
 
let INT_COPRIME_ABS = prove
 (`(!a b. coprime(abs a,b) <=> coprime(a,b)) /\
   (!a b. coprime(a,abs b) <=> coprime(a,b))`,
 
let INT_CONG = prove
 (`!x y n. (x == y) (mod n) <=> n divides (x - y)`,
  INTEGER_TAC);;
 
let INT_CONG_TRANS = prove
 (`!x y z n. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`,
  INTEGER_TAC);;
 
let INT_CONG_ADD = prove
 (`!x x' y y'.
     (x == x') (mod n) /\ (y == y') (mod n) ==> (x + y == x' + y') (mod n)`,
  INTEGER_TAC);;
 
let INT_CONG_SUB = prove
 (`!x x' y y'.
     (x == x') (mod n) /\ (y == y') (mod n) ==> (x - y == x' - y') (mod n)`,
  INTEGER_TAC);;
 
let INT_CONG_MUL = prove
 (`!x x' y y'.
     (x == x') (mod n) /\ (y == y') (mod n) ==> (x * y == x' * y') (mod n)`,
  INTEGER_TAC);;
 
let INT_CONG_SOLVE_UNIQUE = prove
 (`!a b n. coprime(a,n)
           ==> !x y. (a * x == b) (mod n) /\ (a * y == b) (mod n)
                     ==> (x == y) (mod n)`,
  INTEGER_TAC);;
 
let INT_CONG_CHINESE = prove
 (`coprime(a,b) /\ (x == y) (mod a) /\ (x == y) (mod b)
   ==> (x == y) (mod (a * b))`,
  INTEGER_TAC);;
 
let INT_CHINESE_REMAINDER_COPRIME = prove
 (`!a b m n.
        coprime(a,b) /\ ~(a = &0) /\ ~(b = &0) /\ coprime(m,a) /\ coprime(n,b)
        ==> ?x. coprime(x,a * b) /\
                (x == m) (mod a) /\ (x == n) (mod b)`,
  INTEGER_TAC);;
 
let INT_LINEAR_CONG_POS = prove
 (`!n a x:int. ~(n = &0) ==> ?y. &0 <= y /\ (a * x == a * y) (mod n)`,
  REPEAT STRIP_TAC THEN EXISTS_TAC `x + abs(x * n):int` THEN CONJ_TAC THENL
   [MATCH_MP_TAC(INT_ARITH `abs(x:int) * &1 <= y ==> &0 <= x + y`) THEN
    REWRITE_TAC[
INT_ABS_MUL] THEN MATCH_MP_TAC 
INT_LE_LMUL THEN
    ASM_INT_ARITH_TAC;
    MATCH_MP_TAC(INTEGER_RULE
     `n divides y ==> (a * x:int == a * (x + y)) (mod n)`) THEN
    REWRITE_TAC[
INT_DIVIDES_RABS] THEN INTEGER_TAC]);;
 
let INT_CONG_IMP_EQ = prove
 (`!x y n:int. abs(x - y) < n /\ (x == y) (mod n) ==> x = y`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ONCE_REWRITE_TAC[
int_congruent; GSYM 
INT_SUB_0] THEN
  DISCH_THEN(X_CHOOSE_THEN `q:int` SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
   `abs(n * q) < n ==> abs(n * q) < abs n * &1`)) THEN
  REWRITE_TAC[
INT_ABS_MUL; 
INT_ENTIRE] THEN
  REWRITE_TAC[INT_ARITH
   `abs n * (q:int) < abs n * &1 <=> ~(&0 <= abs n * (q - &1))`] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
  STRIP_TAC THEN MATCH_MP_TAC 
INT_LE_MUL THEN ASM_INT_ARITH_TAC);;
 
let INT_CRT_STRONG = prove
 (`!a1 a2 n1 n2:int.
        (a1 == a2) (mod (gcd(n1,n2)))
        ==> ?x. (x == a1) (mod n1) /\ (x == a2) (mod n2)`,
  INTEGER_TAC);;
 
let INT_CRT_STRONG_IFF = prove
 (`!a1 a2 n1 n2:int.
        (?x. (x == a1) (mod n1) /\ (x == a2) (mod n2)) <=>
        (a1 == a2) (mod (gcd(n1,n2)))`,
  INTEGER_TAC);;
 
let INT_DIVIDES_LE = prove
 (`!x y. x divides y ==> abs(x) <= abs(y) \/ y = &0`,
  REWRITE_TAC[
int_divides; 
LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:int`; `y:int`; `z:int`] THEN
  DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[
INT_ABS_MUL; 
INT_ENTIRE] THEN
  REWRITE_TAC[INT_ARITH `x <= x * z <=> &0 <= x * (z - &1)`] THEN
  ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `z = &0` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC 
INT_LE_MUL THEN ASM_INT_ARITH_TAC);;
 
let int_prime = new_definition
 `int_prime p <=> abs(p) > &1 /\
                  !x. x divides p ==> abs(x) = &1 \/ abs(x) = abs(p)`;;let INT_PRIME_2 = prove
 (`
int_prime(&2)`,
  REWRITE_TAC[
int_prime] THEN CONV_TAC INT_REDUCE_CONV THEN
  X_GEN_TAC `x:int` THEN
  ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[INT_DIVIDES_ZERO] THEN
  CONV_TAC INT_REDUCE_CONV THEN
  DISCH_THEN(MP_TAC o MATCH_MP 
INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC);;
 
let INT_PRIME_FACTOR = prove
 (`!x. ~(abs x = &1) ==> ?p. 
int_prime p /\ p divides x`,
  MATCH_MP_TAC 
WF_INT_MEASURE THEN EXISTS_TAC `abs` THEN
  REWRITE_TAC[
INT_ABS_POS] THEN X_GEN_TAC `x:int` THEN
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `
int_prime x` THENL
   [EXISTS_TAC `x:int` THEN ASM_REWRITE_TAC[] THEN
    REPEAT(POP_ASSUM MP_TAC) THEN INTEGER_TAC;
    ALL_TAC] THEN
  ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THENL
   [EXISTS_TAC `&2` THEN ASM_REWRITE_TAC[
INT_PRIME_2; INT_DIVIDES_0];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [
int_prime]) THEN
  ASM_SIMP_TAC[INT_ARITH `~(x = &0) /\ ~(abs x = &1) ==> abs x > &1`] THEN
  REWRITE_TAC[
NOT_FORALL_THM; NOT_IMP; DE_MORGAN_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `y:int` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `y:int`) THEN ASM_REWRITE_TAC[] THEN
  ANTS_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o MATCH_MP 
INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC;
    MATCH_MP_TAC 
MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[] THEN
    UNDISCH_TAC `y divides x` THEN INTEGER_TAC]);;
 
let INT_PRIME_FACTOR_LT = prove
 (`!n m p. 
int_prime(p) /\ ~(n = &0) /\ n = p * m ==> abs m < abs n`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[
INT_ABS_MUL] THEN
  MATCH_MP_TAC(INT_ARITH `&0 < m * (p - &1) ==> m < p * m`) THEN
  MATCH_MP_TAC 
INT_LT_MUL THEN
  UNDISCH_TAC `~(n = &0)` THEN ASM_CASES_TAC `m = &0` THEN
  ASM_REWRITE_TAC[
INT_MUL_RZERO] THEN DISCH_THEN(K ALL_TAC) THEN
  CONJ_TAC THENL [ASM_INT_ARITH_TAC; ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
INT_PRIME_GE_2) THEN INT_ARITH_TAC);;
 
let INT_PRIME_FACTOR_INDUCT = prove
 (`!P. P(&0) /\ P(&1) /\ P(-- &1) /\
       (!p n. 
int_prime p /\ ~(n = &0) /\ P n ==> P(p * n))
       ==> !n. P n`,
  GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC 
WF_INT_MEASURE THEN EXISTS_TAC `abs` THEN
  REWRITE_TAC[
INT_ABS_POS] THEN X_GEN_TAC `n:int` THEN DISCH_TAC THEN
  ASM_CASES_TAC `n = &0` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `abs n = &1` THENL
   [ASM_MESON_TAC[INT_ARITH `abs x = &a <=> x = &a \/ x = -- &a`];
    ALL_TAC] THEN
  FIRST_ASSUM(X_CHOOSE_THEN `p:int`
    STRIP_ASSUME_TAC o MATCH_MP 
INT_PRIME_FACTOR) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `d:int` SUBST_ALL_TAC o
    GEN_REWRITE_RULE I [
int_divides]) THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`p:int`; `d:int`]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[
INT_ENTIRE; DE_MORGAN_THM]) THEN
  DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_MESON_TAC[
INT_PRIME_FACTOR_LT; 
INT_ENTIRE]);;
 
let INT_DIVIDES_FACT = prove
 (`!n x. &1 <= abs(x) /\ abs(x) <= &n ==> x divides &(
FACT n)`,
  INDUCT_TAC THENL [INT_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[
FACT; INT_ARITH `x <= &n <=> x = &n \/ x < &n`] THEN
  REWRITE_TAC[GSYM 
INT_OF_NUM_SUC; INT_ARITH `x < &m + &1 <=> x <= &m`] THEN
  REWRITE_TAC[
INT_OF_NUM_SUC; GSYM 
INT_OF_NUM_MUL] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[INT_DIVIDES_LMUL] THEN
  MATCH_MP_TAC INT_DIVIDES_RMUL THEN
  ASM_MESON_TAC[
INT_DIVIDES_LABS; INT_DIVIDES_REFL]);;
 
let INT_DIVIDES_POW2_REV = prove
 (`!n a b. (a pow n) divides (b pow n) /\ ~(n = 0) ==> a divides b`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = &0` THENL
   [ASM_MESON_TAC[
INT_GCD_EQ_0; INT_DIVIDES_REFL]; ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
INT_GCD_COPRIME_EXISTS) THEN
  STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[
INT_POW_MUL] THEN
  ASM_SIMP_TAC[
INT_POW_EQ_0; INT_DIVIDES_RMUL2_EQ] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
   `a divides b ==> coprime(a,b) ==> a divides &1`)) THEN
  ASM_SIMP_TAC[
INT_COPRIME_POW2] THEN
  ASM_MESON_TAC[
INT_DIVIDES_POW2; INT_DIVIDES_TRANS; INT_DIVIDES_1]);;