(* ========================================================================= *)
(* Reasonably efficient conversions for various canonical forms. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "trivia.ml";;
(* ------------------------------------------------------------------------- *)
(* Pre-simplification. *)
(* ------------------------------------------------------------------------- *)
let PRESIMP_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[NOT_CLAUSES; AND_CLAUSES; OR_CLAUSES; IMP_CLAUSES; EQ_CLAUSES;
FORALL_SIMP; EXISTS_SIMP; EXISTS_OR_THM; FORALL_AND_THM;
LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM;
LEFT_FORALL_OR_THM; RIGHT_FORALL_OR_THM];;
(* ------------------------------------------------------------------------- *)
(* ACI rearrangements of conjunctions and disjunctions. This is much faster *)
(* than AC xxx_ACI on large problems, as well as being more controlled. *)
(* ------------------------------------------------------------------------- *)
let CONJ_ACI_RULE =
let rec mk_fun th fn =
let tm = concl th in
if is_conj tm then
let th1,th2 = CONJ_PAIR th in
mk_fun th1 (mk_fun th2 fn)
else (tm |-> th) fn
and use_fun fn tm =
if is_conj tm then
let l,r = dest_conj tm in CONJ (use_fun fn l) (use_fun fn r)
else apply fn tm in
fun fm ->
let p,p' = dest_eq fm in
if p = p' then REFL p else
let th = use_fun (mk_fun (ASSUME p) undefined) p'
and th' = use_fun (mk_fun (ASSUME p') undefined) p in
IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th');;
let DISJ_ACI_RULE =
let pth_left = UNDISCH(TAUT `~(a \/ b) ==> ~a`)
and pth_right = UNDISCH(TAUT `~(a \/ b) ==> ~b`)
and pth = repeat UNDISCH (TAUT `~a ==> ~b ==> ~(a \/ b)`)
and pth_neg = UNDISCH(TAUT `(~a <=> ~b) ==> (a <=> b)`)
and a_tm = `a:bool` and b_tm = `b:bool` in
let NOT_DISJ_PAIR th =
let p,q = dest_disj(rand(concl th)) in
let ilist = [p,a_tm; q,b_tm] in
PROVE_HYP th (INST ilist pth_left),
PROVE_HYP th (INST ilist pth_right)
and NOT_DISJ th1 th2 =
let th3 = INST [rand(concl th1),a_tm; rand(concl th2),b_tm] pth in
PROVE_HYP th1 (PROVE_HYP th2 th3) in
let rec mk_fun th fn =
let tm = rand(concl th) in
if is_disj tm then
let th1,th2 = NOT_DISJ_PAIR th in
mk_fun th1 (mk_fun th2 fn)
else (tm |-> th) fn
and use_fun fn tm =
if is_disj tm then
let l,r = dest_disj tm in NOT_DISJ (use_fun fn l) (use_fun fn r)
else apply fn tm in
fun fm ->
let p,p' = dest_eq fm in
if p = p' then REFL p else
let th = use_fun (mk_fun (ASSUME(mk_neg p)) undefined) p'
and th' = use_fun (mk_fun (ASSUME(mk_neg p')) undefined) p in
let th1 = IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th') in
PROVE_HYP th1 (INST [p,a_tm; p',b_tm] pth_neg);;
(* ------------------------------------------------------------------------- *)
(* Order canonically, right-associate and remove duplicates. *)
(* ------------------------------------------------------------------------- *)
let CONJ_CANON_CONV tm =
let tm' = list_mk_conj(setify(conjuncts tm)) in
CONJ_ACI_RULE(mk_eq(tm,tm'));;
let DISJ_CANON_CONV tm =
let tm' = list_mk_disj(setify(disjuncts tm)) in
DISJ_ACI_RULE(mk_eq(tm,tm'));;
(* ------------------------------------------------------------------------- *)
(* General NNF conversion. The user supplies some conversion to be applied *)
(* to atomic formulas. *)
(* *)
(* "Iff"s are split conjunctively or disjunctively according to the flag *)
(* argument (conjuctively = true) until a universal quantifier (modulo *)
(* current parity) is passed; after that they are split conjunctively. This *)
(* is appropriate when the result is passed to a disjunctive splitter *)
(* followed by a clausal form inner core, such as MESON. *)
(* *)
(* To avoid some duplicate computation, this function will in general *)
(* enter a recursion where it simultaneously computes NNF representations *)
(* for "p" and "~p", so the user needs to supply an atomic "conversion" *)
(* that does the same. *)
(* ------------------------------------------------------------------------- *)
let (GEN_NNF_CONV:bool->conv*(term->thm*thm)->conv) =
let and_tm = `(/\)` and or_tm = `(\/)` and not_tm = `(~)`
and pth_not_not = TAUT `~ ~ p = p`
and pth_not_and = TAUT `~(p /\ q) <=> ~p \/ ~q`
and pth_not_or = TAUT `~(p \/ q) <=> ~p /\ ~q`
and pth_imp = TAUT `p ==> q <=> ~p \/ q`
and pth_not_imp = TAUT `~(p ==> q) <=> p /\ ~q`
and pth_eq = TAUT `(p <=> q) <=> p /\ q \/ ~p /\ ~q`
and pth_not_eq = TAUT `~(p <=> q) <=> p /\ ~q \/ ~p /\ q`
and pth_eq' = TAUT `(p <=> q) <=> (p \/ ~q) /\ (~p \/ q)`
and pth_not_eq' = TAUT `~(p <=> q) <=> (p \/ q) /\ (~p \/ ~q)`
and [pth_not_forall; pth_not_exists; pth_not_exu] =
(CONJUNCTS o prove)
(`(~((!) P) <=> ?x:A. ~(P x)) /\
(~((?) P) <=> !x:A. ~(P x)) /\
(~((?!) P) <=> (!x:A. ~(P x)) \/ ?x y. P x /\ P y /\ ~(y = x))`,
REPEAT CONJ_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM; EXISTS_UNIQUE_DEF;
DE_MORGAN_THM; NOT_IMP] THEN
REWRITE_TAC[CONJ_ASSOC; EQ_SYM_EQ])
and pth_exu = prove
(`((?!) P) <=> (?x:A. P x) /\ !x y. ~(P x) \/ ~(P y) \/ (y = x)`,
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[EXISTS_UNIQUE_DEF; TAUT `a /\ b ==> c <=> ~a \/ ~b \/ c`] THEN
REWRITE_TAC[EQ_SYM_EQ])
and p_tm = `p:bool` and q_tm = `q:bool` in
let rec NNF_DCONV cf baseconvs tm =
match tm with
Comb(Comb(Const("/\\",_),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
MK_COMB(AP_TERM and_tm th_lp,th_rp),
TRANS (INST [l,p_tm; r,q_tm] pth_not_and)
(MK_COMB(AP_TERM or_tm th_ln,th_rn))
| Comb(Comb(Const("\\/",_),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
MK_COMB(AP_TERM or_tm th_lp,th_rp),
TRANS (INST [l,p_tm; r,q_tm] pth_not_or)
(MK_COMB(AP_TERM and_tm th_ln,th_rn))
| Comb(Comb(Const("==>",_),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_imp)
(MK_COMB(AP_TERM or_tm th_ln,th_rp)),
TRANS (INST [l,p_tm; r,q_tm] pth_not_imp)
(MK_COMB(AP_TERM and_tm th_lp,th_rn))
| Comb(Comb(Const("=",Tyapp("fun",Tyapp("bool",_)::_)),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
if cf then
TRANS (INST [l,p_tm; r,q_tm] pth_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rn)),
MK_COMB(AP_TERM or_tm th_ln,th_rp))),
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rp)),
MK_COMB(AP_TERM or_tm th_ln,th_rn)))
else
TRANS (INST [l,p_tm; r,q_tm] pth_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rp)),
MK_COMB(AP_TERM and_tm th_ln,th_rn))),
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rn)),
MK_COMB(AP_TERM and_tm th_ln,th_rp)))
| Comb(Const("!",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t) as bod)) ->
let th_p,th_n = NNF_DCONV true baseconvs t in
AP_TERM q (ABS x th_p),
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_forall)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_EXISTS x th2)
| Comb(Const("?",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t) as bod)) ->
let th_p,th_n = NNF_DCONV cf baseconvs t in
AP_TERM q (ABS x th_p),
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exists)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_FORALL x th2)
| Comb(Const("?!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let y = variant (x::frees t) x
and th_p,th_n = NNF_DCONV cf baseconvs t in
let eq = mk_eq(y,x) in
let eth_p,eth_n = baseconvs eq
and bth = BETA (mk_comb(bod,x))
and bth' = BETA_CONV(mk_comb(bod,y)) in
let th_p' = INST [y,x] th_p and th_n' = INST [y,x] th_n in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_exu)
and th1' = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exu)
and th2 =
MK_COMB(AP_TERM and_tm
(MK_EXISTS x (TRANS bth th_p)),
MK_FORALL x (MK_FORALL y
(MK_COMB(AP_TERM or_tm (TRANS (AP_TERM not_tm bth) th_n),
MK_COMB(AP_TERM or_tm
(TRANS (AP_TERM not_tm bth') th_n'),
eth_p)))))
and th2' =
MK_COMB(AP_TERM or_tm
(MK_FORALL x (TRANS (AP_TERM not_tm bth) th_n)),
MK_EXISTS x (MK_EXISTS y
(MK_COMB(AP_TERM and_tm (TRANS bth th_p),
MK_COMB(AP_TERM and_tm (TRANS bth' th_p'),
eth_n))))) in
TRANS th1 th2,TRANS th1' th2'
| Comb(Const("~",_),t) ->
let th1,th2 = NNF_DCONV cf baseconvs t in
th2,TRANS (INST [t,p_tm] pth_not_not) th1
| _ -> try baseconvs tm
with Failure _ -> REFL tm,REFL(mk_neg tm) in
let rec NNF_CONV cf (base1,base2 as baseconvs) tm =
match tm with
Comb(Comb(Const("/\\",_),l),r) ->
let th_lp = NNF_CONV cf baseconvs l
and th_rp = NNF_CONV cf baseconvs r in
MK_COMB(AP_TERM and_tm th_lp,th_rp)
| Comb(Comb(Const("\\/",_),l),r) ->
let th_lp = NNF_CONV cf baseconvs l
and th_rp = NNF_CONV cf baseconvs r in
MK_COMB(AP_TERM or_tm th_lp,th_rp)
| Comb(Comb(Const("==>",_),l),r) ->
let th_ln = NNF_CONV' cf baseconvs l
and th_rp = NNF_CONV cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_imp)
(MK_COMB(AP_TERM or_tm th_ln,th_rp))
| Comb(Comb(Const("=",Tyapp("fun",Tyapp("bool",_)::_)),l),r) ->
let th_lp,th_ln = NNF_DCONV cf base2 l
and th_rp,th_rn = NNF_DCONV cf base2 r in
if cf then
TRANS (INST [l,p_tm; r,q_tm] pth_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rn)),
MK_COMB(AP_TERM or_tm th_ln,th_rp)))
else
TRANS (INST [l,p_tm; r,q_tm] pth_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rp)),
MK_COMB(AP_TERM and_tm th_ln,th_rn)))
| Comb(Const("!",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t))) ->
let th_p = NNF_CONV true baseconvs t in
AP_TERM q (ABS x th_p)
| Comb(Const("?",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t))) ->
let th_p = NNF_CONV cf baseconvs t in
AP_TERM q (ABS x th_p)
| Comb(Const("?!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let y = variant (x::frees t) x
and th_p,th_n = NNF_DCONV cf base2 t in
let eq = mk_eq(y,x) in
let eth_p,eth_n = base2 eq
and bth = BETA (mk_comb(bod,x))
and bth' = BETA_CONV(mk_comb(bod,y)) in
let th_n' = INST [y,x] th_n in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_exu)
and th2 =
MK_COMB(AP_TERM and_tm
(MK_EXISTS x (TRANS bth th_p)),
MK_FORALL x (MK_FORALL y
(MK_COMB(AP_TERM or_tm (TRANS (AP_TERM not_tm bth) th_n),
MK_COMB(AP_TERM or_tm
(TRANS (AP_TERM not_tm bth') th_n'),
eth_p))))) in
TRANS th1 th2
| Comb(Const("~",_),t) -> NNF_CONV' cf baseconvs t
| _ -> try base1 tm with Failure _ -> REFL tm
and NNF_CONV' cf (base1,base2 as baseconvs) tm =
match tm with
Comb(Comb(Const("/\\",_),l),r) ->
let th_ln = NNF_CONV' cf baseconvs l
and th_rn = NNF_CONV' cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_not_and)
(MK_COMB(AP_TERM or_tm th_ln,th_rn))
| Comb(Comb(Const("\\/",_),l),r) ->
let th_ln = NNF_CONV' cf baseconvs l
and th_rn = NNF_CONV' cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_not_or)
(MK_COMB(AP_TERM and_tm th_ln,th_rn))
| Comb(Comb(Const("==>",_),l),r) ->
let th_lp = NNF_CONV cf baseconvs l
and th_rn = NNF_CONV' cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_not_imp)
(MK_COMB(AP_TERM and_tm th_lp,th_rn))
| Comb(Comb(Const("=",Tyapp("fun",Tyapp("bool",_)::_)),l),r) ->
let th_lp,th_ln = NNF_DCONV cf base2 l
and th_rp,th_rn = NNF_DCONV cf base2 r in
if cf then
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rp)),
MK_COMB(AP_TERM or_tm th_ln,th_rn)))
else
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rn)),
MK_COMB(AP_TERM and_tm th_ln,th_rp)))
| Comb(Const("!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let th_n = NNF_CONV' cf baseconvs t in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_forall)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_EXISTS x th2)
| Comb(Const("?",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let th_n = NNF_CONV' true baseconvs t in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exists)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_FORALL x th2)
| Comb(Const("?!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let y = variant (x::frees t) x
and th_p,th_n = NNF_DCONV cf base2 t in
let eq = mk_eq(y,x) in
let eth_p,eth_n = base2 eq
and bth = BETA (mk_comb(bod,x))
and bth' = BETA_CONV(mk_comb(bod,y)) in
let th_p' = INST [y,x] th_p in
let th1' = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exu)
and th2' =
MK_COMB(AP_TERM or_tm
(MK_FORALL x (TRANS (AP_TERM not_tm bth) th_n)),
MK_EXISTS x (MK_EXISTS y
(MK_COMB(AP_TERM and_tm (TRANS bth th_p),
MK_COMB(AP_TERM and_tm (TRANS bth' th_p'),
eth_n))))) in
TRANS th1' th2'
| Comb(Const("~",_),t) ->
let th1 = NNF_CONV cf baseconvs t in
TRANS (INST [t,p_tm] pth_not_not) th1
| _ -> let tm' = mk_neg tm in try base1 tm' with Failure _ -> REFL tm' in
NNF_CONV;;
(* ------------------------------------------------------------------------- *)
(* Some common special cases. *)
(* ------------------------------------------------------------------------- *)
let NNF_CONV =
(GEN_NNF_CONV false (ALL_CONV,fun t -> REFL t,REFL(mk_neg t)) :conv);;
let NNFC_CONV =
(GEN_NNF_CONV true (ALL_CONV,fun t -> REFL t,REFL(mk_neg t)) :conv);;
(* ------------------------------------------------------------------------- *)
(* Skolemize a term already in NNF (doesn't matter if it's not prenex). *)
(* ------------------------------------------------------------------------- *)
let SKOLEM_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[EXISTS_OR_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM;
FORALL_AND_THM; LEFT_FORALL_OR_THM; RIGHT_FORALL_OR_THM;
FORALL_SIMP; EXISTS_SIMP] THENC
GEN_REWRITE_CONV REDEPTH_CONV
[RIGHT_AND_EXISTS_THM;
LEFT_AND_EXISTS_THM;
OR_EXISTS_THM;
RIGHT_OR_EXISTS_THM;
LEFT_OR_EXISTS_THM;
SKOLEM_THM];;
(* ------------------------------------------------------------------------- *)
(* Put a term already in NNF into prenex form. *)
(* ------------------------------------------------------------------------- *)
let PRENEX_CONV =
GEN_REWRITE_CONV REDEPTH_CONV
[AND_FORALL_THM; LEFT_AND_FORALL_THM; RIGHT_AND_FORALL_THM;
LEFT_OR_FORALL_THM; RIGHT_OR_FORALL_THM;
OR_EXISTS_THM; LEFT_OR_EXISTS_THM; RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM];;
(* ------------------------------------------------------------------------- *)
(* Weak and normal DNF conversion. The "weak" form gives a disjunction of *)
(* conjunctions, but has no particular associativity at either level and *)
(* may contain duplicates. The regular forms give canonical right-associate *)
(* lists without duplicates, but do not remove subsumed disjuncts. *)
(* *)
(* In both cases the input term is supposed to be in NNF already. We do go *)
(* inside quantifiers and transform their body, but don't move them. *)
(* ------------------------------------------------------------------------- *)
let WEAK_DNF_CONV,DNF_CONV =
let pth1 = TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`
and pth2 = TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`
and a_tm = `a:bool` and b_tm = `b:bool` and c_tm = `c:bool` in
let rec distribute tm =
match tm with
Comb(Comb(Const("/\\",_),a),Comb(Comb(Const("\\/",_),b),c)) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth1 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| Comb(Comb(Const("/\\",_),Comb(Comb(Const("\\/",_),a),b)),c) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth2 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| _ -> REFL tm in
let strengthen =
DEPTH_BINOP_CONV `(\/)` CONJ_CANON_CONV THENC DISJ_CANON_CONV in
let rec weakdnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV weakdnf tm
| Comb(Comb(Const("\\/",_),_),_) -> BINOP_CONV weakdnf tm
| Comb(Comb(Const("/\\",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (weakdnf l),weakdnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and substrongdnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV strongdnf tm
| Comb(Comb(Const("\\/",_),_),_) -> BINOP_CONV substrongdnf tm
| Comb(Comb(Const("/\\",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (substrongdnf l),substrongdnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and strongdnf tm =
let th = substrongdnf tm in
TRANS th (strengthen(rand(concl th))) in
weakdnf,strongdnf;;
(* ------------------------------------------------------------------------- *)
(* Likewise for CNF. *)
(* ------------------------------------------------------------------------- *)
let WEAK_CNF_CONV,CNF_CONV =
let pth1 = TAUT `a \/ (b /\ c) <=> (a \/ b) /\ (a \/ c)`
and pth2 = TAUT `(a /\ b) \/ c <=> (a \/ c) /\ (b \/ c)`
and a_tm = `a:bool` and b_tm = `b:bool` and c_tm = `c:bool` in
let rec distribute tm =
match tm with
Comb(Comb(Const("\\/",_),a),Comb(Comb(Const("/\\",_),b),c)) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth1 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| Comb(Comb(Const("\\/",_),Comb(Comb(Const("/\\",_),a),b)),c) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth2 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| _ -> REFL tm in
let strengthen =
DEPTH_BINOP_CONV `(/\)` DISJ_CANON_CONV THENC CONJ_CANON_CONV in
let rec weakcnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV weakcnf tm
| Comb(Comb(Const("/\\",_),_),_) -> BINOP_CONV weakcnf tm
| Comb(Comb(Const("\\/",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (weakcnf l),weakcnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and substrongcnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV strongcnf tm
| Comb(Comb(Const("/\\",_),_),_) -> BINOP_CONV substrongcnf tm
| Comb(Comb(Const("\\/",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (substrongcnf l),substrongcnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and strongcnf tm =
let th = substrongcnf tm in
TRANS th (strengthen(rand(concl th))) in
weakcnf,strongcnf;;
(* ------------------------------------------------------------------------- *)
(* Simply right-associate w.r.t. a binary operator. *)
(* ------------------------------------------------------------------------- *)
let ASSOC_CONV th =
let th' = SYM(SPEC_ALL th) in
let opx,yopz = dest_comb(rhs(concl th')) in
let op,x = dest_comb opx in
let y = lhand yopz and z = rand yopz in
let rec distrib tm =
match tm with
Comb(Comb(op',Comb(Comb(op'',p),q)),r) when op' = op & op'' = op ->
let th1 = INST [p,x; q,y; r,z] th' in
let l,r' = dest_comb(rand(concl th1)) in
let th2 = AP_TERM l (distrib r') in
let th3 = distrib(rand(concl th2)) in
TRANS th1 (TRANS th2 th3)
| _ -> REFL tm in
let rec assoc tm =
match tm with
Comb(Comb(op',p) as l,q) when op' = op ->
let th = AP_TERM l (assoc q) in
TRANS th (distrib(rand(concl th)))
| _ -> REFL tm in
assoc;;
(* ------------------------------------------------------------------------- *)
(* Eliminate select terms from a goal. *)
(* ------------------------------------------------------------------------- *)
let SELECT_ELIM_TAC =
let SELECT_ELIM_CONV =
let SELECT_ELIM_THM =
let pth = prove
(`(P:A->bool)((@) P) <=> (?) P`,
REWRITE_TAC[
EXISTS_THM] THEN BETA_TAC THEN REFL_TAC)
and ptm = `P:A->bool` in
fun tm -> let stm,atm = dest_comb tm in
if is_const stm & fst(dest_const stm) = "@" then
CONV_RULE(LAND_CONV BETA_CONV)
(PINST [type_of(bndvar atm),aty] [atm,ptm] pth)
else failwith "SELECT_ELIM_THM: not a select-term" in
fun tm ->
PURE_REWRITE_CONV (map SELECT_ELIM_THM (find_terms is_select tm)) tm in
let SELECT_ELIM_ICONV =
let SELECT_AX_THM =
let pth = ISPEC `P:A->bool` SELECT_AX
and ptm = `P:A->bool` in
fun tm -> let stm,atm = dest_comb tm in
if is_const stm & fst(dest_const stm) = "@" then
let fvs = frees atm in
let th1 = PINST [type_of(bndvar atm),aty] [atm,ptm] pth in
let th2 = CONV_RULE(BINDER_CONV (BINOP_CONV BETA_CONV)) th1 in
GENL fvs th2
else failwith "SELECT_AX_THM: not a select-term" in
let SELECT_ELIM_ICONV tm =
let t = find_term is_select tm in
let th1 = SELECT_AX_THM t in
let itm = mk_imp(concl th1,tm) in
let th2 = DISCH_ALL (MP (ASSUME itm) th1) in
let fvs = frees t in
let fty = itlist (mk_fun_ty o type_of) fvs (type_of t) in
let fn = genvar fty
and atm = list_mk_abs(fvs,t) in
let rawdef = mk_eq(fn,atm) in
let def = GENL fvs (SYM(RIGHT_BETAS fvs (ASSUME rawdef))) in
let th3 = PURE_REWRITE_CONV[def] (lhand(concl th2)) in
let gtm = mk_forall(fn,rand(concl th3)) in
let th4 = EQ_MP (SYM th3) (SPEC fn (ASSUME gtm)) in
let th5 = IMP_TRANS (DISCH gtm th4) th2 in
MP (INST [atm,fn] (DISCH rawdef th5)) (REFL atm) in
let rec SELECT_ELIMS_ICONV tm =
try let th = SELECT_ELIM_ICONV tm in
let tm' = lhand(concl th) in
IMP_TRANS (SELECT_ELIMS_ICONV tm') th
with Failure _ -> DISCH tm (ASSUME tm) in
SELECT_ELIMS_ICONV in
CONV_TAC SELECT_ELIM_CONV THEN W(MATCH_MP_TAC o SELECT_ELIM_ICONV o snd);;
(* ------------------------------------------------------------------------- *)
(* Eliminate all lambda-terms except those part of quantifiers. *)
(* ------------------------------------------------------------------------- *)
let LAMBDA_ELIM_CONV =
let HALF_MK_ABS_CONV =
let pth = prove
(`(s = \x. t x) <=> (!x. s x = t x)`,
REWRITE_TAC[
FUN_EQ_THM]) in
let rec conv vs tm =
if vs = [] then REFL tm else
(GEN_REWRITE_CONV I [pth] THENC BINDER_CONV(conv (tl vs))) tm in
conv in
let rec find_lambda tm =
if is_abs tm then tm
else if is_var tm or is_const tm then failwith "find_lambda"
else if is_abs tm then tm else
if is_forall tm or is_exists tm or is_uexists tm
then find_lambda (body(rand tm)) else
let l,r = dest_comb tm in
try find_lambda l with Failure _ -> find_lambda r in
let rec ELIM_LAMBDA conv tm =
try conv tm with Failure _ ->
if is_abs tm then ABS_CONV (ELIM_LAMBDA conv) tm
else if is_var tm or is_const tm then REFL tm else
if is_forall tm or is_exists tm or is_uexists tm
then BINDER_CONV (ELIM_LAMBDA conv) tm
else COMB_CONV (ELIM_LAMBDA conv) tm in
let APPLY_PTH =
let pth = prove
(`(!a. (a = c) ==> (P = Q a)) ==> (P <=> !a. (a = c) ==> Q a)`,
SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL]) in
MATCH_MP pth in
let LAMB1_CONV tm =
let atm = find_lambda tm in
let v,bod = dest_abs atm in
let vs = frees atm in
let vs' = vs @ [v] in
let aatm = list_mk_abs(vs,atm) in
let f = genvar(type_of aatm) in
let eq = mk_eq(f,aatm) in
let th1 = SYM(RIGHT_BETAS vs (ASSUME eq)) in
let th2 = ELIM_LAMBDA(GEN_REWRITE_CONV I [th1]) tm in
let th3 = APPLY_PTH (GEN f (DISCH_ALL th2)) in
CONV_RULE(RAND_CONV(BINDER_CONV(LAND_CONV (HALF_MK_ABS_CONV vs')))) th3 in
let rec conv tm =
try (LAMB1_CONV THENC conv) tm with Failure _ -> REFL tm in
conv;;
(* ------------------------------------------------------------------------- *)
(* Eliminate conditionals; CONDS_ELIM_CONV aims for disjunctive splitting, *)
(* for refutation procedures, and CONDS_CELIM_CONV for conjunctive. *)
(* Both switch modes "sensibly" when going through a quantifier. *)
(* ------------------------------------------------------------------------- *)
let CONDS_ELIM_CONV,CONDS_CELIM_CONV =
let th_cond = prove
(`((b <=> F) ==> x = x0) /\ ((b <=> T) ==> x = x1)
==> x = (b /\ x1 \/ ~b /\ x0)`,
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[])
and th_cond' =
prove
(`((b <=> F) ==> x = x0) /\ ((b <=> T) ==> x = x1)
==> x = ((~b \/ x1) /\ (b \/ x0))`,
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[])
and propsimps = basic_net()
and false_tm = `F` and true_tm = `T` in
let match_th = MATCH_MP
th_cond and match_th' = MATCH_MP th_cond'
and propsimp_conv = DEPTH_CONV(REWRITES_CONV propsimps)
and proptsimp_conv =
let cnv = TRY_CONV(REWRITES_CONV propsimps) in
BINOP_CONV cnv THENC cnv in
let rec find_conditional fvs tm =
match tm with
Comb(s,t) ->
if is_cond tm & intersect (frees(lhand s)) fvs = [] then tm
else (try (find_conditional fvs s)
with Failure _ -> find_conditional fvs t)
| Abs(x,t) -> find_conditional (x::fvs) t
| _ -> failwith "find_conditional" in
let rec CONDS_ELIM_CONV dfl tm =
try let t = find_conditional [] tm in
let p = lhand(rator t) in
let th_new =
if p = false_tm or p = true_tm then propsimp_conv tm else
let asm_0 = mk_eq(p,false_tm) and asm_1 = mk_eq(p,true_tm) in
let simp_0 = net_of_thm false (ASSUME asm_0) propsimps
and simp_1 = net_of_thm false (ASSUME asm_1) propsimps in
let th_0 = DISCH asm_0 (DEPTH_CONV(REWRITES_CONV simp_0) tm)
and th_1 = DISCH asm_1 (DEPTH_CONV(REWRITES_CONV simp_1) tm) in
let th_2 = CONJ th_0 th_1 in
let th_3 = if dfl then match_th th_2 else match_th' th_2 in
TRANS th_3 (proptsimp_conv(rand(concl th_3))) in
CONV_RULE (RAND_CONV (CONDS_ELIM_CONV dfl)) th_new
with Failure _ ->
if is_neg tm then
RAND_CONV (CONDS_ELIM_CONV (not dfl)) tm
else if is_conj tm or is_disj tm then
BINOP_CONV (CONDS_ELIM_CONV dfl) tm
else if is_imp tm or is_iff tm then
COMB2_CONV (RAND_CONV (CONDS_ELIM_CONV (not dfl)))
(CONDS_ELIM_CONV dfl) tm
else if is_forall tm then
BINDER_CONV (CONDS_ELIM_CONV false) tm
else if is_exists tm or is_uexists tm then
BINDER_CONV (CONDS_ELIM_CONV true) tm
else REFL tm in
CONDS_ELIM_CONV true,CONDS_ELIM_CONV false;;
(* ------------------------------------------------------------------------- *)
(* Fix up all head arities to be consistent, in "first order logic" style. *)
(* Applied to the assumptions (not conclusion) in a goal. *)
(* ------------------------------------------------------------------------- *)
let ASM_FOL_TAC =
let rec get_heads lconsts tm (cheads,vheads as sofar) =
try let v,bod = dest_forall tm in
get_heads (subtract lconsts [v]) bod sofar
with Failure _ -> try
let l,r = try dest_conj tm with Failure _ -> dest_disj tm in
get_heads lconsts l (get_heads lconsts r sofar)
with Failure _ -> try
let tm' = dest_neg tm in
get_heads lconsts tm' sofar
with Failure _ ->
let hop,args = strip_comb tm in
let len = length args in
let newheads =
if is_const hop or mem hop lconsts
then (insert (hop,len) cheads,vheads)
else if len > 0 then (cheads,insert (hop,len) vheads) else sofar in
itlist (get_heads lconsts) args newheads in
let get_thm_heads th sofar =
get_heads (freesl(hyp th)) (concl th) sofar in
let APP_CONV =
let th = prove
(`!(f:A->B) x. f x = I f x`,
REWRITE_TAC[
I_THM]) in
REWR_CONV th in
let rec APP_N_CONV n tm =
if n = 1 then APP_CONV tm
else (RATOR_CONV (APP_N_CONV (n - 1)) THENC APP_CONV) tm in
let rec FOL_CONV hddata tm =
if is_forall tm then BINDER_CONV (FOL_CONV hddata) tm
else if is_conj tm or is_disj tm then BINOP_CONV (FOL_CONV hddata) tm else
let op,args = strip_comb tm in
let th = rev_itlist (C (curry MK_COMB))
(map (FOL_CONV hddata) args) (REFL op) in
let tm' = rand(concl th) in
let n = try length args - assoc op hddata with Failure _ -> 0 in
if n = 0 then th
else TRANS th (APP_N_CONV n tm') in
let GEN_FOL_CONV (cheads,vheads) =
let hddata =
if vheads = [] then
let hops = setify (map fst cheads) in
let getmin h =
let ns = mapfilter
(fun (k,n) -> if k = h then n else fail()) cheads in
if length ns < 2 then fail() else h,end_itlist min ns in
mapfilter getmin hops
else
map (fun t -> if is_const t & fst(dest_const t) = "="
then t,2 else t,0)
(setify (map fst (vheads @ cheads))) in
FOL_CONV hddata in
fun (asl,w as gl) ->
let headsp = itlist (get_thm_heads o snd) asl ([],[]) in
RULE_ASSUM_TAC(CONV_RULE(GEN_FOL_CONV headsp)) gl;;
(* ------------------------------------------------------------------------- *)
(* Depth conversion to apply at "atomic" formulas in "first-order" term. *)
(* ------------------------------------------------------------------------- *)
let rec PROP_ATOM_CONV conv tm =
match tm with
Comb((Const("!",_) | Const("?",_) | Const("?!",_)),Abs(_,_))
-> BINDER_CONV (PROP_ATOM_CONV conv) tm
| Comb(Comb
((Const("/\\",_) | Const("\\/",_) | Const("==>",_) |
(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])))),_),_)
-> BINOP_CONV (PROP_ATOM_CONV conv) tm
| Comb(Const("~",_),_) -> RAND_CONV (PROP_ATOM_CONV conv) tm
| _ -> TRY_CONV conv tm;;