(* ========================================================================= *)
(* Proof of some useful AC equivalents like wellordering and Zorn's Lemma.   *)
(*                                                                           *)
(* This is a straight port of the old HOL88 wellorder library. I started to  *)
(* clean up the proofs to exploit first order automation, but didn't have    *)
(* the patience to persist till the end. Anyway, the proofs work!            *)
(* ========================================================================= *)
let PBETA_TAC = CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV);;
let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o
  check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;;
(* ======================================================================== *)
(* (1) Definitions and general lemmas.                                      *)
(* ======================================================================== *)
(* ------------------------------------------------------------------------ *)
(* Irreflexive version of an ordering.                                      *)
(* ------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------ *)
(* Field of an uncurried binary relation                                    *)
(* ------------------------------------------------------------------------ *)
(* ------------------------------------------------------------------------ *)
(* Partial order (we infer the domain from the field of the relation)       *)
(* ------------------------------------------------------------------------ *)
let poset = new_definition
  `poset (l:A#A->bool) <=>
       (!x. fl(l) x ==> l(x,x)) /\
       (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
       (!x y. l(x,y) /\ l(y,x) ==> (x = y))`;;let woset = new_definition
 `woset (l:A#A->bool) <=>
       (!x. fl(l) x ==> l(x,x)) /\
       (!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
       (!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\
       (!x y. fl(l) x /\ fl(l) y ==> l(x,y) \/ l(y,x)) /\
       (!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
            (?y. P y /\ (!z. P z ==> l(y,z))))`;;let POSET_FLEQ = prove
 (`!l:A#A->bool. poset l ==> (!x. fl(l) x <=> l(x,x))`,
  MESON_TAC[POSET_REFL; fl]);;
 
let WOSET_POSET = prove
 (`!l:A#A->bool. woset l ==> poset l`,
  GEN_TAC THEN REWRITE_TAC[woset; poset] THEN DISCH_TAC THEN
  ASM_REWRITE_TAC[]);;
 
let WOSET_TRANS_LESS = prove
 (`!l:A#A->bool. woset l ==>
       !x y z. (less l)(x,y) /\ l(y,z) ==> (less l)(x,z)`,
  REWRITE_TAC[woset; less] THEN MESON_TAC[]);;
 
let WOSET = prove
 (`!l:A#A->bool. woset l <=>
        (!x y. l(x,y) /\ l(y,x) ==> (x = y)) /\
        (!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
             (?y. P y /\ (!z. P z ==> l(y,z))))`,
  GEN_TAC THEN REWRITE_TAC[woset] THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `(!x y z. l(x,y) /\ l(y,z) ==> l(x,z)) /\
                (!x:A y. fl(l) x /\ fl(l) y ==> l(x,y) \/ l(y,x))`
  MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN REPEAT STRIP_TAC THENL
   [FIRST_ASSUM(MP_TAC o SPEC `\w:A. (w = x) \/ (w = y) \/ (w = z)`) THEN
    REWRITE_TAC[fl];
    FIRST_ASSUM(MP_TAC o SPEC `\w:A. (w = x) \/ (w = y)`)] THEN
  ASM_MESON_TAC[]);;
 
let PAIRED_EXT = prove
 (`!(l:A#B->C) m. (!x y. l(x,y) = m(x,y)) <=> (l = m)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[
FUN_EQ_THM] THEN X_GEN_TAC `p:A#B` THEN
  SUBST1_TAC(SYM(SPEC `p:A#B` 
PAIR)) THEN POP_ASSUM MATCH_ACCEPT_TAC);;
 
let WOSET_TRANS_LE = prove
 (`!l:A#A->bool. woset l ==>
       !x y z. l(x,y) /\ (less l)(y,z) ==> (less l)(x,z)`,
  REWRITE_TAC[less] THEN MESON_TAC[WOSET_TRANS; WOSET_ANTISYM]);;
 
let WOSET_WELL_CONTRAPOS = prove
 (`!l:A#A->bool. woset l ==>
                (!P. (!x. P x ==> fl(l) x) /\ (?x. P x) ==>
                     (?y. P y /\ (!z. (less l)(z,y) ==> ~P z)))`,
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `P:A->bool` o MATCH_MP WOSET_WELL) THEN
  ASM_MESON_TAC[
WOSET_TRANS_LE; less]);;
 
let WOSET_TOTAL_LE = prove
 (`!l:A#A->bool. woset l
                 ==> !x y. fl(l) x /\ fl(l) y ==> l(x,y) \/ (less l)(y,x)`,
  REWRITE_TAC[less] THEN MESON_TAC[WOSET_REFL; WOSET_TOTAL]);;
 
let WOSET_TOTAL_LT = prove
 (`!l:A#A->bool. woset l ==>
     !x y. fl(l) x /\ fl(l) y ==> (x = y) \/ (less l)(x,y) \/ (less l)(y,x)`,
  REWRITE_TAC[less] THEN MESON_TAC[WOSET_TOTAL]);;
 
let INSEG_SUBSET = prove
 (`!(l:A#A->bool) m. m inseg l ==> !x y. m(x,y) ==> l(x,y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[inseg] THEN MESON_TAC[]);;
 
let INSEG_WOSET = prove
 (`!(l:A#A->bool) m. m inseg l /\ woset l ==> woset m`,
  REWRITE_TAC[inseg] THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[
WOSET] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[WOSET_ANTISYM];
    GEN_TAC THEN FIRST_ASSUM(MP_TAC o SPEC_ALL o MATCH_MP WOSET_WELL) THEN
    ASM_MESON_TAC[fl]]);;
 
let LINSEG_INSEG = prove
 (`!(l:A#A->bool) a. woset l ==> (linseg l a) inseg l`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[inseg; linseg; fl] THEN PBETA_TAC THEN
  ASM_MESON_TAC[
WOSET_TRANS_LE]);;
 
let LINSEG_FL = prove
 (`!(l:A#A->bool) a x. woset l ==> (fl (linseg l a) x <=> (less l)(x,a))`,
  REWRITE_TAC[fl; linseg; less] THEN PBETA_TAC THEN
  MESON_TAC[WOSET_REFL; WOSET_TRANS; WOSET_ANTISYM; fl]);;
 
let INSEG_LINSEG = prove
 (`!(l:A#A->bool) m. woset l ==>
      (m inseg l <=> (m = l) \/ (?a. fl(l) a /\ (m = linseg l a)))`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `m:A#A->bool = l` THEN
  ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[inseg; fl] THEN MESON_TAC[]; ALL_TAC] THEN
  EQ_TAC THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[
LINSEG_INSEG]] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
WOSET_WELL_CONTRAPOS) THEN
  DISCH_THEN(MP_TAC o SPEC `\x:A. fl(l) x /\ ~fl(m) x`) THEN REWRITE_TAC[] THEN
  REWRITE_TAC[linseg; GSYM 
PAIRED_EXT] THEN PBETA_TAC THEN
  W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
   [ASM_MESON_TAC[
INSEG_PROPER_SUBSET_FL]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[
INSEG_SUBSET; 
INSEG_SUBSET_FL; fl;
    
WOSET_TOTAL_LE; less; inseg]);;
 
let EXTEND_FL = prove
 (`!(l:A#A->bool) x. woset l ==> (fl (\(x,y). l(x,y) /\ l(y,a)) x <=> l(x,a))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN
  ASM_MESON_TAC[WOSET_TRANS; WOSET_REFL; fl]);;
 
let EXTEND_INSEG = prove
 (`!(l:A#A->bool) a. woset l /\ fl(l) a ==> (\(x,y). l(x,y) /\ l(y,a)) inseg l`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[inseg] THEN PBETA_TAC THEN
  REPEAT GEN_TAC THEN IMP_RES_THEN (fun t ->REWRITE_TAC[t]) 
EXTEND_FL);;
 
let EXTEND_LINSEG = prove
 (`!(l:A#A->bool) a. woset l /\ fl(l) a ==>
       (\(x,y). linseg l a (x,y) \/ (y = a) /\ (fl(linseg l a) x \/ (x = a)))
                inseg l`,
  REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
    MP_TAC (MATCH_MP 
EXTEND_INSEG th)) THEN
  MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
  AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM 
PAIRED_EXT] THEN PBETA_TAC THEN
  REPEAT GEN_TAC THEN IMP_RES_THEN (fun th -> REWRITE_TAC[th]) 
LINSEG_FL THEN
  REWRITE_TAC[linseg; less] THEN PBETA_TAC THEN ASM_MESON_TAC[WOSET_REFL]);;
 
let ORDINAL_CHAINED_LEMMA = prove
 (`!(k:A#A->bool) l m. ordinal(l) /\ ordinal(m)
                       ==> k inseg l /\ k inseg m
                           ==> (k = l) \/ (k = m) \/ ?a. fl(l) a /\ fl(m) a /\
                                                         (k = linseg l a) /\
                                                         (k = linseg m a)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN STRIP_TAC THEN
  EVERY_ASSUM(fun th -> TRY
    (fun g -> REWRITE_TAC[MATCH_MP 
INSEG_LINSEG th] g)) THEN
  ASM_CASES_TAC `k:A#A->bool = l` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `k:A#A->bool = m` THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)
                             (X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC)) THEN
  EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `a:A = b` (fun th -> ASM_MESON_TAC[th]) THEN
  FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fl(l) (a:A)`))) THEN
  FIRST_ASSUM(fun th -> SUBST1_TAC(MATCH_MP th (ASSUME `fl(m) (b:A)`))) THEN
  AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
  UNDISCH_TAC `k = linseg m (b:A)` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[linseg; GSYM 
PAIRED_EXT] THEN PBETA_TAC THEN
  ASM_MESON_TAC[WOSET_REFL; less; fl]);;
 
let ORDINAL_CHAINED = prove
 (`!(l:A#A->bool) m. ordinal(l) /\ ordinal(m) ==> m inseg l \/ l inseg m`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC(REWRITE_RULE[ordinal] th) THEN
                       ASSUME_TAC (MATCH_MP 
ORDINAL_CHAINED_LEMMA th)) THEN
  MP_TAC(SPEC `\k:A#A->bool. k inseg l /\ k inseg m` 
UNION_INSEG) THEN
  DISCH_THEN(fun th ->
    MP_TAC(CONJ (SPEC `l:A#A->bool` th) (SPEC `m:A#A->bool` th))) THEN
  REWRITE_TAC[TAUT `(a /\ b ==> a) /\ (a /\ b ==> b)`] THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
                       FIRST_ASSUM(REPEAT_TCL DISJ_CASES_THEN MP_TAC o
                       C MATCH_MP th)) THENL
   [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
  MP_TAC(ASSUME `
UNIONS (\k. k inseg l /\ k inseg m) = linseg l (a:A)`) THEN
  CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[
FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `(a:A,a)`) THEN
  REWRITE_TAC[linseg] THEN PBETA_TAC THEN REWRITE_TAC[less] THEN
  REWRITE_TAC[
UNIONS_PRED] THEN EXISTS_TAC
  `\(x,y). linseg l a (x,y) \/ (y = a) /\ (fl(linseg l a) x \/ (x = a:A))` THEN
  PBETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL
   [ALL_TAC;
    UNDISCH_TAC `
UNIONS (\k. k inseg l /\ k inseg m) = linseg l (a:A)` THEN
    DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]] THEN
  MATCH_MP_TAC 
EXTEND_LINSEG THEN ASM_REWRITE_TAC[]);;
 
let FL_SUC = prove
 (`!(l:A#A->bool) a.
     fl(\(x,y). l(x,y) \/ (y = a) /\ (fl(l) x \/ (x = a))) x <=>
     fl(l) x \/ (x = a)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN EQ_TAC THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY DISJ1_TAC THEN
  ASM_MESON_TAC[]);;
 
let ORDINAL_SUC = prove
 (`!l:A#A->bool. ordinal(l) /\ (?x. ~(fl(l) x)) ==>
                 ordinal(\(x,y). l(x,y) \/ (y = @y. ~fl(l) y) /\
                                           (fl(l) x \/ (x = @y. ~fl(l) y)))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ordinal] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  ABBREV_TAC `a:A = @y. ~fl(l) y` THEN
  SUBGOAL_THEN `~fl(l:A#A->bool) a` ASSUME_TAC THENL
   [EXPAND_TAC "a" THEN CONV_TAC SELECT_CONV THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  PBETA_TAC THEN CONJ_TAC THENL
   [REWRITE_TAC[
WOSET] THEN PBETA_TAC THEN CONJ_TAC THENL
     [REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
       [ASM_MESON_TAC[WOSET_ANTISYM]; ALL_TAC; ALL_TAC] THEN
      UNDISCH_TAC `~fl(l:A#A->bool) a` THEN CONV_TAC CONTRAPOS_CONV THEN
      DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN
      DISCH_THEN SUBST_ALL_TAC THEN REWRITE_TAC[fl] THENL
       [EXISTS_TAC `y:A`; EXISTS_TAC `x:A`] THEN
      ASM_REWRITE_TAC[];
      X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[
FL_SUC] THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `w:A`)) THEN
      IMP_RES_THEN (MP_TAC o SPEC `\x:A. P x /\ fl(l) x`) WOSET_WELL THEN
      BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> b`] THEN
      ASM_CASES_TAC `?x:A. P x /\ fl(l) x` THEN ASM_REWRITE_TAC[] THENL
       [ASM_MESON_TAC[];
        FIRST_ASSUM(MP_TAC o SPEC `w:A` o
          GEN_REWRITE_RULE I [
NOT_EXISTS_THM]) THEN
        ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
        ASM_MESON_TAC[]]];
    X_GEN_TAC `z:A` THEN REWRITE_TAC[
FL_SUC; less] THEN
    PBETA_TAC THEN DISCH_THEN DISJ_CASES_TAC THENL
     [UNDISCH_TAC `!x:A. fl l x ==> (x = (@y. ~less l (y,x)))` THEN
      DISCH_THEN(IMP_RES_THEN MP_TAC) THEN
      DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
      AP_TERM_TAC THEN GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN
      X_GEN_TAC `y:A` THEN
      BETA_TAC THEN REWRITE_TAC[less] THEN AP_TERM_TAC THEN
      ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN
      EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
      UNDISCH_TAC `fl(l:A#A->bool) z` THEN ASM_REWRITE_TAC[];
      UNDISCH_TAC `z:A = a` THEN DISCH_THEN SUBST_ALL_TAC THEN
      GEN_REWRITE_TAC LAND_CONV [SYM(ASSUME `(@y:A. ~fl(l) y) = a`)] THEN
      AP_TERM_TAC THEN GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN
      X_GEN_TAC `y:A` THEN
      BETA_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[] THEN
      ASM_CASES_TAC `y:A = a` THEN ASM_REWRITE_TAC[] THEN
      EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[fl] THEN EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]]]);;
 
let ORDINAL_UNION = prove
 (`!P. (!l:A#A->bool. P l ==> ordinal(l)) ==> ordinal(
UNIONS P)`,
  GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ordinal; 
WOSET] THEN
  REPEAT CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REWRITE_TAC[
UNIONS_PRED] THEN
    BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `l:A#A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC)
        ASSUME_TAC))
     (X_CHOOSE_THEN `m:A#A->bool` (CONJUNCTS_THEN2 (ANTE_RES_THEN ASSUME_TAC)
        ASSUME_TAC))) THEN
    MP_TAC(SPECL [`l:A#A->bool`; `m:A#A->bool`] 
ORDINAL_CHAINED) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THENL
     [MP_TAC(SPEC `l:A#A->bool` WOSET_ANTISYM);
      MP_TAC(SPEC `m:A#A->bool` WOSET_ANTISYM)] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[ordinal]) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC 
INSEG_SUBSET THEN
    ASM_REWRITE_TAC[];
    X_GEN_TAC `Q:A->bool` THEN REWRITE_TAC[
UNION_FL] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `a:A`)) THEN
    MP_TAC(ASSUME `!x:A. Q x ==> (?l. P l /\ fl l x)`) THEN
    DISCH_THEN(IMP_RES_THEN
      (X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC)) THEN
    IMP_RES_THEN ASSUME_TAC (ASSUME `!l:A#A->bool. P l ==> ordinal l`) THEN
    ASSUME_TAC(CONJUNCT1
      (REWRITE_RULE[ordinal] (ASSUME `ordinal(l:A#A->bool)`))) THEN
    IMP_RES_THEN(MP_TAC o SPEC `\x:A. fl(l) x /\ Q x`) WOSET_WELL THEN
    BETA_TAC THEN REWRITE_TAC[TAUT `a /\ b ==> a`] THEN
    SUBGOAL_THEN `?x:A. fl(l) x /\ Q x` (fun th -> REWRITE_TAC[th]) THENL
     [EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `x:A` THEN DISCH_TAC THEN
    ANTE_RES_THEN MP_TAC (ASSUME `(Q:A->bool) x`) THEN
    DISCH_THEN(X_CHOOSE_THEN `m:A#A->bool` STRIP_ASSUME_TAC) THEN
    ANTE_RES_THEN ASSUME_TAC (ASSUME `(P:(A#A->bool)->bool) m`) THEN
    MP_TAC(SPECL [`l:A#A->bool`; `m:A#A->bool`] 
ORDINAL_CHAINED) THEN
    ASM_REWRITE_TAC[
UNIONS_PRED] THEN BETA_TAC THEN
    DISCH_THEN DISJ_CASES_TAC THENL
     [EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
      IMP_RES_THEN MATCH_MP_TAC 
INSEG_SUBSET_FL THEN ASM_REWRITE_TAC[];
      EXISTS_TAC `m:A#A->bool` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `b:A`] o REWRITE_RULE[inseg]) THEN
      ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
      IMP_RES_THEN (MP_TAC o SPEC `b:A`) 
INSEG_SUBSET_FL THEN
      ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      MP_TAC(CONJUNCT1(REWRITE_RULE[ordinal]
        (ASSUME `ordinal(m:A#A->bool)`))) THEN
      DISCH_THEN(MP_TAC o SPECL [`b:A`; `x:A`] o MATCH_MP WOSET_TOTAL) THEN
      ASM_REWRITE_TAC[] THEN DISCH_THEN (DISJ_CASES_THEN MP_TAC) THEN
      ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      IMP_RES_THEN MATCH_MP_TAC 
INSEG_SUBSET THEN
      FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[fl] THEN
      EXISTS_TAC `b:A` THEN ASM_REWRITE_TAC[]];
    X_GEN_TAC `x:A` THEN REWRITE_TAC[
UNION_FL] THEN
    DISCH_THEN(X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC) THEN
    MP_TAC(ASSUME `!l:A#A->bool. P l ==> ordinal l`) THEN
    DISCH_THEN(IMP_RES_THEN MP_TAC) THEN REWRITE_TAC[ordinal] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:A`)) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN
    REPEAT AP_TERM_TAC THEN GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN
    X_GEN_TAC `y:A` THEN BETA_TAC THEN AP_TERM_TAC THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[less; 
UNIONS_PRED] THEN
    BETA_TAC THEN EQ_TAC THEN DISCH_TAC THENL
     [EXISTS_TAC `l:A#A->bool` THEN ASM_REWRITE_TAC[];
      FIRST_ASSUM(X_CHOOSE_THEN `m:A#A->bool` STRIP_ASSUME_TAC) THEN
      SUBGOAL_THEN `ordinal(l:A#A->bool) /\ ordinal(m:A#A->bool)` MP_TAC THENL
       [CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
        DISCH_THEN(DISJ_CASES_TAC o MATCH_MP 
ORDINAL_CHAINED)] THENL
       [IMP_RES_THEN MATCH_MP_TAC 
INSEG_SUBSET THEN ASM_REWRITE_TAC[];
        RULE_ASSUM_TAC(REWRITE_RULE[inseg]) THEN ASM_REWRITE_TAC[]]]]);;
 
let ORDINAL_UP = prove
 (`!l:A#A->bool. ordinal(l) ==> (!x. fl(l) x) \/
                          (?m x. ordinal(m) /\ fl(m) x /\ ~fl(l) x)`,
  GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
  GEN_REWRITE_TAC LAND_CONV [
NOT_FORALL_THM] THEN DISCH_TAC THEN
  MP_TAC(SPEC `l:A#A->bool` 
ORDINAL_SUC) THEN ASM_REWRITE_TAC[] THEN
  DISCH_TAC THEN MAP_EVERY EXISTS_TAC
   [`\(x,y). l(x,y) \/ (y = @y:A. ~fl l y) /\ (fl(l) x \/ (x = @y. ~fl l y))`;
    `@y. ~fl(l:A#A->bool) y`] THEN
  ASM_REWRITE_TAC[
FL_SUC] THEN
  CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[]);;
 
let LEMMA = prove
 (`?l:A#A->bool. ordinal(l) /\ !x. fl(l) x`,
  EXISTS_TAC `
UNIONS (ordinal:(A#A->bool)->bool)` THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC 
ORDINAL_UNION THEN REWRITE_TAC[];
    DISCH_THEN(DISJ_CASES_TAC o MATCH_MP 
ORDINAL_UP) THEN
    ASM_REWRITE_TAC[] THEN POP_ASSUM(X_CHOOSE_THEN `m:A#A->bool`
     (X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC)) THEN
    IMP_RES_THEN (IMP_RES_THEN MP_TAC) 
ORDINAL_UNION_LEMMA THEN
    ASM_REWRITE_TAC[]]);;
 
let FL_RESTRICT = prove
 (`!l. woset l ==>
       !P. fl(\(x:A,y). P x /\ P y /\ l(x,y)) x <=> P x /\ fl(l) x`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  TRY(EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN
  EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN
  IMP_RES_THEN MATCH_MP_TAC WOSET_REFL THEN
  REWRITE_TAC[fl] THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[]);;
 
let WO = prove
 (`!P. ?l:A#A->bool. woset l /\ (fl(l) = P)`,
  GEN_TAC THEN X_CHOOSE_THEN `l:A#A->bool` STRIP_ASSUME_TAC
   (REWRITE_RULE[ordinal] 
LEMMA) THEN
  EXISTS_TAC `\(x:A,y). P x /\ P y /\ l(x,y)` THEN REWRITE_TAC[
WOSET] THEN
  PBETA_TAC THEN
  GEN_REWRITE_TAC RAND_CONV [
FUN_EQ_THM] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP 
FL_RESTRICT th]) THEN
  PBETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [REPEAT GEN_TAC THEN DISCH_TAC THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WOSET_ANTISYM) THEN
    ASM_REWRITE_TAC[];
    X_GEN_TAC `Q:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP WOSET_WELL) THEN
    DISCH_THEN(MP_TAC o SPEC `Q:A->bool`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN
    REPEAT CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
    FIRST_ASSUM ACCEPT_TAC]);;
 
let HP = prove
 (`!l:A#A->bool. poset l ==>
        ?P. chain(l) P /\ !Q. chain(l) Q  /\ P 
SUBSET Q ==> (Q = P)`,
  GEN_TAC THEN DISCH_TAC THEN
  X_CHOOSE_THEN `w:A#A->bool` MP_TAC (SPEC `\x:A. T` 
WO) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [
FUN_EQ_THM] THEN BETA_TAC THEN
  REWRITE_TAC[] THEN DISCH_TAC THEN
  IMP_RES_THEN (MP_TAC o SPEC `\x:A. fl(l) x`) WOSET_WELL THEN
  BETA_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `?x:A. fl(l) x` THEN ASM_REWRITE_TAC[] THENL
   [DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC);
    FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [
NOT_EXISTS_THM]) THEN
    EXISTS_TAC `\x:A. F` THEN REWRITE_TAC[chain; 
SUBSET_PRED] THEN
    GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [
FUN_EQ_THM] THEN
    CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `u:A` MP_TAC o
      GEN_REWRITE_RULE I [
NOT_FORALL_THM]) THEN
    REWRITE_TAC[] THEN DISCH_TAC THEN
    DISCH_THEN(MP_TAC o SPECL [`u:A`; `u:A`]) THEN
    IMP_RES_THEN(ASSUME_TAC o GSYM) 
POSET_FLEQ THEN ASM_REWRITE_TAC[]] THEN
  SUBGOAL_THEN `?f. !x. f x = if fl(l) x /\
                                 (!y. less w (y,x) ==> l (x,f y) \/ l (f y,x))
                              then (x:A) else b`
  (CHOOSE_TAC o GSYM) THENL
   [SUBGOAL_THEN `
WF(\x:A y. (less w)(x,y))` MP_TAC THENL
     [REWRITE_TAC[
WF] THEN GEN_TAC THEN
      FIRST_ASSUM(MP_TAC o SPEC_ALL o MATCH_MP WOSET_WELL) THEN
      ASM_REWRITE_TAC[less] THEN ASM_MESON_TAC[WOSET_ANTISYM];
      DISCH_THEN(MATCH_MP_TAC o MATCH_MP 
WF_REC) THEN
      REWRITE_TAC[] THEN REPEAT GEN_TAC THEN
      REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
      ASM_MESON_TAC[]]; ALL_TAC] THEN
  IMP_RES_THEN(IMP_RES_THEN ASSUME_TAC) POSET_REFL THEN
  SUBGOAL_THEN `(f:A->A) b = b` ASSUME_TAC THENL
   [FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `b:A`) THEN
    REWRITE_TAC[
COND_ID] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!x:A. fl(l:A#A->bool) (f x)` ASSUME_TAC THENL
   [GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  FIRST_ASSUM(ANTE_RES_THEN (ASSUME_TAC o GEN_ALL) o SPEC_ALL) THEN
  SUBGOAL_THEN `!x:A. (l:A#A->bool)(b,f x) \/ l(f x,b)` ASSUME_TAC THENL
   [GEN_TAC THEN MP_TAC(SPEC `x:A` (ASSUME `!x:A. (w:A#A->bool)(b,f x)`)) THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `x:A = b` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    SUBGOAL_THEN `(less w)(b:A,x)` MP_TAC THENL
     [ASM_REWRITE_TAC[less] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
      FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
    DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!x y. l((f:A->A) x,f y) \/ l(f y,f x)` ASSUME_TAC THENL
   [REPEAT GEN_TAC THEN
    IMP_RES_THEN(MP_TAC o SPECL [`x:A`; `y:A`]) 
WOSET_TOTAL_LT THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THENL
     [ASM_REWRITE_TAC[] THEN IMP_RES_THEN MATCH_MP_TAC POSET_REFL;
      ONCE_REWRITE_TAC[
DISJ_SYM] THEN
      FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `y:A`);
      FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `x:A`)] THEN
    TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(IMP_RES_THEN ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN
  EXISTS_TAC `\y:A. ?x:A. y = f(x)` THEN
  SUBGOAL_THEN `chain(l:A#A->bool)(\y. ?x:A. y = f x)` ASSUME_TAC THENL
   [REWRITE_TAC[chain] THEN BETA_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN(CHOOSE_THEN SUBST1_TAC)); ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `Q:A->bool` THEN STRIP_TAC THEN
  GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL
   [DISCH_TAC THEN BETA_TAC THEN EXISTS_TAC `z:A` THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `z:A`) THEN
    SUBGOAL_THEN `fl(l:A#A->bool) z /\
                  !y. (less w)(y,z) ==> l(z,f y) \/ l(f y,z)`
    (fun th -> REWRITE_TAC[th]) THEN CONJ_TAC THENL
     [UNDISCH_TAC `chain(l:A#A->bool) Q` THEN REWRITE_TAC[chain] THEN
      DISCH_THEN(MP_TAC o SPECL [`z:A`; `z:A`]) THEN ASM_REWRITE_TAC[fl] THEN
      DISCH_TAC THEN EXISTS_TAC `z:A` THEN ASM_REWRITE_TAC[];
      X_GEN_TAC `y:A` THEN DISCH_TAC THEN
      UNDISCH_TAC `chain(l:A#A->bool) Q` THEN REWRITE_TAC[chain] THEN
      DISCH_THEN(MP_TAC o SPECL [`z:A`; `(f:A->A) y`]) THEN
      DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[
SUBSET_PRED]) THEN
      BETA_TAC THEN EXISTS_TAC `y:A` THEN REFL_TAC];
    SPEC_TAC(`z:A`,`z:A`) THEN ASM_REWRITE_TAC[GSYM 
SUBSET_PRED]]);;
 
let ZL = prove
 (`!l:A#A->bool. poset l /\
           (!P. chain(l) P ==> (?y. fl(l) y /\ !x. P x ==> l(x,y))) ==>
        ?y. fl(l) y /\ !x. l(y,x) ==> (y = x)`,
  GEN_TAC THEN STRIP_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `M:A->bool` STRIP_ASSUME_TAC o MATCH_MP 
HP) THEN
  UNDISCH_TAC `!P. chain(l:A#A->bool) P
                   ==> (?y. fl(l) y /\ !x. P x ==> l(x,y))` THEN
  DISCH_THEN(MP_TAC o SPEC `M:A->bool`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN
  DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN
  SUBGOAL_THEN `chain(l) (\x:A. M x \/ (x = z))` MP_TAC THENL
   [REWRITE_TAC[chain] THEN BETA_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN DISJ_CASES_TAC) THEN
    ASM_REWRITE_TAC[] THENL
     [UNDISCH_TAC `chain(l:A#A->bool) M` THEN REWRITE_TAC[chain] THEN
      DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      DISJ1_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN
      EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      DISJ2_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_TRANS) THEN
      EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[] THEN
      FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
      FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP POSET_REFL) THEN
      REWRITE_TAC[fl] THEN EXISTS_TAC `m:A` THEN ASM_REWRITE_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN `M 
SUBSET (\x:A. M x \/ (x = z))` MP_TAC THENL
   [REWRITE_TAC[
SUBSET_PRED] THEN GEN_TAC THEN BETA_TAC THEN
    DISCH_THEN(fun th -> REWRITE_TAC[th]); ALL_TAC] THEN
  GEN_REWRITE_TAC I [TAUT `(a ==> b ==> c) <=> (b /\ a ==> c)`] THEN
  DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
  REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [
FUN_EQ_THM] THEN
  DISCH_THEN(MP_TAC o SPEC `z:A`) THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th)) THEN
  FIRST_ASSUM(MP_TAC o SPECL [`m:A`; `z:A`] o MATCH_MP POSET_ANTISYM) THEN
  ASM_REWRITE_TAC[]);;
 
let KL_POSET_LEMMA = prove
 (`poset (\(c1,c2). C 
SUBSET c1 /\ c1 
SUBSET c2 /\ chain(l:A#A->bool) c2)`,
  REWRITE_TAC[poset] THEN PBETA_TAC THEN REPEAT CONJ_TAC THENL
   [X_GEN_TAC `P:A->bool` THEN REWRITE_TAC[fl] THEN PBETA_TAC THEN
    DISCH_THEN(X_CHOOSE_THEN `Q:A->bool` STRIP_ASSUME_TAC) THEN
    ASM_REWRITE_TAC[
SUBSET_REFL] THENL
     [MATCH_MP_TAC 
CHAIN_SUBSET; MATCH_MP_TAC 
SUBSET_TRANS];
    GEN_TAC THEN X_GEN_TAC `Q:A->bool` THEN GEN_TAC THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC 
SUBSET_TRANS;
    REPEAT STRIP_TAC THEN MATCH_MP_TAC 
SUBSET_ANTISYM] THEN
  TRY(EXISTS_TAC `Q:A->bool`) THEN ASM_REWRITE_TAC[]);;
 
let KL = prove
 (`!l:A#A->bool. poset l ==>
        !C. chain(l) C ==>
            ?P. (chain(l) P /\ C 
SUBSET P) /\
                (!R. chain(l) R /\ P 
SUBSET R ==> (R = P))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `\(c1,c2). C 
SUBSET c1 /\ c1 
SUBSET c2 /\
                          chain(l:A#A->bool) c2` 
ZL) THEN PBETA_TAC THEN
  REWRITE_TAC[
KL_POSET_LEMMA; MATCH_MP 
POSET_FLEQ KL_POSET_LEMMA] THEN
  PBETA_TAC THEN
  W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o
  funpow 2 (fst o dest_imp) o snd) THENL
   [X_GEN_TAC `P:(A->bool)->bool` THEN GEN_REWRITE_TAC LAND_CONV [chain] THEN
    PBETA_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `?D:A->bool. P D` THENL
     [EXISTS_TAC `
UNIONS(P) :A->bool` THEN REWRITE_TAC[
SUBSET_REFL] THEN
      FIRST_ASSUM(X_CHOOSE_TAC `D:A->bool`) THEN
      FIRST_ASSUM(MP_TAC o SPECL [`D:A->bool`; `D:A->bool`]) THEN
      REWRITE_TAC[ASSUME `(P:(A->bool)->bool) D`; 
SUBSET_REFL] THEN
      STRIP_TAC THEN
      MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c) ==> (a /\ b) /\ c`) THEN
      REPEAT CONJ_TAC THENL
       [REWRITE_TAC[
UNIONS_PRED; 
SUBSET_PRED] THEN REPEAT STRIP_TAC THEN
        BETA_TAC THEN EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN
        FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[
SUBSET_PRED]) THEN
        ASM_REWRITE_TAC[];
        REWRITE_TAC[chain; 
UNIONS_PRED] THEN
        MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
        BETA_TAC THEN DISCH_THEN(CONJUNCTS_THEN2
         (X_CHOOSE_TAC `A:A->bool`) (X_CHOOSE_TAC `B:A->bool`)) THEN
        FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
        DISCH_THEN(MP_TAC o SPECL [`A:A->bool`; `B:A->bool`]) THEN
        ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
         [UNDISCH_TAC `chain(l:A#A->bool) B`;
          UNDISCH_TAC `chain(l:A#A->bool) A`] THEN
        REWRITE_TAC[chain] THEN DISCH_THEN MATCH_MP_TAC THEN
        ASM_REWRITE_TAC[] THEN
        FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[
SUBSET_PRED]) THEN
        ASM_REWRITE_TAC[];
        STRIP_TAC THEN X_GEN_TAC `X:A->bool` THEN DISCH_TAC THEN
        FIRST_ASSUM(MP_TAC o SPECL [`X:A->bool`; `X:A->bool`]) THEN
        REWRITE_TAC[] THEN DISCH_THEN(IMP_RES_THEN STRIP_ASSUME_TAC) THEN
        ASM_REWRITE_TAC[] THEN REWRITE_TAC[
UNIONS_PRED; 
SUBSET_PRED] THEN
        REPEAT STRIP_TAC THEN BETA_TAC THEN EXISTS_TAC `X:A->bool` THEN
        ASM_REWRITE_TAC[]];
      EXISTS_TAC `C:A->bool` THEN
      FIRST_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [
NOT_EXISTS_THM]) THEN
      ASM_REWRITE_TAC[
SUBSET_REFL]];
    DISCH_THEN(X_CHOOSE_THEN `D:A->bool` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `D:A->bool` THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
 
let OEP = prove
 (`!p:A#A->bool. poset p ==> ?t. toset t /\ fl(t) = fl(p) /\ p 
SUBSET t`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `fl(p:A#A->bool)` 
WO) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `w:A#A->bool` STRIP_ASSUME_TAC) THEN
  ABBREV_TAC
   `t = \(x:A,y:A). fl p x /\ fl p y /\
                    (x = y \/
                     ?i. fl p i /\
                         (!j. w(j,i) /\ ~(j = i) ==> (p(j,x) <=> p(j,y))) /\
                         ~p(i,x) /\ p(i,y))` THEN
  EXISTS_TAC `t:A#A->bool` THEN
  SUBGOAL_THEN
   `!x:A y:A. fl p x /\ fl p y /\ ~(x = y)
              ==> ?i. fl p i /\
                      (!j:A. w(j,i) /\ ~(j = i) ==> (p(j,x) <=> p(j,y))) /\
                      ~(p(i,x) <=> p(i,y))`
  (LABEL_TAC "*") THENL
   [REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_SIMP_TAC[] THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o SPEC `\i:A. fl p i /\ ~(p(i,x) <=> p(i,y))`) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM_MESON_TAC[];
      MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `i:A` THEN
       ASM_MESON_TAC[fl]];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x:A y:A. p(x,y) ==> t(x,y)` ASSUME_TAC THENL
   [EXPAND_TAC "t" THEN REWRITE_TAC[] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[fl]; ALL_TAC]) THEN
    ASM_CASES_TAC `x:A = y` THENL [ASM_MESON_TAC[fl]; ALL_TAC] THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[] THEN
    ANTS_TAC THENL [ASM_MESON_TAC[fl]; MATCH_MP_TAC 
MONO_EXISTS] THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [poset]) THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[
SUBSET; 
FORALL_PAIR_THM; 
IN] THEN
  MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL
   [MATCH_MP_TAC 
SUBSET_ANTISYM THEN
    ASM_REWRITE_TAC[
SUBSET; 
FORALL_PAIR_THM; 
IN] THEN
    EXPAND_TAC "t" THEN REWRITE_TAC[fl] THEN ASM_MESON_TAC[];
    DISCH_TAC THEN ASM_REWRITE_TAC[toset; poset]] THEN
  EXPAND_TAC "t" THEN REWRITE_TAC[] THEN
  FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [poset]) THEN
  REPEAT CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN
    ASM_CASES_TAC `x:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
    ASM_CASES_TAC `y:A = z` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN
    ASM_CASES_TAC `fl p (x:A)` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (y:A)` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (z:A)` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN
    REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[fl]; ALL_TAC] THEN STRIP_TAC THENL
     [EXISTS_TAC `m:A`; EXISTS_TAC `n:A`] THEN ASM_MESON_TAC[];
    MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (x:A)` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `fl p (y:A)` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `m:A` STRIP_ASSUME_TAC)
     (X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC)) THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN
    REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o SPECL [`m:A`; `n:A`] o CONJUNCT1) THEN
    ASM_MESON_TAC[];
    MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
    ASM_CASES_TAC `y:A = x` THEN ASM_REWRITE_TAC[
IN] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`x:A`; `y:A`]) THEN
    ASM_REWRITE_TAC[
OR_EXISTS_THM] THEN MATCH_MP_TAC 
MONO_EXISTS THEN
    MESON_TAC[]]);;