(*
Author: Thomas C. Hales, 2003
GCD_CONV takes two HOL-light terms (NUMERALs) a and b and
produces a theorem of the form
|- GCD a b = g
(In particular, the arguments cannot be negative.)
*)
prioritize_num();;
parse_as_infix("||",(16,"right"));;
override_interface("||",`DIVIDE:num->num->bool`);;
(* Now prove the lemmas *)
let DIV_TAC t = EVERY[ REP_GEN_TAC;
REWRITE_TAC[DIVIDE];
DISCH_ALL_TAC;
REPEAT (FIRST_X_ASSUM CHOOSE_TAC);
TRY (EXISTS_TAC t)];;
let DIVIDE_EQ = prove_by_refinement(
`! a b. (((a || b) /\ (b || a)) ==> (a = b))`,
[
DIV_TAC `1`;
FIRST_X_ASSUM (fun th -> (POP_ASSUM MP_TAC) THEN REWRITE_TAC[th]);
ASM_CASES_TAC `b=0`;
ASM_REWRITE_TAC[];
ARITH_TAC;
REWRITE_TAC[ARITH_RULE `(b = m*m'*b) = (1*b = m*m'*b)`];
ASM_REWRITE_TAC[MULT_ASSOC;EQ_MULT_RCANCEL];
DISCH_THEN (fun th -> MP_TAC (REWRITE_RULE[MULT_EQ_1] (GSYM th)) );
DISCH_THEN (fun th -> REWRITE_TAC[CONJUNCT2 th] THEN ARITH_TAC);
]);;
let DIVIDE_SUMMAND = prove_by_refinement(
`!a b h. (((h|| b) /\ (h || (a+b))) ==> (h|| a))`,
[
DIV_TAC `m'-m`;
REWRITE_TAC[RIGHT_SUB_DISTRIB];
REPEAT (FIRST_X_ASSUM (fun th -> REWRITE_TAC[GSYM th]));
ARITH_TAC;
]);;
let GCD = new_definition(`GCD a b = @g.
((g || a) /\ (g || b) /\
(!h. (((h || a) /\ (h || b)) ==> (h || g))))`);;
let gcd_certificate = prove(`!a b g. ((? r s r' s' a' b'.
((a = a'*g) /\ (b = b'*g) /\ (g +r'*a+s'*b= r*a + s*b)))
==> (
GCD a b = g))`,
let tac1 = (
(REPEAT GEN_TAC)
THEN (DISCH_TAC)
THEN (REPEAT (POP_ASSUM CHOOSE_TAC))
THEN (REWRITE_TAC[
GCD])
THEN (MATCH_MP_TAC SELECT_UNIQUE)
THEN BETA_TAC
THEN GEN_TAC
THEN EQ_TAC) and
ygbranch = (
DISCH_TAC
THEN (MATCH_MP_TAC
DIVIDE_EQ)
THEN CONJ_TAC) and
ydivg_branch = (
(SUBGOAL_TAC (` (y || (r*a + s*b))/\ (y || (r'*a +s'*b))`))
THENL [((ASM MESON_TAC)[
DIVIDE_SUM;
DIVIDE_PROD]);
((ASM MESON_TAC)[
DIVIDE_SUMMAND])]
) and
gdivy_branch = (
(UNDISCH_TAC
(`(y||a) /\ (y ||b) /\ (!h. (((h||a)/\(h||b))==> (h||y)))`))
THEN (TAUT_TAC (` (A ==> B) ==> ((C /\ D/\ A)==> B)`))
THEN (DISCH_TAC)
THEN (POP_ASSUM MATCH_MP_TAC)
THEN (REWRITE_TAC[
DIVIDE])
THEN (CONJ_TAC)
THEN ((ASM MESON_TAC)[])
) and
yghyp_branch = (
(DISCH_TAC)
THEN (let x t = REWRITE_TAC[t] in (POP_ASSUM x))
THEN (CONJ_TAC)
THENL [((ASM MESON_TAC)[
DIVIDE]);ALL_TAC]
THEN (CONJ_TAC)
THENL [((ASM MESON_TAC)[
DIVIDE]);ALL_TAC]
THEN GEN_TAC
THEN DISCH_TAC
THEN (SUBGOAL_TAC (` (h || (r*a + s*b))/\ (h || (r'*a+s'*b))`))
THENL [((ASM MESON_TAC)[
DIVIDE_SUM;
DIVIDE_PROD]);
((ASM MESON_TAC)[
DIVIDE_SUMMAND])]
) in
tac1 THENL [ygbranch THENL [ydivg_branch;gdivy_branch];yghyp_branch]);;
(* Now compute gcd with CAML num calculations,
then check the answer in HOL-light *)
let gcd_num x1 x2 =
let rec gcd_data (a1,b1,x1,a2,b2,x2) =
if (x1 < (Int 0)) then
gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2)
else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num
b2,minus_num x2)
else if (x1 = (Int 0)) then (a2,b2,x2)
else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1)
else (
let r = (quo_num x2 x1) in
gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1)
) in
gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);;
let gcd_num x1 x2 =
let rec gcd_data (a1,b1,x1,a2,b2,x2) =
if (x1 < (Int 0)) then
gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2)
else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num
b2,minus_num x2)
else if (x1 = (Int 0)) then (a2,b2,x2)
else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1)
else (
let r = (quo_num x2 x1) in
gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1)
) in
gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);;
(* g = gcd, (a',b') = (a,b)/g, g +r1'*a+s1'*b = r1*a+s1*b *)
let gcd_numdata a b =
let a = abs_num a in
let b = abs_num b in
let Z = Int 0 in
let (r,s,g) = gcd_num a b in
let a' = if (g=Z) then Z else round_num(a//g) in
let b' = if (g=Z) then Z else round_num(b//g) in
let _ = if not(a=a'*/g) then failwith "GCD_CONV a" else 0 in
let _ = if not(b=b'*/g) then failwith "GCD_CONV b" else 0 in
let _ = if not(g=r*/a+/s*/b) then failwith "GCD_CONV g" else 0 in
let (r1,r1') = if (r >/ Z) then (r,Z) else (Z,minus_num r) in
let (s1,s1') = if (s >/ Z) then (s,Z) else (Z,minus_num s) in
(g,a,b,a',b',r1',s1',r1,s1);;
(* Here is the conversion.
Example:
GCD_CONV (`66`) (`144`)
*)
let GCD_CONV at bt =
let a = dest_numeral at in
let b = dest_numeral bt in
let (g,a,b,a',b',r1',s1',r1,s1) = gcd_numdata a b in
prove(parse_term("GCD "^(string_of_num a)^" "^(string_of_num b)^" = "^
(string_of_num g)),
(MATCH_MP_TAC gcd_certificate)
THEN (EXISTS_TAC (mk_numeral r1))
THEN (EXISTS_TAC (mk_numeral s1))
THEN (EXISTS_TAC (mk_numeral r1'))
THEN (EXISTS_TAC (mk_numeral s1'))
THEN (EXISTS_TAC (mk_numeral a'))
THEN (EXISTS_TAC (mk_numeral b'))
THEN (ARITH_TAC));;
(* Example:
hol_gcd 66 144
This version can overflow on CAML integers before it reaches hol-light.
Example:
hol_gcd 1000000000000000000 10000000000000000000000
- : thm = |- GCD 660865024 843055104 = 262144
*)
let hol_gcd a b = GCD_CONV (mk_small_numeral a) (mk_small_numeral b);;
remove_interface ("||");;
pop_priority();;
(* test code *)
exception Test_suite_num_ext_gcd of string;;
(* For the tests we use integers a and b. These can overflow if
a and b are too large, so that we should confine ourselves to
tests that are not too large.
*)
let test_num_ext_gcd (a, b) =
let a1 = string_of_int (abs a) in
let b1 = string_of_int (abs b) in
let c = gcd a b in
let c1 = string_of_int (abs c) in
let th = GCD_CONV (mk_small_numeral a) (mk_small_numeral b) in
if (not (hyp th = ([]:term list))) then raise
(failwith ("num_ext_gcd test suite failure "^a1^" "^b1))
else if (not (concl th = (parse_term ("GCD "^a1^" "^b1^"="^c1))))
then raise (failwith ("num_ext_gcd test suite failure "^a1^" "^b1))
else ();;
let test_suite_num_ext_gcd =
let _ =
map test_num_ext_gcd
[(0,0);(0,1);(1,0);(-0,-0);
(2,3);(4,6);
(0,2);(2,0);
(10,100);(100,10);(17,100);(100,17)] in
print_string "num_ext_gcd loaded\n";;
let divide = DIVIDE and
gcd = GCD and
gcd_conv = GCD_CONV;;