(* ========================================================================= *)
(* Generic Grobner basis algorithm. *)
(* *)
(* Whatever the instantiation, it basically solves the universal theory of *)
(* the complex numbers, or equivalently something like the theory of all *)
(* commutative cancellation semirings with no nilpotent elements and having *)
(* characteristic zero. We could do "all rings" by a more elaborate integer *)
(* version of Grobner bases, but I don't have any useful applications. *)
(* *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "normalizer.ml";;
(* ------------------------------------------------------------------------- *)
(* Type for recording history, i.e. how a polynomial was obtained. *)
(* ------------------------------------------------------------------------- *)
type history =
Start of int
| Mmul of (num * (int list)) * history
| Add of history * history;;
(* ------------------------------------------------------------------------- *)
(* Overall function; everything else is local. *)
(* ------------------------------------------------------------------------- *)
let RING_AND_IDEAL_CONV =
(* ----------------------------------------------------------------------- *)
(* Monomial ordering. *)
(* ----------------------------------------------------------------------- *)
let morder_lt =
let rec lexorder l1 l2 =
match (l1,l2) with
[],[] -> false
| (x1::o1,x2::o2) -> x1 > x2 or x1 = x2 & lexorder o1 o2
| _ -> failwith "morder: inconsistent monomial lengths" in
fun m1 m2 -> let n1 = itlist (+) m1 0
and n2 = itlist (+) m2 0 in
n1 < n2 or n1 = n2 & lexorder m1 m2 in
(* ----------------------------------------------------------------------- *)
(* Arithmetic on canonical polynomials. *)
(* ----------------------------------------------------------------------- *)
let grob_neg = map (fun (c,m) -> (minus_num c,m)) in
let rec grob_add l1 l2 =
match (l1,l2) with
([],l2) -> l2
| (l1,[]) -> l1
| ((c1,m1)::o1,(c2,m2)::o2) ->
if m1 = m2 then
let c = c1+/c2 and rest = grob_add o1 o2 in
if c =/ num_0 then rest else (c,m1)::rest
else if morder_lt m2 m1 then (c1,m1)::(grob_add o1 l2)
else (c2,m2)::(grob_add l1 o2) in
let grob_sub l1 l2 = grob_add l1 (grob_neg l2) in
let grob_mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2) in
let rec grob_cmul cm pol = map (grob_mmul cm) pol in
let rec grob_mul l1 l2 =
match l1 with
[] -> []
| (h1::t1) -> grob_add (grob_cmul h1 l2) (grob_mul t1 l2) in
let grob_inv l =
match l with
[c,vs] when forall (fun x -> x = 0) vs ->
if c =/ num_0 then failwith "grob_inv: division by zero"
else [num_1 // c,vs]
| _ -> failwith "grob_inv: non-constant divisor polynomial" in
let grob_div l1 l2 =
match l2 with
[c,l] when forall (fun x -> x = 0) l ->
if c =/ num_0 then failwith "grob_div: division by zero"
else grob_cmul (num_1 // c,l) l1
| _ -> failwith "grob_div: non-constant divisor polynomial" in
let rec grob_pow vars l n =
if n < 0 then failwith "grob_pow: negative power"
else if n = 0 then [num_1,map (fun v -> 0) vars]
else grob_mul l (grob_pow vars l (n - 1)) in
(* ----------------------------------------------------------------------- *)
(* Monomial division operation. *)
(* ----------------------------------------------------------------------- *)
let mdiv (c1,m1) (c2,m2) =
(c1//c2,
map2 (fun n1 n2 -> if n1 < n2 then failwith "mdiv" else n1-n2) m1 m2) in
(* ----------------------------------------------------------------------- *)
(* Lowest common multiple of two monomials. *)
(* ----------------------------------------------------------------------- *)
let mlcm (c1,m1) (c2,m2) = (num_1,map2 max m1 m2) in
(* ----------------------------------------------------------------------- *)
(* Reduce monomial cm by polynomial pol, returning replacement for cm. *)
(* ----------------------------------------------------------------------- *)
let reduce1 cm (pol,hpol) =
match pol with
[] -> failwith "reduce1"
| cm1::cms -> try let (c,m) = mdiv cm cm1 in
(grob_cmul (minus_num c,m) cms,
Mmul((minus_num c,m),hpol))
with Failure _ -> failwith "reduce1" in
(* ----------------------------------------------------------------------- *)
(* Try this for all polynomials in a basis. *)
(* ----------------------------------------------------------------------- *)
let reduceb cm basis = tryfind (fun p -> reduce1 cm p) basis in
(* ----------------------------------------------------------------------- *)
(* Reduction of a polynomial (always picking largest monomial possible). *)
(* ----------------------------------------------------------------------- *)
let rec reduce basis (pol,hist) =
match pol with
[] -> (pol,hist)
| cm::ptl -> try let q,hnew = reduceb cm basis in
reduce basis (grob_add q ptl,Add(hnew,hist))
with Failure _ ->
let q,hist' = reduce basis (ptl,hist) in
cm::q,hist' in
(* ----------------------------------------------------------------------- *)
(* Check for orthogonality w.r.t. LCM. *)
(* ----------------------------------------------------------------------- *)
let orthogonal l p1 p2 =
snd l = snd(grob_mmul (hd p1) (hd p2)) in
(* ----------------------------------------------------------------------- *)
(* Compute S-polynomial of two polynomials. *)
(* ----------------------------------------------------------------------- *)
let spoly cm ph1 ph2 =
match (ph1,ph2) with
([],h),p -> ([],h)
| p,([],h) -> ([],h)
| (cm1::ptl1,his1),(cm2::ptl2,his2) ->
(grob_sub (grob_cmul (mdiv cm cm1) ptl1)
(grob_cmul (mdiv cm cm2) ptl2),
Add(Mmul(mdiv cm cm1,his1),
Mmul(mdiv (minus_num(fst cm),snd cm) cm2,his2))) in
(* ----------------------------------------------------------------------- *)
(* Make a polynomial monic. *)
(* ----------------------------------------------------------------------- *)
let monic (pol,hist) =
if pol = [] then (pol,hist) else
let c',m' = hd pol in
(map (fun (c,m) -> (c//c',m)) pol,
Mmul((num_1 // c',map (K 0) m'),hist)) in
(* ----------------------------------------------------------------------- *)
(* The most popular heuristic is to order critical pairs by LCM monomial. *)
(* ----------------------------------------------------------------------- *)
let forder ((c1,m1),_) ((c2,m2),_) = morder_lt m1 m2 in
(* ----------------------------------------------------------------------- *)
(* Stupid stuff forced on us by lack of equality test on num type. *)
(* ----------------------------------------------------------------------- *)
let rec poly_lt p q =
match (p,q) with
p,[] -> false
| [],q -> true
| (c1,m1)::o1,(c2,m2)::o2 ->
c1 </ c2 or
c1 =/ c2 & (m1 < m2 or m1 = m2 & poly_lt o1 o2) in
let align ((p,hp),(q,hq)) =
if poly_lt p q then ((p,hp),(q,hq)) else ((q,hq),(p,hp)) in
let poly_eq p1 p2 =
forall2 (fun (c1,m1) (c2,m2) -> c1 =/ c2 & m1 = m2) p1 p2 in
let memx ((p1,h1),(p2,h2)) ppairs =
not (exists (fun ((q1,_),(q2,_)) -> poly_eq p1 q1 & poly_eq p2 q2)
ppairs) in
(* ----------------------------------------------------------------------- *)
(* Buchberger's second criterion. *)
(* ----------------------------------------------------------------------- *)
let criterion2 basis (lcm,((p1,h1),(p2,h2))) opairs =
exists (fun g -> not(poly_eq (fst g) p1) & not(poly_eq (fst g) p2) &
can (mdiv lcm) (hd(fst g)) &
not(memx (align(g,(p1,h1))) (map snd opairs)) &
not(memx (align(g,(p2,h2))) (map snd opairs))) basis in
(* ----------------------------------------------------------------------- *)
(* Test for hitting constant polynomial. *)
(* ----------------------------------------------------------------------- *)
let constant_poly p =
length p = 1 & forall ((=) 0) (snd(hd p)) in
(* ----------------------------------------------------------------------- *)
(* Grobner basis algorithm. *)
(* ----------------------------------------------------------------------- *)
let rec grobner_basis basis pairs =
Format.print_string(string_of_int(length basis)^" basis elements and "^
string_of_int(length pairs)^" critical pairs");
Format.print_newline();
match pairs with
[] -> basis
| (l,(p1,p2))::opairs ->
let (sp,hist as sph) = monic (reduce basis (spoly l p1 p2)) in
if sp = [] or criterion2 basis (l,(p1,p2)) opairs
then grobner_basis basis opairs else
if constant_poly sp then grobner_basis (sph::basis) [] else
let rawcps =
map (fun p -> mlcm (hd(fst p)) (hd sp),align(p,sph)) basis in
let newcps = filter
(fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) rawcps in
grobner_basis (sph::basis)
(merge forder opairs (mergesort forder newcps)) in
(* ----------------------------------------------------------------------- *)
(* Interreduce initial polynomials. *)
(* ----------------------------------------------------------------------- *)
let rec grobner_interreduce rpols ipols =
match ipols with
[] -> map monic (rev rpols)
| p::ps -> let p' = reduce (rpols @ ps) p in
if fst p' = [] then grobner_interreduce rpols ps
else grobner_interreduce (p'::rpols) ps in
(* ----------------------------------------------------------------------- *)
(* Overall function. *)
(* ----------------------------------------------------------------------- *)
let grobner pols =
let npols = map2 (fun p n -> p,Start n) pols (0--(length pols - 1)) in
let phists = filter (fun (p,_) -> p <> []) npols in
let bas = grobner_interreduce [] (map monic phists) in
let prs0 = allpairs (fun x y -> x,y) bas bas in
let prs1 = filter (fun ((x,_),(y,_)) -> poly_lt x y) prs0 in
let prs2 = map (fun (p,q) -> mlcm (hd(fst p)) (hd(fst q)),(p,q)) prs1 in
let prs3 =
filter (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) prs2 in
grobner_basis bas (mergesort forder prs3) in
(* ----------------------------------------------------------------------- *)
(* Get proof of contradiction from Grobner basis. *)
(* ----------------------------------------------------------------------- *)
let grobner_refute pols =
let gb = grobner pols in
snd(find (fun (p,h) -> length p = 1 & forall ((=)0) (snd(hd p))) gb) in
(* ----------------------------------------------------------------------- *)
(* Turn proof into a certificate as sum of multipliers. *)
(* *)
(* In principle this is very inefficient: in a heavily shared proof it may *)
(* make the same calculation many times. Could add a cache or something. *)
(* ----------------------------------------------------------------------- *)
let rec resolve_proof vars prf =
match prf with
Start(-1) -> []
| Start m -> [m,[num_1,map (K 0) vars]]
| Mmul(pol,lin) ->
let lis = resolve_proof vars lin in
map (fun (n,p) -> n,grob_cmul pol p) lis
| Add(lin1,lin2) ->
let lis1 = resolve_proof vars lin1
and lis2 = resolve_proof vars lin2 in
let dom = setify(union (map fst lis1) (map fst lis2)) in
map (fun n -> let a = try assoc n lis1 with Failure _ -> []
and b = try assoc n lis2 with Failure _ -> [] in
n,grob_add a b) dom in
(* ----------------------------------------------------------------------- *)
(* Run the procedure and produce Weak Nullstellensatz certificate. *)
(* ----------------------------------------------------------------------- *)
let grobner_weak vars pols =
let cert = resolve_proof vars (grobner_refute pols) in
let l =
itlist (itlist (lcm_num o denominator o fst) o snd) cert (num_1) in
l,map (fun (i,p) -> i,map (fun (d,m) -> (l*/d,m)) p) cert in
(* ----------------------------------------------------------------------- *)
(* Prove polynomial is in ideal generated by others, using Grobner basis. *)
(* ----------------------------------------------------------------------- *)
let grobner_ideal vars pols pol =
let pol',h = reduce (grobner pols) (grob_neg pol,Start(-1)) in
if pol' <> [] then failwith "grobner_ideal: not in the ideal" else
resolve_proof vars h in
(* ----------------------------------------------------------------------- *)
(* Produce Strong Nullstellensatz certificate for a power of pol. *)
(* ----------------------------------------------------------------------- *)
let grobner_strong vars pols pol =
if pol = [] then 1,num_1,[] else
let vars' = (concl TRUTH)::vars in
let grob_z = [num_1,1::(map (fun x -> 0) vars)]
and grob_1 = [num_1,(map (fun x -> 0) vars')]
and augment = map (fun (c,m) -> (c,0::m)) in
let pols' = map augment pols
and pol' = augment pol in
let allpols = (grob_sub (grob_mul grob_z pol') grob_1)::pols' in
let l,cert = grobner_weak vars' allpols in
let d = itlist (itlist (max o hd o snd) o snd) cert 0 in
let transform_monomial (c,m) =
grob_cmul (c,tl m) (grob_pow vars pol (d - hd m)) in
let transform_polynomial q = itlist (grob_add o transform_monomial) q [] in
let cert' = map (fun (c,q) -> c-1,transform_polynomial q)
(filter (fun (k,_) -> k <> 0) cert) in
d,l,cert' in
(* ----------------------------------------------------------------------- *)
(* Overall parametrized universal procedure for (semi)rings. *)
(* We return an IDEAL_CONV and the actual ring prover. *)
(* ----------------------------------------------------------------------- *)
let pth_step = prove
(`!(add:A->A->A) (mul:A->A->A) (n0:A).
(!x. mul n0 x = n0) /\
(!x y z. (add x y = add x z) <=> (y = z)) /\
(!w x y z. (add (mul w y) (mul x z) = add (mul w z) (mul x y)) <=>
(w = x) \/ (y = z))
==> (!a b c d. ~(a = b) /\ ~(c = d) <=>
~(add (mul a c) (mul b d) =
add (mul a d) (mul b c))) /\
(!n a b c d. ~(n = n0)
==> (a = b) /\ ~(c = d)
==> ~(add a (mul n c) = add b (mul n d)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM DE_MORGAN_THM] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`n0:A`; `n:A`; `d:A`; `c:A`]) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN ASM_SIMP_TAC[])
and FINAL_RULE = MATCH_MP(TAUT `(p ==> F) ==> (~q = p) ==> q`)
and false_tm = `F` in
let rec refute_disj rfn tm =
match tm with
Comb(Comb(Const("\\/",_),l),r) ->
DISJ_CASES (ASSUME tm) (refute_disj rfn l) (refute_disj rfn r)
| _ -> rfn tm in
fun (ring_dest_const,ring_mk_const,RING_EQ_CONV,
ring_neg_tm,ring_add_tm,ring_sub_tm,
ring_inv_tm,ring_mul_tm,ring_div_tm,ring_pow_tm,
RING_INTEGRAL,RABINOWITSCH_THM,RING_NORMALIZE_CONV) ->
let INITIAL_CONV =
TOP_DEPTH_CONV BETA_CONV THENC
PRESIMP_CONV THENC
CONDS_ELIM_CONV THENC
NNF_CONV THENC
(if is_iff(snd(strip_forall(concl RABINOWITSCH_THM)))
then GEN_REWRITE_CONV ONCE_DEPTH_CONV [RABINOWITSCH_THM]
else ALL_CONV) THENC
GEN_REWRITE_CONV REDEPTH_CONV
[
AND_FORALL_THM;
LEFT_AND_FORALL_THM;
RIGHT_AND_FORALL_THM;
LEFT_OR_FORALL_THM;
RIGHT_OR_FORALL_THM;
OR_EXISTS_THM;
LEFT_OR_EXISTS_THM;
RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM] in
let ring_dest_neg t =
let l,r = dest_comb t in
if l = ring_neg_tm then r else failwith "ring_dest_neg"
and ring_dest_inv t =
let l,r = dest_comb t in
if l = ring_inv_tm then r else failwith "ring_dest_inv"
and ring_dest_add = dest_binop ring_add_tm
and ring_mk_add = mk_binop ring_add_tm
and ring_dest_sub = dest_binop ring_sub_tm
and ring_dest_mul = dest_binop ring_mul_tm
and ring_mk_mul = mk_binop ring_mul_tm
and ring_dest_div = dest_binop ring_div_tm
and ring_dest_pow = dest_binop ring_pow_tm
and ring_mk_pow = mk_binop ring_pow_tm in
let rec grobvars tm acc =
if can ring_dest_const tm then acc
else if can ring_dest_neg tm then grobvars (rand tm) acc
else if can ring_dest_pow tm & is_numeral (rand tm)
then grobvars (lhand tm) acc
else if can ring_dest_add tm or can ring_dest_sub tm
or can ring_dest_mul tm
then grobvars (lhand tm) (grobvars (rand tm) acc)
else if can ring_dest_inv tm then
let gvs = grobvars (rand tm) [] in
if gvs = [] then acc else tm::acc
else if can ring_dest_div tm then
let lvs = grobvars (lhand tm) acc
and gvs = grobvars (rand tm) [] in
if gvs = [] then lvs else tm::acc
else tm::acc in
let rec grobify_term vars tm =
try if not(mem tm vars) then failwith "" else
[num_1,map (fun i -> if i = tm then 1 else 0) vars]
with Failure _ -> try
let x = ring_dest_const tm in
if x =/ num_0 then [] else [x,map (fun v -> 0) vars]
with Failure _ -> try
grob_neg(grobify_term vars (ring_dest_neg tm))
with Failure _ -> try
grob_inv(grobify_term vars (ring_dest_inv tm))
with Failure _ -> try
let l,r = ring_dest_add tm in
grob_add (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_sub tm in
grob_sub (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_mul tm in
grob_mul (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_div tm in
grob_div (grobify_term vars l) (grobify_term vars r)
with Failure _ -> try
let l,r = ring_dest_pow tm in
grob_pow vars (grobify_term vars l) (dest_small_numeral r)
with Failure _ ->
failwith "grobify_term: unknown or invalid term" in
let grobify_equation vars tm =
let l,r = dest_eq tm in
grob_sub (grobify_term vars l) (grobify_term vars r) in
let grobify_equations tm =
let cjs = conjuncts tm in
let rawvars =
itlist (fun eq a -> grobvars (lhand eq) (grobvars (rand eq) a))
cjs [] in
let vars = sort (fun x y -> x < y) (setify rawvars) in
vars,map (grobify_equation vars) cjs in
let holify_polynomial =
let holify_varpow (v,n) =
if n = 1 then v else ring_mk_pow v (mk_small_numeral n) in
let holify_monomial vars (c,m) =
let xps = map holify_varpow
(filter (fun (_,n) -> n <> 0) (zip vars m)) in
end_itlist ring_mk_mul (ring_mk_const c :: xps) in
let holify_polynomial vars p =
if p = [] then ring_mk_const (num_0)
else end_itlist ring_mk_add (map (holify_monomial vars) p) in
holify_polynomial in
let (pth_idom,pth_ine) = CONJ_PAIR(MATCH_MP
pth_step RING_INTEGRAL) in
let IDOM_RULE = CONV_RULE(REWR_CONV pth_idom) in
let PROVE_NZ n = EQF_ELIM(RING_EQ_CONV
(mk_eq(ring_mk_const n,ring_mk_const(num_0)))) in
let NOT_EQ_01 = PROVE_NZ (num_1)
and INE_RULE n = MATCH_MP(MATCH_MP pth_ine (PROVE_NZ n))
and MK_ADD th1 th2 = MK_COMB(AP_TERM ring_add_tm th1,th2) in
let execute_proof vars eths prf =
let x,th1 = SPEC_VAR(CONJUNCT1(CONJUNCT2 RING_INTEGRAL)) in
let y,th2 = SPEC_VAR th1 in
let z,th3 = SPEC_VAR th2 in
let SUB_EQ_RULE = GEN_REWRITE_RULE I
[SYM(INST [mk_comb(ring_neg_tm,z),x] th3)] in
let initpols = map (CONV_RULE(BINOP_CONV RING_NORMALIZE_CONV) o
SUB_EQ_RULE) eths in
let ADD_RULE th1 th2 =
CONV_RULE (BINOP_CONV RING_NORMALIZE_CONV)
(MK_COMB(AP_TERM ring_add_tm th1,th2))
and MUL_RULE vars m th =
CONV_RULE (BINOP_CONV RING_NORMALIZE_CONV)
(AP_TERM (mk_comb(ring_mul_tm,holify_polynomial vars [m]))
th) in
let execache = ref [] in
let memoize prf x = (execache := (prf,x)::(!execache)); x in
let rec assoceq a l =
match l with
[] -> failwith "assoceq"
| (x,y)::t -> if x==a then y else assoceq a t in
let rec run_proof vars prf =
try assoceq prf (!execache) with Failure _ ->
(match prf with
Start m -> el m initpols
| Add(p1,p2) ->
memoize prf (ADD_RULE (run_proof vars p1) (run_proof vars p2))
| Mmul(m,p2) ->
memoize prf (MUL_RULE vars m (run_proof vars p2))) in
let th = run_proof vars prf in
execache := []; CONV_RULE RING_EQ_CONV th in
let REFUTE tm =
if tm = false_tm then ASSUME tm else
let nths0,eths0 = partition (is_neg o concl) (CONJUNCTS(ASSUME tm)) in
let nths = filter (is_eq o rand o concl) nths0
and eths = filter (is_eq o concl) eths0 in
if eths = [] then
let th1 = end_itlist (fun th1 th2 -> IDOM_RULE(CONJ th1 th2)) nths in
let th2 = CONV_RULE(RAND_CONV(BINOP_CONV RING_NORMALIZE_CONV)) th1 in
let l,r = dest_eq(rand(concl th2)) in
EQ_MP (EQF_INTRO th2) (REFL l)
else if nths = [] & not(is_var ring_neg_tm) then
let vars,pols = grobify_equations(list_mk_conj(map concl eths)) in
execute_proof vars eths (grobner_refute pols)
else
let vars,l,cert,noteqth =
if nths = [] then
let vars,pols = grobify_equations(list_mk_conj(map concl eths)) in
let l,cert = grobner_weak vars pols in
vars,l,cert,NOT_EQ_01
else
let nth = end_itlist
(fun th1 th2 -> IDOM_RULE(CONJ th1 th2)) nths in
let vars,pol::pols =
grobify_equations(list_mk_conj(rand(concl nth)::map concl eths)) in
let deg,l,cert = grobner_strong vars pols pol in
let th1 =
CONV_RULE(RAND_CONV(BINOP_CONV RING_NORMALIZE_CONV)) nth in
let th2 = funpow deg (IDOM_RULE o CONJ th1) NOT_EQ_01 in
vars,l,cert,th2 in
Format.print_string("Translating certificate to HOL inferences");
Format.print_newline();
let cert_pos = map
(fun (i,p) -> i,filter (fun (c,m) -> c >/ num_0) p) cert
and cert_neg = map
(fun (i,p) -> i,map (fun (c,m) -> minus_num c,m)
(filter (fun (c,m) -> c </ num_0) p)) cert in
let herts_pos =
map (fun (i,p) -> i,holify_polynomial vars p) cert_pos
and herts_neg =
map (fun (i,p) -> i,holify_polynomial vars p) cert_neg in
let thm_fn pols =
if pols = [] then REFL(ring_mk_const num_0) else
end_itlist MK_ADD
(map (fun (i,p) -> AP_TERM(mk_comb(ring_mul_tm,p)) (el i eths))
pols) in
let th1 = thm_fn herts_pos and th2 = thm_fn herts_neg in
let th3 = CONJ(MK_ADD (SYM th1) th2) noteqth in
let th4 = CONV_RULE (RAND_CONV(BINOP_CONV RING_NORMALIZE_CONV))
(INE_RULE l th3) in
let l,r = dest_eq(rand(concl th4)) in
EQ_MP (EQF_INTRO th4) (REFL l) in
let RING tm =
let avs = frees tm in
let tm' = list_mk_forall(avs,tm) in
let th1 = INITIAL_CONV(mk_neg tm') in
let evs,bod = strip_exists(rand(concl th1)) in
if is_forall bod then failwith "RING: non-universal formula" else
let th1a = WEAK_DNF_CONV bod in
let boda = rand(concl th1a) in
let th2a = refute_disj REFUTE boda in
let th2b = TRANS th1a (EQF_INTRO(NOT_INTRO(DISCH boda th2a))) in
let th2 = UNDISCH(NOT_ELIM(EQF_ELIM th2b)) in
let th3 = itlist SIMPLE_CHOOSE evs th2 in
SPECL avs (MATCH_MP (FINAL_RULE (DISCH_ALL th3)) th1)
and ideal tms tm =
let rawvars = itlist grobvars (tm::tms) [] in
let vars = sort (fun x y -> x < y) (setify rawvars) in
let pols = map (grobify_term vars) tms and pol = grobify_term vars tm in
let cert = grobner_ideal vars pols pol in
map (fun n -> let p = assocd n cert [] in holify_polynomial vars p)
(0--(length pols-1)) in
RING,ideal;;
(* ----------------------------------------------------------------------- *)
(* Separate out the cases. *)
(* ----------------------------------------------------------------------- *)
let RING parms = fst(RING_AND_IDEAL_CONV parms);;
let ideal_cofactors parms = snd(RING_AND_IDEAL_CONV parms);;
(* ------------------------------------------------------------------------- *)
(* Simplify a natural number assertion to eliminate conditionals, DIV, MOD, *)
(* PRE, cutoff subtraction, EVEN and ODD. Try to do it in a way that makes *)
(* new quantifiers universal. At the moment we don't split "<=>" which would *)
(* make this quantifier selection work there too; better to do NNF first if *)
(* you care. This also applies to EVEN and ODD. *)
(* ------------------------------------------------------------------------- *)
let NUM_SIMPLIFY_CONV =
let pre_tm = `PRE`
and div_tm = `(DIV):num->num->num`
and mod_tm = `(MOD):num->num->num`
and p_tm = `P:num->bool` and n_tm = `n:num` and m_tm = `m:num`
and q_tm = `P:num->num->bool` and a_tm = `a:num` and b_tm = `b:num` in
let is_pre tm = is_comb tm & rator tm = pre_tm
and is_sub = is_binop `(-):num->num->num`
and is_divmod =
let is_div = is_binop div_tm and is_mod = is_binop mod_tm in
fun tm -> is_div tm or is_mod tm
and contains_quantifier =
can (find_term (fun t -> is_forall t or is_exists t or is_uexists t))
and BETA2_CONV = RATOR_CONV BETA_CONV THENC BETA_CONV
and PRE_ELIM_THM'' = CONV_RULE (RAND_CONV NNF_CONV) PRE_ELIM_THM
and SUB_ELIM_THM'' = CONV_RULE (RAND_CONV NNF_CONV) SUB_ELIM_THM
and DIVMOD_ELIM_THM'' = CONV_RULE (RAND_CONV NNF_CONV) DIVMOD_ELIM_THM
and pth_evenodd = prove
(`(EVEN(x) <=> (!y. ~(x = SUC(2 * y)))) /\
(ODD(x) <=> (!y. ~(x = 2 * y))) /\
(~EVEN(x) <=> (!y. ~(x = 2 * y))) /\
(~ODD(x) <=> (!y. ~(x = SUC(2 * y))))`,
REWRITE_TAC[GSYM NOT_EXISTS_THM; GSYM EVEN_EXISTS; GSYM ODD_EXISTS] THEN
REWRITE_TAC[NOT_EVEN; NOT_ODD]) in
let rec NUM_MULTIPLY_CONV pos tm =
if is_forall tm or is_exists tm or is_uexists tm then
BINDER_CONV (NUM_MULTIPLY_CONV pos) tm
else if is_imp tm & contains_quantifier tm then
COMB2_CONV (RAND_CONV(NUM_MULTIPLY_CONV(not pos)))
(NUM_MULTIPLY_CONV pos) tm
else if (is_conj tm or is_disj tm or is_iff tm) &
contains_quantifier tm
then BINOP_CONV (NUM_MULTIPLY_CONV pos) tm
else if is_neg tm & not pos & contains_quantifier tm then
RAND_CONV (NUM_MULTIPLY_CONV (not pos)) tm
else
try let t = find_term (fun t -> is_pre t & free_in t tm) tm in
let ty = type_of t in
let v = genvar ty in
let p = mk_abs(v,subst [v,t] tm) in
let th0 = if pos then PRE_ELIM_THM'' else PRE_ELIM_THM' in
let th1 = INST [p,p_tm; rand t,n_tm] th0 in
let th2 = CONV_RULE(COMB2_CONV (RAND_CONV BETA_CONV)
(BINDER_CONV(RAND_CONV BETA_CONV))) th1 in
CONV_RULE(RAND_CONV (NUM_MULTIPLY_CONV pos)) th2
with Failure _ -> try
let t = find_term (fun t -> is_sub t & free_in t tm) tm in
let ty = type_of t in
let v = genvar ty in
let p = mk_abs(v,subst [v,t] tm) in
let th0 = if pos then SUB_ELIM_THM'' else SUB_ELIM_THM' in
let th1 = INST [p,p_tm; lhand t,a_tm; rand t,b_tm] th0 in
let th2 = CONV_RULE(COMB2_CONV (RAND_CONV BETA_CONV)
(BINDER_CONV(RAND_CONV BETA_CONV))) th1 in
CONV_RULE(RAND_CONV (NUM_MULTIPLY_CONV pos)) th2
with Failure _ -> try
let t = find_term (fun t -> is_divmod t & free_in t tm) tm in
let x = lhand t and y = rand t in
let dtm = mk_comb(mk_comb(div_tm,x),y)
and mtm = mk_comb(mk_comb(mod_tm,x),y) in
let vd = genvar(type_of dtm)
and vm = genvar(type_of mtm) in
let p = list_mk_abs([vd;vm],subst[vd,dtm; vm,mtm] tm) in
let th0 = if pos then DIVMOD_ELIM_THM'' else DIVMOD_ELIM_THM' in
let th1 = INST [p,q_tm; x,m_tm; y,n_tm] th0 in
let th2 = CONV_RULE(COMB2_CONV(RAND_CONV BETA2_CONV)
(funpow 2 BINDER_CONV(RAND_CONV BETA2_CONV))) th1 in
CONV_RULE(RAND_CONV (NUM_MULTIPLY_CONV pos)) th2
with Failure _ -> REFL tm in
NUM_REDUCE_CONV THENC
CONDS_CELIM_CONV THENC
NNF_CONV THENC
NUM_MULTIPLY_CONV true THENC
NUM_REDUCE_CONV THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth_evenodd];;
(* ----------------------------------------------------------------------- *)
(* Natural number version of ring procedure with this normalization. *)
(* ----------------------------------------------------------------------- *)
let NUM_RING =
let NUM_INTEGRAL_LEMMA = prove
(`(w = x + d) /\ (y = z + e)
==> ((w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[
LEFT_ADD_DISTRIB;
RIGHT_ADD_DISTRIB; GSYM
ADD_ASSOC] THEN
ONCE_REWRITE_TAC[AC
ADD_AC
`a + b + c + d + e = a + c + e + b + d`] THEN
REWRITE_TAC[
EQ_ADD_LCANCEL;
EQ_ADD_LCANCEL_0;
MULT_EQ_0]) in
let NUM_INTEGRAL = prove
(`(!x. 0 * x = 0) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`,
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL [`w:num`; `x:num`] LE_CASES) THEN
DISJ_CASES_TAC (SPECL [`y:num`; `z:num`] LE_CASES) THEN
REPEAT(FIRST_X_ASSUM
(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS])) THEN
ASM_MESON_TAC[NUM_INTEGRAL_LEMMA; ADD_SYM; MULT_SYM]) in
let rawring =
RING(dest_numeral,mk_numeral,NUM_EQ_CONV,
genvar bool_ty,`(+):num->num->num`,genvar bool_ty,
genvar bool_ty,`(*):num->num->num`,genvar bool_ty,
`(EXP):num->num->num`,
NUM_INTEGRAL,TRUTH,NUM_NORMALIZE_CONV) in
let initconv = NUM_SIMPLIFY_CONV THENC GEN_REWRITE_CONV DEPTH_CONV [ADD1]
and t_tm = `T` in
fun tm -> let th = initconv tm in
if rand(concl th) = t_tm then th
else EQ_MP (SYM th) (rawring(rand(concl th)));;