(* ========================================================================= *)
(*                (c) Copyright, Bill Richter 2013                           *)
(*          Distributed under the same license as HOL Light                  *)
(*                                                                           *)
(* Proof of the Bug Puzzle conjecture of the HOL Light tutorial: Any two     *)
(* triples of points in the plane with the same oriented area can be         *)
(* connected in 5 moves or less (FivemovesOrLess).  Much of the code is      *)
(* due to John Harrison: a proof (NOTENOUGH_4) showing this is the best      *)
(* possible result; an early version of Noncollinear_2Span; the              *)
(* definition of move, which defines a closed subset                         *)
(*       {(A,B,C,A',B',C') | move (A,B,C) (A',B',C')} of R^6 x R^6,          *)
(* i.e. the zero set of a continuous function; FivemovesOrLess_STRONG,       *)
(* which handles the degenerate case (collinear or non-distinct triples),    *)
(* giving a satisfying answer using this "closed" definition of move.        *)
(*                                                                           *)
(* The mathematical proofs are essentially due to Tom Hales.                 *)
(* ========================================================================= *)
needs "Multivariate/determinants.ml";;
needs "RichterHilbertAxiomGeometry/readable.ml";;
new_type_abbrev("triple",`:real^2#real^2#real^2`);;
let VEC2_TAC =
  SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_2; SUM_2; DIMINDEX_2; VECTOR_2;
           vector_add; vec; dot; orthogonal; basis;
           vector_neg; vector_sub; vector_mul; ARITH] THEN
  CONV_TAC REAL_RING;;
let move = NewDefinition `;
  âA B C A' B' C':real^2. move (A,B,C) (A',B',C') â
  (B = B' â§ C = C' â§ collinear {vec 0,C - B,A' - A} â¨
  A = A' â§ C = C' â§ collinear {vec 0,C - A,B' - B} â¨
  A = A' â§ B = B' â§ collinear {vec 0,B - A,C' - C})`;;
let reachable = NewDefinition `;
  âp p'.
  reachable p p'  â  ân. âs. s 0 = p â§ s n = p' â§
  (âm. 0 <= m â§ m < n â move (s m) (s (SUC m)))`;;
let reachableN = NewDefinition `;
  âp p'. ân.
  reachableN p p' n  â  âs. s 0 = p â§ s n = p' â§
  (âm. 0 <= m â§ m < n â move (s m) (s (SUC m)))`;;
let move2Cond = NewDefinition `;
  â A B A' B':real^2. move2Cond A B A' B'  â
  ¬collinear {B,A,A'} ⧠¬collinear {A',B,B'}   â¨
  ¬collinear {A,B,B'} ⧠¬collinear {B',A,A'}`;;
let oriented_areaSymmetry = theorem `;
  oriented_area (A,B,C) = oriented_area(A',B',C')  â
  oriented_area (B,C,A) = oriented_area (B',C',A')  â§
  oriented_area (C,A,B) = oriented_area (C',A',B')  â§
  oriented_area (A,C,B) = oriented_area (A',C',B')  â§
  oriented_area (B,A,C) = oriented_area (B',A',C')  â§
  oriented_area (C,B,A) = oriented_area (C',B',A')
  proof
    rewrite oriented_area; VEC2_TAC;
  qed;
`;;
let COLLINEAR_3_2Dzero = theorem `;
  ây z:real^2. collinear{vec 0,y,z} â
                  z$1 * y$2 = y$1 * z$2
  proof
    rewrite COLLINEAR_3_2D;     VEC2_TAC;     qed;
`;;
let Noncollinear_3ImpliesDistinct = theorem `;
  ¬collinear {a,b,c}  â  Â¬(a = b) ⧠¬(a = c) ⧠¬(b = c)
  by fol COLLINEAR_BETWEEN_CASES BETWEEN_REFL`;;
let collinearSymmetry = theorem `;
  collinear {A,B,C}
         â collinear {A,C,B} â§ collinear {B,A,C} â§
             collinear {B,C,A} â§ collinear {C,A,B} â§ collinear {C,B,A}
  proof
    {A,C,B} â {A,B,C} â§  {B,A,C} â {A,B,C} â§
    {B,C,A} â {A,B,C} â§  {C,A,B} â {A,B,C} â§  {C,B,A} â {A,B,C}     [] by set;
    fol - COLLINEAR_SUBSET;
  qed;
`;;
let Noncollinear_2Span = theorem `;
  âu v w:real^2. ¬collinear  {vec 0,v,w} â â s t. s % v + t % w = u
  proof
    intro_TAC âu v w, H1;
    ¬(v$1 * w$2 - w$1 * v$2 = &0)     [H1'] by fol H1 COLLINEAR_3_2Dzero REAL_SUB_0;
    consider M such that
    M = transp(vector[v;w]):real^2^2     [Mexists] by fol -;
    ¬(det M = &0) â§
    (â x. (M ** x)$1 = v$1 * x$1 + w$1 * x$2  â§
    (M ** x)$2 = v$2 * x$1 + w$2 * x$2)     [MatMult] by simplify H1' Mexists matrix_vector_mul DIMINDEX_2 SUM_2
    TRANSP_COMPONENT VECTOR_2 LAMBDA_BETA ARITH CART_EQ FORALL_2 DET_2;
    â r n. ¬(r < n)  â§  r <= MIN n n  â  r = n     [] by arithmetic;
    consider x such that M ** x = u     [xDef] by fol MatMult - DET_EQ_0_RANK RANK_BOUND MATRIX_FULL_LINEAR_EQUATIONS;
    exists_TAC x$1;
    exists_TAC x$2;
    x$1 * v$1 + x$2 * w$1 = u$1  â§
    x$1 * v$2 + x$2 * w$2 = u$2     [xDef] by fol MatMult xDef REAL_MUL_SYM;
    simplify - CART_EQ LAMBDA_BETA FORALL_2 SUM_2 DIMINDEX_2 VECTOR_2 vector_add vector_mul ARITH;
  qed;
`;;
let moveInvariant = theorem `;
  âp p'. move p p' â oriented_area p = oriented_area p'
  proof
    rewrite FORALL_PAIR_THM move oriented_area COLLINEAR_LEMMA  vector_mul; VEC2_TAC;
  qed;
`;;
let ReachLemma = theorem `;
  âp p'. reachable p p'  â  ân.  reachableN p p' n
  proof
    rewrite reachable reachableN;
  qed;
`;;
let reachableN_CLAUSES = theorem `;
  â p p'. (reachableN p p' 0  â  p = p') â§
  â n. reachableN p p' (SUC n)  â  â q. reachableN p q n  â§ move q p'
  proof
    intro_TAC âp p';
    consider s0 such that s0 =  λm:num. p:triple     [s0exists] by fol;
    reachableN p p' 0  â  p = p'     [0CLAUSE] by fol s0exists LE_0 reachableN LT;
    â n. reachableN p p' (SUC n)  â  â q. reachableN p q n  â§ move q p'     [Imp1]
    proof
      intro_TAC ân, H1;
      consider s such that
      s 0 = p â§ s (SUC n) = p' â§ âm. m < SUC n â move (s m) (s (SUC m))     [sDef] by fol H1 LE_0 reachableN;
      consider q such that q = s n     [qDef] by fol;
      fol sDef qDef LE_0 reachableN LT;
    qed;
    ân. (â q. reachableN p q n  â§ move q p')  â  reachableN p p' (SUC n)     [Imp2]
    proof
      intro_TAC ân;
      rewrite IMP_CONJ LEFT_IMP_EXISTS_THM;
      intro_TAC âq, nReach, move_qp';
      consider s such that
      s 0 = p â§ s n = q â§ âm. m < n â move (s m) (s (SUC m))     [sDef] by fol nReach reachableN LT LE_0;
      rewrite reachableN LT LE_0;
      exists_TAC λm. if m < SUC n then s m else p';
      fol sDef move_qp' LT_0 LT_REFL LT LT_SUC;
    qed;
    fol 0CLAUSE Imp1 Imp2;
  qed;
`;;
let reachableInvariant = theorem `;
  âp p'. reachable p p'  â  oriented_area p = oriented_area p'
  proof
    simplify ReachLemma LEFT_IMP_EXISTS_THM SWAP_FORALL_THM;
    MATCH_MP_TAC num_INDUCTION;
    simplify reachableN_CLAUSES;
    intro_TAC ân, nStep;
    fol nStep moveInvariant;
  qed;
`;;
let reachableN_One = theorem `;
  reachableN P0 P1 1 â move P0 P1
  by fol ONE reachableN reachableN_CLAUSES`;;
let reachableN_Two = theorem `;
  reachableN P0 P2 2 â âP1. move P0 P1 â§ move P1 P2
  by fol TWO reachableN_One reachableN_CLAUSES`;;
let reachableN_Three = theorem `;
  reachableN P0 P3 3  â  âP1 P2. move P0 P1 â§ move P1 P2 â§ move P2 P3
  by fol ARITH_RULE [3 = SUC 2] reachableN_Two reachableN_CLAUSES`;;
let reachableN_Four = theorem `;
  reachableN P0 P4 4  â  âP1 P2 P3. move P0 P1 â§ move P1 P2 â§
  move P2 P3 â§ move P3 P4
  by fol ARITH_RULE [4 = SUC 3] reachableN_Three reachableN_CLAUSES`;;
let reachableN_Five = theorem `;
  reachableN P0 P5 5  â  âP1 P2 P3 P4. move P0 P1 â§ move P1 P2 â§
  move P2 P3 â§ move P3 P4 â§ move P4 P5
  proof
    rewrite ARITH_RULE [5 = SUC 4] reachableN_CLAUSES;
    fol reachableN_Four;
  qed;
`;;
let moveSymmetry = theorem `;
  move (A,B,C) (A',B',C') â
  move (B,C,A) (B',C',A') â§ move (C,A,B) (C',A',B') â§
  move (A,C,B) (A',C',B') â§ move (B,A,C) (B',A',C') â§ move (C,B,A) (C',B',A')
  proof
    âX Y Z X':real^2. collinear {vec 0, Z - Y, X' - X}
    â collinear {vec 0, Y - Z, X' - X}     []
    proof     rewrite COLLINEAR_3_2Dzero;     VEC2_TAC;     qed;
    MP_TAC -;
    rewrite move;
    âX Y Z X':real^2. collinear {vec 0, Z - Y, X' - X}
      â collinear {vec 0, Y - Z, X' - X}     []
    proof     rewrite COLLINEAR_3_2Dzero;     VEC2_TAC;     qed;
    MP_TAC -;
    rewrite move;
    fol;
  qed;
`;;
let reachableNSymmetry = theorem `;
  â n. â A B C A' B' C'. reachableN (A,B,C) (A',B',C') n  â
  reachableN (B,C,A) (B',C',A') n  â§  reachableN (C,A,B) (C',A',B') n â§
  reachableN (A,C,B) (A',C',B') n  â§  reachableN (B,A,C) (B',A',C') n â§
  reachableN (C,B,A) (C',B',A') n
  proof
    MATCH_MP_TAC num_INDUCTION;
    rewrite reachableN_CLAUSES; simplify PAIR_EQ;
    intro_TAC ân, nStep, âA B C A' B' C';
    rewrite LEFT_IMP_EXISTS_THM FORALL_PAIR_THM;
    X_genl_TAC X Y Z;
    intro_TAC XYZexists;
    rewrite RIGHT_AND_EXISTS_THM LEFT_AND_EXISTS_THM;
    exists_TAC (Y,Z,X);
    exists_TAC (Z,X,Y);
    exists_TAC (X,Z,Y);
    exists_TAC (Y,X,Z);
    exists_TAC (Z,Y,X);
    simplify nStep XYZexists moveSymmetry;
  qed;
`;;
let ORIENTED_AREA_COLLINEAR_CONG = theorem `;
  â A B C A' B' C.
    oriented_area (A,B,C) = oriented_area (A',B',C')
    â (collinear {A,B,C} â collinear {A',B',C'})
  proof
    rewrite COLLINEAR_3_2D oriented_area; real_ring;
  qed;
`;;
let Basic2move_THM = theorem `;
 â A B C A'. ¬collinear {A,B,C} ⧠¬collinear {B,A,A'} â
   âX. move (A,B,C) (A,B,X)  â§  move (A,B,X) (A',B,X)
  proof
    intro_TAC âA B C A', H1 H2;
    âr. r % (A - B) = (--r) % (B - A)  â§
      r % (A - B) = r % (A - B) + &0 % (C - B)     [add0vector_mul] by VEC2_TAC;
    ¬ â r. A' - A = r % (A - B)     [H2'] by fol - H2 COLLINEAR_3 COLLINEAR_LEMMA;
    consider r t such that A' - A = r % (A - B) + t % (C - B)     [rExists] by fol - H1 COLLINEAR_3 Noncollinear_2Span;
    ¬(t = &0)     [tNonzero] by fol - add0vector_mul H2';
    consider s X such that s = r / t  â§  X = C + s % (A - B)     [Xexists] by fol rExists;
    A' - A = (t * s) % (A - B) + t % (C - B)     [] by fol - rExists tNonzero REAL_DIV_LMUL;
    A' - A = t % (X - B) â§ X - C = (-- s) % (B - A)     []
    proof     rewrite - Xexists;     VEC2_TAC;     qed;
    collinear {vec 0,B - A,X - C}  â§  collinear {vec 0,X - B,A' - A}     [] by fol - COLLINEAR_LEMMA;
    fol - move;
  qed;
`;;
let FourStepMoveAB = theorem `;
  âA B C A' B'. ¬collinear {A,B,C} â
  ¬collinear {B,A,A'} ⧠¬collinear {A',B,B'} â
  â X Y. move (A,B,C) (A,B,X)  â§  move (A,B,X) (A',B,X)  â§
  move (A',B,X) (A',B,Y)  â§  move (A',B,Y) (A',B',Y)
  proof
    intro_TAC âA B C A' B', H1, H2;
    consider X such that
    move (A,B,C) (A,B,X)  â§  move (A,B,X) (A',B,X)     [ABX] by fol H1 H2 Basic2move_THM;
   ¬collinear {A,B,X} ⧠¬collinear {A',B,X}     [] by fol - H1 moveInvariant ORIENTED_AREA_COLLINEAR_CONG;
   ¬collinear {B,A',X}     [] by fol -  collinearSymmetry;
    consider Y such that
    move (B,A',X) (B,A',Y)  â§  move (B,A',Y) (B',A',Y)     [BA'Y] by fol - H2 Basic2move_THM;
    move (A',B,X) (A',B,Y)  â§  move (A',B,Y) (A',B',Y)     [] by fol - BA'Y moveSymmetry;
    fol - ABX;
  qed;
`;;
let FourStepMoveABBAreach = theorem `;
  âA B C A' B'. ¬collinear {A,B,C} â§ move2Cond A B A' B' â
  â Y. reachableN (A,B,C) (A',B',Y) 4
  proof
    intro_TAC âA B C A' B', H1 H2;
    case_split Case1 | Case2     by fol - H2 move2Cond;
    suppose ¬collinear {B,A,A'} ⧠¬collinear {A',B,B'};
      fol - H1 FourStepMoveAB reachableN_Four;
    end;
    suppose ¬collinear {A,B,B'} ⧠¬collinear {B',A,A'};
      ¬collinear {B,A,C}     [] by fol H1 collinearSymmetry;
      consider X Y such that
      move (B,A,C) (B,A,X)  â§  move (B,A,X) (B',A,X) â§
      move (B',A,X) (B',A,Y)  â§  move (B',A,Y) (B',A',Y)     [BAX] by fol Case2 - FourStepMoveAB;
      fol - moveSymmetry reachableN_Four;
    end;
  qed;
`;;
let NotMove2ImpliesCollinear = theorem `;
  âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â§
  ¬(A = A') ⧠¬(B = B') ⧠¬move2Cond A B A' B' â
  collinear {A,B,A',B'}
  proof
    intro_TAC âA B C A' B' C', H1 H1' H2 H2' H3;
    ¬(A = B) ⧠¬(A' = B')     [Distinct] by fol H1 H1' Noncollinear_3ImpliesDistinct;
    {A,B,A',B'} â {A,A',B,B'}  â§
    {A,B,A',B'} â {B,B',A',A}  â§  {A,B,A',B'} â {A',B',B,A}     [set4symmetry] by  SET_TAC;
    case_split Case1 | Case2 | Case3 | Case4     by fol H3 move2Cond;
    suppose collinear {B,A,A'} â§ collinear {A,B,B'};
      fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
    end;
    suppose collinear {B,A,A'} â§ collinear {B',A,A'};
      fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
    end;
    suppose collinear {A',B,B'} â§ collinear {A,B,B'};
      fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
    end;
    suppose collinear {A',B,B'} â§ collinear {B',A,A'};
      fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
    end;
  qed;
`;;
let NotMove2ImpliesCollinear = theorem `;
  âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â§
  ¬(A = A') ⧠¬(B = B') ⧠¬move2Cond A B A' B' â
  collinear {A,B,A',B'}
  proof
    intro_TAC âA B C A' B' C', H1 H1' H2 H2' H3;
    ¬(A = B) ⧠¬(A' = B')     [Distinct] by fol H1 H1' Noncollinear_3ImpliesDistinct;
    {A,B,A',B'} â {A,A',B,B'}  â§
    {A,B,A',B'} â {B,B',A',A}  â§  {A,B,A',B'} â {A',B',B,A}     [set4symmetry] by  SET_TAC;
    collinear {B,A,A'} â§ collinear {A,B,B'}  â¨
    collinear {B,A,A'} â§ collinear {B',A,A'}  â¨
    collinear {A',B,B'} â§ collinear {A,B,B'}  â¨
    collinear {A',B,B'} â§ collinear {B',A,A'} [] by fol H3 move2Cond;
    fol - Distinct H2 H2' set4symmetry collinearSymmetry COLLINEAR_4_3 COLLINEAR_SUBSET;
  qed;
`;;
let DistinctImplies2moveable = theorem `;
  âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â§
  ¬(A = A') ⧠¬(B = B') ⧠¬(C = C')  â
  move2Cond A B A' B' ⨠move2Cond B C B' C'
  proof
    intro_TAC âA B C A' B' C', H1 H1' H2a H2b H2c;
    {A,B,B'} â {A,B,A',B'} â§ {B,B',C} â {B,C,B',C'}     [3subset4] by SET_TAC;
    assume ¬move2Cond A B A' B'  ⧠¬move2Cond B C B' C'     [Con] by fol;
    collinear {A,B,A',B'} â§ collinear {B,C,B',C'}     [] by fol - H1 H1' H2a H2b H2c collinearSymmetry NotMove2ImpliesCollinear;
    collinear {A,B,C}     [] by fol - 3subset4 H2a H2b H2c COLLINEAR_SUBSET COLLINEAR_3_TRANS;
    fol - H1 H1';
  qed;
`;;
let SameCdiffAB = theorem `;
  âA B C A' B' C'.  ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â
  C = C' ⧠¬(A = A') ⧠¬(B = B') â
  â Y. reachableN (A,B,C) (Y,B',C') 2  ⨠reachableN (A,B,C) (A',B',Y) 4
  proof
    intro_TAC âA B C A' B' C', H1, H2;
    {B,B',A} â {A,B,A',B'}  â§  {A,B,C} â {B,B',A,C}     [easy_set] by SET_TAC;
    case_split Ncol | move | col_Nmove     by fol;
    suppose ¬collinear {C,B,B'};
      consider X such that move (B,C,A) (B,C,X) â§ move (B,C,X) (B',C',X)     [BCX] by fol - easy_set H1 H2 collinearSymmetry Basic2move_THM;
      fol BCX reachableN_Two reachableNSymmetry;
    end;
    suppose move2Cond A B A' B';
      fol - H1 FourStepMoveABBAreach;
    end;
    suppose collinear {C,B,B'}  ⧠ ¬move2Cond A B A' B';
      collinear {B,B',A} â§ collinear {B,B',C}     [] by fol - H1 H2 easy_set NotMove2ImpliesCollinear COLLINEAR_SUBSET collinearSymmetry;
      fol - H2 easy_set H1 COLLINEAR_4_3 COLLINEAR_SUBSET;
    end;
  qed;
`;;
let FourMovesToCorrectTwo = theorem `;
  âA B C A' B' C'. ¬collinear {A,B,C} ⧠¬collinear {A',B',C'} â
  â n. n < 5 â§ â Y. reachableN (A,B,C) (A',B',Y) n  â¨
    reachableN (A,B,C) (A',Y,C') n  ⨠reachableN (A,B,C) (Y,B',C') n
  proof
    intro_TAC âA B C A' B' C', H1;
    ¬collinear {B,C,A} â§
    ¬collinear{B',C',A'} ⧠¬collinear {C,A,B} ⧠¬collinear {C',A',B'}     [H1'] by fol H1 collinearSymmetry;
    0 < 5 â§ 2 < 5 â§ 3 < 5 â§ 4 < 5     [easy_arith] by ARITH_TAC;
    case_split case01 | case2 | case3     by fol;
    suppose A = A' â§ B = B' â§ C = C'  â¨
    A = A' â§ B = B' ⧠¬(C = C')  ⨠ A = A' ⧠¬(B = B') â§ C = C' â¨
    ¬(A = A') ⧠B = B' ⧠C = C';
      fol - easy_arith reachableN_CLAUSES;
    end;
    suppose A = A' ⧠¬(B = B') ⧠¬(C = C')  â¨
    ¬(A = A') ⧠B = B' ⧠¬(C = C')  ⨠ ¬(A = A') ⧠¬(B = B') ⧠C = C';
      fol - H1 H1' easy_arith SameCdiffAB reachableNSymmetry;
    end;
    suppose ¬(A = A') ⧠¬(B = B') ⧠¬(C = C');
      exists_TAC 4;
      simplify easy_arith reachableN_CLAUSES;
      fol - H1  H1' DistinctImplies2moveable FourStepMoveABBAreach
    reachableNSymmetry reachableN_Four;
    end;
  qed;
`;;
let CorrectFinalPoint = theorem `;
 oriented_area (A,B,C) = oriented_area (A,B,C') â
   move (A,B,C) (A,B,C')
  proof
    rewrite move oriented_area COLLINEAR_3_2Dzero; VEC2_TAC;
  qed;
`;;
let FiveMovesOrLess = theorem `;
 âA B C A' B' C'. ¬collinear {A,B,C}  â§
  oriented_area (A,B,C) = oriented_area (A',B',C') â
   â n. n <= 5 â§ reachableN (A,B,C) (A',B',C') n
  proof
    intro_TAC âA B C A' B' C', H1 H2;
    ¬collinear {A',B',C'}     [H1'] by fol H1 H2 ORIENTED_AREA_COLLINEAR_CONG;
    ¬(A = B) ⧠¬(A = C) ⧠¬(B = C) â§
    ¬(A' = B') ⧠¬(A' = C') ⧠¬(B' = C')     [Distinct] by fol - H1 Noncollinear_3ImpliesDistinct;
    consider n Y such that
    n < 5 â§ (reachableN (A,B,C) (A',B',Y) n â¨
    reachableN (A,B,C) (A',Y,C') n ⨠reachableN (A,B,C) (Y,B',C') n)     [2Correct] by fol H1 H1' FourMovesToCorrectTwo;
    case_split A'B'Y | A'YC' | YB'C'     by fol 2Correct;
    suppose reachableN (A,B,C) (A',B',Y) n;
      oriented_area (A',B',Y) = oriented_area (A',B',C')     [] by fol - H2 ReachLemma reachableInvariant;
      move (A',B',Y) (A',B',C')     [] by fol - Distinct CorrectFinalPoint;
      fol A'B'Y - 2Correct reachableN_CLAUSES LE_SUC_LT;
    end;
    suppose reachableN (A,B,C) (A',Y,C') n;
      oriented_area (A',C',Y) = oriented_area (A',C',B')     [] by fol H2 - ReachLemma reachableInvariant oriented_areaSymmetry;
      move (A',Y,C') (A',B',C')     [] by fol - Distinct CorrectFinalPoint moveSymmetry;
      fol A'YC' - 2Correct reachableN_CLAUSES LE_SUC_LT;
    end;
    suppose reachableN (A,B,C) (Y,B',C') n;
      oriented_area (B',C',Y) = oriented_area (B',C',A')     [] by fol H2 - ReachLemma reachableInvariant oriented_areaSymmetry;
      move (Y,B',C') (A',B',C')     [] by fol - Distinct CorrectFinalPoint moveSymmetry;
      fol YB'C' - 2Correct reachableN_CLAUSES LE_SUC_LT;
    end;
  qed;
`;;
let NOTENOUGH_4 = theorem `;
  âp0 p4. oriented_area p0 = oriented_area p4 ⧠¬reachableN p0 p4 4
  proof
    consider p0 p4 such that
    p0:triple = vector [&0;&0],vector [&0;&1],vector [&1;&0]  â§
    p4:triple = vector [&1;&1],vector [&1;&2],vector [&2;&1]     [p04Def] by
    fol;
    oriented_area p0 = oriented_area p4     [equal_areas]
    proof     rewrite - oriented_area;     VEC2_TAC;     qed;
    ¬reachableN p0 p4 4     []
    proof
      rewrite p04Def reachableN_Four NOT_EXISTS_THM FORALL_PAIR_THM move COLLINEAR_3_2Dzero FORALL_VECTOR_2;
      VEC2_TAC;
    qed;
    fol - equal_areas;
  qed;
`;;
let FiveMovesOrLess_STRONG = theorem `;
  âA B C A' B' C'.
    oriented_area (A,B,C) = oriented_area (A',B',C') â
    ân. n <= 5 â§ reachableN (A,B,C) (A',B',C') n
  proof
    intro_TAC âA B C A' B' C', H1;
    (âX Y:real^2. collinear {X,Y,Y}) â§
    (âA B A'. move (A,B,B) (A',B,B))  â§
    âA B C B'. (collinear {A,B,C} â§ collinear {A,B',C}  â
    move (A,B,C) (A,B',C))     [EZcollinear]
    proof     rewrite move COLLINEAR_3_2D;     VEC2_TAC;     qed;
    case_split ABCncol | ABCcol     by fol ;
    suppose ¬collinear {A,B,C};
      fol - H1 FiveMovesOrLess;
    end;
    suppose collinear {A,B,C};
      collinear {A',B',C'}     [A'B'C'col] by fol - H1 ORIENTED_AREA_COLLINEAR_CONG;
      consider P1 P2 P3 P4 such that
      P1 = A,C,C  â§  P2 = B',C,C  â§  P3 = B',B',C  â§  P4 = B',B',C'     [P1234exist] by fol;
      move (A,B,C) P1  â§  move P1 P2  â§  move P2 P3  â§  move P3 P4  â§
      move P4 (A',B',C')     [] by fol ABCcol A'B'C'col EZcollinear P1234exist
      collinearSymmetry moveSymmetry;
      fol -  reachableN_Five LE_REFL;
    end;
  qed;
`;;