(* ========================================================================= *)
(* Calculation with rational-valued reals. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "real.ml";;
(* ------------------------------------------------------------------------- *)
(* Constant for decimal fractions written #xxx.yyy *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Various handy lemmas. *)
(* ------------------------------------------------------------------------- *)
let RAT_LEMMA1 = prove
(`~(y1 = &0) /\ ~(y2 = &0) ==>
((x1 / y1) + (x2 / y2) = (x1 * y2 + x2 * y1) * inv(y1) * inv(y2))`,
STRIP_TAC THEN REWRITE_TAC[
real_div;
REAL_ADD_RDISTRIB] THEN BINOP_TAC THENL
[REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC
[AC
REAL_MUL_AC `a * b * c = (b * a) * c`];
REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
REAL_MUL_RID] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[
REAL_EQ_MUL_LCANCEL] THEN
DISJ2_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_MUL_RINV THEN
ASM_REWRITE_TAC[]);;
let RAT_LEMMA2 = prove
(`&0 < y1 /\ &0 < y2 ==>
((x1 / y1) + (x2 / y2) = (x1 * y2 + x2 * y1) * inv(y1) * inv(y2))`,
DISCH_TAC THEN MATCH_MP_TAC
RAT_LEMMA1 THEN POP_ASSUM MP_TAC THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[
REAL_LT_REFL]);;
let RAT_LEMMA3 = prove
(`&0 < y1 /\ &0 < y2 ==>
((x1 / y1) - (x2 / y2) = (x1 * y2 - x2 * y1) * inv(y1) * inv(y2))`,
let RAT_LEMMA4 = prove
(`&0 < y1 /\ &0 < y2 ==> (x1 / y1 <= x2 / y2 <=> x1 * y2 <= x2 * y1)`,
let lemma = prove
(`&0 < y ==> (&0 <= x * y <=> &0 <= x)`,
DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[SUBGOAL_THEN `&0 <= x * (y * inv y)` MP_TAC THENL
[REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_MUL THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INV THEN
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
SUBGOAL_THEN `y * inv y = &1` (fun th ->
REWRITE_TAC[th; REAL_MUL_RID]) THEN
MATCH_MP_TAC REAL_MUL_RINV THEN
UNDISCH_TAC `&0 < y` THEN REAL_ARITH_TAC];
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]) in
ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[REAL_ARITH `a <= b <=> &0 <= b - a`] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP RAT_LEMMA3 th]) THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `&0 <= (x2 * y1 - x1 * y2) * inv y2` THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN CONJ_TAC THEN
MATCH_MP_TAC lemma THEN MATCH_MP_TAC REAL_LT_INV THEN
ASM_REWRITE_TAC[]);;
let RAT_LEMMA5 = prove
(`&0 < y1 /\ &0 < y2 ==> ((x1 / y1 = x2 / y2) <=> (x1 * y2 = x2 * y1))`,
REPEAT DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
MATCH_MP_TAC(TAUT `(a <=> a') /\ (b <=> b') ==> (a /\ b <=> a' /\ b')`) THEN
CONJ_TAC THEN MATCH_MP_TAC
RAT_LEMMA4 THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Create trivial rational from integer or decimal, and postconvert back. *)
(* ------------------------------------------------------------------------- *)
let REAL_INT_RAT_CONV =
(* ------------------------------------------------------------------------- *)
(* Relational operations. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_LE_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> (x1 / y1 <= x2 / y2 <=> x1 * y2 <= x2 * y1)`,
REWRITE_TAC[IMP_IMP;
RAT_LEMMA4])
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and dest_le = dest_binop `(<=)`
and dest_div = dest_binop `(/)` in
let RAW_REAL_RAT_LE_CONV tm =
let l,r = dest_le tm in
let lx,ly = dest_div l
and rx,ry = dest_div r in
let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in
let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in
let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_LE_CONV)
(rand(concl th1)) in
TRANS th1 th2 in
BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_LE_CONV;;
let REAL_RAT_LT_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> (x1 / y1 < x2 / y2 <=> x1 * y2 < x2 * y1)`,
REWRITE_TAC[IMP_IMP] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM
REAL_NOT_LE] THEN
SIMP_TAC[TAUT `(~a <=> ~b) <=> (a <=> b)`;
RAT_LEMMA4])
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and dest_lt = dest_binop `(<)`
and dest_div = dest_binop `(/)` in
let RAW_REAL_RAT_LT_CONV tm =
let l,r = dest_lt tm in
let lx,ly = dest_div l
and rx,ry = dest_div r in
let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in
let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in
let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_LT_CONV)
(rand(concl th1)) in
TRANS th1 th2 in
BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_LT_CONV;;
let REAL_RAT_GE_CONV =
GEN_REWRITE_CONV I [real_ge] THENC REAL_RAT_LE_CONV;;
let REAL_RAT_GT_CONV =
GEN_REWRITE_CONV I [real_gt] THENC REAL_RAT_LT_CONV;;
let REAL_RAT_EQ_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> ((x1 / y1 = x2 / y2) <=> (x1 * y2 = x2 * y1))`,
REWRITE_TAC[IMP_IMP;
RAT_LEMMA5])
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and dest_eq = dest_binop `(=) :real->real->bool`
and dest_div = dest_binop `(/)` in
let RAW_REAL_RAT_EQ_CONV tm =
let l,r = dest_eq tm in
let lx,ly = dest_div l
and rx,ry = dest_div r in
let th0 = INST [lx,x1; ly,y1; rx,x2; ry,y2] pth in
let th1 = funpow 2 (MP_CONV REAL_INT_LT_CONV) th0 in
let th2 = (BINOP_CONV REAL_INT_MUL_CONV THENC REAL_INT_EQ_CONV)
(rand(concl th1)) in
TRANS th1 th2 in
BINOP_CONV REAL_INT_RAT_CONV THENC RAW_REAL_RAT_EQ_CONV;;
(* ------------------------------------------------------------------------- *)
(* The unary operations; all easy. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_NEG_CONV =
let pth = prove
(`(--(&0) = &0) /\
(--(--(&n)) = &n) /\
(--(&m / &n) = --(&m) / &n) /\
(--(--(&m) / &n) = &m / &n) /\
(--(
DECIMAL m n) = --(&m) / &n)`,
REWRITE_TAC[
real_div;
REAL_INV_NEG;
REAL_MUL_LNEG;
REAL_NEG_NEG;
REAL_NEG_0;
DECIMAL])
and ptm = `(--)` in
let conv1 = GEN_REWRITE_CONV I [pth] in
fun tm -> try conv1 tm
with Failure _ -> try
let l,r = dest_comb tm in
if l = ptm & is_realintconst r & dest_realintconst r >/ num_0
then REFL tm
else fail()
with Failure _ -> failwith "REAL_RAT_NEG_CONV";
;
let REAL_RAT_ABS_CONV =
let pth = prove
(`(abs(&n) = &n) /\
(abs(--(&n)) = &n) /\
(abs(&m / &n) = &m / &n) /\
(abs(--(&m) / &n) = &m / &n) /\
(abs(
DECIMAL m n) = &m / &n) /\
(abs(--(
DECIMAL m n)) = &m / &n)`,
let REAL_RAT_INV_CONV =
let pth1 = prove
(`(inv(&0) = &0) /\
(inv(&1) = &1) /\
(inv(-- &1) = --(&1)) /\
(inv(&1 / &n) = &n) /\
(inv(-- &1 / &n) = -- &n)`,
(* ------------------------------------------------------------------------- *)
(* Addition. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_ADD_CONV =
let pth = prove
(`&0 < y1 ==> &0 < y2 ==> &0 < y3 ==>
((x1 * y2 + x2 * y1) * y3 = x3 * y1 * y2)
==> (x1 / y1 + x2 / y2 = x3 / y3)`,
REPEAT DISCH_TAC THEN
MP_TAC
RAT_LEMMA2 THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[GSYM
REAL_INV_MUL; GSYM
real_div] THEN
SUBGOAL_THEN `&0 < y1 * y2 /\ &0 < y3` MP_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LT_MUL THEN
ASM_REWRITE_TAC[];
DISCH_THEN(fun th -> ASM_REWRITE_TAC[MATCH_MP
RAT_LEMMA5 th])])
and dest_divop = dest_binop `(/)`
and dest_addop = dest_binop `(+)`
and x1 = `x1:real` and x2 = `x2:real` and x3 = `x3:real`
and y1 = `y1:real` and y2 = `y2:real` and y3 = `y3:real` in
let RAW_REAL_RAT_ADD_CONV tm =
let r1,r2 = dest_addop tm in
let x1',y1' = dest_divop r1
and x2',y2' = dest_divop r2 in
let x1n = dest_realintconst x1' and y1n = dest_realintconst y1'
and x2n = dest_realintconst x2' and y2n = dest_realintconst y2' in
let x3n = x1n */ y2n +/ x2n */ y1n
and y3n = y1n */ y2n in
let d = gcd_num x3n y3n in
let x3n' = quo_num x3n d and y3n' = quo_num y3n d in
let x3n'',y3n'' = if y3n' >/ Int 0 then x3n',y3n'
else minus_num x3n',minus_num y3n' in
let x3' = mk_realintconst x3n'' and y3' = mk_realintconst y3n'' in
let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2; x3',x3; y3',y3] pth in
let th1 = funpow 3 (MP_CONV REAL_INT_LT_CONV) th0 in
let tm2,tm3 = dest_eq(fst(dest_imp(concl th1))) in
let th2 = (LAND_CONV (BINOP_CONV REAL_INT_MUL_CONV THENC
REAL_INT_ADD_CONV) THENC
REAL_INT_MUL_CONV) tm2
and th3 = (RAND_CONV REAL_INT_MUL_CONV THENC REAL_INT_MUL_CONV) tm3 in
MP th1 (TRANS th2 (SYM th3)) in
BINOP_CONV REAL_INT_RAT_CONV THENC
RAW_REAL_RAT_ADD_CONV THENC TRY_CONV(GEN_REWRITE_CONV I [
REAL_DIV_1]);;
(* ------------------------------------------------------------------------- *)
(* Subtraction. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_SUB_CONV =
let pth = prove
(`x - y = x + --y`,
REWRITE_TAC[
real_sub]) in
GEN_REWRITE_CONV I [pth] THENC
RAND_CONV REAL_RAT_NEG_CONV THENC REAL_RAT_ADD_CONV;;
(* ------------------------------------------------------------------------- *)
(* Multiplication. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_MUL_CONV =
let pth_nocancel = prove
(`(x1 / y1) * (x2 / y2) = (x1 * x2) / (y1 * y2)`,
REWRITE_TAC[
real_div;
REAL_INV_MUL;
REAL_MUL_AC])
and pth_cancel =
prove
(`~(d1 = &0) /\ ~(d2 = &0) /\
(d1 * u1 = x1) /\ (d2 * u2 = x2) /\
(d2 * v1 = y1) /\ (d1 * v2 = y2)
==> ((x1 / y1) * (x2 / y2) = (u1 * u2) / (v1 * v2))`,
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
ASM_REWRITE_TAC[
real_div;
REAL_INV_MUL] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`((d1 * u1) * (id2 * iv1)) * ((d2 * u2) * id1 * iv2) =
(u1 * u2) * (iv1 * iv2) * (id2 * d2) * (id1 * d1)`] THEN
ASM_SIMP_TAC[REAL_MUL_LINV;
REAL_MUL_RID])
and dest_divop = dest_binop `(/)`
and dest_mulop = dest_binop `(*)`
and x1 = `x1:real` and x2 = `x2:real`
and y1 = `y1:real` and y2 = `y2:real`
and u1 = `u1:real` and u2 = `u2:real`
and v1 = `v1:real` and v2 = `v2:real`
and d1 = `d1:real` and d2 = `d2:real` in
let RAW_REAL_RAT_MUL_CONV tm =
let r1,r2 = dest_mulop tm in
let x1',y1' = dest_divop r1
and x2',y2' = dest_divop r2 in
let x1n = dest_realintconst x1' and y1n = dest_realintconst y1'
and x2n = dest_realintconst x2' and y2n = dest_realintconst y2' in
let d1n = gcd_num x1n y2n
and d2n = gcd_num x2n y1n in
if d1n = num_1 & d2n = num_1 then
let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2] pth_nocancel in
let th1 = BINOP_CONV REAL_INT_MUL_CONV (rand(concl th0)) in
TRANS th0 th1
else
let u1n = quo_num x1n d1n
and u2n = quo_num x2n d2n
and v1n = quo_num y1n d2n
and v2n = quo_num y2n d1n in
let u1' = mk_realintconst u1n
and u2' = mk_realintconst u2n
and v1' = mk_realintconst v1n
and v2' = mk_realintconst v2n
and d1' = mk_realintconst d1n
and d2' = mk_realintconst d2n in
let th0 = INST [x1',x1; y1',y1; x2',x2; y2',y2;
u1',u1; v1',v1; u2',u2; v2',v2; d1',d1; d2',d2]
pth_cancel in
let th1 = EQT_ELIM(REAL_INT_REDUCE_CONV(lhand(concl th0))) in
let th2 = MP th0 th1 in
let th3 = BINOP_CONV REAL_INT_MUL_CONV (rand(concl th2)) in
TRANS th2 th3 in
BINOP_CONV REAL_INT_RAT_CONV THENC
RAW_REAL_RAT_MUL_CONV THENC TRY_CONV(GEN_REWRITE_CONV I [REAL_DIV_1]);;
(* ------------------------------------------------------------------------- *)
(* Division. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_DIV_CONV =
let pth = prove
(`x / y = x * inv(y)`,
REWRITE_TAC[real_div]) in
GEN_REWRITE_CONV I [pth] THENC
RAND_CONV REAL_RAT_INV_CONV THENC REAL_RAT_MUL_CONV;;
(* ------------------------------------------------------------------------- *)
(* Powers. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_POW_CONV =
let pth = prove
(`(x / y) pow n = (x pow n) / (y pow n)`,
REWRITE_TAC[
REAL_POW_DIV]) in
REAL_INT_POW_CONV ORELSEC
(LAND_CONV REAL_INT_RAT_CONV THENC
GEN_REWRITE_CONV I [pth] THENC
BINOP_CONV REAL_INT_POW_CONV);;
(* ------------------------------------------------------------------------- *)
(* Max and min. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_MAX_CONV =
REWR_CONV real_max THENC
RATOR_CONV(RATOR_CONV(RAND_CONV REAL_RAT_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
let REAL_RAT_MIN_CONV =
REWR_CONV real_min THENC
RATOR_CONV(RATOR_CONV(RAND_CONV REAL_RAT_LE_CONV)) THENC
GEN_REWRITE_CONV I [COND_CLAUSES];;
(* ------------------------------------------------------------------------- *)
(* Everything. *)
(* ------------------------------------------------------------------------- *)
let REAL_RAT_RED_CONV =
let gconv_net = itlist (uncurry net_of_conv)
[`x <= y`,REAL_RAT_LE_CONV;
`x < y`,REAL_RAT_LT_CONV;
`x >= y`,REAL_RAT_GE_CONV;
`x > y`,REAL_RAT_GT_CONV;
`x:real = y`,REAL_RAT_EQ_CONV;
`--x`,CHANGED_CONV REAL_RAT_NEG_CONV;
`abs(x)`,REAL_RAT_ABS_CONV;
`inv(x)`,REAL_RAT_INV_CONV;
`x + y`,REAL_RAT_ADD_CONV;
`x - y`,REAL_RAT_SUB_CONV;
`x * y`,REAL_RAT_MUL_CONV;
`x / y`,CHANGED_CONV REAL_RAT_DIV_CONV;
`x pow n`,REAL_RAT_POW_CONV;
`max x y`,REAL_RAT_MAX_CONV;
`min x y`,REAL_RAT_MIN_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let REAL_RAT_REDUCE_CONV = DEPTH_CONV REAL_RAT_RED_CONV;;
(* ------------------------------------------------------------------------- *)
(* Real normalizer dealing with rational constants. *)
(* ------------------------------------------------------------------------- *)
let REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_SUB_CONV,
REAL_POLY_MUL_CONV,REAL_POLY_POW_CONV,REAL_POLY_CONV =
SEMIRING_NORMALIZERS_CONV REAL_POLY_CLAUSES REAL_POLY_NEG_CLAUSES
(is_ratconst,
REAL_RAT_ADD_CONV,REAL_RAT_MUL_CONV,REAL_RAT_POW_CONV)
(<);;
(* ------------------------------------------------------------------------- *)
(* Extend normalizer to handle "inv" and division by rational constants, and *)
(* normalize inside nested "max", "min" and "abs" terms. *)
(* ------------------------------------------------------------------------- *)
let REAL_POLY_CONV =
let neg_tm = `(--):real->real`
and inv_tm = `inv:real->real`
and add_tm = `(+):real->real->real`
and sub_tm = `(-):real->real->real`
and mul_tm = `(*):real->real->real`
and div_tm = `(/):real->real->real`
and pow_tm = `(pow):real->num->real`
and abs_tm = `abs:real->real`
and max_tm = `max:real->real->real`
and min_tm = `min:real->real->real`
and div_conv = REWR_CONV real_div in
let rec REAL_POLY_CONV tm =
if not(is_comb tm) or is_ratconst tm then REFL tm else
let lop,r = dest_comb tm in
if lop = neg_tm then
let th1 = AP_TERM lop (REAL_POLY_CONV r) in
TRANS th1 (REAL_POLY_NEG_CONV (rand(concl th1)))
else if lop = inv_tm then
let th1 = AP_TERM lop (REAL_POLY_CONV r) in
TRANS th1 (TRY_CONV REAL_RAT_INV_CONV (rand(concl th1)))
else if lop = abs_tm then
AP_TERM lop (REAL_POLY_CONV r)
else if not(is_comb lop) then REFL tm else
let op,l = dest_comb lop in
if op = pow_tm then
let th1 = AP_THM (AP_TERM op (REAL_POLY_CONV l)) r in
TRANS th1 (TRY_CONV REAL_POLY_POW_CONV (rand(concl th1)))
else if op = add_tm or op = mul_tm or op = sub_tm then
let th1 = MK_COMB(AP_TERM op (REAL_POLY_CONV l),
REAL_POLY_CONV r) in
let fn = if op = add_tm then REAL_POLY_ADD_CONV
else if op = mul_tm then REAL_POLY_MUL_CONV
else REAL_POLY_SUB_CONV in
TRANS th1 (fn (rand(concl th1)))
else if op = div_tm then
let th1 = div_conv tm in
TRANS th1 (REAL_POLY_CONV (rand(concl th1)))
else if op = min_tm or op = max_tm then
MK_COMB(AP_TERM op (REAL_POLY_CONV l),REAL_POLY_CONV r)
else REFL tm in
REAL_POLY_CONV;;
(* ------------------------------------------------------------------------- *)
(* Basic ring and ideal conversions. *)
(* ------------------------------------------------------------------------- *)
let REAL_RING,real_ideal_cofactors =
let REAL_INTEGRAL = prove
(`(!x. &0 * x = &0) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[
MULT_CLAUSES;
EQ_ADD_LCANCEL] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_EQ;
GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
ONCE_REWRITE_TAC[GSYM
REAL_SUB_0] THEN
REWRITE_TAC[GSYM
REAL_ENTIRE] THEN REAL_ARITH_TAC)
and REAL_RABINOWITSCH =
prove
(`!x y:real. ~(x = y) <=> ?z. (x - y) * z = &1`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM
REAL_SUB_0] THEN
MESON_TAC[
REAL_MUL_RINV;
REAL_MUL_LZERO; REAL_ARITH `~(&1 = &0)`])
and init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [
DECIMAL]
and real_ty = `:real` in
let pure,ideal =
RING_AND_IDEAL_CONV
(rat_of_term,term_of_rat,REAL_RAT_EQ_CONV,
`(--):real->real`,`(+):real->real->real`,`(-):real->real->real`,
`(inv):real->real`,`(*):real->real->real`,`(/):real->real->real`,
`(pow):real->num->real`,
REAL_INTEGRAL,REAL_RABINOWITSCH,REAL_POLY_CONV) in
(fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)))),
(fun tms tm -> if forall (fun t -> type_of t = real_ty) (tm::tms)
then ideal tms tm
else failwith
"real_ideal_cofactors: not all terms have type :real");;
(* ------------------------------------------------------------------------- *)
(* Conversion for ideal membership. *)
(* ------------------------------------------------------------------------- *)
let REAL_IDEAL_CONV =
let mk_add = mk_binop `( + ):real->real->real`
and mk_mul = mk_binop `( * ):real->real->real` in
fun tms tm ->
let cfs = real_ideal_cofactors tms tm in
let tm' = end_itlist mk_add (map2 mk_mul cfs tms) in
let th = REAL_POLY_CONV tm and th' = REAL_POLY_CONV tm' in
TRANS th (SYM th');;
(* ------------------------------------------------------------------------- *)
(* Further specialize GEN_REAL_ARITH and REAL_ARITH (final versions). *)
(* ------------------------------------------------------------------------- *)
let GEN_REAL_ARITH PROVER =
GEN_REAL_ARITH
(term_of_rat,
REAL_RAT_EQ_CONV,REAL_RAT_GE_CONV,REAL_RAT_GT_CONV,
REAL_POLY_CONV,REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_MUL_CONV,
PROVER);;
let REAL_ARITH =
let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL]
and pure = GEN_REAL_ARITH REAL_LINEAR_PROVER in
fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
let REAL_ARITH_TAC = CONV_TAC REAL_ARITH;;
let ASM_REAL_ARITH_TAC =
REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN
REAL_ARITH_TAC;;
(* ------------------------------------------------------------------------- *)
(* A simple "field" rule. *)
(* ------------------------------------------------------------------------- *)
let REAL_FIELD =
let prenex_conv =
TOP_DEPTH_CONV BETA_CONV THENC
PURE_REWRITE_CONV[FORALL_SIMP; EXISTS_SIMP; real_div;
REAL_INV_INV; REAL_INV_MUL; GSYM REAL_POW_INV] THENC
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC
PRENEX_CONV THENC
ONCE_REWRITE_CONV[REAL_ARITH `x < y <=> x < y /\ ~(x = y)`]
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV
and core_rule t = try REAL_RING t with Failure _ -> REAL_ARITH t
and is_inv =
let inv_tm = `inv:real->real`
and is_div = is_binop `(/):real->real->real` in
fun tm -> (is_div tm or (is_comb tm & rator tm = inv_tm)) &
not(is_ratconst(rand tm)) in
let BASIC_REAL_FIELD tm =
let is_freeinv t = is_inv t & free_in t tm in
let itms = setify(map rand (find_terms is_freeinv tm)) in
let hyps = map (fun t -> SPEC t REAL_MUL_RINV) itms in
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in
let th1 = setup_conv tm' in
let cjs = conjuncts(rand(concl th1)) in
let ths = map core_rule cjs in
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in
rev_itlist (C MP) hyps th2 in
fun tm ->
let th0 = prenex_conv tm in
let tm0 = rand(concl th0) in
let avs,bod = strip_forall tm0 in
let th1 = setup_conv bod in
let ths = map BASIC_REAL_FIELD (conjuncts(rand(concl th1))) in
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));;