(* ====================================================== *)
(* Squolem proof reconstruction *)
(* (c) Copyright, OndÅej KunÄar 2010-11 *)
(* ====================================================== *)
set_jrh_lexer;;
let show_progress = ref false;;
let show_timing = ref false;;
let delete_qbf_tempfiles = ref true;;
type quantifier = Existential of term | Universal of term;;
let make_variable index =
if index <= 0 then failwith "Variable of index 0 or lesser is not allowed"
else mk_var ("v_"^(string_of_int index), bool_ty)
;;
let make_literal index =
if index < 0 then mk_neg (make_variable (-index))
else make_variable index
;;
let destroy_variable var =
let var_string = string_of_term var in
int_of_string (String.sub var_string 2 (String.length var_string -2))
;;
let destroy_literal lit =
match is_neg lit with
true -> - destroy_variable (dest_neg lit)
| false -> destroy_variable lit
;;
let get_quant_var quantifier =
match quantifier with
Existential t -> t
| Universal t -> t
;;
let has_quant tm =
Pervasives.(||) (is_exists tm) (is_forall tm)
;;
let dest_quant tm =
if is_exists tm then dest_exists tm
else dest_forall tm
;;
module type Qbfcontextsig =
sig
type variables = (int,unit) Hashtbl.t;;
type extensions = (int,term) Hashtbl.t;;
type quantifiers = quantifier list;;
type aux_variables = int list;;
type q_levels = int array;;
type context = {
(** all variables, i.e, variables in a formula and auxiliary variables from extensions *)
variables:variables;
extensions:extensions;
mutable aux_variables:aux_variables;
(** quantifiers prefix in bottom-up ordering *)
mutable quantifiers:quantifiers;
mutable q_levels:q_levels;
mutable q_ordered_levels:q_levels };;
val create_context : int -> context
(** quantifiers must be in bottom-up ordering *)
val set_quantifiers : context -> quantifiers -> unit
val check_variable : context -> int -> unit
val check_fresh_variable : context -> int -> unit
val add_universal_variable : context -> int -> unit
val add_existential_variable : context -> int -> unit
val add_extension : context -> int -> term -> unit
val add_conclusion_eq : context -> int -> term -> unit
val get_extensions : context -> (term * term) list
val get_extension : context -> int -> term
val get_quantifiers : context -> quantifiers
val get_aux_variables : context -> aux_variables
val make_quantifiers_levels : context -> unit
val make_ordered_quantifiers_levels : context -> unit
val lt_levels : context -> int -> int -> bool
val lt_ordered_levels : context -> int -> int -> bool
end;;
module Qbfcontext : Qbfcontextsig =
struct
type variables = (int,unit) Hashtbl.t;;
type extensions = (int,term) Hashtbl.t;;
type quantifiers = quantifier list;;
type aux_variables = int list;;
type q_levels = int array;;
type context = {
variables:variables;
extensions:extensions;
mutable aux_variables:aux_variables;
mutable quantifiers:quantifiers;
mutable q_levels:q_levels;
mutable q_ordered_levels:q_levels
};;
let create_context var_count =
{ variables = Hashtbl.create (2*var_count);
extensions = Hashtbl.create var_count;
aux_variables = [];
quantifiers = [];
q_levels = Array.make 0 0;
q_ordered_levels = Array.make 0 0 }
;;
let set_quantifiers context quants =
context.quantifiers <- quants
;;
let check_variable context var_index =
if not (Hashtbl.mem context.variables var_index) then failwith ((string_of_int var_index)^" is undefined variable")
;;
let check_fresh_variable context var_index =
if Hashtbl.mem context.variables var_index then failwith ((string_of_int var_index)^" is not a fresh variable")
;;
let add_universal_variable context var_index =
check_fresh_variable context var_index;
Hashtbl.add context.variables var_index ()
;;
let add_existential_variable context var_index =
check_fresh_variable context var_index;
Hashtbl.add context.variables var_index ();
Hashtbl.add context.extensions var_index `T`
;;
let add_aux_variable context var_index =
check_fresh_variable context var_index;
Hashtbl.add context.variables var_index ();
context.aux_variables <- var_index::context.aux_variables
;;
let add_aux_quantifier context var_index free_variables =
let quantifier = Existential (make_variable var_index) in
let rec remove_from_list l ls =
match ls with
[] -> []
| l'::ls' when l'=l -> ls'
| l'::ls'-> l'::remove_from_list l ls'
in
let rec insert_quantifier quantifiers free_variables =
match free_variables with
[] -> quantifier::quantifiers
| _ -> match quantifiers with
q::qs -> q::(insert_quantifier qs (remove_from_list (get_quant_var q) free_variables))
| [] -> failwith "add_aux_quantifier: logic error"
in
context.quantifiers <- List.rev ((insert_quantifier (List.rev context.quantifiers) free_variables))
;;
let add_extension context var_index formula =
add_aux_variable context var_index;
add_aux_quantifier context var_index (variables formula);
Hashtbl.add context.extensions var_index formula
;;
let add_conclusion_eq context var_index formula =
Hashtbl.replace context.extensions var_index formula
;;
let get_extension context var_index =
Hashtbl.find context.extensions var_index
;;
let get_extensions context =
Hashtbl.fold (fun f s l -> (make_variable f,s)::l) context.extensions []
;;
let get_quantifiers context =
context.quantifiers
;;
let get_aux_variables context =
context.aux_variables
;;
let make_quantifiers_levels_inter context =
let quantifiers = context.quantifiers in
let rec loop arr quants level =
match quants with
[] -> arr
| q::qs ->
arr.(((destroy_variable o get_quant_var) q) - 1) <- level;
loop arr qs (level - 1)
in
let arr = Array.make (List.length quantifiers) 0 in
let arr' = loop arr quantifiers (List.length quantifiers) in
arr'
;;
let make_quantifiers_levels context =
context.q_levels <- make_quantifiers_levels_inter context
;;
let make_ordered_quantifiers_levels context =
context.q_ordered_levels <- make_quantifiers_levels_inter context
;;
let lt_levels context v1 v2 =
context.q_levels.(v1-1) < context.q_levels.(v2-1)
;;
let lt_ordered_levels context v1 v2 =
context.q_ordered_levels.(v1-1) < context.q_ordered_levels.(v2-1)
;;
end;;
open Qbfcontext;;
let rec strip_quantifiers tm =
if is_forall tm then
let (var,tm') = dest_forall tm in
let (q',body) = (strip_quantifiers tm') in
((Universal var)::q',body)
else if is_exists tm then
let (var,tm') = dest_exists tm in
let (q',body) = (strip_quantifiers tm') in
((Existential var)::q',body)
else ([],tm)
;;
(** strip quantifiers in bottom-up ordering *)
let strip_quantifiers_r tm =
let rec loop tm acc =
if is_forall tm then
let (var,tm') = dest_forall tm in
loop tm' ((Universal var)::acc)
else if is_exists tm then
let (var,tm') = dest_exists tm in
loop tm' ((Existential var)::acc)
else (acc,tm)
in loop tm []
;;
(** strip quantifiers in bottom-up ordering *)
let strip_quantifiers_rx tm =
let rec loop tm acc =
if is_forall tm then
let (var,tm') = dest_forall tm in
loop tm' ((true, var)::acc)
else if is_exists tm then
let (var,tm') = dest_exists tm in
loop tm' ((false, var)::acc)
else (acc,tm)
in loop tm []
;;
let quantifiers_fold_left exist_fn universal_fn thm quantifiers =
let quant_fn thm quantifier =
match quantifier with
Universal var -> universal_fn var thm
| Existential var -> exist_fn var thm
in
List.fold_left quant_fn thm quantifiers
;;
let is_negated lit_ind = lit_ind < 0;;
let read_index token_stream =
let index_token = Stream.next token_stream in
match index_token with
Genlex.Int index -> index
| _ -> failwith "Bad index of variable"
;;
let var = abs;;
let read_extension_ite context new_var_index token_stream =
let x_v_i = read_index token_stream in
let y_v_i = read_index token_stream in
let z_v_i = read_index token_stream in
check_variable context (var x_v_i);
check_variable context (var y_v_i);
check_variable context (var z_v_i);
let x_v = make_literal x_v_i in
let y_v = make_literal y_v_i in
let z_v = make_literal z_v_i in
let formula = mk_disj (mk_conj (x_v,y_v),mk_conj(mk_neg x_v,z_v)) in
add_extension context new_var_index formula;
;;
let read_extension_and context new_var_index token_stream =
let rec read_conjucts context token_stream =
let lit_ind = read_index token_stream in
if lit_ind = 0 then []
else
begin
check_variable context (var lit_ind);
(make_literal lit_ind)::(read_conjucts context token_stream)
end
in
let conjucts = read_conjucts context token_stream in
let conjucts' = match conjucts with
[] -> `T`
| _ -> list_mk_conj conjucts
in
add_extension context new_var_index conjucts';
;;
let read_extension_line context token_stream =
let new_var_index = read_index token_stream in
let extension_type = Stream.next token_stream in
match extension_type with
Genlex.Kwd "I" -> read_extension_ite context new_var_index token_stream
| Genlex.Kwd "A" -> read_extension_and context new_var_index token_stream
| _ -> failwith "Unknown type of extension line"
;;
let read_header context token_stream =
match Stream.next token_stream with
Genlex.Kwd "QBCertificate" -> ()
| _ -> failwith "Missing header"
;;
let read_resolution_line context token_stream =
failwith "Resolution line: not yet implemented!";
()
;;
let rec read_equalities context token_stream =
try
let exist_var_i = read_index token_stream in
check_variable context exist_var_i;
let extension_var_i = read_index token_stream in
check_variable context (var extension_var_i);
let extension_var = make_literal extension_var_i in
add_conclusion_eq context exist_var_i extension_var;
read_equalities context token_stream
with Stream.Failure -> ()
;;
let read_conlude_line context token_stream =
match Stream.next token_stream with
Genlex.Kwd "VALID" -> read_equalities context token_stream
| Genlex.Kwd "INVALID" -> failwith "INVALID formula: not yet implemted!"
| _ -> failwith "Unknown type of conclusion"
;;
let read_certificate context token_stream =
read_header context token_stream;
let rec read_line context token_stream =
match Stream.next token_stream with
Genlex.Kwd "E" -> read_extension_line context token_stream; read_line context token_stream
| Genlex.Kwd "R" -> read_resolution_line context token_stream; read_line context token_stream
| Genlex.Kwd "CONCLUDE" -> read_conlude_line context token_stream
| _ -> failwith "Unknown type of line"
in
read_line context token_stream
;;
let PROPAGATE_FORALL =
let MONO_FORALL_B = (UNDISCH o prove)
(`(!x:bool. A x ==> B x) ==> (!) A ==> (!) B`,
STRIP_TAC THEN
GEN_REWRITE_TAC (BINOP_CONV o RAND_CONV) [GSYM ETA_AX] THEN
ASM_MESON_TAC[]) in
let a_tm = rand(lhand(concl MONO_FORALL_B))
and b_tm = rand(rand(concl MONO_FORALL_B))
and h_tm = hd(hyp MONO_FORALL_B) in
fun v1 ->
let ath = GEN_ALPHA_CONV v1 h_tm in
let atm = rand(concl ath) in
let pth = PROVE_HYP (EQ_MP (SYM ath) (ASSUME atm)) MONO_FORALL_B in
fun thm ->
let tm = concl thm in
let ip,q = dest_comb tm in
let i,p = dest_comb ip in
let pabs = mk_abs(v1,p)
and qabs = mk_abs(v1,q) in
let th1 = AP_TERM i (BETA(mk_comb(pabs,v1))) in
let th2 = MK_COMB(th1,BETA(mk_comb(qabs,v1))) in
let th3 = GEN v1 (EQ_MP (SYM th2) thm) in
let th4 = INST [pabs,a_tm; qabs,b_tm] pth in
PROVE_HYP th3 th4;;
let PROPAGATE_RIGHT =
let MONO_EXISTS_RIGHT_B = (UNDISCH o prove)
(`(A ==> B(x:bool)) ==> A ==> (?) B`,
ASM_CASES_TAC `A:bool` THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
MESON_TAC[]) in
let a_tm = lhand(concl MONO_EXISTS_RIGHT_B)
and b_tm = rand(rand(concl MONO_EXISTS_RIGHT_B))
and h_tm = hd(hyp MONO_EXISTS_RIGHT_B) in
let x_tm = rand(rand h_tm) in
fun v thm ->
let tm = concl thm in
let ip,q = dest_comb tm in
let qabs = mk_abs(v,q) in
let th1 = AP_TERM ip (BETA(mk_comb(qabs,v))) in
let th2 = EQ_MP (SYM th1) thm in
let th3 = INST [rand ip,a_tm; qabs,b_tm; v,x_tm] MONO_EXISTS_RIGHT_B in
PROVE_HYP th2 th3;;
let PROPAGATE_LEFT =
let MONO_EXISTS_LEFT_B = (UNDISCH o prove)
(`(!x:bool. A x ==> B) ==> (?) A ==> B`,
ASM_CASES_TAC `B:bool` THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (funpow 3 RAND_CONV) [GSYM ETA_AX] THEN
MESON_TAC[]) in
let a_tm = rand(lhand(concl MONO_EXISTS_LEFT_B))
and b_tm = rand(concl MONO_EXISTS_LEFT_B)
and h_tm = hd(hyp MONO_EXISTS_LEFT_B) in
fun v ->
let ath = GEN_ALPHA_CONV v h_tm in
let atm = rand(concl ath) in
let pth = PROVE_HYP (EQ_MP (SYM ath) (ASSUME atm)) MONO_EXISTS_LEFT_B in
fun thm ->
let tm = concl thm in
let ip,q = dest_comb tm in
let i,p = dest_comb ip in
let pabs = mk_abs(v,p) in
let th1 = AP_THM (AP_TERM i (BETA(mk_comb(pabs,v)))) q in
let th2 = GEN v (EQ_MP (SYM th1) thm) in
let th3 = INST [pabs,a_tm; q,b_tm] pth in
PROVE_HYP th2 th3;;
let PROPAGATE_QUANTIFIERS_R thm ext_quants quants =
let rec propagate_both thm ext_quants quants =
match (ext_quants,quants) with
| ((Universal v1)::ext_quantss,(Universal v2)::quantss) ->
propagate_both (PROPAGATE_FORALL v1 thm) ext_quantss quantss
| (_,_) -> (thm,ext_quants,quants)
in
let rec propagate_right thm quants =
match quants with
| (Existential v)::quantss ->
propagate_right (PROPAGATE_RIGHT v thm) quantss
| _ -> (thm,quants)
in
let rec propagate_left thm ext_quants =
match ext_quants with
| (Existential v)::ext_quantss ->
propagate_left (PROPAGATE_LEFT v thm) ext_quantss
| _ -> (thm,ext_quants)
in
let rec propagate thm ext_quants quants =
match (ext_quants,quants) with
| ([],[]) -> thm
| (_,((Existential _)::_)) ->
let (thm',quants') = propagate_right thm quants in
let (thm'',ext_quants') = propagate_left thm' ext_quants in
propagate thm'' ext_quants' quants'
| (((Existential _)::_),_) ->
let (thm',ext_quants') = propagate_left thm ext_quants in
propagate thm' ext_quants' quants
| ((Universal _)::_,(Universal _)::_) ->
let (thm',ext_quants',quants') = propagate_both thm ext_quants quants in
propagate thm' ext_quants' quants'
| _ -> failwith "PROPAGATE_QUANTIFIERS_R: logic error"
in
propagate thm ext_quants quants
;;
let order_quantifiers context =
let add_var vertices graph var_index =
Gr.add_vertex graph (make_vertex var_index);
let extension_vars = variables (get_extension context var_index) in
let add_ext_var ext_var =
let ext_var_index = destroy_variable ext_var in
if Hashtbl.mem vertices ext_var_index then
Gr.add_edge graph (make_vertex ext_var_index) (make_vertex var_index)
in
List.iter add_ext_var extension_vars
in
let rec is_sorted var_index_list =
let is_sorted_var var_index =
let extension_vars = variables (get_extension context var_index) in
List.fold_left (fun ret var -> ret && lt_levels context (destroy_variable var) var_index) true extension_vars
in
match var_index_list with
[] -> true
| var::vars -> if is_sorted_var var then is_sorted vars
else false
in
(** exists is in up-bottom ordering *)
let rec order_exists quantifiers exists =
let order_exists' tail =
if is_sorted exists then
List.fold_left (fun tail var_index -> (Existential (make_variable var_index))::tail) tail exists
else
let graph = Gr.create () in
let vertices = Hashtbl.create (List.length exists) in
List.iter (fun var -> Hashtbl.add vertices var ()) exists;
List.iter (fun var -> add_var vertices graph var) exists;
Topo.fold (fun vertex tail -> (Existential (make_variable (dest_vertex vertex)))::tail) graph tail
in
match quantifiers with
[] -> order_exists' []
| (Universal v)::qs -> order_exists' ((Universal v)::order qs)
| (Existential v)::qs ->
order_exists qs ((destroy_variable v)::exists)
and
order quantifiers =
match quantifiers with
[] -> []
| (Universal v)::qs -> (Universal v)::order qs
| (Existential v)::qs ->
order_exists ((Existential v)::qs) []
in
set_quantifiers context (order (get_quantifiers context));
make_ordered_quantifiers_levels context
;;
let match_time = ref 0.0;;
let lift_time = ref 0.0;;
let gen_time = ref 0.0;;
let test_time = ref 0.0;;
let timex label f x =
if not (!show_timing) then f x else
let start_time = Sys.time() in
try let result = f x in
let finish_time = Sys.time() in
report("CPU time (user): "^(string_of_float(finish_time -. start_time))^" ("^label^")");
result
with e ->
let finish_time = Sys.time() in
Format.print_string("Failed after (user) CPU time of "^
(string_of_float(finish_time -. start_time))^" ("^label^")"^": ");
raise e;;
let my_time f x time_var =
if not (!show_timing) then f x else
let start_time = Sys.time() in
try let result = f x in
let finish_time = Sys.time() in
time_var := !time_var +. (finish_time -. start_time);
result
with e ->
let finish_time = Sys.time() in
time_var := !time_var +. (finish_time -. start_time);
raise e;;
let report_time label time_var =
if !show_timing then
report("CPU time (user): "^(string_of_float(!time_var))^" ("^label^")");
;;
let ADD_MISSING_UNIVERSALS th quants =
let rec add_u quants tm =
match quants with
| [] -> REFL tm
| q::qs ->
match q with
| Existential _ -> BINDER_CONV (add_u qs) tm
| Universal v ->
if Pervasives.(||) (not (has_quant tm)) (Pervasives.compare ((fst o dest_quant) tm) v != 0) then
let renamed_rewr = EQ_MP (ONCE_DEPTH_CONV (ALPHA_CONV v) (concl FORALL_SIMP2)) FORALL_SIMP2 in
(PURE_ONCE_REWRITE_CONV [renamed_rewr] THENC BINDER_CONV (add_u qs)) tm
else
BINDER_CONV (add_u qs) tm
in
EQ_MP (add_u (rev quants) (concl th)) th
;;
let AX_UXU = (UNDISCH o prove)
(`(!x:bool. p x /\ q ==> r x) ==> (!) p /\ q ==> (!) r`,
let AX_UXU = MESON [] `(!x:bool. ((A x /\ B)==>C x))==>(((!x:bool. A x) /\ B)==> !x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_UXU) THEN REWRITE_TAC[ETA_AX])
and AX_EXE = (UNDISCH o prove)
(`(!x:bool. p x /\ q ==> r x) ==> (?) p /\ q ==> (?) r`,
let AX_EXE = MESON [] `(!x:bool. ((A x /\ B)==>C x))==>(((?x:bool. A x) /\ B)==> ?x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_EXE) THEN REWRITE_TAC[ETA_AX]);;
let LIFT_LEFT ax =
let p_tm = rand(lhand(lhand(concl ax)))
and q_tm = rand(lhand(concl ax))
and r_tm = rand(rand(concl ax))
and h_tm = hd(hyp ax) in
fun var ->
let ath = GEN_ALPHA_CONV var h_tm in
let atm = rand(concl ath) in
let ax' = PROVE_HYP (EQ_MP (SYM ath) (ASSUME atm)) ax in
fun th ->
let tm = concl th in
let ipq,r = dest_comb tm in
let i,pq = dest_comb ipq in
let ap,q = dest_comb pq in
let a,p = dest_comb ap in
let pabs = mk_abs(var,p)
and rabs = mk_abs(var,r) in
let th1 = AP_THM (AP_TERM a (BETA(mk_comb(pabs,var)))) q in
let th2 = MK_COMB(AP_TERM i th1,BETA(mk_comb(rabs,var))) in
let th3 = GEN var (EQ_MP (SYM th2) th) in
let th4 = INST [pabs,p_tm; q,q_tm; rabs,r_tm] ax' in
PROVE_HYP th3 th4;;
let AX_XUU = (UNDISCH o prove)
(`(!x:bool. p /\ q x ==> r x) ==> p /\ (!) q ==> (!) r`,
let AX_XUU = MESON [] `(!x:bool. ((A /\ B x)==>C x))==>((A /\ !x:bool. B x)==> !x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_XUU) THEN REWRITE_TAC[ETA_AX])
and AX_XEE = (UNDISCH o prove)
(`(!x:bool. p /\ q x ==> r x) ==> p /\ (?) q ==> (?) r`,
let AX_XEE = MESON [] `(!x:bool. ((A /\ B x)==>C x))==>((A /\ ?x:bool. B x)==> ?x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_XEE) THEN REWRITE_TAC[ETA_AX]);;
let LIFT_RIGHT ax =
let p_tm = lhand(lhand(concl ax))
and q_tm = rand(rand(lhand(concl ax)))
and r_tm = rand(rand(concl ax))
and h_tm = hd(hyp ax) in
fun var ->
let ath = GEN_ALPHA_CONV var h_tm in
let atm = rand(concl ath) in
let ax' = PROVE_HYP (EQ_MP (SYM ath) (ASSUME atm)) ax in
fun th ->
let tm = concl th in
let ipq,r = dest_comb tm in
let i,pq = dest_comb ipq in
let ap,q = dest_comb pq in
let a,p = dest_comb ap in
let qabs = mk_abs(var,q)
and rabs = mk_abs(var,r) in
let th1 = AP_TERM ap (BETA(mk_comb(qabs,var))) in
let th2 = MK_COMB(AP_TERM i th1,BETA(mk_comb(rabs,var))) in
let th3 = GEN var (EQ_MP (SYM th2) th) in
let th4 = INST [p,p_tm; qabs,q_tm; rabs,r_tm] ax' in
PROVE_HYP th3 th4;;
let AX_UUU = (UNDISCH o prove)
(`(!x:bool. p x /\ q x ==> r x) ==> (!) p /\ (!) q ==> (!) r`,
let AX_UUU = MESON [] `(!x:bool. ((A x /\ B x)==>C x))==>(((!x:bool. A x) /\ !x:bool. B x)==> !x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_UUU) THEN REWRITE_TAC[ETA_AX])
and AX_EUE = (UNDISCH o prove)
(`(!x:bool. p x /\ q x ==> r x) ==> (?) p /\ (!) q ==> (?) r`,
let AX_EUE = MESON [] `(!x:bool. ((A x /\ B x)==>C x))==>(((?x:bool. A x) /\ !x:bool. B x)==> ?x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_EUE) THEN REWRITE_TAC[ETA_AX])
and AX_UEE = (UNDISCH o prove)
(`(!x:bool. p x /\ q x ==> r x) ==> (!) p /\ (?) q ==> (?) r`,
let AX_UEE = MESON [] `(!x:bool. ((A x /\ B x)==>C x))==>(((!x:bool. A x) /\ ?x:bool. B x)==> ?x:bool. C x)` in
DISCH_THEN(MP_TAC o MATCH_MP AX_UEE) THEN REWRITE_TAC[ETA_AX]);;
let LIFT_BOTH ax =
let p_tm = rand(lhand(lhand(concl ax)))
and q_tm = rand(rand(lhand(concl ax)))
and r_tm = rand(rand(concl ax))
and h_tm = hd(hyp ax) in
fun var ->
let ath = GEN_ALPHA_CONV var h_tm in
let atm = rand(concl ath) in
let ax' = PROVE_HYP (EQ_MP (SYM ath) (ASSUME atm)) ax in
fun th ->
let tm = concl th in
let ipq,r = dest_comb tm in
let i,pq = dest_comb ipq in
let ap,q = dest_comb pq in
let a,p = dest_comb ap in
let pabs = mk_abs(var,p)
and qabs = mk_abs(var,q)
and rabs = mk_abs(var,r) in
let th0 = AP_TERM a (BETA(mk_comb(pabs,var))) in
let th1 = MK_COMB(th0,BETA(mk_comb(qabs,var))) in
let th2 = MK_COMB(AP_TERM i th1,BETA(mk_comb(rabs,var))) in
let th3 = GEN var (EQ_MP (SYM th2) th) in
let th4 = INST [pabs,p_tm; qabs,q_tm; rabs,r_tm] ax' in
PROVE_HYP th3 th4;;
let solve_quantifiers context conjuction =
let solve_right_quantifier thm quant2 =
match quant2 with
| Universal v2 -> LIFT_RIGHT AX_XUU v2 thm
| Existential v2 -> LIFT_RIGHT AX_XEE v2 thm
in
let solve_left_quantifier thm quant1 =
match quant1 with
| Universal v1 -> LIFT_LEFT AX_UXU v1 thm
| Existential v1 -> LIFT_LEFT AX_EXE v1 thm
in
let solve_both_quantifiers thm quant1 quant2 =
match (quant1,quant2) with
(Universal v1, Universal v2) -> LIFT_BOTH AX_UUU v1 thm
| (Existential v1, Universal v2) -> LIFT_BOTH AX_EUE v1 thm
| (Universal v1, Existential v2) -> LIFT_BOTH AX_UEE v1 thm
| _ -> failwith "Logic error in solve_quantifier"
in
let rec loop thm quants1 quants2 =
match (quants1,quants2) with
| ([],[]) -> thm
| (qs1,[]) -> List.fold_left solve_left_quantifier thm qs1
| ([],qs2) -> List.fold_left solve_right_quantifier thm qs2
| (quant1::qs1,quant2::qs2) ->
let quant_var1 = get_quant_var quant1 in
let quant_var2 = get_quant_var quant2 in
if quant_var1 = quant_var2 then
let thm' = solve_both_quantifiers thm quant1 quant2 in
loop thm' qs1 qs2
else
if lt_ordered_levels context (destroy_variable quant_var1) (destroy_variable quant_var2) then
let thm' = solve_right_quantifier thm quant2 in
loop thm' (quant1::qs1) qs2
else
let thm' = solve_left_quantifier thm quant1 in
loop thm' qs1 (quant2::qs2)
in
let conclusion = concl conjuction in
let (conj1,conj2) = dest_conj conclusion in
let (quants1,body1) = strip_quantifiers_r conj1 in
let (quants2,body2) = strip_quantifiers_r conj2 in
let rew_thm = loop (DISCH_ALL (ASSUME (mk_conj (body1,body2)))) quants1 quants2 in
(*print_thm rew_thm;
print_newline ();
print_thm conjuction;
print_newline ();*)
my_time (MP rew_thm) conjuction match_time
;;
let make_quantified_model_equality =
let pth = MESON[] `?x:bool. x = t` in
let t_tm = rand(body(rand(concl pth))) in
fun quantifier_data (exist_var,right_side) ->
let free_vars = frees right_side in
let n = quantifier_data exist_var in
let quants = sort (decreasing quantifier_data)
(filter (fun v -> quantifier_data v > n) free_vars) in
let exist_eq_thm = INST[right_side,t_tm] (CONV_RULE(GEN_ALPHA_CONV exist_var) pth) in
let ret = GENL quants exist_eq_thm in
(* print_thm ret;
print_endline ""; *)
ret
;;
let construct_model context equalities =
match equalities with
[] -> `T`
| (eq::eqs) -> List.fold_left (C (curry mk_conj)) eq eqs
;;
let construct_model_thm context equalities =
let eq_length = List.length equalities in
let progress = ref 1 in
let print_progress () =
print_endline ((string_of_int o int_of_float) (((float_of_int !progress)/.(float_of_int eq_length))*.100.0))
in
let construct model eq =
let ret = solve_quantifiers context (CONJ eq model) in
if !show_progress then
begin
progress := !progress + 1;
print_progress ();
end;
ret
in
let rec construct_recursively eqs =
match eqs with
[] -> failwith "Sanity check failure"
| [e] -> e
| [e1;e2] -> construct e1 e2
| _ -> let n = length eqs in
let eqs1,eqs2 = chop_list (length eqs / 2) eqs in
construct (construct_recursively eqs1) (construct_recursively eqs2)
in
if equalities = [] then quantifiers_fold_left SIMPLE_EXISTS GEN TRUTH (get_quantifiers context)
else PURE_REWRITE_RULE[GSYM CONJ_ASSOC] (construct_recursively equalities);;
let make_model context =
let model_equalities = get_extensions context in
let model = construct_model context (List.map mk_eq model_equalities) in
let quantifier_list = map (function Universal v -> v | Existential v -> v)
(get_quantifiers context) in
let quantifier_table = itlist2 (|->) quantifier_list (1--length quantifier_list) undefined in
let quantifier_data = apply quantifier_table in
let quantified_equalities = timex "make_quantified_equalities" (List.map (make_quantified_model_equality quantifier_data)) model_equalities in
let model_thm =
match_time := 0.0;
lift_time := 0.0;
gen_time := 0.0;
test_time := 0.0;
print_endline ("Number of extensions: "^ (string_of_int (List.length model_equalities)));
let ret = timex "construct_model_thm" (construct_model_thm context) quantified_equalities in
report_time "lift" lift_time;
report_time "match" match_time;
report_time "gen" gen_time;
report_time "test" test_time;
ret
in
(*let model_thm = construct_model_thm context (List.map (make_quantified_model_equality context) model_equalities) in*)
(model, model_thm)
;;
let check_and_preprocess context formula =
match frees formula with
[ _ ] -> failwith "Formula has free variables"
| _ ->
let nnf_thm = NNF_CONV formula in
let prenex_thm = TRANS nnf_thm (PRENEX_CONV (rhs (concl nnf_thm))) in
let cnf_thm = TRANS prenex_thm (CNF_CONV (rhs (concl prenex_thm))) in
let rec check_and_made_rename formula index rename =
let rename_quantifier constr destr add_fresh_variable =
let (var,destr_formula) = destr formula in
if type_of var <> bool_ty then failwith ((string_of_term var)^" is not of bool type");
add_fresh_variable context index;
let formula2 = check_and_made_rename destr_formula (index+1) ((make_variable index,var)::rename) in
constr (make_variable index,formula2)
in
if is_forall formula then rename_quantifier mk_forall dest_forall add_universal_variable
else if is_exists formula then rename_quantifier mk_exists dest_exists add_existential_variable
else
vsubst rename formula
in
let prenex_formula = rhs (concl cnf_thm) in
let ret = TRANS cnf_thm (ALPHA prenex_formula (check_and_made_rename prenex_formula 1 [])) in
let (quantifiers',_) = strip_quantifiers_r (rhs (concl ret)) in
set_quantifiers context quantifiers';
ret
;;
let get_temp_file () =
Filename.open_temp_file "qbf" ""
;;
let split_disjuncts body =
List.fold_right
(fun c d -> (disjuncts c) :: d)
(conjuncts body) []
;;
let string_of_literal lit =
string_of_int (destroy_literal lit);
;;
type prefix = Exists of term list | Forall of term list;;
let rec strip_quantifiers_as_prefix formula =
if is_forall formula then
let (quants,formula') = strip_forall formula in
let (quants',body) = strip_quantifiers_as_prefix formula' in
((Forall quants)::quants',body)
else if is_exists formula then
let (quants,formula') = strip_exists formula in
let (quants',body) = strip_quantifiers_as_prefix formula' in
((Exists quants)::quants',body)
else
([],formula)
;;
let make_input context formula var_count =
let (file_name,file_stream) = get_temp_file () in
try
let (quantifiers_list, body) = strip_quantifiers_as_prefix formula in
let clause_count = length(conjuncts body) in
let disjuncts_list = split_disjuncts body in
let out s = output_string file_stream s in
let formula_string = Str.global_replace (Str.regexp_string "\n") "\nc " (string_of_term formula) in
out "c "; out formula_string;out "\n";
out "c\n";
out "p cnf ";
out (string_of_int var_count); out " ";
out (string_of_int clause_count); out "\n";
let print_quantifiers q =
let print_vars q =
List.iter (fun var -> (out(string_of_literal var); out " ")) q;
out "0\n"
in
match q with
Exists vars -> out "e "; print_vars vars
| Forall vars -> out "a "; print_vars vars
in
List.iter
(fun q -> print_quantifiers q)
quantifiers_list;
List.iter
(fun l -> (List.iter (fun lit ->
(out(string_of_literal lit); out " ")) l;
out "0\n"))
disjuncts_list;
close_out file_stream;
file_name
with x ->
close_out file_stream;
raise x
;;
let execute_squolem input_file_name =
let exec_name = "squolem2 -c " ^ input_file_name in
let _ = Sys.command exec_name in
input_file_name ^ ".qbc"
;;
let parse_certificate context certificate_file_name =
let file_channel = Pervasives.open_in certificate_file_name in
let token_stream = (Genlex.make_lexer ["I";"A";"QBCertificate";"VALID";"INVALID";"E";"R";"CONCLUDE"] (Stream.of_channel file_channel)) in
read_certificate context token_stream
let print_model context =
let (model, model_thm) = make_model context in
print_endline (string_of_term model);
print_endline (string_of_thm model_thm)
;;
let print_quantifiers context =
let print_quantifier quant =
match quant with
Existential v -> print_string "E "; print_term v; print_string " "
| Universal v -> print_string "F "; print_term v; print_string " "
in
List.iter print_quantifier (get_quantifiers context);
print_newline ()
;;
let ZSAT_PROVE' =
let ASSOC_EQ_CONV th =
let assoc_canon = ASSOC_CONV th in
fun tm -> let l,r = dest_eq tm in
TRANS (assoc_canon l) (SYM(assoc_canon r)) in
let opacs = [`\/`,ASSOC_EQ_CONV DISJ_ASSOC;
`/\`,ASSOC_EQ_CONV CONJ_ASSOC;
`<=>`,ASSOC_EQ_CONV(TAUT `(t1 <=> t2 <=> t3) <=> ((t1 <=> t2) <=> t3)`)] in
let rec ASSOC_BALANCE_CONV tm =
match tm with
Comb(Comb(op,l),r) when can (assoc op) opacs ->
let tms = striplist (dest_binop op) tm in
let n = length tms in
if n <= 1 then failwith "sanity check failure" else
if n = 2 then BINOP_CONV ASSOC_BALANCE_CONV tm else
let tms1,tms2 = chop_list (n / 2) tms in
let tm1 = list_mk_binop op tms1
and tm2 = list_mk_binop op tms2 in
let th = assoc op opacs (mk_eq(tm,mk_binop op tm1 tm2)) in
CONV_RULE (RAND_CONV (BINOP_CONV ASSOC_BALANCE_CONV)) th
| _ -> REFL tm in
let conv = DEPTH_BINOP_CONV `(/\)` (NNFC_CONV THENC CNF_CONV) in
fun tm -> let th = COMB2_CONV (RAND_CONV conv) ASSOC_BALANCE_CONV tm in
let tm' = rand(concl th) in
EQ_MP (SYM th) (ZSAT_PROVE tm');;
let build_proof context prenex_thm =
let formula = rhs (concl prenex_thm) in
let (quants,formula_body) = strip_quantifiers_r formula in
timex "make_q_levels" make_quantifiers_levels context;
(*print_quantifiers context;*)
timex "order_qs" order_quantifiers context;
(*print_quantifiers context;*)
let (model, model_thm) = timex "make_model" make_model context in
let sat_formula = mk_imp (model,formula_body) in
let proved_sat_formula = timex "sat" ZSAT_PROVE' sat_formula in
let q_propagated_formula = timex "propagate" (PROPAGATE_QUANTIFIERS_R proved_sat_formula (get_quantifiers context)) quants in
let (model_quantifiers,_) = strip_quantifiers_r (concl model_thm) in
let proved_formula =
if List.length model_quantifiers != List.length (get_quantifiers context) then
MP q_propagated_formula (timex "add_missing" (ADD_MISSING_UNIVERSALS model_thm) (get_quantifiers context))
else
(*MP q_propagated_formula model_thm*)
MP q_propagated_formula (timex "add_missing" (ADD_MISSING_UNIVERSALS model_thm) (get_quantifiers context))
in
EQ_MP (GSYM prenex_thm) proved_formula
;;
let prove_qbf formula =
let var_count = length (variables formula) in
let context = create_context var_count in
let prenex_thm = timex "prep" (check_and_preprocess context) formula in
let input_file_name = timex "make_input" (make_input context (rand (concl prenex_thm))) var_count in
let output_file_name = timex "ex_squolem" execute_squolem input_file_name in
let _ = timex "parse_cert" (parse_certificate context) output_file_name in
let thm = timex "build_proof" (build_proof context) prenex_thm in
(if !delete_qbf_tempfiles
then (Sys.remove input_file_name; Sys.remove output_file_name)
else ());
thm
;;
let prove_all_qbf dir =
let filter_array f a =
let l = Array.to_list a in
let ll = List.filter f l in
Array.of_list ll
in
let raw_files = Sys.readdir dir in
let files = filter_array (fun name -> Filename.check_suffix name ".qdimacs") raw_files in
let run_prover file_name =
let name = Filename.chop_suffix file_name ".qdimacs" in
print_endline name;
let formula = readQDimacs (dir^"/"^file_name) in