(* ====================================================================== *) (* CONDENSE *) (* ====================================================================== *) (* let merge_interpsign ord_thm (thm1,thm2,thm3) = let thm1' = BETA_RULE(PURE_REWRITE_RULE[interpsign] thm1) in let thm2' = BETA_RULE(PURE_REWRITE_RULE[interpsign] thm2) in let thm3' = BETA_RULE(PURE_REWRITE_RULE[interpsign] thm3) in let set1,_,_ = dest_interpsign thm1 in let _,s1 = dest_abs set1 in let set3,_,_ = dest_interpsign thm3 in let _,s3 = dest_abs set3 in let gthm = if is_conj s1 && is_conj s3 then gen_thm else if is_conj s1 && not (is_conj s3) then gen_thm_noright else if not (is_conj s1) && is_conj s3 then gen_thm_noleft else gen_thm_noboth in PURE_REWRITE_RULE[GSYM interpsign] (MATCH_MPL[gthm;ord_thm;thm1';thm2';thm3']);; *) (* {{{ Examples *) (* length thms merge_interpsign ord_thm (hd thms) let thm1,thm2,thm3 = hd thms let ord_thm = ASSUME `x2 < x3`;; let thm1 = ASSUME `interpsign (\x. x < x2) [&1; &2; &3] Pos`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Pos`;; let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Pos`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = ASSUME `x1 < x2`;; let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Pos`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Pos`;; let thm3 = ASSUME `interpsign (\x. x2 < x) [&1; &2; &3] Pos`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = TRUTH;; let thm1 = ASSUME `interpsign (\x. x < x1) [&1; &2; &3] Pos`;; let thm2 = ASSUME `interpsign (\x. x = x1) [&1; &2; &3] Pos`;; let thm3 = ASSUME `interpsign (\x. x1 < x) [&1; &2; &3] Pos`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = ASSUME `x1 < x2 /\ x2 < x3`;; let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Pos`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Pos`;; let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Pos`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = ASSUME `x1 < x3`;; let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Neg`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Neg`;; let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Neg`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = ASSUME `x1 < x3`;; let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Zero`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Zero`;; let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Zero`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = ASSUME `x1 < x3`;; let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Nonzero`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Nonzero`;; let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Nonzero`;; merge_interpsign ord_thm (thm1,thm2,thm3);; let ord_thm = ASSUME `x1 < x3`;; let thm1 = ASSUME `interpsign (\x. x1 < x /\ x < x2) [&1; &2; &3] Unknown`;; let thm2 = ASSUME `interpsign (\x. x = x2) [&1; &2; &3] Unknown`;; let thm3 = ASSUME `interpsign (\x. x2 < x /\ x < x3) [&1; &2; &3] Unknown`;; merge_interpsign ord_thm (thm1,thm2,thm3);; *) (* }}} *) (* let rec merge_three l1 l2 l3 = match l1 with [] -> [] | h::t -> (hd l1,hd l2,hd l3)::merge_three (tl l1) (tl l2) (tl l3);; *) (* {{{ Doc *) (* combine_interpsigns |- interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x1 < x /\ x < x2) [Unknown; Pos; Pos; Neg] |- interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x2) [Unknown; Pos; Pos; Neg]; |- interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x2 < x /\ x < x3) [Unknown; Pos; Pos; Neg]; --> |- interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x1 < x /\ x < x3) [Unknown; Pos; Pos; Neg]; *) (* }}} *) (* let combine_interpsigns ord_thm thm1 thm2 thm3 = let _,_,s1 = dest_interpsigns thm1 in let _,_,s2 = dest_interpsigns thm2 in let _,_,s3 = dest_interpsigns thm3 in if not (s1 = s2) or not (s1 = s3) then failwith "combine_interpsigns: signs not equal" else try let thms1 = CONJUNCTS(PURE_REWRITE_RULE[interpsigns;ALL2] thm1) in let thms2 = CONJUNCTS(PURE_REWRITE_RULE[interpsigns;ALL2] thm2) in let thms3 = CONJUNCTS(PURE_REWRITE_RULE[interpsigns;ALL2] thm3) in let thms = butlast (merge_three thms1 thms2 thms3) (* ignore the T at end *) in let thms' = map (merge_interpsign ord_thm) thms in mk_interpsigns thms' with Failure s -> failwith ("combine_interpsigns: " ^ s);; *) (* {{{ Examples *) (* let thm = combine_interpsigns let ord_thm,thm1,thm2,thm3 = ord_thm5 ,ci1 ,ci2 ,ci3 let h1 = combine_interpsigns ord_thm int1 pt int2 in let thm1,thm2,thm3 = int1,pt,int2 let tmp = (ith 0 thms) merge_interpsign ord_thm tmp let thm1 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x1 < x /\ x < x2) [Unknown; Pos; Pos; Neg]`;; let thm2 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x2) [Unknown; Pos; Pos; Neg]`;; let thm3 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x2 < x /\ x < x3) [Unknown; Pos; Pos; Neg]`;; let ord_thm = ASSUME `x1 < x2 /\ x2 < x3` combine_interpsigns ord_thm thm1 thm2 thm3;; let thm1 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x < x5) [Unknown; Pos; Pos; Neg]`;; let thm2 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x5) [Unknown; Pos; Pos; Neg]`;; let thm3 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x5 < x /\ x < x6) [Unknown; Pos; Pos; Neg]`;; let ord_thm = ASSUME `x5 < x6`;; combine_interpsigns ord_thm thm1 thm2 thm3;; let thm1 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x < x6) [Unknown; Pos; Pos; Neg]`;; let thm2 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x6) [Unknown; Pos; Pos; Neg]`;; let thm3 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x6 < x) [Unknown; Pos; Pos; Neg]`;; let ord_thm = ASSUME `x5 < x6`;; combine_interpsigns ord_thm thm1 thm2 thm3;; *) (* }}} *) (* {{{ Doc *) (* get_bounds `\x. x < x1` `\x. x1 < x /\ x < x2` --> x1 < x2 get_bounds `\x. x0 < x < x1` `\x. x1 < x /\ x < x2` --> x0 < x1 /\ x1 < x2 get_bounds `\x. x < x1` `\x. x1 < x` --> T *) (* }}} *) (* let get_bounds set1 set2 = let _,s1 = dest_abs set1 in let _,s2 = dest_abs set2 in let c1 = if is_conj s1 then let l,r = dest_conj s1 in let l1,l2 = dest_binop rlt l in let l3,l4 = dest_binop rlt r in mk_binop rlt l1 l4 else t_tm in let c2 = if is_conj s2 then let l,r = dest_conj s2 in let l1,l2 = dest_binop rlt l in let l3,l4 = dest_binop rlt r in mk_binop rlt l1 l4 else t_tm in if c1 = t_tm then c2 else if c2 = t_tm then c1 else mk_conj (c1,c2);; *) (* {{{ Examples *) (* get_bounds `\x. x < x1` `\x. x1 < x /\ x < x2` get_bounds `\x. x0 < x /\ x < x1` `\x. x1 < x /\ x < x2` get_bounds `\x. x < x1` `\x. x1 < x` *) (* }}} *) (* {{{ Doc *) (* collect_pts |- interpsigns ... (\x. x < x1) ... |- interpsigns ... (\x. x1 < x /\ x < x4) ... |- interpsigns ... (\x. x4 < x /\ x < x7) ... |- interpsigns ... (\x. x7 < x) ... --> [x1,x4,x7] *) (* }}} *) (* let rec collect_pts thms = match thms with [] -> [] | h::t -> let rest = collect_pts t in let _,set,_ = dest_interpsigns h in let x,b = dest_abs set in let bds = if b = t_tm then [] else if is_conj b then let l,r = dest_conj b in [fst(dest_binop rlt l);snd(dest_binop rlt r)] else let _,l,r = get_binop b in if x = l then [r] else [l] in match rest with [] -> bds | h::t -> if not (h = (last bds)) then failwith "pts not in order" else if length bds = 2 then hd bds::rest else rest;; *) (* {{{ Examples *) (* let thms = [ASSUME `interpsigns [\x. &0 + x * &1; \x. &1] (\x. T) [Unknown; Pos]`] let h::t = [ASSUME `interpsigns [\x. &0 + x * &1; \x. &1] (\x. T) [Unknown; Pos]`] collect_pts [ASSUME `interpsigns [\x. &0 + x * &1; \x. &1] (\x. T) [Unknown; Pos]`] let t1 = ASSUME `interpsigns [[&1]] (\x. x < x1) [Pos]` let t2 = ASSUME `interpsigns [[&1]] (\x. x1 < x /\ x < x4) [Pos]` let t3 = ASSUME `interpsigns [[&1]] (\x. x4 < x /\ x < x7) [Pos]` let t4 = ASSUME `interpsigns [[&1]] (\x. x7 < x) [Pos]` collect_pts [t1;t2;t3;t4] let t1 = ASSUME `interpsigns [[&1]] (\x. x0 < x /\ x < x1) [Pos]` let t2 = ASSUME `interpsigns [[&1]] (\x. x1 < x /\ x < x4) [Pos]` let t3 = ASSUME `interpsigns [[&1]] (\x. x4 < x /\ x < x7) [Pos]` let t4 = ASSUME `interpsigns [[&1]] (\x. x7 < x) [Pos]` collect_pts [t1;t2;t3;t4] let t1 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x < x1) [Unknown; Pos; Pos; Pos]`;; let t2 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x1) [Neg; Pos; Pos; Zero]`;; let t3 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x1 < x /\ x < x4) [Unknown; Pos; Pos; Neg]`;; let t4 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x4) [Pos; Pos; Zero; Neg]`;; let t5 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x4 < x /\ x < x5) [Unknown; Pos; Neg; Neg]`;; let t6 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x = x5) [Pos; Pos; Zero; Zero]`;; let t7 = ASSUME `interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]] (\x. x5 < x) [Unknown; Pos; Pos; Pos]`;; let thms = [t1;t2;t3;t4;t5;t6;t7] collect_pts thms *) (* combine_identical_lines |- real_ordered_list [x1; x2; x3; x4; x5] |- ALL2 (interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) (partition_line [x1; x2; x3; x4; x5]) [[Unknown; Pos; Pos; Pos]; x1 [Neg; Pos; Pos; Zero]; [Unknown; Pos; Pos; Neg]; x2 [Unknown; Pos; Pos; Neg]; [Unknown; Pos; Pos; Neg]; x3 [Unknown; Pos; Pos; Neg]; [Unknown; Pos; Pos; Neg]; x4 [Pos; Pos; Zero; Neg]; [Unknown; Pos; Neg; Neg]; x5 [Pos; Pos; Zero; Zero]; [Unknown; Pos; Pos; Pos]] --> |- ALL2 (interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) (partition_line [x1; x4; x5]) [[Unknown; Pos; Pos; Pos]; x1 [Neg; Pos; Pos; Zero]; [Unknown; Pos; Pos; Neg]; x4 [Pos; Pos; Zero; Neg]; [Unknown; Pos; Neg; Neg]; x5 [Pos; Pos; Zero; Zero]; [Unknown; Pos; Pos; Pos]] *) (* }}} *) (* let sublist i j l = let _,r = chop_list i l in let l2,r2 = chop_list (j-i+1) r in l2;; *) (* {{{ Examples *) (* let i,j,l = 1,4,[1;2;3;4;5;6;7] sublist 1 4 [1;2;3;4;5;6;7] sublist 2 4 [1;2;3;4;5;6;7] sublist 1 1 [1;2;3;4;5;6;7] *) (* }}} *) (* let rec combine ord_thms l = let lem = REWRITE_RULE[AND_IMP_THM] REAL_LT_TRANS in match l with [int] -> [int] | [int1;int2] -> [int1;int2] | int1::pt::int2::rest -> try let _,set1,_ = dest_interpsigns int1 in let _,set2,_ = dest_interpsigns int2 in let ord_tm = get_bounds set1 set2 in if ord_tm = t_tm then let h1 = combine_interpsigns TRUTH int1 pt int2 in combine ord_thms (h1::rest) else let lt,rt = if is_conj ord_tm then let c1,c2 = dest_conj ord_tm in let l,_ = dest_binop rlt c1 in let _,r = dest_binop rlt c2 in l,r else dest_binop rlt ord_tm in let e1 = find (fun x -> lt = fst(dest_binop rlt (concl x))) ord_thms in let i1 = index e1 ord_thms in let e2 = find (fun x -> rt = snd(dest_binop rlt (concl x))) ord_thms in let i2 = index e2 ord_thms in let ord_thms' = sublist i1 i2 ord_thms in let ord_thm = end_itlist (fun x y -> MATCH_MPL[lem;x;y]) ord_thms' in let h1 = combine_interpsigns ord_thm int1 pt int2 in combine ord_thms (h1::rest) with Failure "combine_interpsigns: signs not equal" -> int1::pt::(combine ord_thms(int2::rest));; *) (* let combine_identical_lines rol_thm all_thm = let tmp,mat = dest_comb (concl all_thm) in let _,line = dest_comb tmp in let _,pts = dest_comb line in let part_thm = PARTITION_LINE_CONV pts in let thm' = REWRITE_RULE[ALL2;part_thm] all_thm in let thms = CONJUNCTS thm' in let ord_thms = rol_thms rol_thm in let thms' = combine ord_thms thms in let pts = collect_pts thms' in let part_thm' = PARTITION_LINE_CONV (mk_list (pts,real_ty)) in mk_all2_interpsigns part_thm' thms';; *) (* {{{ Examples *) (* #untrace combine #trace combine let int1::pt::int2::rest = snd (chop_list 6 thms) let int1::pt::int2::rest = snd (chop_list 0 thms) let int1::pt::int2::rest = snd (chop_list 2 thms) let l = thms let int1::pt::int2::rest = l combine thms let rol_thm = ASSUME `real_ordered_list [x1; x2; x3; x4; x5]` let all_thm = ASSUME `ALL2 (interpsigns [[&1; &1; &1; &1]; [&1; &2; &3]; [&2; -- &3; &1]; [-- &4; &0; &1]]) (partition_line [x1; x2; x3; x4; x5]) [[Unknown; Pos; Pos; Pos]; [Neg; Pos; Pos; Zero]; [Unknown; Pos; Pos; Neg]; [Unknown; Pos; Pos; Neg]; [Unknown; Pos; Pos; Neg]; [Unknown; Pos; Pos; Neg]; [Unknown; Pos; Pos; Neg]; [Pos; Pos; Zero; Neg]; [Unknown; Pos; Neg; Neg]; [Pos; Pos; Zero; Zero]; [Unknown; Pos; Pos; Pos]]`;; let all_thm' = combine_identical_lines rol_thm all_thm *) (* }}} *) (* {{{ Doc *) (* assumes l2 is a sublist of l1 list_diff [1;2;3;4] [2;3] --> [1;4] *) (* }}} *) (* let rec list_diff l1 l2 = match l1 with [] -> if l2 = [] then [] else failwith "l2 not a sublist of l1" | h::t -> match l2 with [] -> l1 | h'::t' -> if h = h' then list_diff t t' else h::list_diff t l2;; *) (* {{{ Examples *) (* list_diff [1;2;3;4] [2;3] list_diff [1;2;3;4] [1;3;4] *) (* }}} *) (* let CONDENSE mat_thm = let rol_thm,all_thm = interpmat_thms mat_thm in let pts = dest_list (snd (dest_comb (concl rol_thm))) in let all_thm' = combine_identical_lines rol_thm all_thm in let _,part,_ = dest_all2 (concl all_thm) in let plist = dest_list (snd (dest_comb part)) in let _,part',_ = dest_all2 (concl all_thm') in let plist' = dest_list (snd (dest_comb part')) in let rol_thm' = itlist ROL_REMOVE (list_diff plist plist') rol_thm in let mat_thm' = mk_interpmat_thm rol_thm' all_thm' in mat_thm';; *) (* ---------------------------------------------------------------------- *) (* OPT *) (* ---------------------------------------------------------------------- *) let rec triple_index l = match l with [] -> failwith "triple_index" | [x] -> failwith "triple_index" | [x;y] -> failwith "triple_index" | x::y::z::rest -> if x = y && y = z then 0 else 1 + triple_index (y::z::rest);; let tmp = ref TRUTH;; (* let tmp let mat_thm = !tmp let mat_thm = mat_thm' *) let rec CONDENSE = let real_app = `APPEND:real list -> real list -> real list` in let sign_app = `APPEND:(sign list) list -> (sign list) list -> (sign list) list` in let real_len = `LENGTH:real list -> num` in let sign_len = `LENGTH:(sign list) list -> num` in let num_mul = `( * ):num -> num -> num` in let real_ty = `:real` in let two = `2` in let sl_ty = `:sign list` in fun mat_thm -> try tmp := mat_thm; let pts,_,sgns = dest_interpmat (concl mat_thm) in let sgnl = dest_list sgns in let ptl = dest_list pts in let i = triple_index sgnl (* fail here if fully condensed *) in if not (i mod 2 = 0) then failwith "misshifted matrix" else if i = 0 then if length ptl = 1 then MATCH_MP INTERPMAT_SING mat_thm else CONDENSE (MATCH_MP INTERPMAT_TRIO mat_thm) else let l,r = chop_list (i - 2) sgnl in let sgn1,sgn2 = mk_list(l,sl_ty),mk_list(r,sl_ty) in let sgns' = mk_comb(mk_comb(sign_app,sgn1),sgn2) in(* {{{ Examples *) (* let mat_thm = mat_thm' CONDENSE mat_thm let mat_thm = ASSUME `interpmat [x1; x2; x3; x4; x5] [\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); \x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5] [ [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Pos; Neg; Neg; Neg]; [Zero; Pos; Pos; Neg; Neg; Neg]; [Neg; Pos; Pos; Neg; Neg; Neg] ]` let mat_thm = ASSUME `interpmat [x1; x2; x3; x4; x5] [\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); \x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5] [[Pos; Pos; Pos; Neg; Neg; Neg]; [Pos; Pos; Zero; Zero; Neg; Neg]; [Pos; Pos; Neg; Pos; Neg; Neg]; [Pos; Pos; Neg; Pos; Neg; Zero]; [Pos; Pos; Neg; Pos; Neg; Pos]; [Pos; Pos; Neg; Pos; Zero; Pos]; [Pos; Pos; Neg; Pos; Pos; Pos]; [Pos; Zero; Neg; Pos; Pos; Pos]; [Pos; Neg; Neg; Pos; Pos; Pos]; [Pos; Zero; Zero; Pos; Pos; Pos]; [Pos; Pos; Pos; Pos; Pos; Pos]]` let mat_thm' = INFERPSIGN vars sgns mat_thm div_thms CONDENSE mat_thm *) (* }}} *) (* ---------------------------------------------------------------------- *) (* Timing *) (* ---------------------------------------------------------------------- *) let CONDENSE mat_thm = let start_time = Sys.time() in let res = CONDENSE mat_thm in condense_timer +.= (Sys.time() -. start_time); res;;let sgn_thm = prove(mk_eq(sgns,sgns'),REWRITE_TAC[APPEND]) in let l',r' = chop_list (i / 2 - 1) ptl (* i always even *) in let pt1,pt2 = mk_list(l',real_ty),mk_list(r',real_ty) in let pts' = mk_comb(mk_comb(real_app,pt1),pt2) in let pt_thm = prove(mk_eq(pts,pts'),REWRITE_TAC[APPEND]) in let mat_thm' = ONCE_REWRITE_RULE[sgn_thm;pt_thm] mat_thm in let len_thm = prove((mk_eq(mk_comb(sign_len,sgn1),mk_binop num_mul two (mk_comb(real_len,pt1)))),REWRITE_TAC[LENGTH] THEN ARITH_TAC) in CONDENSE (REWRITE_RULE[APPEND] (MATCH_MP (MATCH_MP INTERPMAT_TRIO_INNER mat_thm') len_thm)) with Failure "triple_index" -> mat_thm | Failure x -> failwith ("CONDENSE: " ^ x);;