(* ========================================================================= *)
(* Elementary real analysis, with some supporting HOL88 compatibility stuff. *)
(* ========================================================================= *)
let dest_neg_imp tm =
try dest_imp tm with Failure _ ->
try (dest_neg tm,mk_const("F",[]))
with Failure _ -> failwith "dest_neg_imp";;
(* ------------------------------------------------------------------------- *)
(* The quantifier movement conversions. *)
(* ------------------------------------------------------------------------- *)
let (CONV_OF_RCONV: conv -> conv) =
let rec get_bv tm =
if is_abs tm then bndvar tm
else if is_comb tm then try get_bv (rand tm)
with Failure _ -> get_bv (rator tm)
else failwith "" in
fun conv tm ->
let v = get_bv tm in
let th1 = conv tm in
let th2 = ONCE_DEPTH_CONV (GEN_ALPHA_CONV v) (rhs(concl th1)) in
TRANS th1 th2;;
let (CONV_OF_THM: thm -> conv) =
CONV_OF_RCONV o REWR_CONV;;
let (X_FUN_EQ_CONV:term->conv) =
fun v -> (REWR_CONV FUN_EQ_THM) THENC GEN_ALPHA_CONV v;;
let (FUN_EQ_CONV:conv) =
fun tm ->
let vars = frees tm in
let op,[ty1;ty2] = dest_type(type_of (lhs tm)) in
if op = "fun"
then let varnm =
if (is_vartype ty1) then "x" else
hd(explode(fst(dest_type ty1))) in
let x = variant vars (mk_var(varnm,ty1)) in
X_FUN_EQ_CONV x tm
else failwith "FUN_EQ_CONV";;
let (SINGLE_DEPTH_CONV:conv->conv) =
let rec SINGLE_DEPTH_CONV conv tm =
try conv tm with Failure _ ->
(SUB_CONV (SINGLE_DEPTH_CONV conv) THENC (TRY_CONV conv)) tm in
SINGLE_DEPTH_CONV;;
let (OLD_SKOLEM_CONV:conv) =
SINGLE_DEPTH_CONV (REWR_CONV SKOLEM_THM);;
let (X_SKOLEM_CONV:term->conv) =
fun v -> OLD_SKOLEM_CONV THENC GEN_ALPHA_CONV v;;
let EXISTS_UNIQUE_CONV tm =
let v = bndvar(rand tm) in
let th1 = REWR_CONV EXISTS_UNIQUE_THM tm in
let tm1 = rhs(concl th1) in
let vars = frees tm1 in
let v = variant vars v in
let v' = variant (v::vars) v in
let th2 =
(LAND_CONV(GEN_ALPHA_CONV v) THENC
RAND_CONV(BINDER_CONV(GEN_ALPHA_CONV v') THENC
GEN_ALPHA_CONV v)) tm1 in
TRANS th1 th2;;
let NOT_FORALL_CONV = CONV_OF_THM NOT_FORALL_THM;;
let NOT_EXISTS_CONV = CONV_OF_THM NOT_EXISTS_THM;;
let RIGHT_IMP_EXISTS_CONV = CONV_OF_THM RIGHT_IMP_EXISTS_THM;;
let FORALL_IMP_CONV = CONV_OF_RCONV
(REWR_CONV TRIV_FORALL_IMP_THM ORELSEC
REWR_CONV RIGHT_FORALL_IMP_THM ORELSEC
REWR_CONV LEFT_FORALL_IMP_THM);;
let EXISTS_AND_CONV = CONV_OF_RCONV
(REWR_CONV TRIV_EXISTS_AND_THM ORELSEC
REWR_CONV LEFT_EXISTS_AND_THM ORELSEC
REWR_CONV RIGHT_EXISTS_AND_THM);;
let LEFT_IMP_EXISTS_CONV = CONV_OF_THM LEFT_IMP_EXISTS_THM;;
let LEFT_AND_EXISTS_CONV tm =
let v = bndvar(rand(rand(rator tm))) in
(REWR_CONV LEFT_AND_EXISTS_THM THENC TRY_CONV (GEN_ALPHA_CONV v)) tm;;
let RIGHT_AND_EXISTS_CONV =
CONV_OF_THM RIGHT_AND_EXISTS_THM;;
let AND_FORALL_CONV = CONV_OF_THM AND_FORALL_THM;;
(* ------------------------------------------------------------------------- *)
(* The slew of named tautologies. *)
(* ------------------------------------------------------------------------- *)
let F_IMP = TAUT `!t. ~t ==> t ==> F`;;
let LEFT_AND_OVER_OR = TAUT
`!t1 t2 t3. t1 /\ (t2 \/ t3) <=> t1 /\ t2 \/ t1 /\ t3`;;
let RIGHT_AND_OVER_OR = TAUT
`!t1 t2 t3. (t2 \/ t3) /\ t1 <=> t2 /\ t1 \/ t3 /\ t1`;;
(* ------------------------------------------------------------------------- *)
(* Something trivial and useless. *)
(* ------------------------------------------------------------------------- *)
let INST_TY_TERM(substl,insttyl) th = INST substl (INST_TYPE insttyl th);;
(* ------------------------------------------------------------------------- *)
(* Derived rules. *)
(* ------------------------------------------------------------------------- *)
let NOT_MP thi th =
try MP thi th with Failure _ ->
try let t = dest_neg (concl thi) in
MP(MP (SPEC t F_IMP) thi) th
with Failure _ -> failwith "NOT_MP";;
(* ------------------------------------------------------------------------- *)
(* Creating half abstractions. *)
(* ------------------------------------------------------------------------- *)
let MK_ABS qth =
try let ov = bndvar(rand(concl qth)) in
let bv,rth = SPEC_VAR qth in
let sth = ABS bv rth in
let cnv = ALPHA_CONV ov in
CONV_RULE(BINOP_CONV cnv) sth
with Failure _ -> failwith "MK_ABS";;
let HALF_MK_ABS th =
try let th1 = MK_ABS th in
CONV_RULE(LAND_CONV ETA_CONV) th1
with Failure _ -> failwith "HALF_MK_ABS";;
(* ------------------------------------------------------------------------- *)
(* Old substitution primitive, now a (not very efficient) derived rule. *)
(* ------------------------------------------------------------------------- *)
let SUBST thl pat th =
let eqs,vs = unzip thl in
let gvs = map (genvar o type_of) vs in
let gpat = subst (zip gvs vs) pat in
let ls,rs = unzip (map (dest_eq o concl) eqs) in
let ths = map (ASSUME o mk_eq) (zip gvs rs) in
let th1 = ASSUME gpat in
let th2 = SUBS ths th1 in
let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
let th4 = INST (zip ls gvs) th3 in
MP (rev_itlist (C MP) eqs th4) th;;
(* ------------------------------------------------------------------------- *)
(* Various theorems have different names. *)
(* ------------------------------------------------------------------------- *)
prioritize_num();;
let LESS_EQUAL_ANTISYM = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_ANTISYM)));;
let NOT_LESS_0 = GEN_ALL(EQF_ELIM(SPEC_ALL(CONJUNCT1 LT)));;
let LESS_LEMMA1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL(CONJUNCT2 LT))));;
let LESS_EQUAL_ADD = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_EXISTS)));;
let LESS_EQ_IMP_LESS_SUC = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_SUC_LE)));;
let LESS_MONO_ADD = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_ADD_RCANCEL)));;
let LESS_SUC = ARITH_RULE `!m n. m < n ==> m < (SUC n)`;;
let LESS_ADD_1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL
(REWRITE_RULE[ADD1] LT_EXISTS))));;
let OR_LESS = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_SUC_LT)));;
let SUB_EQ_EQ_0 = ARITH_RULE `!m n. (m - n = m) <=> (m = 0) \/ (n = 0)`;;
let LESS_OR = ARITH_RULE `!m n. m < n ==> (SUC m) <= n`;;
let SUB_OLD = prove(`(!m. 0 - m = 0) /\
(!m n. (SUC m) - n = (if m < n then 0 else SUC(m - n)))`,
REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN TRY (POP_ASSUM MP_TAC) THEN
ARITH_TAC);;
(*============================================================================*)
(* Various useful tactics, conversions etc. *)
(*============================================================================*)
(*----------------------------------------------------------------------------*)
(* SYM_CANON_CONV - Canonicalizes single application of symmetric operator *)
(* Rewrites `so as to make fn true`, e.g. fn = $<< or fn = curry$= `1` o fst *)
(*----------------------------------------------------------------------------*)
let SYM_CANON_CONV sym fn =
REWR_CONV sym o
check (not o fn o ((snd o dest_comb) F_F I) o dest_comb);;
(*----------------------------------------------------------------------------*)
(* IMP_SUBST_TAC - Implicational substitution for deepest matchable term *)
(*----------------------------------------------------------------------------*)
let (IMP_SUBST_TAC:thm_tactic) =
fun th (asl,w) ->
let tms = find_terms (can (PART_MATCH (lhs o snd o dest_imp) th)) w in
let tm1 = hd (sort free_in tms) in
let th1 = PART_MATCH (lhs o snd o dest_imp) th tm1 in
let (a,(l,r)) = (I F_F dest_eq) (dest_imp (concl th1)) in
let gv = genvar (type_of l) in
let pat = subst[gv,l] w in
null_meta,
[(asl,a); (asl,subst[(r,gv)] pat)],
fun i [t1;t2] -> SUBST[(SYM(MP th1 t1),gv)] pat t2;;
(*---------------------------------------------------------------*)
(* EXT_CONV `!x. f x = g x` = |- (!x. f x = g x) = (f = g) *)
(*---------------------------------------------------------------*)
let EXT_CONV = SYM o uncurry X_FUN_EQ_CONV o
(I F_F (mk_eq o (rator F_F rator) o dest_eq)) o dest_forall;;
(*----------------------------------------------------------------------------*)
(* EQUAL_TAC - Strip down to unequal core (usually too enthusiastic) *)
(*----------------------------------------------------------------------------*)
let EQUAL_TAC = REPEAT(FIRST [AP_TERM_TAC; AP_THM_TAC; ABS_TAC]);;
(*----------------------------------------------------------------------------*)
(* X_BETA_CONV `v` `tm[v]` = |- tm[v] = (\v. tm[v]) v *)
(*----------------------------------------------------------------------------*)
let X_BETA_CONV v tm =
SYM(BETA_CONV(mk_comb(mk_abs(v,tm),v)));;
(*----------------------------------------------------------------------------*)
(* EXACT_CONV - Rewrite with theorem matching exactly one in a list *)
(*----------------------------------------------------------------------------*)
let EXACT_CONV =
ONCE_DEPTH_CONV o FIRST_CONV o
map (fun t -> K t o check((=)(lhs(concl t))));;
(*----------------------------------------------------------------------------*)
(* Rather ad-hoc higher-order fiddling conversion *)
(* |- (\x. f t1[x] ... tn[x]) = (\x. f ((\x. t1[x]) x) ... ((\x. tn[x]) x)) *)
(*----------------------------------------------------------------------------*)
let HABS_CONV tm =
let v,bod = dest_abs tm in
let hop,pl = strip_comb bod in
let eql = rev(map (X_BETA_CONV v) pl) in
ABS v (itlist (C(curry MK_COMB)) eql (REFL hop));;
(*----------------------------------------------------------------------------*)
(* Expand an abbreviation *)
(*----------------------------------------------------------------------------*)
let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o
check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;;
(* ------------------------------------------------------------------------- *)
(* Set up the reals. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* Link a few theorems. *)
(* ------------------------------------------------------------------------- *)
let REAL_10 = REAL_ARITH `~(&1 = &0)`;;
let REAL_LDISTRIB = REAL_ADD_LDISTRIB;;
let REAL_LT_IADD = REAL_ARITH `!x y z. y < z ==> x + y < x + z`;;
(*----------------------------------------------------------------------------*)
(* Prove lots of boring field theorems *)
(*----------------------------------------------------------------------------*)
let REAL_MUL_RID = prove(
`!x. x * &1 = x`,
GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_MUL_LID);;
let REAL_MUL_RINV = prove(
`!x. ~(x = &0) ==> (x * (inv x) = &1)`,
GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_MUL_LINV);;
let REAL_RDISTRIB = prove(
`!x y z. (x + y) * z = (x * z) + (y * z)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_LDISTRIB);;
let REAL_EQ_LADD = prove(
`!x y z. (x + y = x + z) <=> (y = z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o AP_TERM `(+) (-- x)`) THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID];
DISCH_THEN SUBST1_TAC THEN REFL_TAC]);;
let REAL_NEG_ADD = prove(
`!x y. --(x + y) = (--x) + (--y)`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[GSYM
REAL_LNEG_UNIQ] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (a + c) + (b + d)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_LT_LADD = prove(
`!x y z. (x + y) < (x + z) <=> y < z`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `--x` o MATCH_MP REAL_LT_IADD) THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID];
MATCH_ACCEPT_TAC REAL_LT_IADD]);;
let REAL_LE_LT = prove(
`!x y. x <= y <=> x < y \/ (x = y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_le] THEN EQ_TAC THENL
[REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL [`x:real`; `y:real`]
REAL_LT_TOTAL) THEN ASM_REWRITE_TAC[];
DISCH_THEN(DISJ_CASES_THEN2
((then_) (MATCH_MP_TAC
REAL_LT_GT) o ACCEPT_TAC) SUBST1_TAC) THEN
MATCH_ACCEPT_TAC
REAL_LT_REFL]);;
let REAL_LT_LE = prove(
`!x y. x < y <=> x <= y /\ ~(x = y)`,
let lemma = TAUT `~(a /\ ~a)` in
REPEAT GEN_TAC THEN REWRITE_TAC[
REAL_LE_LT; RIGHT_AND_OVER_OR; lemma]
THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM MP_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[
REAL_LT_REFL]);;
let REAL_LTE_TRANS = prove(
`!x y z. x < y /\ y <= z ==> x < z`,
REPEAT GEN_TAC THEN REWRITE_TAC[
REAL_LE_LT; LEFT_AND_OVER_OR] THEN
DISCH_THEN(DISJ_CASES_THEN2 (ACCEPT_TAC o MATCH_MP
REAL_LT_TRANS)
(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN REWRITE_TAC[]);;
let REAL_LE_TRANS = prove(
`!x y z. x <= y /\ y <= z ==> x <= z`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [
REAL_LE_LT] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (DISJ_CASES_THEN2 ASSUME_TAC SUBST1_TAC))
THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o C CONJ (ASSUME `y < z`)) THEN
DISCH_THEN(ACCEPT_TAC o MATCH_MP
REAL_LT_IMP_LE o MATCH_MP
REAL_LET_TRANS));;
let REAL_NEG_LT0 = prove(
`!x. (--x) < &0 <=> &0 < x`,
GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`--x`; `&0`; `x:real`]
REAL_LT_RADD)) THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_LE_MUL = prove(
`!x y. &0 <= x /\ &0 <= y ==> &0 <= (x * y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
REAL_LE_LT] THEN
MAP_EVERY ASM_CASES_TAC [`&0 = x`; `&0 = y`] THEN
ASM_REWRITE_TAC[] THEN TRY(FIRST_ASSUM(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[
REAL_MUL_LZERO;
REAL_MUL_RZERO] THEN
DISCH_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC
REAL_LT_MUL THEN
ASM_REWRITE_TAC[]);;
let REAL_LT_ADD = prove(
`!x y. &0 < x /\ &0 < y ==> &0 < (x + y)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP
REAL_LT_ADD2) THEN
REWRITE_TAC[REAL_ADD_LID]);;
let REAL_LT_ADDNEG = prove(
`!x y z. y < (x + (--z)) <=> (y + z) < x`,
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL [`y:real`; `x + (--z)`; `z:real`]
REAL_LT_RADD)) THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_ADD_LINV;
REAL_ADD_RID]);;
let REAL_SUB_0 = prove(
`!x y. (x - y = &0) <=> (x = y)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o C AP_THM `y:real` o AP_TERM `(+)`) THEN
REWRITE_TAC[
REAL_SUB_ADD; REAL_ADD_LID];
DISCH_THEN SUBST1_TAC THEN MATCH_ACCEPT_TAC
REAL_SUB_REFL]);;
let REAL_NEG_EQ0 = prove(
`!x. (--x = &0) <=> (x = &0)`,
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o AP_TERM `(+) x`);
DISCH_THEN(MP_TAC o AP_TERM `(+) (--x)`)] THEN
REWRITE_TAC[
REAL_ADD_RINV; REAL_ADD_LINV;
REAL_ADD_RID] THEN
DISCH_THEN SUBST1_TAC THEN REFL_TAC);;
let REAL_EQ_LMUL = prove(
`!x y z. (x * y = x * z) <=> (x = &0) \/ (y = z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o AP_TERM `(*) (inv x)`) THEN
ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(fun th -> REWRITE_TAC
[REAL_MUL_ASSOC; MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[REAL_MUL_LID];
DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC) THEN
REWRITE_TAC[REAL_MUL_LZERO]]);;
let REAL_EQ_RMUL = prove(
`!x y z. (x * z = y * z) <=> (z = &0) \/ (x = y)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_EQ_LMUL);;
let REAL_SUB_LDISTRIB = prove(
`!x y z. x * (y - z) = (x * y) - (x * z)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_LDISTRIB; REAL_NEG_RMUL]);;
let REAL_SUB_RDISTRIB = prove(
`!x y z. (x - y) * z = (x * z) - (y * z)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_SUB_LDISTRIB);;
let REAL_NEG_EQ = prove(
`!x y. (--x = y) <=> (x = --y)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(SUBST1_TAC o SYM); DISCH_THEN SUBST1_TAC] THEN
REWRITE_TAC[REAL_NEGNEG]);;
let REAL_NEG_MINUS1 = prove(
`!x. --x = (--(&1)) * x`,
GEN_TAC THEN REWRITE_TAC[GSYM REAL_NEG_LMUL] THEN
REWRITE_TAC[REAL_MUL_LID]);;
let REAL_INV_NZ = prove(
`!x. ~(x = &0) ==> ~(inv x = &0)`,
GEN_TAC THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o C AP_THM `x:real` o AP_TERM `(*)`) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[
REAL_MUL_LZERO; REAL_10]);;
let REAL_INVINV = prove(
`!x. ~(x = &0) ==> (inv (inv x) = x)`,
GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
REAL_MUL_RINV) THEN
ASM_CASES_TAC `inv x = &0` THEN
ASM_REWRITE_TAC[
REAL_MUL_RZERO; GSYM REAL_10] THEN
MP_TAC(SPECL [`inv(inv x)`; `x:real`; `inv x`] REAL_EQ_RMUL)
THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN
FIRST_ASSUM ACCEPT_TAC);;
let REAL_LT_IMP_NE = prove(
`!x y. x < y ==> ~(x = y)`,
REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[
REAL_LT_REFL]);;
let REAL_LT_LMUL_0 = prove(
`!x y. &0 < x ==> (&0 < (x * y) <=> &0 < y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL
[FIRST_ASSUM(fun th ->
DISCH_THEN(MP_TAC o CONJ (MATCH_MP
REAL_INV_POS th))) THEN
DISCH_THEN(MP_TAC o MATCH_MP
REAL_LT_MUL) THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC
[MATCH_MP REAL_MUL_LINV (GSYM (MATCH_MP
REAL_LT_IMP_NE th))]) THEN
REWRITE_TAC[REAL_MUL_LID];
DISCH_TAC THEN MATCH_MP_TAC
REAL_LT_MUL THEN ASM_REWRITE_TAC[]]);;
let REAL_LT_RMUL_IMP = prove(
`!x y z. x < y /\ &0 < z ==> (x * z) < (y * z)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
POP_ASSUM(fun th -> REWRITE_TAC[GEN_ALL(MATCH_MP
REAL_LT_RMUL_EQ th)]));;
let REAL_LT_LMUL_IMP = prove(
`!x y z. y < z /\ &0 < x ==> (x * y) < (x * z)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
POP_ASSUM(fun th -> REWRITE_TAC[GEN_ALL(MATCH_MP
REAL_LT_LMUL_EQ th)]));;
let REAL_LINV_UNIQ = prove(
`!x y. (x * y = &1) ==> (x = inv y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN
ASM_REWRITE_TAC[
REAL_MUL_LZERO; GSYM REAL_10] THEN
DISCH_THEN(MP_TAC o AP_TERM `(*) (inv x)`) THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RID] THEN
DISCH_THEN SUBST1_TAC THEN CONV_TAC SYM_CONV THEN
POP_ASSUM MP_TAC THEN MATCH_ACCEPT_TAC REAL_INVINV);;
let REAL_RINV_UNIQ = prove(
`!x y. (x * y = &1) ==> (y = inv x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC REAL_LINV_UNIQ);;
let REAL_NEG_INV = prove(
`!x. ~(x = &0) ==> (--(inv x) = inv(--x))`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LINV_UNIQ THEN
REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL] THEN
POP_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[REAL_NEGNEG]);;
let REAL_INV_1OVER = prove(
`!x. inv x = &1 / x`,
GEN_TAC THEN REWRITE_TAC[real_div; REAL_MUL_LID]);;
(*----------------------------------------------------------------------------*)
(* Prove homomorphisms for the inclusion map *)
(*----------------------------------------------------------------------------*)
let REAL = prove(
`!n. &(SUC n) = &n + &1`,
REWRITE_TAC[ADD1; REAL_OF_NUM_ADD]);;
let REAL_INJ = prove(
`!m n. (&m = &n) <=> (m = n)`,
let th = prove(`(m = n) <=> m:num <= n /\ n <= m`,
EQ_TAC THENL
[DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[LE_REFL];
MATCH_ACCEPT_TAC LESS_EQUAL_ANTISYM]) in
REPEAT GEN_TAC THEN REWRITE_TAC[th; GSYM REAL_LE_ANTISYM; REAL_LE]);;
let REAL_ADD = prove(
`!m n. &m + &n = &(m + n)`,
INDUCT_TAC THEN REWRITE_TAC[
REAL;
ADD; REAL_ADD_LID] THEN
RULE_ASSUM_TAC GSYM THEN GEN_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
REAL_ADD_AC]);;
(*----------------------------------------------------------------------------*)
(* Now more theorems *)
(*----------------------------------------------------------------------------*)
let REAL_LT_MULTIPLE = prove(
`!n d. 1 < n ==> (d < (&n * d) <=> &0 < d)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN INDUCT_TAC THENL
[REWRITE_TAC[num_CONV `1`;
NOT_LESS_0];
POP_ASSUM MP_TAC THEN ASM_CASES_TAC `1 < n` THEN
ASM_REWRITE_TAC[] THENL
[DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[
REAL; REAL_LDISTRIB;
REAL_MUL_RID;
REAL_LT_ADDL] THEN
MATCH_MP_TAC
REAL_LT_RMUL_0 THEN REWRITE_TAC[
REAL_LT] THEN
MATCH_MP_TAC
LT_TRANS THEN EXISTS_TAC `1` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[num_CONV `1`;
LT_0];
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LESS_LEMMA1) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[
REAL; REAL_LDISTRIB;
REAL_MUL_RID] THEN
REWRITE_TAC[
REAL_LT_ADDL]]]);;
let REAL_LT_FRACTION = prove(
`!n d. (1 < n) ==> ((d / &n) < d <=> &0 < d)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[
NOT_LESS_0] THEN DISCH_TAC THEN
UNDISCH_TAC `1 < n` THEN
FIRST_ASSUM(fun th -> let th1 = REWRITE_RULE[GSYM
REAL_INJ] th in
MAP_EVERY ASSUME_TAC [th1; REWRITE_RULE[
REAL_LT_NZ] th1]) THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV)
[GSYM(MATCH_MP
REAL_LT_RMUL_EQ th)]) THEN
REWRITE_TAC[
real_div; GSYM REAL_MUL_ASSOC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[
REAL_MUL_RID] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC
REAL_LT_MULTIPLE);;
let REAL_SUB_SUB = prove(
`!x y. (x - y) - x = --y`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + c = (c + a) + b`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_LT_NEG = prove(
`!x y. --x < --y <=> y < x`,
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL[`--x`; `--y`; `x + y`]
REAL_LT_RADD)) THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[REAL_ADD_ASSOC;
REAL_ADD_RINV; REAL_ADD_LID]);;
let REAL_LTE_ADD = prove(
`!x y. &0 < x /\ &0 <= y ==> &0 < (x + y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBST1_TAC(SYM(SPEC `&0` REAL_ADD_LID)) THEN
MATCH_MP_TAC
REAL_LTE_ADD2 THEN
ASM_REWRITE_TAC[]);;
let REAL_LT_MUL2_ALT = prove(
`!x1 x2 y1 y2. &0 <= x1 /\ &0 <= y1 /\ x1 < x2 /\ y1 < y2 ==>
(x1 * y1) < (x2 * y2)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
REWRITE_TAC[
REAL_SUB_RZERO] THEN
SUBGOAL_THEN `!a b c d.
(a * b) - (c * d) = ((a * b) - (a * d)) + ((a * d) - (c * d))`
MP_TAC THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (b + c) + (a + d)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID];
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
REWRITE_TAC[GSYM
REAL_SUB_LDISTRIB; GSYM
REAL_SUB_RDISTRIB] THEN
DISCH_THEN STRIP_ASSUME_TAC THEN
MATCH_MP_TAC
REAL_LTE_ADD THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_LT_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `x1:real` THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC
REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]]);;
let REAL_SUB_TRIANGLE = prove(
`!a b c. (a - b) + (b - c) = a - c`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (b + c) + (a + d)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_SUB_INV2 = prove(
`!x y. ~(x = &0) /\ ~(y = &0) ==>
(inv(x) - inv(y) = (y - x) / (x * y))`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
REWRITE_TAC[
real_div;
REAL_SUB_RDISTRIB] THEN
SUBGOAL_THEN `inv(x * y) = inv(x) * inv(y)` SUBST1_TAC THENL
[MATCH_MP_TAC
REAL_INV_MUL_WEAK THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN
EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_MUL_RINV th]) THEN
REWRITE_TAC[REAL_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN
EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[REAL_MUL_LID]);;
let REAL_MEAN = prove(
`!x y. x < y ==> ?z. x < z /\ z < y`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP
REAL_DOWN o ONCE_REWRITE_RULE[GSYM
REAL_SUB_LT])
THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `x + d` THEN ASM_REWRITE_TAC[
REAL_LT_ADDR] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
ASM_REWRITE_TAC[GSYM
REAL_LT_SUB_LADD]);;
let REAL_EQ_LMUL2 = prove(
`!x y z. ~(x = &0) ==> ((y = z) <=> (x * y = x * z))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPECL [`x:real`; `y:real`; `z:real`]
REAL_EQ_LMUL) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN REFL_TAC);;
let REAL_LE_MUL2V = prove(
`!x1 x2 y1 y2.
(& 0) <= x1 /\ (& 0) <= y1 /\ x1 <= x2 /\ y1 <= y2 ==>
(x1 * y1) <= (x2 * y2)`,
REPEAT GEN_TAC THEN
SUBST1_TAC(SPECL [`x1:real`; `x2:real`]
REAL_LE_LT) THEN
ASM_CASES_TAC `x1:real = x2` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL
[UNDISCH_TAC `&0 <= x2` THEN
DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[
REAL_LE_LT]) THENL
[FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP
REAL_LE_LMUL_LOCAL th]);
SUBST1_TAC(SYM(ASSUME `&0 = x2`)) THEN
REWRITE_TAC[
REAL_MUL_LZERO;
REAL_LE_REFL]]; ALL_TAC] THEN
UNDISCH_TAC `y1 <= y2` THEN
DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[
REAL_LE_LT]) THENL
[MATCH_MP_TAC
REAL_LT_IMP_LE THEN MATCH_MP_TAC
REAL_LT_MUL2_ALT THEN
ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[]] THEN
UNDISCH_TAC `&0 <= y1` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[
REAL_LE_LT]) THENL
[FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP
REAL_LE_RMUL_EQ th]) THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
SUBST1_TAC(SYM(ASSUME `&0 = y2`)) THEN
REWRITE_TAC[
REAL_MUL_RZERO;
REAL_LE_REFL]]);;
let REAL_LE_LDIV = prove(
`!x y z. &0 < x /\ y <= (z * x) ==> (y / x) <= z`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN
SUBGOAL_THEN `y = (y / x) * x` MP_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_RMUL THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN POP_ASSUM ACCEPT_TAC;
DISCH_THEN(fun t -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [t])
THEN MATCH_MP_TAC
REAL_LE_RMUL_EQ THEN POP_ASSUM ACCEPT_TAC]);;
let REAL_LE_RDIV = prove(
`!x y z. &0 < x /\ (y * x) <= z ==> y <= (z / x)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC EQ_IMP THEN
SUBGOAL_THEN `z = (z / x) * x` MP_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_RMUL THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN POP_ASSUM ACCEPT_TAC;
DISCH_THEN(fun t -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [t])
THEN MATCH_MP_TAC
REAL_LE_RMUL_EQ THEN POP_ASSUM ACCEPT_TAC]);;
let REAL_LT_1 = prove(
`!x y. &0 <= x /\ x < y ==> (x / y) < &1`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `(x / y) < &1 <=> ((x / y) * y) < (&1 * y)` SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_LT_RMUL_EQ THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `x:real` THEN
ASM_REWRITE_TAC[];
SUBGOAL_THEN `(x / y) * y = x` SUBST1_TAC THENL
[MATCH_MP_TAC
REAL_DIV_RMUL THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[REAL_MUL_LID]]]);;
let REAL_INV_LT1 = prove(
`!x. &0 < x /\ x < &1 ==> &1 < inv(x)`,
GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP
REAL_INV_POS) THEN
GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN
PURE_REWRITE_TAC[
REAL_NOT_LT] THEN REWRITE_TAC[
REAL_LE_LT] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[DISCH_TAC THEN
MP_TAC(SPECL [`inv(x)`; `&1`; `x:real`; `&1`]
REAL_LT_MUL2_ALT) THEN
ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL
[MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
DISCH_THEN(MP_TAC o MATCH_MP
REAL_LT_IMP_NE) THEN
REWRITE_TAC[REAL_MUL_LID] THEN MATCH_MP_TAC REAL_MUL_LINV THEN
DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&0 < &0` THEN
REWRITE_TAC[
REAL_LT_REFL]];
DISCH_THEN(MP_TAC o AP_TERM `inv`) THEN REWRITE_TAC[
REAL_INV1] THEN
SUBGOAL_THEN `inv(inv x) = x` SUBST1_TAC THENL
[MATCH_MP_TAC
REAL_INVINV THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN FIRST_ASSUM ACCEPT_TAC;
DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&1 < &1` THEN
REWRITE_TAC[
REAL_LT_REFL]]]);;
let REAL_POS_NZ = prove(
`!x. &0 < x ==> ~(x = &0)`,
GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP
REAL_LT_IMP_NE) THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN POP_ASSUM ACCEPT_TAC);;
let REAL_EQ_RMUL_IMP = prove(
`!x y z. ~(z = &0) /\ (x * z = y * z) ==> (x = y)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[REAL_EQ_RMUL]);;
let REAL_DIV_MUL2 = prove(
`!x z. ~(x = &0) /\ ~(z = &0) ==> !y. y / z = (x * y) / (x * z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
REWRITE_TAC[
real_div] THEN IMP_SUBST_TAC
REAL_INV_MUL_WEAK THEN
ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`(a * b) * (c * d) = (c * a) * (b * d)`] THEN
IMP_SUBST_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_MUL_LID]);;
(*----------------------------------------------------------------------------*)
(* Define usual norm (absolute distance) on the real line *)
(*----------------------------------------------------------------------------*)
let ABS_NEG = prove(
`!x. abs(--x) = abs(x)`,
GEN_TAC THEN REWRITE_TAC[
real_abs;
REAL_NEGNEG;
REAL_NEG_GE0] THEN
REPEAT COND_CASES_TAC THEN REWRITE_TAC[] THENL
[MP_TAC(CONJ (ASSUME `&0 <= x`) (ASSUME `x <= &0`)) THEN
REWRITE_TAC[REAL_LE_ANTISYM] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[
REAL_NEG_0];
RULE_ASSUM_TAC(REWRITE_RULE[
REAL_NOT_LE]) THEN
W(MP_TAC o end_itlist CONJ o map snd o fst) THEN
REWRITE_TAC[
REAL_LT_ANTISYM]]);;
let ABS_POS = prove(
`!x. &0 <= abs(x)`,
GEN_TAC THEN ASM_CASES_TAC `&0 <= x` THENL
[ALL_TAC;
MP_TAC(SPEC `x:real`
REAL_LE_NEGTOTAL) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC] THEN
ASM_REWRITE_TAC[
real_abs]);;
let ABS_MUL = prove(
`!x y. abs(x * y) = abs(x) * abs(y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 <= x` THENL
[ALL_TAC;
MP_TAC(SPEC `x:real`
REAL_LE_NEGTOTAL) THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
ABS_NEG] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM
ABS_NEG]
THEN REWRITE_TAC[
REAL_NEG_LMUL]] THEN
(ASM_CASES_TAC `&0 <= y` THENL
[ALL_TAC;
MP_TAC(SPEC `y:real`
REAL_LE_NEGTOTAL) THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
ABS_NEG] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM
ABS_NEG] THEN
REWRITE_TAC[
REAL_NEG_RMUL]]) THEN
ASSUM_LIST(ASSUME_TAC o MATCH_MP
REAL_LE_MUL o end_itlist CONJ o rev) THEN
ASM_REWRITE_TAC[
real_abs]);;
let ABS_NZ = prove(
`!x. ~(x = &0) <=> &0 < abs(x)`,
GEN_TAC THEN EQ_TAC THENL
[ONCE_REWRITE_TAC[GSYM
ABS_ZERO] THEN
REWRITE_TAC[TAUT `~a ==> b <=> b \/ a`] THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
REWRITE_TAC[GSYM
REAL_LE_LT;
ABS_POS];
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[
real_abs;
REAL_LT_REFL;
REAL_LE_REFL]]);;
let ABS_BETWEEN = prove(
`!x y d. &0 < d /\ ((x - d) < y) /\ (y < (x + d)) <=> abs(y - x) < d`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_abs] THEN
REWRITE_TAC[
REAL_SUB_LE] THEN REWRITE_TAC[
REAL_NEG_SUB] THEN
COND_CASES_TAC THEN REWRITE_TAC[
REAL_LT_SUB_RADD] THEN
GEN_REWRITE_TAC (funpow 2 RAND_CONV) [REAL_ADD_SYM] THEN
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THENL
[SUBGOAL_THEN `x < (x + d)` MP_TAC THENL
[MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[
REAL_LT_ADDR] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN
ASM_REWRITE_TAC[
REAL_LT_ADDR];
RULE_ASSUM_TAC(REWRITE_RULE[
REAL_NOT_LE]) THEN
SUBGOAL_THEN `y < (y + d)` MP_TAC THENL
[MATCH_MP_TAC
REAL_LT_TRANS THEN EXISTS_TAC `x:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[
REAL_LT_ADDR] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LT_TRANS THEN EXISTS_TAC `x:real` THEN
ASM_REWRITE_TAC[
REAL_LT_ADDR]]);;
let ABS_BOUND = prove(
`!x y d. abs(x - y) < d ==> y < (x + d)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[
ABS_SUB] THEN
ONCE_REWRITE_TAC[GSYM
ABS_BETWEEN] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[]);;
let ABS_CASES = prove(
`!x. (x = &0) \/ &0 < abs(x)`,
GEN_TAC THEN REWRITE_TAC[GSYM
ABS_NZ] THEN
BOOL_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[]);;
let ABS_DIV = prove(
`!y. ~(y = &0) ==> !x. abs(x / y) = abs(x) / abs(y)`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN REWRITE_TAC[
real_div] THEN
REWRITE_TAC[
ABS_MUL] THEN
POP_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
ABS_INV th]));;
let ABS_BETWEEN2 = prove(
`!x0 x y0 y. x0 < y0 /\ abs(x - x0) < (y0 - x0) / &2 /\
abs(y - y0) < (y0 - x0) / &2
==> x < y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `x < y0 /\ x0 < y` STRIP_ASSUME_TAC THENL
[CONJ_TAC THENL
[MP_TAC(SPECL [`x0:real`; `x:real`; `y0 - x0`]
ABS_BOUND) THEN
REWRITE_TAC[
REAL_SUB_ADD2] THEN DISCH_THEN MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[
ABS_SUB] THEN
MATCH_MP_TAC
REAL_LT_TRANS THEN
EXISTS_TAC `(y0 - x0) / &2` THEN ASM_REWRITE_TAC[
REAL_LT_HALF2] THEN
ASM_REWRITE_TAC[
REAL_SUB_LT];
GEN_REWRITE_TAC I [TAUT `a = ~ ~a`] THEN
PURE_REWRITE_TAC[
REAL_NOT_LT] THEN DISCH_TAC THEN
MP_TAC(AC
REAL_ADD_AC
`(y0 + --x0) + (x0 + --y) = (--x0 + x0) + (y0 + --y)`) THEN
REWRITE_TAC[GSYM
real_sub; REAL_ADD_LINV; REAL_ADD_LID] THEN
DISCH_TAC THEN
MP_TAC(SPECL [`y0 - x0`; `x0 - y`]
REAL_LE_ADDR) THEN
ASM_REWRITE_TAC[
REAL_SUB_LE] THEN DISCH_TAC THEN
SUBGOAL_THEN `~(y0 <= y)` ASSUME_TAC THENL
[REWRITE_TAC[
REAL_NOT_LE] THEN ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `y0 - x0` THEN
ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[
REAL_SUB_LT]; ALL_TAC] THEN
UNDISCH_TAC `abs(y - y0) < (y0 - x0) / &2` THEN
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
REWRITE_TAC[
REAL_NEG_SUB] THEN DISCH_TAC THEN
SUBGOAL_THEN `(y0 - x0) < (y0 - x0) / &2` MP_TAC THENL
[MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `y0 - y` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[
REAL_NOT_LT] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
REWRITE_TAC[
REAL_LT_HALF2] THEN ASM_REWRITE_TAC[
REAL_SUB_LT]];
ALL_TAC] THEN
GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN
PURE_REWRITE_TAC[
REAL_NOT_LT] THEN DISCH_TAC THEN
SUBGOAL_THEN `abs(x0 - y) < (y0 - x0) / &2` ASSUME_TAC THENL
[REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN ASM_REWRITE_TAC[GSYM
REAL_NOT_LT] THEN
REWRITE_TAC[
REAL_NEG_SUB] THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `x - x0` THEN REWRITE_TAC[
real_sub;
REAL_LE_RADD] THEN
ASM_REWRITE_TAC[GSYM
real_sub] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(x - x0)` THEN ASM_REWRITE_TAC[
ABS_LE]; ALL_TAC] THEN
SUBGOAL_THEN `abs(y0 - x0) < ((y0 - x0) / &2) + ((y0 - x0) / &2)`
MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[
REAL_HALF_DOUBLE;
REAL_NOT_LT;
ABS_LE]] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(y0 - y) + abs(y - x0)` THEN CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC
REAL_LT_ADD2 THEN ONCE_REWRITE_TAC[
ABS_SUB] THEN
ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `y0 - x0 = (y0 - y) + (y - x0)` SUBST1_TAC THEN
REWRITE_TAC[
ABS_TRIANGLE] THEN
REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (b + c) + (a + d)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let ABS_BOUNDS = prove(
`!x k. abs(x) <= k <=> --k <= x /\ x <= k`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM
REAL_LE_NEG] THEN
REWRITE_TAC[
REAL_NEGNEG] THEN REWRITE_TAC[
real_abs] THEN
COND_CASES_TAC THENL
[REWRITE_TAC[TAUT `(a <=> b /\ a) <=> a ==> b`] THEN
DISCH_TAC THEN MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[
REAL_LE_NEGL];
REWRITE_TAC[TAUT `(a <=> a /\ b) <=> a ==> b`] THEN
DISCH_TAC THEN MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `--x` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
REAL_LE_NEGR] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
ASM_REWRITE_TAC[GSYM
REAL_NOT_LE]]);;
(*----------------------------------------------------------------------------*)
(* Define integer powers *)
(*----------------------------------------------------------------------------*)
let pow = real_pow;;
let POW_NZ = prove(
`!c n. ~(c = &0) ==> ~(c pow n = &0)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[pow; REAL_10;
REAL_ENTIRE]);;
let POW_INV = prove(
`!c n. ~(c = &0) ==> (inv(c pow n) = (inv c) pow n)`,
GEN_TAC THEN REWRITE_TAC[
RIGHT_FORALL_IMP_THM] THEN
DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[pow;
REAL_INV1] THEN
MP_TAC(SPECL [`c:real`; `c pow n`]
REAL_INV_MUL_WEAK) THEN
ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `~(c pow n = &0)` ASSUME_TAC THENL
[MATCH_MP_TAC
POW_NZ THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[]);;
let POW_2 = prove(
`!x. x pow 2 = x * x`,
GEN_TAC THEN REWRITE_TAC[num_CONV `2`] THEN
REWRITE_TAC[pow;
POW_1]);;
let POW_LE = prove(
`!n x y. &0 <= x /\ x <= y ==> (x pow n) <= (y pow n)`,
INDUCT_TAC THEN REWRITE_TAC[pow;
REAL_LE_REFL] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC
REAL_LE_MUL2V THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[
POW_POS]);;
let POW_MUL = prove(
`!n x y. (x * y) pow n = (x pow n) * (y pow n)`,
INDUCT_TAC THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN
REPEAT GEN_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
REAL_MUL_AC]);;
let POW_POS_LT = prove(
`!x n. &0 < x ==> &0 < (x pow (SUC n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[
REAL_LT_LE] THEN
DISCH_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC
POW_POS THEN ASM_REWRITE_TAC[];
CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
POW_NZ THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* Derive the supremum property for an arbitrary bounded nonempty set *)
(*----------------------------------------------------------------------------*)
let REAL_SUP_EXISTS = prove(
`!P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==>
(?s. !y. (?x. P x /\ y < x) <=> y < s)`,
let sup_def = new_definition
`sup s = @a. (!x. x IN s ==> x <= a) /\
(!b. (!x. x IN s ==> x <= b) ==> a <= b)`;;
let REAL_SUP = prove(
`!P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==>
(!y. (?x. P x /\ y < x) <=> y < sup P)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o SELECT_RULE o MATCH_MP
REAL_SUP_EXISTS)
THEN REWRITE_TAC[GSYM sup]);;
let REAL_SUP_UBOUND = prove(
`!P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==>
(!y. P y ==> y <= sup P)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `sup P` o MATCH_MP
REAL_SUP) THEN
REWRITE_TAC[
REAL_LT_REFL] THEN
DISCH_THEN(ASSUME_TAC o CONV_RULE NOT_EXISTS_CONV) THEN
X_GEN_TAC `x:real` THEN RULE_ASSUM_TAC(SPEC `x:real`) THEN
DISCH_THEN (SUBST_ALL_TAC o EQT_INTRO) THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[
REAL_NOT_LT]);;
let SETOK_LE_LT = prove(
`!P. (?x. P x) /\ (?z. !x. P x ==> x <= z) <=>
(?x. P x) /\ (?z. !x. P x ==> x < z)`,
GEN_TAC THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `z:real`)
THENL (map EXISTS_TAC [`z + &1`; `z:real`]) THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
REWRITE_TAC[
REAL_LT_ADD1;
REAL_LT_IMP_LE]);;
let REAL_SUP_LE = prove(
`!P. (?x. P x) /\ (?z. !x. P x ==> x <= z) ==>
(!y. (?x. P x /\ y < x) <=> y < sup P)`,
(*----------------------------------------------------------------------------*)
(* Prove the Archimedean property *)
(*----------------------------------------------------------------------------*)
let REAL_ARCH = prove(
`!x. &0 < x ==> !y. ?n. y < &n * x`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
ONCE_REWRITE_TAC[TAUT `a <=> ~(~a)`] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC[
REAL_NOT_LT] THEN DISCH_TAC THEN
MP_TAC(SPEC `\z. ?n. z = &n * x`
REAL_SUP_LE) THEN BETA_TAC THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o
funpow 2 (fst o dest_imp) o snd)
THENL [CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`&n * x`; `n:num`] THEN REFL_TAC;
EXISTS_TAC `y:real` THEN GEN_TAC THEN
DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `sup(\z. ?n. z = &n * x) - x`) THEN
REWRITE_TAC[
REAL_LT_SUB_RADD;
REAL_LT_ADDR] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `n:num`) MP_TAC) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (funpow 3 RAND_CONV) [GSYM REAL_MUL_LID] THEN
REWRITE_TAC[GSYM
REAL_RDISTRIB] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `sup(\z. ?n. z = &n * x)`) THEN
REWRITE_TAC[
REAL_LT_REFL] THEN EXISTS_TAC `(&n + &1) * x` THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `n + 1` THEN
REWRITE_TAC[
REAL_ADD]);;
let REAL_ARCH_LEAST = prove(
`!y. &0 < y ==> !x. &0 <= x ==>
?n. (&n * y) <= x /\ x < (&(SUC n) * y)`,
GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP
REAL_ARCH) THEN
GEN_TAC THEN POP_ASSUM(ASSUME_TAC o SPEC `x:real`) THEN
POP_ASSUM(X_CHOOSE_THEN `n:num` MP_TAC o
ONCE_REWRITE_RULE[
num_WOP]) THEN
REWRITE_TAC[
REAL_NOT_LT] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o SPEC `
PRE n`)) THEN
DISCH_TAC THEN EXISTS_TAC `
PRE n` THEN
SUBGOAL_THEN `SUC(
PRE n) = n` ASSUME_TAC THENL
[DISJ_CASES_THEN2 SUBST_ALL_TAC (CHOOSE_THEN SUBST_ALL_TAC)
(SPEC `n:num`
num_CASES) THENL
[UNDISCH_TAC `x < &0 * y` THEN
ASM_REWRITE_TAC[
REAL_MUL_LZERO; GSYM
REAL_NOT_LE];
REWRITE_TAC[
PRE]];
ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[
PRE;
LESS_SUC_REFL]]);;
let REAL_ARCH_POW = prove
(`!x y. &1 < x ==> ?n. y < x pow n`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `x - &1`
REAL_ARCH) THEN ASM_REWRITE_TAC[
REAL_SUB_LT] THEN
DISCH_THEN(MP_TAC o SPEC `y:real`) THEN MATCH_MP_TAC
MONO_EXISTS THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC
REAL_LTE_TRANS THEN
EXISTS_TAC `&1 + &n * (x - &1)` THEN
ASM_SIMP_TAC[REAL_ARITH `x < y ==> x < &1 + y`] THEN
ASM_MESON_TAC[
REAL_POW_LBOUND;
REAL_SUB_ADD2; REAL_ARITH
`&1 < x ==> &0 <= x - &1`]);;
(* ========================================================================= *)
(* Finite sums. NB: sum(m,n) f = f(m) + f(m+1) + ... + f(m+n-1) *)
(* ========================================================================= *)
prioritize_real();;
make_overloadable "sum" `:A->(B->real)->real`;;
overload_interface("sum",`sum:(A->bool)->(A->real)->real`);;
overload_interface("sum",`psum:(num#num)->(num->real)->real`);;
let sum_EXISTS = prove
(`?sum. (!f n. sum(n,0) f = &0) /\
(!f m n. sum(n,SUC m) f = sum(n,m) f + f(n + m))`,
(CHOOSE_TAC o prove_recursive_functions_exist num_RECURSION)
`(!f n. sm n 0 f = &0) /\
(!f m n. sm n (SUC m) f = sm n m f + f(n + m))` THEN
EXISTS_TAC `\(n,m) f. (sm:num->num->(num->real)->real) n m f` THEN
CONV_TAC(DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[]);;
let sum = prove
(`(sum(n,0) f = &0) /\
(sum(n,SUC m) f = sum(n,m) f + f(n + m))`,
(* ------------------------------------------------------------------------- *)
(* Relation to the standard notion. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Stuff about sums. *)
(* ------------------------------------------------------------------------- *)
let SUM_TWO = prove
(`!f n p. sum(0,n) f + sum(n,p) f = sum(0,n + p) f`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[sum;
REAL_ADD_RID;
ADD_CLAUSES] THEN
ASM_REWRITE_TAC[REAL_ADD_ASSOC]);;
let SUM_LE = prove
(`!f g m n. (!r. m <= r /\ r < n + m ==> f(r) <= g(r))
==> (sum(m,n) f <= sum(m,n) g)`,
EVERY(replicate GEN_TAC 3) THEN
INDUCT_TAC THEN REWRITE_TAC[sum;
REAL_LE_REFL] THEN
DISCH_TAC THEN MATCH_MP_TAC
REAL_LE_ADD2 THEN CONJ_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
ADD_CLAUSES] THEN
MATCH_MP_TAC
LT_TRANS THEN EXISTS_TAC `(n:num) + m`;
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [
ADD_SYM]] THEN
ASM_REWRITE_TAC[
ADD_CLAUSES;
LE_ADD;
LT]);;
let SUM_EQ = prove
(`!f g m n. (!r. m <= r /\ r < (n + m) ==> (f(r) = g(r)))
==> (sum(m,n) f = sum(m,n) g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
CONJ_TAC THEN MATCH_MP_TAC
SUM_LE THEN GEN_TAC THEN
DISCH_THEN(fun th -> MATCH_MP_TAC
REAL_EQ_IMP_LE THEN
FIRST_ASSUM(SUBST1_TAC o C MATCH_MP th)) THEN REFL_TAC);;
let SUM_POS = prove
(`!f. (!n. &0 <= f(n)) ==> !m n. &0 <= sum(m,n) f`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[sum;
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_LE_ADD THEN ASM_REWRITE_TAC[]);;
let SUM_POS_GEN = prove
(`!f m n.
(!n. m <= n ==> &0 <= f(n))
==> &0 <= sum(m,n) f`,
REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[sum;
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_LE_ADD THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_ACCEPT_TAC
LE_ADD);;
let SUM_ABS = prove
(`!f m n. abs(sum(m,n) (\m. abs(f m))) = sum(m,n) (\m. abs(f m))`,
let SUM_ZERO = prove
(`!f N. (!n. n >= N ==> (f(n) = &0)) ==>
(!m n. m >= N ==> (sum(m,n) f = &0))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN REWRITE_TAC[
GE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[
LE_EXISTS]) THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN
ASM_REWRITE_TAC[REAL_ADD_LID] THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
GE; GSYM
ADD_ASSOC;
LE_ADD]);;
let SUM_ADD = prove
(`!f g m n. sum(m,n) (\n. f(n) + g(n)) = sum(m,n) f + sum(m,n) g`,
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[sum; REAL_ADD_LID;
REAL_ADD_AC]);;
let SUM_CMUL = prove
(`!f c m n. sum(m,n) (\n. c * f(n)) = c * sum(m,n) f`,
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[sum;
REAL_MUL_RZERO] THEN BETA_TAC THEN
REWRITE_TAC[REAL_ADD_LDISTRIB]);;
let SUM_NEG = prove
(`!f n d. sum(n,d) (\n. --(f n)) = --(sum(n,d) f)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[sum;
REAL_NEG_0] THEN
BETA_TAC THEN REWRITE_TAC[
REAL_NEG_ADD]);;
let SUM_SUB = prove
(`!f g m n. sum(m,n)(\n. (f n) - (g n)) = sum(m,n) f - sum(m,n) g`,
let SUM_SUBST = prove
(`!f g m n. (!p. m <= p /\ p < (m + n) ==> (f p = g p))
==> (sum(m,n) f = sum(m,n) g)`,
EVERY (replicate GEN_TAC 3) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN BINOP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
ADD_CLAUSES;
LT_SUC_LE] THEN
MATCH_MP_TAC
LT_IMP_LE THEN ASM_REWRITE_TAC[];
REWRITE_TAC[
LE_ADD] THEN ONCE_REWRITE_TAC[
ADD_SYM] THEN
REWRITE_TAC[
LT_SUC_LE;
LE_REFL;
ADD_CLAUSES]]);;
let SUM_BOUND = prove
(`!f K m n. (!p. m <= p /\ p < (m + n) ==> (f(p) <= K))
==> (sum(m,n) f <= (&n * K))`,
let SUM_1 = prove
(`!f n. sum(n,1) f = f(n)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[num_CONV `1`; sum;
ADD_CLAUSES; REAL_ADD_LID]);;
let SUM_2 = prove
(`!f n. sum(n,2) f = f(n) + f(n + 1)`,
REPEAT GEN_TAC THEN CONV_TAC(REDEPTH_CONV num_CONV) THEN
REWRITE_TAC[sum;
ADD_CLAUSES; REAL_ADD_LID]);;
let SUM_OFFSET = prove
(`!f n k. sum(0,n)(\m. f(m + k)) = sum(0,n + k) f - sum(0,k) f`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [
ADD_SYM] THEN
REWRITE_TAC[GSYM
SUM_TWO;
REAL_ADD_SUB] THEN
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN
BETA_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES] THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN MATCH_ACCEPT_TAC
ADD_SYM);;
let SUM_0 = prove
(`!m n. sum(m,n)(\r. &0) = &0`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN
BETA_TAC THEN ASM_REWRITE_TAC[REAL_ADD_LID]);;
let SUM_CANCEL = prove
(`!f n d. sum(n,d) (\n. f(SUC n) - f(n)) = f(n + d) - f(n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[sum;
ADD_CLAUSES;
REAL_SUB_REFL] THEN
BETA_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[
real_sub;
REAL_NEG_ADD; REAL_ADD_ASSOC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_ADD_LINV;
REAL_ADD_RID]);;
let SUM_HORNER = prove
(`!f n x. sum(0,SUC n)(\i. f(i) * x pow i) =
f(0) + x * sum(0,n)(\i. f(SUC i) * x pow i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM
SUM_CMUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a * b * c = b * (a * c)`] THEN
REWRITE_TAC[GSYM
real_pow] THEN
MP_TAC(GEN `f:num->real`
(SPECL [`f:num->real`; `n:num`; `1`]
SUM_OFFSET)) THEN
REWRITE_TAC[GSYM
ADD1] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[
SUM_1] THEN REWRITE_TAC[
real_pow;
REAL_MUL_RID] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[
REAL_SUB_ADD]);;
let SUM_SPLIT = prove
(`!f n p. sum(m,n) f + sum(m + n,p) f = sum(m,n + p) f`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [
SUM_DIFF] THEN
GEN_REWRITE_TAC RAND_CONV [
SUM_DIFF] THEN
REWRITE_TAC[
ADD_ASSOC] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM
SUM_TWO] THEN
REAL_ARITH_TAC);;
let SUM_SWAP = prove
(`!f m1 n1 m2 n2.
sum(m1,n1) (\a. sum(m2,n2) (\b. f a b)) =
sum(m2,n2) (\b. sum(m1,n1) (\a. f a b))`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[sum;
SUM_0] THEN ASM_REWRITE_TAC[
SUM_ADD]);;
let SUM_EQ_0 = prove
(`(!r. m <= r /\ r < m + n ==> (f(r) = &0)) ==> (sum(m,n) f = &0)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC
EQ_TRANS THEN
EXISTS_TAC `sum(m,n) (\r. &0)` THEN
CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[
SUM_0]] THEN
MATCH_MP_TAC
SUM_EQ THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[
ADD_SYM] THEN ASM_REWRITE_TAC[]);;
let SUM_MORETERMS_EQ = prove
(`!m n p.
n <= p /\ (!r. m + n <= r /\ r < m + p ==> (f(r) = &0))
==> (sum(m,p) f = sum(m,n) f)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(SUBST1_TAC o GSYM o MATCH_MP
SUB_ADD) THEN
ONCE_REWRITE_TAC[
ADD_SYM] THEN REWRITE_TAC[GSYM
SUM_SPLIT] THEN
SUBGOAL_THEN `sum (m + n,p - n) f = &0`
(fun th -> REWRITE_TAC[
REAL_ADD_RID; th]) THEN MATCH_MP_TAC
SUM_EQ_0 THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
LTE_TRANS THEN
EXISTS_TAC `(m + n) + p - n:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM
ADD_ASSOC;
LE_ADD_LCANCEL] THEN MATCH_MP_TAC
EQ_IMP_LE THEN
ONCE_REWRITE_TAC[
ADD_SYM] THEN ASM_SIMP_TAC[
SUB_ADD]);;
let SUM_DIFFERENCES_EQ = prove
(`!m n p.
n <= p /\ (!r. m + n <= r /\ r < m + p ==> (f(r) = g(r)))
==> (sum(m,p) f - sum(m,n) f = sum(m,p) g - sum(m,n) g)`,
(* ------------------------------------------------------------------------- *)
(* A conversion to evaluate summations (not clear it belongs here...) *)
(* ------------------------------------------------------------------------- *)
let REAL_SUM_CONV =
let sum_tm = `sum` in
let pth = prove
(`sum(0,1) f = f 0`,
REWRITE_TAC[num_CONV `1`; sum; REAL_ADD_LID;
ADD_CLAUSES]) in
let conv0 = GEN_REWRITE_CONV I [CONJUNCT1 sum; pth]
and conv1 = REWR_CONV(CONJUNCT2 sum) in
let rec sum_conv tm =
try conv0 tm
with Failure _ ->
(LAND_CONV(RAND_CONV num_CONV) THENC
conv1 THENC LAND_CONV sum_conv) tm in
fun tm ->
let sn,bod = dest_comb tm in
let s,ntm = dest_comb sn in
let _,htm = dest_pair ntm in
if s = sum_tm & is_numeral htm
then sum_conv tm
else failwith "REAL_SUM_CONV";
;
let REAL_HORNER_SUM_CONV =
let sum_tm = `sum` in
let pth = prove
(`sum(0,1) f = f 0`,
REWRITE_TAC[num_CONV `1`; sum; REAL_ADD_LID;
ADD_CLAUSES]) in
let conv0 = GEN_REWRITE_CONV I [CONJUNCT1 sum; pth]
and conv1 = REWR_CONV
SUM_HORNER in
let rec sum_conv tm =
try conv0 tm
with Failure _ ->
(LAND_CONV(RAND_CONV num_CONV) THENC
conv1 THENC RAND_CONV (RAND_CONV sum_conv)) tm in
fun tm ->
let sn,bod = dest_comb tm in
let s,ntm = dest_comb sn in
let _,htm = dest_pair ntm in
if s = sum_tm & is_numeral htm
then sum_conv tm
else failwith "REAL_HORNER_SUM_CONV";
;
(*============================================================================*)
(* Topologies and metric spaces, including metric on real line *)
(*============================================================================*)
parse_as_infix("re_union",(15,"right"));;
parse_as_infix("re_intersect",(17,"right"));;
parse_as_infix("re_subset",(12,"right"));;
(*----------------------------------------------------------------------------*)
(* Minimal amount of set notation is convenient *)
(*----------------------------------------------------------------------------*)
let SUBSETA_ANTISYM = prove(
`!P:A->bool. !Q. P
re_subset Q /\ Q
re_subset P <=> (P = Q)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
re_subset] THEN
CONV_TAC(ONCE_DEPTH_CONV AND_FORALL_CONV) THEN
REWRITE_TAC[TAUT `(a ==> b) /\ (b ==> a) <=> (a <=> b)`] THEN
CONV_TAC(RAND_CONV FUN_EQ_CONV) THEN REFL_TAC);;
(*----------------------------------------------------------------------------*)
(* Characterize an (A)topology *)
(*----------------------------------------------------------------------------*)
let topology_tybij = new_type_definition "topology" ("topology","open")
(prove(`?t:(A->bool)->bool. istopology t`,
EXISTS_TAC `re_universe:(A->bool)->bool` THEN
REWRITE_TAC[istopology; re_universe]));;
(*----------------------------------------------------------------------------*)
(* Characterize a neighbourhood of a point relative to a topology *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Prove various properties / characterizations of open sets *)
(*----------------------------------------------------------------------------*)
let OPEN_OWN_NEIGH = prove(
`!S top. !x:A. open(top) S /\ S x ==> neigh(top)(S,x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[neigh] THEN
EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[
SUBSETA_REFL]);;
let OPEN_UNOPEN = prove(
`!S top. open(top) S <=>
(
re_Union (\P:A->bool. open(top) P /\ P
re_subset S) = S)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM
SUBSETA_ANTISYM] THEN
REWRITE_TAC[
re_Union;
re_subset] THEN
BETA_TAC THEN CONJ_TAC THEN GEN_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
DISCH_TAC THEN EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[]];
DISCH_THEN(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC
TOPOLOGY_UNION THEN
REWRITE_TAC[
re_subset] THEN BETA_TAC THEN
GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]);;
let OPEN_SUBOPEN = prove(
`!S top. open(top) S <=>
!x:A. S x ==> ?P. P x /\ open(top) P /\ P
re_subset S`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN
EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[
SUBSETA_REFL];
DISCH_TAC THEN C SUBGOAL_THEN SUBST1_TAC
`S =
re_Union (\P:A->bool. open(top) P /\ P
re_subset S)` THENL
[ONCE_REWRITE_TAC[GSYM
SUBSETA_ANTISYM] THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[
re_subset] THEN REWRITE_TAC [
re_Union] THEN
BETA_TAC THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN(X_CHOOSE_TAC `P:A->bool`) THEN EXISTS_TAC `P:A->bool` THEN
ASM_REWRITE_TAC[];
REWRITE_TAC[
re_subset;
re_Union] THEN BETA_TAC THEN GEN_TAC THEN
DISCH_THEN(CHOOSE_THEN STRIP_ASSUME_TAC) THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC];
MATCH_MP_TAC
TOPOLOGY_UNION THEN ONCE_REWRITE_TAC[
re_subset] THEN
GEN_TAC THEN BETA_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);;
let OPEN_NEIGH = prove(
`!S top. open(top) S = !x:A. S x ==> ?N. neigh(top)(N,x) /\ N
re_subset S`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `S:A->bool` THEN
REWRITE_TAC[
SUBSETA_REFL; neigh] THEN
EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[
SUBSETA_REFL];
DISCH_TAC THEN ONCE_REWRITE_TAC[
OPEN_SUBOPEN] THEN
GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN(X_CHOOSE_THEN `N:A->bool` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC))
THEN REWRITE_TAC[neigh] THEN
DISCH_THEN(X_CHOOSE_THEN `P:A->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `P:A->bool` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
SUBSETA_TRANS THEN EXISTS_TAC `N:A->bool` THEN
ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* Characterize closed sets in a topological space *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Define limit point in topological space *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Prove that a set is closed iff it contains all its limit points *)
(*----------------------------------------------------------------------------*)
let CLOSED_LIMPT = prove(
`!top S. closed(top) S <=> (!x:A. limpt(top) x S ==> S x)`,
REPEAT GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN
REWRITE_TAC[closed; limpt] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
FREEZE_THEN (fun th -> ONCE_REWRITE_TAC[th])
(SPEC `S:A->bool`
COMPL_MEM) THEN
REWRITE_TAC[] THEN
SPEC_TAC(`
re_compl(S:A->bool)`,`S:A->bool`) THEN
GEN_TAC THEN REWRITE_TAC[NOT_IMP] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC[DE_MORGAN_THM] THEN
REWRITE_TAC[
OPEN_NEIGH;
re_subset] THEN
AP_TERM_TAC THEN ABS_TAC THEN
ASM_CASES_TAC `(S:A->bool) x` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[TAUT `a \/ b \/ ~c <=> c ==> a \/ b`] THEN
EQUAL_TAC THEN
REWRITE_TAC[TAUT `(a <=> b \/ a) <=> b ==> a`] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
POP_ASSUM ACCEPT_TAC);;
(*----------------------------------------------------------------------------*)
(* Characterize an (A)metric *)
(*----------------------------------------------------------------------------*)
let metric_tybij = new_type_definition "metric" ("metric","mdist")
(prove(`?m:(A#A->real). ismet m`,
EXISTS_TAC `\((x:A),(y:A)). if x = y then &0 else &1` THEN
REWRITE_TAC[ismet] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
CONJ_TAC THEN REPEAT GEN_TAC THENL
[BOOL_CASES_TAC `x:A = y` THEN REWRITE_TAC[REAL_10];
REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[REAL_ADD_LID; REAL_ADD_RID; REAL_LE_REFL; REAL_LE_01]
THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_LID] THEN
TRY(MATCH_MP_TAC REAL_LE_ADD2) THEN
REWRITE_TAC[REAL_LE_01; REAL_LE_REFL] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN
EVERY_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[]]));;
(*----------------------------------------------------------------------------*)
(* Derive the metric properties *)
(*----------------------------------------------------------------------------*)
let METRIC_ISMET = prove(
`!m:(A)metric. ismet (mdist m)`,
GEN_TAC THEN REWRITE_TAC[metric_tybij]);;
let METRIC_ZERO = prove(
`!m:(A)metric. !x y. ((mdist m)(x,y) = &0) <=> (x = y)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric`
METRIC_ISMET) THEN
RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN ASM_REWRITE_TAC[]);;
let METRIC_POS = prove(
`!m:(A)metric. !x y. &0 <= (mdist m)(x,y)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric`
METRIC_ISMET) THEN
RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN
FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`; `y:A`] o CONJUNCT2) THEN
REWRITE_TAC[REWRITE_RULE[] (SPECL [`m:(A)metric`; `y:A`; `y:A`]
METRIC_ZERO)]
THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[
REAL_NOT_LE] THEN
DISCH_THEN(MP_TAC o MATCH_MP
REAL_LT_ADD2 o W CONJ) THEN
REWRITE_TAC[REAL_ADD_LID]);;
let METRIC_SYM = prove(
`!m:(A)metric. !x y. (mdist m)(x,y) = (mdist m)(y,x)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric`
METRIC_ISMET) THEN
RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN FIRST_ASSUM
(MP_TAC o GENL [`y:A`; `z:A`] o SPECL [`z:A`; `y:A`; `z:A`] o CONJUNCT2)
THEN REWRITE_TAC[
METRIC_SAME;
REAL_ADD_RID] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM]);;
let METRIC_TRIANGLE = prove(
`!m:(A)metric. !x y z. (mdist m)(x,z) <= (mdist m)(x,y) + (mdist m)(y,z)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric`
METRIC_ISMET) THEN
RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [
METRIC_SYM] THEN
ASM_REWRITE_TAC[]);;
let METRIC_NZ = prove(
`!m:(A)metric. !x y. ~(x = y) ==> &0 < (mdist m)(x,y)`,
REPEAT GEN_TAC THEN
SUBST1_TAC(SYM(SPECL [`m:(A)metric`; `x:A`; `y:A`]
METRIC_ZERO)) THEN
ONCE_REWRITE_TAC[TAUT `~a ==> b <=> b \/ a`] THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN
REWRITE_TAC[GSYM
REAL_LE_LT;
METRIC_POS]);;
(*----------------------------------------------------------------------------*)
(* Now define metric topology and prove equivalent definition of `open` *)
(*----------------------------------------------------------------------------*)
let mtop = new_definition(
`!m:(A)metric. mtop m =
topology(\S. !x. S x ==> ?e. &0 < e /\ (!y. (mdist m)(x,y) < e ==> S y))`);;
let mtop_istopology = prove(
`!m:(A)metric. istopology
(\S. !x. S x ==> ?e. &0 < e /\ (!y. (mdist m)(x,y) < e ==> S y))`,
GEN_TAC THEN
REWRITE_TAC[istopology;
re_null;
re_universe;
re_Union;
re_intersect;
re_subset] THEN
CONV_TAC(REDEPTH_CONV BETA_CONV) THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[EXISTS_TAC `&1` THEN MATCH_ACCEPT_TAC
REAL_LT_01;
REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
DISCH_THEN(fun th -> POP_ASSUM(CONJUNCTS_THEN(MP_TAC o SPEC `x:A`))
THEN REWRITE_TAC[th]) THEN
DISCH_THEN(X_CHOOSE_TAC `e1:real`) THEN
DISCH_THEN(X_CHOOSE_TAC `e2:real`) THEN
REPEAT_TCL DISJ_CASES_THEN MP_TAC
(SPECL [`e1:real`; `e2:real`]
REAL_LT_TOTAL) THENL
[DISCH_THEN SUBST_ALL_TAC THEN EXISTS_TAC `e2:real` THEN
ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> EVERY_ASSUM(ASSUME_TAC o C MATCH_MP th o CONJUNCT2))
THEN ASM_REWRITE_TAC[];
DISCH_THEN((then_) (EXISTS_TAC `e1:real`) o MP_TAC);
DISCH_THEN((then_) (EXISTS_TAC `e2:real`) o MP_TAC)] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th2 -> GEN_TAC THEN DISCH_THEN(fun th1 ->
ASSUME_TAC th1 THEN ASSUME_TAC (MATCH_MP
REAL_LT_TRANS (CONJ th1 th2))))
THEN CONJ_TAC THEN FIRST_ASSUM (MATCH_MP_TAC o CONJUNCT2)
THEN FIRST_ASSUM ACCEPT_TAC;
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `y:A->bool`
(fun th -> POP_ASSUM(X_CHOOSE_TAC `e:real` o C MATCH_MP (CONJUNCT2 th) o
C MATCH_MP (CONJUNCT1 th)) THEN ASSUME_TAC th)) THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN
DISCH_THEN
(fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th o CONJUNCT2)) THEN
EXISTS_TAC `y:A->bool` THEN ASM_REWRITE_TAC[]]);;
let MTOP_OPEN = prove(
`!m:(A)metric. open(mtop m) S <=>
(!x. S x ==> ?e. &0 < e /\ (!y. (mdist m(x,y)) < e ==> S y))`,
GEN_TAC THEN REWRITE_TAC[mtop] THEN
REWRITE_TAC[REWRITE_RULE[topology_tybij]
mtop_istopology] THEN
BETA_TAC THEN REFL_TAC);;
(*----------------------------------------------------------------------------*)
(* Define open ball in metric space + prove basic properties *)
(*----------------------------------------------------------------------------*)
let BALL_OPEN = prove(
`!m:(A)metric. !x e. &0 < e ==> open(mtop(m))(ball(m)(x,e))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[
MTOP_OPEN] THEN
X_GEN_TAC `z:A` THEN REWRITE_TAC[ball] THEN BETA_TAC THEN
DISCH_THEN(ASSUME_TAC o ONCE_REWRITE_RULE[GSYM
REAL_SUB_LT]) THEN
EXISTS_TAC `e - mdist(m:(A)metric)(x,z)` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `y:A` THEN REWRITE_TAC[
REAL_LT_SUB_LADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN DISCH_TAC THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `mdist(m)((x:A),z) + mdist(m)(z,y)` THEN
ASM_REWRITE_TAC[
METRIC_TRIANGLE]);;
let BALL_NEIGH = prove(
`!m:(A)metric. !x e. &0 < e ==> neigh(mtop(m))(ball(m)(x,e),x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[neigh] THEN EXISTS_TAC `ball(m)((x:A),e)` THEN
REWRITE_TAC[
SUBSETA_REFL] THEN CONJ_TAC THENL
[MATCH_MP_TAC
BALL_OPEN;
REWRITE_TAC[ball] THEN BETA_TAC THEN REWRITE_TAC[
METRIC_SAME]] THEN
POP_ASSUM ACCEPT_TAC);;
(*----------------------------------------------------------------------------*)
(* Characterize limit point in a metric topology *)
(*----------------------------------------------------------------------------*)
let MTOP_LIMPT = prove(
`!m:(A)metric. !x S. limpt(mtop m) x S <=>
!e. &0 < e ==> ?y. ~(x = y) /\ S y /\ (mdist m)(x,y) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[limpt] THEN EQ_TAC THENL
[DISCH_THEN((then_) (GEN_TAC THEN DISCH_TAC) o
MP_TAC o SPEC `ball(m)((x:A),e)`) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
BALL_NEIGH th]) THEN
REWRITE_TAC[ball] THEN BETA_TAC THEN DISCH_THEN ACCEPT_TAC;
DISCH_TAC THEN GEN_TAC THEN REWRITE_TAC[neigh] THEN
DISCH_THEN(X_CHOOSE_THEN `P:A->bool`
(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN
REWRITE_TAC[
MTOP_OPEN] THEN
DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `y:A`) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `(P:A->bool)
re_subset N` THEN
REWRITE_TAC[
re_subset] THEN DISCH_THEN MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*)
(* Define the usual metric on the real line *)
(*----------------------------------------------------------------------------*)
let ISMET_R1 = prove(
`ismet (\(x,y). abs(y - x))`,
REWRITE_TAC[ismet] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
CONJ_TAC THEN REPEAT GEN_TAC THENL
[REWRITE_TAC[
ABS_ZERO;
REAL_SUB_0] THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN REFL_TAC;
SUBST1_TAC(SYM(SPECL [`x:real`; `y:real`]
REAL_NEG_SUB)) THEN
REWRITE_TAC[
ABS_NEG] THEN SUBGOAL_THEN `z - y = (x - y) + (z - x)`
(fun th -> SUBST1_TAC th THEN MATCH_ACCEPT_TAC
ABS_TRIANGLE) THEN
REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (d + a) + (c + b)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]]);;
let MR1_DEF = prove(
`!x y. (mdist mr1)(x,y) = abs(y - x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[mr1; REWRITE_RULE[metric_tybij]
ISMET_R1]
THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REFL_TAC);;
(*----------------------------------------------------------------------------*)
(* Every real is a limit point of the real line *)
(*----------------------------------------------------------------------------*)
(*============================================================================*)
(* Theory of Moore-Smith covergence nets, and special cases like sequences *)
(*============================================================================*)
parse_as_infix ("tends",(12,"right"));;
(*----------------------------------------------------------------------------*)
(* Basic definitions: directed set, net, bounded net, pointwise limit *)
(*----------------------------------------------------------------------------*)
parse_as_infix("-->",(12,"right"));;
override_interface ("-->",`(tends)`);;
let DORDER_LEMMA = prove(
`!g:A->A->bool.
dorder g ==>
!P Q. (?n. g n n /\ (!m. g m n ==> P m)) /\
(?n. g n n /\ (!m. g m n ==> Q m))
==> (?n. g n n /\ (!m. g m n ==> P m /\ Q m))`,
GEN_TAC THEN REWRITE_TAC[dorder] THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `N1:A` STRIP_ASSUME_TAC)
(X_CHOOSE_THEN `N2:A` STRIP_ASSUME_TAC)) THEN
FIRST_ASSUM(MP_TAC o SPECL [`N1:A`; `N2:A`]) THEN
REWRITE_TAC[ASSUME `(g:A->A->bool) N1 N1`;ASSUME `(g:A->A->bool) N2 N2`] THEN
DISCH_THEN(X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `n:A` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `m:A` THEN DISCH_TAC THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o
check(is_conj o snd o dest_imp o snd o dest_forall) o concl) THEN
DISCH_THEN(MP_TAC o SPEC `m:A`) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Following tactic is useful in the following proofs *)
(*----------------------------------------------------------------------------*)
let DORDER_THEN tac th =
let [t1;t2] = map (rand o rand o body o rand) (conjuncts(concl th)) in
let dog = (rator o rator o rand o rator o body) t1 in
let thl = map ((uncurry X_BETA_CONV) o (I F_F rand) o dest_abs) [t1;t2] in
let th1 = CONV_RULE(EXACT_CONV thl) th in
let th2 = MATCH_MP DORDER_LEMMA (ASSUME (list_mk_icomb "dorder" [dog])) in
let th3 = MATCH_MP th2 th1 in
let th4 = CONV_RULE(EXACT_CONV(map SYM thl)) th3 in
tac th4;;
(*----------------------------------------------------------------------------*)
(* Show that sequences and pointwise limits in a metric space are directed *)
(*----------------------------------------------------------------------------*)
let DORDER_NGE = prove(
`dorder ((>=) :num->num->bool)`,
REWRITE_TAC[dorder;
GE;
LE_REFL] THEN
REPEAT GEN_TAC THEN
DISJ_CASES_TAC(SPECL [`x:num`; `y:num`]
LE_CASES) THENL
[EXISTS_TAC `y:num`; EXISTS_TAC `x:num`] THEN
GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
LE_TRANS THENL
[EXISTS_TAC `y:num`; EXISTS_TAC `x:num`] THEN
ASM_REWRITE_TAC[]);;
let DORDER_TENDSTO = prove(
`!m:(A)metric. !x. dorder(tendsto(m,x))`,
REPEAT GEN_TAC THEN REWRITE_TAC[dorder; tendsto] THEN
MAP_EVERY X_GEN_TAC [`u:A`; `v:A`] THEN
REWRITE_TAC[
REAL_LE_REFL] THEN
DISCH_THEN STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC(SPECL [`(mdist m)((x:A),v)`; `(mdist m)((x:A),u)`]
REAL_LE_TOTAL)
THENL [EXISTS_TAC `v:A`; EXISTS_TAC `u:A`] THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN FIRST_ASSUM (fun th ->
(EXISTS_TAC o rand o concl) th THEN ASM_REWRITE_TAC[] THEN NO_TAC));;
(*----------------------------------------------------------------------------*)
(* Simpler characterization of limit in a metric topology *)
(*----------------------------------------------------------------------------*)
let MTOP_TENDS = prove(
`!d g. !x:B->A. !x0. (x --> x0)(mtop(d),g) <=>
!e. &0 < e ==> ?n. g n n /\ !m. g m n ==> mdist(d)(x(m),x0) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends] THEN EQ_TAC THEN DISCH_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `ball(d)((x0:A),e)`) THEN
W(C SUBGOAL_THEN MP_TAC o funpow 2 (rand o rator) o snd) THENL
[MATCH_MP_TAC
BALL_NEIGH THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[ball] THEN
BETA_TAC THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
[
METRIC_SYM] THEN REWRITE_TAC[];
GEN_TAC THEN REWRITE_TAC[neigh] THEN
DISCH_THEN(X_CHOOSE_THEN `P:A->bool` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `open(mtop(d)) (P:A->bool)` THEN
REWRITE_TAC[
MTOP_OPEN] THEN DISCH_THEN(MP_TAC o SPEC `x0:A`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o SPEC `d:real`) THEN
REWRITE_TAC[ASSUME `&0 < d`] THEN
DISCH_THEN(X_CHOOSE_THEN `n:B` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `n:B` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_TAC THEN
UNDISCH_TAC `(P:A->bool)
re_subset N` THEN
REWRITE_TAC[
re_subset] THEN DISCH_TAC THEN
REPEAT(FIRST_ASSUM MATCH_MP_TAC) THEN
ONCE_REWRITE_TAC[
METRIC_SYM] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*)
(* Prove that a net in a metric topology cannot converge to different limits *)
(*----------------------------------------------------------------------------*)
let MTOP_TENDS_UNIQ = prove(
`!g d. dorder (g:B->B->bool) ==>
(x --> x0)(mtop(d),g) /\ (x --> x1)(mtop(d),g) ==> (x0:A = x1)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[
MTOP_TENDS] THEN
CONV_TAC(ONCE_DEPTH_CONV AND_FORALL_CONV) THEN
REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN
CONV_TAC CONTRAPOS_CONV THEN DISCH_TAC THEN
CONV_TAC NOT_FORALL_CONV THEN
EXISTS_TAC `mdist(d:(A)metric)(x0,x1) / &2` THEN
W(C SUBGOAL_THEN ASSUME_TAC o rand o rator o rand o snd) THENL
[REWRITE_TAC[
REAL_LT_HALF1] THEN MATCH_MP_TAC
METRIC_NZ THEN
FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `N:B` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `N:B`) THEN ASM_REWRITE_TAC[] THEN
BETA_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP
REAL_LT_ADD2) THEN
REWRITE_TAC[
REAL_HALF_DOUBLE;
REAL_NOT_LT] THEN
GEN_REWRITE_TAC(RAND_CONV o LAND_CONV) [
METRIC_SYM] THEN
MATCH_ACCEPT_TAC
METRIC_TRIANGLE);;
(*----------------------------------------------------------------------------*)
(* Simpler characterization of limit of a sequence in a metric topology *)
(*----------------------------------------------------------------------------*)
let SEQ_TENDS = prove(
`!d:(A)metric. !x x0. (x --> x0)(mtop(d), (>=) :num->num->bool) <=>
!e. &0 < e ==> ?N. !n. n >= N ==> mdist(d)(x(n),x0) < e`,
(*----------------------------------------------------------------------------*)
(* And of limit of function between metric spaces *)
(*----------------------------------------------------------------------------*)
let LIM_TENDS = prove(
`!m1:(A)metric. !m2:(B)metric. !f x0 y0.
limpt(mtop m1) x0
re_universe ==>
((f --> y0)(mtop(m2),tendsto(m1,x0)) <=>
!e. &0 < e ==>
?d. &0 < d /\ !x. &0 < (mdist m1)(x,x0) /\ (mdist m1)(x,x0) <= d
==> (mdist m2)(f(x),y0) < e)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[
MTOP_TENDS; tendsto] THEN
AP_TERM_TAC THEN ABS_TAC THEN
ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
REAL_LE_REFL] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(mdist m1)((x0:A),z)` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
SUBST1_TAC(ISPECL [`m1:(A)metric`; `x0:A`; `x:A`]
METRIC_SYM) THEN
ASM_REWRITE_TAC[];
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `limpt(mtop m1) (x0:A)
re_universe` THEN
REWRITE_TAC[
MTOP_LIMPT] THEN
DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
re_universe] THEN
DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `y:A` THEN CONJ_TAC THENL
[MATCH_MP_TAC
METRIC_NZ THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[
METRIC_SYM] THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `(mdist m1)((x0:A),y)` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*)
(* Similar, more conventional version, is also true at a limit point *)
(*----------------------------------------------------------------------------*)
let LIM_TENDS2 = prove(
`!m1:(A)metric. !m2:(B)metric. !f x0 y0.
limpt(mtop m1) x0
re_universe ==>
((f --> y0)(mtop(m2),tendsto(m1,x0)) <=>
!e. &0 < e ==>
?d. &0 < d /\ !x. &0 < (mdist m1)(x,x0) /\ (mdist m1)(x,x0) < d ==>
(mdist m2)(f(x),y0) < e)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
LIM_TENDS th]) THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THENL
[EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[];
EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[
REAL_LT_HALF2]]);;
(*----------------------------------------------------------------------------*)
(* Simpler characterization of boundedness for the real line *)
(*----------------------------------------------------------------------------*)
let MR1_BOUNDED = prove(
`!(g:A->A->bool) f. bounded(mr1,g) f <=>
?k N. g N N /\ (!n. g n N ==> abs(f n) < k)`,
REPEAT GEN_TAC THEN REWRITE_TAC[bounded;
MR1_DEF] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ABS_CONV)
[
SWAP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[
SWAP_EXISTS_THM] THEN
AP_TERM_TAC THEN ABS_TAC THEN
CONV_TAC(REDEPTH_CONV EXISTS_AND_CONV) THEN
AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THENL
[DISCH_THEN(X_CHOOSE_TAC `x:real`) THEN
EXISTS_TAC `abs(x) + k` THEN GEN_TAC THEN DISCH_TAC THEN
SUBST1_TAC(SYM(SPECL [`(f:A->real) n`; `x:real`]
REAL_SUB_ADD)) THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs((f:A->real) n - x) + abs(x)` THEN
REWRITE_TAC[
ABS_TRIANGLE] THEN
GEN_REWRITE_TAC RAND_CONV [REAL_ADD_SYM] THEN
REWRITE_TAC[
REAL_LT_RADD] THEN
ONCE_REWRITE_TAC[
ABS_SUB] THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC;
DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`k:real`; `&0`] THEN
ASM_REWRITE_TAC[
REAL_SUB_LZERO;
ABS_NEG]]);;
(*----------------------------------------------------------------------------*)
(* Firstly, prove useful forms of null and bounded nets *)
(*----------------------------------------------------------------------------*)
let NET_NULL = prove(
`!g:A->A->bool. !x x0.
(x --> x0)(mtop(mr1),g) <=> ((\n. x(n) - x0) --> &0)(mtop(mr1),g)`,
let NET_CONV_BOUNDED = prove(
`!g:A->A->bool. !x x0.
(x --> x0)(mtop(mr1),g) ==> bounded(mr1,g) x`,
REPEAT GEN_TAC THEN REWRITE_TAC[
MTOP_TENDS; bounded] THEN
DISCH_THEN(MP_TAC o SPEC `&1`) THEN
REWRITE_TAC[
REAL_LT; num_CONV `1`;
LT_0] THEN
REWRITE_TAC[GSYM(num_CONV `1`)] THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`&1`; `x0:real`; `N:A`] THEN
ASM_REWRITE_TAC[]);;
let NET_CONV_NZ = prove(
`!g:A->A->bool. !x x0.
(x --> x0)(mtop(mr1),g) /\ ~(x0 = &0) ==>
?N. g N N /\ (!n. g n N ==> ~(x n = &0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[
MTOP_TENDS; bounded] THEN
DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `abs(x0)`) ASSUME_TAC) THEN
ASM_REWRITE_TAC[GSYM
ABS_NZ] THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_TAC THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[
MR1_DEF;
REAL_SUB_RZERO;
REAL_LT_REFL]);;
let NET_CONV_IBOUNDED = prove(
`!g:A->A->bool. !x x0.
(x --> x0)(mtop(mr1),g) /\ ~(x0 = &0) ==>
bounded(mr1,g) (\n. inv(x n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[
MTOP_TENDS;
MR1_BOUNDED;
MR1_DEF] THEN
BETA_TAC THEN REWRITE_TAC[
ABS_NZ] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `abs(x0) / &2`) THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`&2 / abs(x0)`; `N:A`] THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:A` THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
SUBGOAL_THEN `(abs(x0) / & 2) < abs(x(n:A))` ASSUME_TAC THENL
[SUBST1_TAC(SYM(SPECL [`abs(x0) / &2`; `abs(x0) / &2`; `abs(x(n:A))`]
REAL_LT_LADD)) THEN
REWRITE_TAC[
REAL_HALF_DOUBLE] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(x0 - x(n:A)) + abs(x(n))` THEN
ASM_REWRITE_TAC[
REAL_LT_RADD] THEN
SUBST1_TAC(SYM(AP_TERM `abs`
(SPECL [`x0:real`; `x(n:A):real`]
REAL_SUB_ADD))) THEN
MATCH_ACCEPT_TAC
ABS_TRIANGLE; ALL_TAC] THEN
SUBGOAL_THEN `&0 < abs(x(n:A))` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LT_TRANS THEN EXISTS_TAC `abs(x0) / &2` THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1]; ALL_TAC] THEN
SUBGOAL_THEN `&2 / abs(x0) = inv(abs(x0) / &2)` SUBST1_TAC THENL
[MATCH_MP_TAC REAL_RINV_UNIQ THEN REWRITE_TAC[
real_div] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`(a * b) * (c * d) = (d * a) * (b * c)`] THEN
SUBGOAL_THEN `~(abs(x0) = &0) /\ ~(&2 = &0)`
(fun th -> CONJUNCTS_THEN(SUBST1_TAC o MATCH_MP REAL_MUL_LINV) th
THEN REWRITE_TAC[REAL_MUL_LID]) THEN
CONJ_TAC THENL
[ASM_REWRITE_TAC[
ABS_NZ;
ABS_ABS];
REWRITE_TAC[
REAL_INJ; num_CONV `2`;
NOT_SUC]]; ALL_TAC] THEN
SUBGOAL_THEN `~(x(n:A) = &0)` (SUBST1_TAC o MATCH_MP
ABS_INV) THENL
[ASM_REWRITE_TAC[
ABS_NZ]; ALL_TAC] THEN
MATCH_MP_TAC
REAL_LT_INV2 THEN ASM_REWRITE_TAC[
REAL_LT_HALF1]);;
(*----------------------------------------------------------------------------*)
(* Now combining theorems for null nets *)
(*----------------------------------------------------------------------------*)
let NET_NULL_ADD = prove(
`!g:A->A->bool. dorder g ==>
!x y. (x --> &0)(mtop(mr1),g) /\ (y --> &0)(mtop(mr1),g) ==>
((\n. x(n) + y(n)) --> &0)(mtop(mr1),g)`,
GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
REWRITE_TAC[
MTOP_TENDS;
MR1_DEF;
REAL_SUB_LZERO;
ABS_NEG] THEN
DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o
MP_TAC o end_itlist CONJ o map (SPEC `e / &2`) o CONJUNCTS) THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(DORDER_THEN (X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
BETA_TAC THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(x(m:A)) + abs(y(m:A))` THEN
REWRITE_TAC[
ABS_TRIANGLE] THEN RULE_ASSUM_TAC BETA_RULE THEN
GEN_REWRITE_TAC RAND_CONV [GSYM
REAL_HALF_DOUBLE] THEN
MATCH_MP_TAC
REAL_LT_ADD2 THEN ASM_REWRITE_TAC[]);;
let NET_NULL_MUL = prove(
`!g:A->A->bool. dorder g ==>
!x y. bounded(mr1,g) x /\ (y --> &0)(mtop(mr1),g) ==>
((\n. x(n) * y(n)) --> &0)(mtop(mr1),g)`,
GEN_TAC THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN REWRITE_TAC[
MR1_BOUNDED] THEN
REWRITE_TAC[
MTOP_TENDS;
MR1_DEF;
REAL_SUB_LZERO;
ABS_NEG] THEN
DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN
CONV_TAC(LAND_CONV LEFT_AND_EXISTS_CONV) THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THEN
DISCH_THEN(ASSUME_TAC o uncurry CONJ o (I F_F SPEC `e / k`) o CONJ_PAIR) THEN
SUBGOAL_THEN `&0 < k` ASSUME_TAC THENL
[FIRST_ASSUM(X_CHOOSE_THEN `N:A`
(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) o CONJUNCT1) THEN
DISCH_THEN(MP_TAC o SPEC `N:A`) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(x(N:A))` THEN ASM_REWRITE_TAC[
ABS_POS]; ALL_TAC] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN
SUBGOAL_THEN `&0 < e / k` ASSUME_TAC THENL
[FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_LT_RDIV_0 th] THEN
ASM_REWRITE_TAC[] THEN NO_TAC); ALL_TAC] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(DORDER_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC)) THEN
EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN (ASSUME_TAC o BETA_RULE)) THEN
SUBGOAL_THEN `e = k * (e / k)` SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_LMUL THEN
DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&0 < &0` THEN
REWRITE_TAC[
REAL_LT_REFL]; ALL_TAC] THEN BETA_TAC THEN
REWRITE_TAC[
ABS_MUL] THEN MATCH_MP_TAC
REAL_LT_MUL2_ALT THEN
ASM_REWRITE_TAC[
ABS_POS]);;
let NET_NULL_CMUL = prove(
`!g:A->A->bool. !k x.
(x --> &0)(mtop(mr1),g) ==> ((\n. k * x(n)) --> &0)(mtop(mr1),g)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
MTOP_TENDS;
MR1_DEF] THEN
BETA_TAC THEN REWRITE_TAC[
REAL_SUB_LZERO;
ABS_NEG] THEN
DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN
ASM_CASES_TAC `k = &0` THENL
[DISCH_THEN(MP_TAC o SPEC `&1`) THEN
REWRITE_TAC[
REAL_LT; num_CONV `1`;
LESS_SUC_REFL] THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `N:A` THEN
ASM_REWRITE_TAC[
REAL_MUL_LZERO;
real_abs;
REAL_LE_REFL];
DISCH_THEN(MP_TAC o SPEC `e / abs(k)`) THEN
SUBGOAL_THEN `&0 < e / abs(k)` ASSUME_TAC THENL
[REWRITE_TAC[
real_div] THEN MATCH_MP_TAC
REAL_LT_MUL THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_INV_POS THEN
ASM_REWRITE_TAC[GSYM
ABS_NZ]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
SUBGOAL_THEN `e = abs(k) * (e / abs(k))` SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_LMUL THEN
ASM_REWRITE_TAC[
ABS_ZERO]; ALL_TAC] THEN
REWRITE_TAC[
ABS_MUL] THEN
SUBGOAL_THEN `&0 < abs k` (fun th -> REWRITE_TAC[MATCH_MP
REAL_LT_LMUL_EQ th])
THEN ASM_REWRITE_TAC[GSYM
ABS_NZ]]);;
(*----------------------------------------------------------------------------*)
(* Now real arithmetic theorems for convergent nets *)
(*----------------------------------------------------------------------------*)
let NET_ADD = prove(
`!g:A->A->bool x x0 y y0.
dorder g
==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g)
==> ((\n. x(n) + y(n)) --> (x0 + y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[
NET_NULL] THEN
DISCH_THEN(fun th -> FIRST_ASSUM
(MP_TAC o C MATCH_MP th o MATCH_MP
NET_NULL_ADD))
THEN MATCH_MP_TAC EQ_IMP THEN EQUAL_TAC THEN
BETA_TAC THEN REWRITE_TAC[
real_sub;
REAL_NEG_ADD] THEN
REWRITE_TAC[
REAL_ADD_AC]);;
let NET_NEG = prove(
`!g:A->A->bool x x0.
dorder g
==> ((x --> x0)(mtop(mr1),g) <=>
((\n. --(x n)) --> --x0)(mtop(mr1),g))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
REWRITE_TAC[
MTOP_TENDS;
MR1_DEF] THEN BETA_TAC THEN
REWRITE_TAC[
REAL_SUB_NEG2] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [
ABS_SUB] THEN
REFL_TAC);;
let NET_SUB = prove(
`!g:A->A->bool x x0 y y0.
dorder g
==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g)
==> ((\n. x(n) - y(n)) --> (x0 - y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[
real_sub] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `--(y(n:A))`]) THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
NET_ADD) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP
NET_NEG th)]) THEN
ASM_REWRITE_TAC[]);;
let NET_MUL = prove(
`!g:A->A->bool x y x0 y0.
dorder g
==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g)
==> ((\n. x(n) * y(n)) --> (x0 * y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[
NET_NULL] THEN
DISCH_TAC THEN BETA_TAC THEN
SUBGOAL_THEN `!a b c d. (a * b) - (c * d) = (a * (b - d)) + ((a - c) * d)`
(fun th -> ONCE_REWRITE_TAC[th]) THENL
[REPEAT GEN_TAC THEN
REWRITE_TAC[
real_sub; REAL_LDISTRIB;
REAL_RDISTRIB; GSYM REAL_ADD_ASSOC]
THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM
REAL_NEG_LMUL; GSYM
REAL_NEG_RMUL] THEN
REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]; ALL_TAC] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `x(n:A) * (y(n) - y0)`]) THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `(x(n:A) - x0) * y0`]) THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
NET_NULL_ADD) THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
(CONV_TAC o EXACT_CONV o map (X_BETA_CONV `n:A`))
[`y(n:A) - y0`; `x(n:A) - x0`] THEN
CONJ_TAC THENL
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
NET_NULL_MUL) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
NET_CONV_BOUNDED THEN
EXISTS_TAC `x0:real` THEN ONCE_REWRITE_TAC[
NET_NULL] THEN
ASM_REWRITE_TAC[];
MATCH_MP_TAC
NET_NULL_CMUL THEN ASM_REWRITE_TAC[]]);;
let NET_INV = prove(
`!g:A->A->bool x x0.
dorder g
==> (x --> x0)(mtop(mr1),g) /\ ~(x0 = &0)
==> ((\n. inv(x(n))) --> inv x0)(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
MP_TAC(CONJ (MATCH_MP
NET_CONV_IBOUNDED th)
(MATCH_MP
NET_CONV_NZ th))) THEN
REWRITE_TAC[
MR1_BOUNDED] THEN
CONV_TAC(ONCE_DEPTH_CONV LEFT_AND_EXISTS_CONV) THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THEN
DISCH_THEN(DORDER_THEN MP_TAC) THEN BETA_TAC THEN
DISCH_THEN(MP_TAC o C CONJ
(ASSUME `(x --> x0)(mtop mr1,(g:A->A->bool))`)) THEN
ONCE_REWRITE_TAC[
NET_NULL] THEN
REWRITE_TAC[
MTOP_TENDS;
MR1_DEF;
REAL_SUB_LZERO;
ABS_NEG] THEN BETA_TAC
THEN DISCH_THEN((then_)
(X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN
ONCE_REWRITE_TAC[
RIGHT_AND_FORALL_THM] THEN
DISCH_THEN(ASSUME_TAC o SPEC `e * abs(x0) * (inv k)`) THEN
SUBGOAL_THEN `&0 < k` ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `N:A`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `abs(inv(x(N:A)))` THEN
ASM_REWRITE_TAC[
ABS_POS]; ALL_TAC] THEN
SUBGOAL_THEN `&0 < e * abs(x0) * inv k` ASSUME_TAC THENL
[REPEAT(MATCH_MP_TAC
REAL_LT_MUL THEN CONJ_TAC) THEN
ASM_REWRITE_TAC[GSYM
ABS_NZ] THEN
MATCH_MP_TAC
REAL_INV_POS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN ASSUME_TAC)) THEN
EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `n:A` THEN DISCH_THEN(ANTE_RES_THEN STRIP_ASSUME_TAC) THEN
RULE_ASSUM_TAC BETA_RULE THEN POP_ASSUM_LIST(MAP_EVERY STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `inv(x n) - inv x0 =
inv(x n) * inv x0 * (x0 - x(n:A))` SUBST1_TAC THENL
[REWRITE_TAC[
REAL_SUB_LDISTRIB] THEN
REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x0 = &0)`)] THEN
REWRITE_TAC[
REAL_MUL_RID] THEN REPEAT AP_TERM_TAC THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
REWRITE_TAC[MATCH_MP
REAL_MUL_RINV (ASSUME `~(x(n:A) = &0)`)] THEN
REWRITE_TAC[
REAL_MUL_RID]; ALL_TAC] THEN
REWRITE_TAC[
ABS_MUL] THEN ONCE_REWRITE_TAC[
ABS_SUB] THEN
SUBGOAL_THEN `e = e * (abs(inv x0) * abs(x0)) * (inv k * k)`
SUBST1_TAC THENL
[REWRITE_TAC[GSYM
ABS_MUL] THEN
REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x0 = &0)`)] THEN
REWRITE_TAC[MATCH_MP REAL_MUL_LINV
(GSYM(MATCH_MP
REAL_LT_IMP_NE (ASSUME `&0 < k`)))] THEN
REWRITE_TAC[
REAL_MUL_RID] THEN
REWRITE_TAC[
real_abs;
REAL_LE;
LE_LT; num_CONV `1`;
LESS_SUC_REFL] THEN
REWRITE_TAC[SYM(num_CONV `1`);
REAL_MUL_RID]; ALL_TAC] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`a * (b * c) * (d * e) = e * b * (a * c * d)`] THEN
REWRITE_TAC[GSYM
ABS_MUL] THEN
MATCH_MP_TAC
ABS_LT_MUL2 THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
ABS_MUL] THEN SUBGOAL_THEN `&0 < abs(inv x0)`
(fun th -> ASM_REWRITE_TAC[MATCH_MP
REAL_LT_LMUL_EQ th]) THEN
REWRITE_TAC[GSYM
ABS_NZ] THEN
MATCH_MP_TAC REAL_INV_NZ THEN ASM_REWRITE_TAC[]);;
let NET_DIV = prove(
`!g:A->A->bool x x0 y y0.
dorder g
==> (x --> x0)(mtop(mr1),g) /\
(y --> y0)(mtop(mr1),g) /\ ~(y0 = &0)
==> ((\n. x(n) / y(n)) --> (x0 / y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[
real_div] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `inv(y(n:A))`]) THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
NET_MUL) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
NET_INV) THEN
ASM_REWRITE_TAC[]);;
let NET_ABS = prove(
`!x x0. (x --> x0)(mtop(mr1),g) ==>
((\n:A. abs(x n)) --> abs(x0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
MTOP_TENDS] THEN
DISCH_TAC THEN X_GEN_TAC `e:real` THEN
DISCH_THEN(fun th -> POP_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `n:A` THEN DISCH_TAC THEN BETA_TAC THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `mdist(mr1)(x(n:A),x0)` THEN CONJ_TAC THENL
[REWRITE_TAC[
MR1_DEF;
ABS_SUB_ABS];
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
let NET_SUM = prove
(`!g. dorder g /\
((\x. &0) --> &0)(mtop(mr1),g)
==> !m n. (!r. m <= r /\ r < m + n ==> (f r --> l r)(mtop(mr1),g))
==> ((\x. sum(m,n) (\r. f r x)) --> sum(m,n) l)
(mtop(mr1),g)`,
GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[
SWAP_FORALL_THM] THEN INDUCT_TAC THEN
ASM_SIMP_TAC[sum] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
NET_ADD) THEN CONJ_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
X_GEN_TAC `r:num` THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[ARITH_RULE `a < b + c ==> a < b + SUC c`];
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSUM MATCH_MP_TAC THEN
ARITH_TAC]);;
(*----------------------------------------------------------------------------*)
(* Comparison between limits *)
(*----------------------------------------------------------------------------*)
let NET_LE = prove(
`!g:A->A->bool x x0 y y0.
dorder g
==> (x --> x0)(mtop(mr1),g) /\
(y --> y0)(mtop(mr1),g) /\
(?N. g N N /\ !n. g n N ==> x(n) <= y(n))
==> x0 <= y0`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN
PURE_ONCE_REWRITE_TAC[
REAL_NOT_LE] THEN
ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN DISCH_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN
REWRITE_TAC[
CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[
MTOP_TENDS] THEN
DISCH_THEN(MP_TAC o end_itlist CONJ o
map (SPEC `(x0 - y0) / &2`) o CONJUNCTS) THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(DORDER_THEN MP_TAC) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_exists o concl) THEN
DISCH_THEN(fun th1 -> DISCH_THEN (fun th2 -> MP_TAC(CONJ th1 th2))) THEN
DISCH_THEN(DORDER_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
BETA_TAC THEN DISCH_THEN(MP_TAC o SPEC `N:A`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
MR1_DEF] THEN ONCE_REWRITE_TAC[
ABS_SUB] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[
REAL_NOT_LE] THEN MATCH_MP_TAC
ABS_BETWEEN2 THEN
MAP_EVERY EXISTS_TAC [`y0:real`; `x0:real`] THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
FIRST_ASSUM ACCEPT_TAC);;
(*============================================================================*)
(* Theory of sequences and series of real numbers *)
(*============================================================================*)
parse_as_infix ("tends_num_real",(12,"right"));;
parse_as_infix ("sums",(12,"right"));;
(*----------------------------------------------------------------------------*)
(* Specialize net theorems to sequences:num->real *)
(*----------------------------------------------------------------------------*)
override_interface ("-->",`(tends_num_real)`);;
let SEQ = prove(
`!x x0. (x --> x0) <=>
!e. &0 < e ==> ?N. !n. n >= N ==> abs(x(n) - x0) < e`,
let SEQ_ADD = prove(
`!x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. x(n) + y(n)) --> (x0 + y0)`,
let SEQ_MUL = prove(
`!x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. x(n) * y(n)) --> (x0 * y0)`,
let SEQ_INV = prove(
`!x x0. x --> x0 /\ ~(x0 = &0) ==> (\n. inv(x n)) --> inv x0`,
let SEQ_SUB = prove(
`!x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. x(n) - y(n)) --> (x0 - y0)`,
let SEQ_DIV = prove(
`!x x0 y y0. x --> x0 /\ y --> y0 /\ ~(y0 = &0) ==>
(\n. x(n) / y(n)) --> (x0 / y0)`,
let SEQ_SUM = prove
(`!f l m n.
(!r. m <= r /\ r < m + n ==> f r --> l r)
==> (\k. sum(m,n) (\r. f r k)) --> sum(m,n) l`,
let SEQ_TRANSFORM = prove
(`!s t l N. (!n. N <= n ==> (s n = t n)) /\ s --> l ==> t --> l`,
REWRITE_TAC[
SEQ;
GE] THEN
MESON_TAC[ARITH_RULE `M + N <= n:num ==> M <= n /\ N <= n`]);;
(*----------------------------------------------------------------------------*)
(* Define convergence and Cauchy-ness *)
(*----------------------------------------------------------------------------*)
let SEQ_LIM = prove(
`!f. convergent f <=> (f --> lim f)`,
GEN_TAC THEN REWRITE_TAC[convergent] THEN EQ_TAC THENL
[DISCH_THEN(MP_TAC o SELECT_RULE) THEN REWRITE_TAC[lim];
DISCH_TAC THEN EXISTS_TAC `lim f` THEN POP_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*)
(* Define a subsequence *)
(*----------------------------------------------------------------------------*)
let SUBSEQ_SUC = prove(
`!f. subseq f <=> !n. f(n) < f(SUC n)`,
GEN_TAC THEN REWRITE_TAC[subseq] THEN EQ_TAC THEN DISCH_TAC THENL
[X_GEN_TAC `n:num` THEN POP_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
LESS_SUC_REFL];
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP
LESS_ADD_1) THEN
REWRITE_TAC[GSYM
ADD1] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN
SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THENL
[ALL_TAC;
MATCH_MP_TAC
LT_TRANS THEN EXISTS_TAC `f(m + (SUC p)):num`] THEN
ASM_REWRITE_TAC[
ADD_CLAUSES]]);;
(*----------------------------------------------------------------------------*)
(* Define monotonicity *)
(*----------------------------------------------------------------------------*)
let MONO_SUC = prove(
`!f. mono f <=> (!n. f(SUC n) >= f(n)) \/ (!n. f(SUC n) <= f(n))`,
GEN_TAC THEN REWRITE_TAC[mono;
real_ge] THEN
MATCH_MP_TAC(TAUT `(a <=> c) /\ (b <=> d) ==> (a \/ b <=> c \/ d)`) THEN
CONJ_TAC THEN (EQ_TAC THENL
[DISCH_THEN(MP_TAC o GEN `n:num` o SPECL [`n:num`; `SUC n`]) THEN
REWRITE_TAC[
LESS_EQ_SUC_REFL];
DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN
SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[
ADD_CLAUSES;
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `f(m + p:num):real` THEN
ASM_REWRITE_TAC[]]));;
(*----------------------------------------------------------------------------*)
(* Simpler characterization of bounded sequence *)
(*----------------------------------------------------------------------------*)
let MAX_LEMMA = prove(
`!s N. ?k. !n:num. n < N ==> abs(s n) < k`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[
NOT_LESS_0] THEN
POP_ASSUM(X_CHOOSE_TAC `k:real`) THEN
DISJ_CASES_TAC (SPECL [`k:real`; `abs(s(N:num))`]
REAL_LET_TOTAL) THENL
[EXISTS_TAC `abs(s(N:num)) + &1`; EXISTS_TAC `k:real`] THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[CONJUNCT2
LT] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN
TRY(MATCH_MP_TAC
REAL_LT_ADD1) THEN ASM_REWRITE_TAC[
REAL_LE_REFL] THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
MATCH_MP_TAC
REAL_LT_ADD1 THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `k:real` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
ASM_REWRITE_TAC[]);;
let SEQ_BOUNDED = prove(
`!s. bounded(mr1, (>=)) s <=> ?k. !n:num. abs(s n) < k`,
GEN_TAC THEN REWRITE_TAC[
MR1_BOUNDED] THEN
REWRITE_TAC[
GE;
LE_REFL] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `k:real` (X_CHOOSE_TAC `N:num`)) THEN
MP_TAC(SPECL [`s:num->real`; `N:num`]
MAX_LEMMA) THEN
DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN
DISJ_CASES_TAC (SPECL [`k:real`; `l:real`]
REAL_LE_TOTAL) THENL
[EXISTS_TAC `l:real`; EXISTS_TAC `k:real`] THEN
X_GEN_TAC `n:num` THEN MP_TAC(SPECL [`n:num`; `N:num`]
LTE_CASES) THEN
DISCH_THEN(DISJ_CASES_THEN(ANTE_RES_THEN ASSUME_TAC)) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LTE_TRANS THEN
FIRST_ASSUM(fun th -> EXISTS_TAC(rand(concl th)) THEN
ASM_REWRITE_TAC[] THEN NO_TAC);
DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN
MAP_EVERY EXISTS_TAC [`k:real`; `0`] THEN
GEN_TAC THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* Show that every Cauchy sequence is bounded *)
(*----------------------------------------------------------------------------*)
let SEQ_CBOUNDED = prove(
`!f. cauchy f ==> bounded(mr1, (>=)) f`,
GEN_TAC THEN REWRITE_TAC[bounded; cauchy] THEN
DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[
REAL_LT_01] THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
MAP_EVERY EXISTS_TAC [`&1`; `(f:num->real) N`; `N:num`] THEN
REWRITE_TAC[
GE;
LE_REFL] THEN
POP_ASSUM(MP_TAC o SPEC `N:num`) THEN
REWRITE_TAC[
GE;
LE_REFL;
MR1_DEF]);;
(*----------------------------------------------------------------------------*)
(* Show that a bounded and monotonic sequence converges *)
(*----------------------------------------------------------------------------*)
let SEQ_ICONV = prove(
`!f. bounded(mr1, (>=)) f /\ (!m n. m >= n ==> f(m) >= f(n))
==> convergent f`,
GEN_TAC THEN DISCH_TAC THEN
MP_TAC (SPEC `\x:real. ?n:num. x = f(n)`
REAL_SUP) THEN BETA_TAC THEN
W(C SUBGOAL_THEN MP_TAC o funpow 2 (fst o dest_imp) o snd) THENL
[CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`f(0):real`; `0`] THEN REFL_TAC;
POP_ASSUM(MP_TAC o REWRITE_RULE[
SEQ_BOUNDED] o CONJUNCT1) THEN
DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN EXISTS_TAC `k:real` THEN
GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `abs(f(n:num))` THEN
ASM_REWRITE_TAC[
ABS_LE]]; ALL_TAC] THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN DISCH_TAC THEN
REWRITE_TAC[convergent] THEN EXISTS_TAC `sup(\x. ?n:num. x = f(n))` THEN
REWRITE_TAC[
SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o check(is_forall o concl)) THEN
DISCH_THEN(MP_TAC o SPEC `sup(\x. ?n:num. x = f(n)) - e`) THEN
REWRITE_TAC[
REAL_LT_SUB_RADD;
REAL_LT_ADDR] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN
ONCE_REWRITE_TAC[
CONJ_SYM] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_THEN `n:num` SUBST1_TAC)) THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[GSYM
REAL_LT_SUB_RADD] THEN
DISCH_TAC THEN SUBGOAL_THEN `!n. f(n) <= sup(\x. ?n:num. x = f(n))`
ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o SPEC `sup(\x. ?n:num. x = f(n))`) THEN
REWRITE_TAC[
REAL_LT_REFL] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN
REWRITE_TAC[
REAL_NOT_LT] THEN
CONV_TAC(ONCE_DEPTH_CONV LEFT_IMP_EXISTS_CONV) THEN
DISCH_THEN(MP_TAC o GEN `n:num` o SPECL [`(f:num->real) n`; `n:num`]) THEN
REWRITE_TAC[]; ALL_TAC] THEN
EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN
FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[
REAL_LT_SUB_RADD]) THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[REAL_ADD_SYM]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM
REAL_LT_SUB_RADD]) THEN
REWRITE_TAC[
real_ge] THEN DISCH_TAC THEN
SUBGOAL_THEN `(sup(\x. ?m:num. x = f(m)) - e) < f(m)` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `(f:num->real) n` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[
real_abs] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[
REAL_NEG_SUB] THENL
[MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `&0` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[
real_sub] THEN
(SUBST1_TAC o REWRITE_RULE[
REAL_ADD_RINV] o C SPECL
REAL_LE_RADD)
[`(f:num->real) m`; `(sup(\x. ?n:num. x = f(n)))`;
`--(sup(\x. ?n:num. x = f(n)))`] THEN
ASM_REWRITE_TAC[];
REWRITE_TAC[
REAL_LT_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[GSYM
REAL_LT_SUB_RADD] THEN ASM_REWRITE_TAC[]]);;
let SEQ_NEG_CONV = prove(
`!f. convergent f <=> convergent (\n. --(f n))`,
GEN_TAC THEN REWRITE_TAC[convergent] THEN EQ_TAC THEN
DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN
EXISTS_TAC `--l` THEN POP_ASSUM MP_TAC THEN
SUBST1_TAC(SYM(SPEC `l:real`
REAL_NEGNEG)) THEN
REWRITE_TAC[GSYM
SEQ_NEG] THEN REWRITE_TAC[
REAL_NEGNEG]);;
(*----------------------------------------------------------------------------*)
(* Show that every sequence contains a monotonic subsequence *)
(*----------------------------------------------------------------------------*)
let SEQ_MONOSUB = prove(
`!s:num->real. ?f. subseq f /\ mono(\n.s(f n))`,
GEN_TAC THEN
ASM_CASES_TAC `!n:num. ?p. p > n /\ !m. m >= p ==> s(m) <= s(p)` THENL
[(X_CHOOSE_THEN `f:num->num` MP_TAC o EXISTENCE o C ISPECL
num_Axiom)
[`@p. p > 0 /\ (!m. m >= p ==> (s m) <= (s p))`;
`\x. \n:num. @p:num. p > x /\
(!m. m >= p ==> (s m) <= (s p))`] THEN
BETA_TAC THEN RULE_ASSUM_TAC(GEN `n:num` o SELECT_RULE o SPEC `n:num`) THEN
POP_ASSUM(fun th -> DISCH_THEN(ASSUME_TAC o GSYM) THEN
MP_TAC(SPEC `0` th) THEN
MP_TAC(GEN `n:num` (SPEC `(f:num->num) n` th))) THEN
ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN REPEAT STRIP_TAC THEN
EXISTS_TAC `f:num->num` THEN ASM_REWRITE_TAC[
SUBSEQ_SUC; GSYM
GT] THEN
SUBGOAL_THEN `!p q. p:num >= (f q) ==> s(p) <= s(f(q:num))` MP_TAC THENL
[REPEAT GEN_TAC THEN STRUCT_CASES_TAC(SPEC `q:num`
num_CASES) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o GEN `q:num` o SPECL [`f(SUC q):num`; `q:num`]) THEN
SUBGOAL_THEN `!q. f(SUC q):num >= f(q)` (fun th -> REWRITE_TAC[th]) THENL
[GEN_TAC THEN REWRITE_TAC[
GE] THEN
MATCH_MP_TAC
LT_IMP_LE
THEN ASM_REWRITE_TAC[GSYM
GT]; ALL_TAC] THEN
DISCH_TAC THEN REWRITE_TAC[
MONO_SUC] THEN DISJ2_TAC THEN
BETA_TAC THEN ASM_REWRITE_TAC[];
POP_ASSUM(X_CHOOSE_TAC `N:num` o CONV_RULE NOT_FORALL_CONV) THEN
POP_ASSUM(MP_TAC o CONV_RULE NOT_EXISTS_CONV) THEN
REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN
REWRITE_TAC[NOT_IMP;
REAL_NOT_LE] THEN DISCH_TAC THEN
SUBGOAL_THEN `!p. p >= SUC N ==> (?m. m > p /\ s(p) < s(m))`
MP_TAC THENL
[GEN_TAC THEN REWRITE_TAC[
GE;
LE_SUC_LT] THEN
REWRITE_TAC[GSYM
GT] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[
GE;
LE_LT; RIGHT_AND_OVER_OR;
GT] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` DISJ_CASES_TAC) THENL
[EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[];
FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[
REAL_LT_REFL]]; ALL_TAC] THEN
POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN
(X_CHOOSE_THEN `f:num->num` MP_TAC o EXISTENCE o C ISPECL
num_Axiom)
[`@m. m > (SUC N) /\ s(SUC N) < s(m)`;
`\x. \n:num. @m:num. m > x /\ s(x) < s(m)`] THEN
BETA_TAC THEN DISCH_THEN ASSUME_TAC THEN SUBGOAL_THEN
`!n. f(n) >= (SUC N) /\
f(SUC n) > f(n) /\ s(f n) < s(f(SUC n):num)` MP_TAC THENL
[INDUCT_TAC THENL
[SUBGOAL_THEN `f(0) >= (SUC N)` MP_TAC THENL
[FIRST_ASSUM(MP_TAC o SPEC `SUC N`) THEN
REWRITE_TAC[
GE;
LE_REFL] THEN
DISCH_THEN(MP_TAC o SELECT_RULE) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
MATCH_MP_TAC
LT_IMP_LE THEN
ASM_REWRITE_TAC[GSYM
GT]; ALL_TAC] THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN REWRITE_TAC[th]) THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[CONJUNCT2 th]) THEN
CONV_TAC SELECT_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM(UNDISCH_TAC o
check((=)3 o length o conjuncts) o concl) THEN
DISCH_THEN STRIP_ASSUME_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[
GE] THEN MATCH_MP_TAC
LE_TRANS THEN
EXISTS_TAC `(f:num->num) n` THEN REWRITE_TAC[GSYM
GE] THEN
CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN
REWRITE_TAC[
GE] THEN MATCH_MP_TAC
LT_IMP_LE THEN
REWRITE_TAC[GSYM
GT] THEN FIRST_ASSUM ACCEPT_TAC;
FIRST_ASSUM(SUBST1_TAC o SPEC `SUC n` o CONJUNCT2) THEN
CONV_TAC SELECT_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
GE] THEN MATCH_MP_TAC
LE_TRANS THEN
EXISTS_TAC `(f:num->num) n` THEN
REWRITE_TAC[GSYM
GE] THEN CONJ_TAC THEN
TRY(FIRST_ASSUM ACCEPT_TAC) THEN
REWRITE_TAC[
GE] THEN MATCH_MP_TAC
LT_IMP_LE THEN
REWRITE_TAC[GSYM
GT] THEN
FIRST_ASSUM ACCEPT_TAC]]; ALL_TAC] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_TAC THEN
EXISTS_TAC `f:num->num` THEN REWRITE_TAC[
SUBSEQ_SUC;
MONO_SUC] THEN
ASM_REWRITE_TAC[GSYM
GT] THEN DISJ1_TAC THEN BETA_TAC THEN
GEN_TAC THEN REWRITE_TAC[
real_ge] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* Show that a subsequence of a bounded sequence is bounded *)
(*----------------------------------------------------------------------------*)
let SEQ_SBOUNDED = prove(
`!s (f:num->num). bounded(mr1, (>=)) s ==> bounded(mr1, (>=)) (\n. s(f n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[
SEQ_BOUNDED] THEN
DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN EXISTS_TAC `k:real` THEN
GEN_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Show we can take subsequential terms arbitrarily far up a sequence *)
(*----------------------------------------------------------------------------*)
let SEQ_DIRECT = prove(
`!f. subseq f ==> !N1 N2. ?n. n >= N1 /\ f(n) >= N2`,
GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
DISJ_CASES_TAC (SPECL [`N1:num`; `N2:num`]
LE_CASES) THENL
[EXISTS_TAC `N2:num` THEN ASM_REWRITE_TAC[
GE] THEN
MATCH_MP_TAC
SEQ_SUBLE THEN
FIRST_ASSUM ACCEPT_TAC;
EXISTS_TAC `N1:num` THEN REWRITE_TAC[
GE;
LE_REFL] THEN
REWRITE_TAC[
GE] THEN MATCH_MP_TAC
LE_TRANS THEN
EXISTS_TAC `N1:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
SEQ_SUBLE THEN
FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*)
(* Now show that every Cauchy sequence converges *)
(*----------------------------------------------------------------------------*)
let SEQ_CAUCHY = prove(
`!f. cauchy f <=> convergent f`,
GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP
SEQ_CBOUNDED) THEN
MP_TAC(SPEC `f:num->real`
SEQ_MONOSUB) THEN
DISCH_THEN(X_CHOOSE_THEN `g:num->num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `bounded(mr1, (>=) :num->num->bool)(\n. f(g(n):num))`
ASSUME_TAC THENL
[MATCH_MP_TAC
SEQ_SBOUNDED THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `convergent (\n. f(g(n):num))` MP_TAC THENL
[MATCH_MP_TAC
SEQ_BCONV THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[convergent] THEN DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN
EXISTS_TAC `l:real` THEN REWRITE_TAC[
SEQ] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
UNDISCH_TAC `(\n. f(g(n):num)) --> l` THEN REWRITE_TAC[
SEQ] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
BETA_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN
UNDISCH_TAC `cauchy f` THEN REWRITE_TAC[cauchy] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
SEQ_DIRECT) THEN
DISCH_THEN(MP_TAC o SPECL [`N1:num`; `N2:num`]) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `N2:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
UNDISCH_TAC `!n:num. n >= N1 ==> abs(f(g n:num) - l) < (e / &2)` THEN
DISCH_THEN(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPECL [`g(n:num):num`; `m:num`]) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
SUBGOAL_THEN `f(m:num) - l = (f(m) - f(g(n:num))) + (f(g n) - l)`
SUBST1_TAC THENL [REWRITE_TAC[
REAL_SUB_TRIANGLE]; ALL_TAC] THEN
EXISTS_TAC `abs(f(m:num) - f(g(n:num))) + abs(f(g n) - l)` THEN
REWRITE_TAC[
ABS_TRIANGLE] THEN
SUBST1_TAC(SYM(SPEC `e:real`
REAL_HALF_DOUBLE)) THEN
MATCH_MP_TAC
REAL_LT_ADD2 THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[
ABS_SUB] THEN ASM_REWRITE_TAC[];
REWRITE_TAC[convergent] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN
REWRITE_TAC[
SEQ; cauchy] THEN DISCH_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN ASSUME_TAC)) THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
SUBGOAL_THEN `f(m:num) - f(n) = (f(m) - l) + (l - f(n))`
SUBST1_TAC THENL [REWRITE_TAC[
REAL_SUB_TRIANGLE]; ALL_TAC] THEN
EXISTS_TAC `abs(f(m:num) - l) + abs(l - f(n))` THEN
REWRITE_TAC[
ABS_TRIANGLE] THEN
SUBST1_TAC(SYM(SPEC `e:real`
REAL_HALF_DOUBLE)) THEN
MATCH_MP_TAC
REAL_LT_ADD2 THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[
ABS_SUB] THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* The limit comparison property for sequences *)
(*----------------------------------------------------------------------------*)
let SEQ_LE = prove(
`!f g l m. f --> l /\ g --> m /\ (?N. !n. n >= N ==> f(n) <= g(n))
==> l <= m`,
(* ------------------------------------------------------------------------- *)
(* When a sequence tends to zero. *)
(* ------------------------------------------------------------------------- *)
let SEQ_LE_0 = prove
(`!f g. f --> &0 /\ (?N. !n. n >= N ==> abs(g n) <= abs(f n))
==> g --> &0`,
(*----------------------------------------------------------------------------*)
(* We can displace a convergent series by 1 *)
(*----------------------------------------------------------------------------*)
let SEQ_SUC = prove(
`!f l. f --> l <=> (\n. f(SUC n)) --> l`,
REPEAT GEN_TAC THEN REWRITE_TAC[
SEQ;
GE] THEN EQ_TAC THEN
DISCH_THEN(fun th -> X_GEN_TAC `e:real` THEN
DISCH_THEN(MP_TAC o MATCH_MP th)) THEN BETA_TAC THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THENL
[EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC
LE_TRANS THEN
EXISTS_TAC `SUC N` THEN ASM_REWRITE_TAC[
LE_SUC;
LESS_EQ_SUC_REFL];
EXISTS_TAC `SUC N` THEN X_GEN_TAC `n:num` THEN
STRUCT_CASES_TAC (SPEC `n:num`
num_CASES) THENL
[REWRITE_TAC[GSYM
NOT_LT;
LT_0];
REWRITE_TAC[
LE_SUC] THEN DISCH_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*)
(* Prove a sequence tends to zero iff its abs does *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Half this is true for a general limit *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Prove that an unbounded sequence's inverse tends to 0 *)
(*----------------------------------------------------------------------------*)
let SEQ_INV0 = prove(
`!f. (!y. ?N. !n. n >= N ==> f(n) > y)
==> (\n. inv(f n)) --> &0`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[
SEQ;
REAL_SUB_RZERO] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_TAC `N:num` o SPEC `inv e`) THEN
EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC th) THEN
REWRITE_TAC[
real_gt] THEN BETA_TAC THEN
IMP_RES_THEN ASSUME_TAC
REAL_INV_POS THEN
SUBGOAL_THEN `&0 < f(n:num)` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LT_TRANS THEN EXISTS_TAC `inv e` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM
real_gt] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `&0 < inv(f(n:num))` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_INV_POS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `~(f(n:num) = &0)` ASSUME_TAC THENL
[CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC
REAL_LT_IMP_NE THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
ABS_INV th]) THEN
SUBGOAL_THEN `e = inv(inv e)` SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_INVINV THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC
REAL_LT_INV2 THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `(f:num->real) n` THEN
ASM_REWRITE_TAC[
ABS_LE]);;
(*----------------------------------------------------------------------------*)
(* Important limit of c^n for |c| < 1 *)
(*----------------------------------------------------------------------------*)
let SEQ_POWER_ABS = prove(
`!c. abs(c) < &1 ==> (\n. abs(c) pow n) --> &0`,
GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC `c:real`
ABS_POS) THEN
REWRITE_TAC[
REAL_LE_LT] THEN DISCH_THEN DISJ_CASES_TAC THENL
[SUBGOAL_THEN `!n. abs(c) pow n = inv(inv(abs(c) pow n))`
(fun th -> ONCE_REWRITE_TAC[th]) THENL
[GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_INVINV THEN
MATCH_MP_TAC
POW_NZ THEN
ASM_REWRITE_TAC[
ABS_NZ;
ABS_ABS]; ALL_TAC] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `n:num` `inv(abs(c) pow n)`]) THEN
MATCH_MP_TAC
SEQ_INV0 THEN BETA_TAC THEN X_GEN_TAC `y:real` THEN
SUBGOAL_THEN `~(abs(c) = &0)`
(fun th -> REWRITE_TAC[MATCH_MP
POW_INV th]) THENL
[CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC
REAL_LT_IMP_NE THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[
real_gt] THEN
SUBGOAL_THEN `&0 < inv(abs c) - &1` ASSUME_TAC THENL
[REWRITE_TAC[
REAL_LT_SUB_LADD] THEN REWRITE_TAC[REAL_ADD_LID] THEN
ONCE_REWRITE_TAC[GSYM
REAL_INV1] THEN MATCH_MP_TAC
REAL_LT_INV2 THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MP_TAC(SPEC `inv(abs c) - &1`
REAL_ARCH) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `N:num` o SPEC `y:real`) THEN
EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[
GE] THEN
DISCH_TAC THEN SUBGOAL_THEN `y < (&n * (inv(abs c) - &1))`
ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LTE_TRANS THEN
EXISTS_TAC `&N * (inv(abs c) - &1)` THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC I [MATCH_MP
REAL_LE_RMUL_EQ th]) THEN
ASM_REWRITE_TAC[
REAL_LE]; ALL_TAC] THEN
MATCH_MP_TAC
REAL_LT_TRANS THEN
EXISTS_TAC `&n * (inv(abs c) - &1)` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN
EXISTS_TAC `&1 + (&n * (inv(abs c) - &1))` THEN
REWRITE_TAC[
REAL_LT_ADDL;
REAL_LT_01] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `(&1 + (inv(abs c) - &1)) pow n` THEN CONJ_TAC THENL
[MATCH_MP_TAC
POW_PLUS1 THEN ASM_REWRITE_TAC[];
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[
REAL_SUB_ADD] THEN
REWRITE_TAC[
REAL_LE_REFL]];
FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[
SEQ] THEN
GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `1` THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[
GE] THEN BETA_TAC THEN
STRUCT_CASES_TAC(SPEC `n:num`
num_CASES) THENL
[REWRITE_TAC[GSYM
NOT_LT; num_CONV `1`;
LT_0];
REWRITE_TAC[
POW_0;
REAL_SUB_RZERO;
ABS_0] THEN
REWRITE_TAC[ASSUME `&0 < e`]]]);;
(*----------------------------------------------------------------------------*)
(* Similar version without the abs *)
(*----------------------------------------------------------------------------*)
let SEQ_POWER = prove(
`!c. abs(c) < &1 ==> (\n. c pow n) --> &0`,
GEN_TAC THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[GSYM
SEQ_ABS] THEN BETA_TAC THEN
REWRITE_TAC[GSYM
POW_ABS] THEN
POP_ASSUM(ACCEPT_TAC o MATCH_MP
SEQ_POWER_ABS));;
(* ------------------------------------------------------------------------- *)
(* Convergence to 0 of harmonic sequence (not series of course). *)
(* ------------------------------------------------------------------------- *)
let SEQ_HARMONIC = prove
(`!a. (\n. a / &n) --> &0`,
GEN_TAC THEN REWRITE_TAC[
SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `abs a` o MATCH_MP
REAL_ARCH) THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `N + 1` THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[
GE] THEN DISCH_TAC THEN
REWRITE_TAC[
REAL_SUB_RZERO;
REAL_ABS_DIV;
REAL_ABS_NUM] THEN
SUBGOAL_THEN `&0 < &n` (fun th -> SIMP_TAC[
REAL_LT_LDIV_EQ; th]) THENL
[REWRITE_TAC[
REAL_OF_NUM_LT] THEN UNDISCH_TAC `N + 1 <= n` THEN ARITH_TAC;
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `&N * e`] THEN
ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
MATCH_MP_TAC
REAL_LE_RMUL THEN
ASM_SIMP_TAC[
REAL_LT_IMP_LE; REAL_OF_NUM_LE] THEN
UNDISCH_TAC `N + 1 <= n` THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Other basic lemmas about sequences. *)
(* ------------------------------------------------------------------------- *)
let SEQ_SUBSEQ = prove
(`!f l. f --> l ==> !a b. ~(a = 0) ==> (\n. f(a * n + b)) --> l`,
REWRITE_TAC[
RIGHT_IMP_FORALL_THM;
SEQ;
GE] THEN REPEAT GEN_TAC THEN
SUBGOAL_THEN `!a b n. ~(a = 0) ==> n <= a * n + b`
(fun th -> MESON_TAC[th;
LE_TRANS]) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(ARITH_RULE
`1 * n <= a * n ==> n <= a * n + b`) THEN
REWRITE_TAC[
LE_MULT_RCANCEL] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;
let SEQ_POW = prove
(`!f l. (f --> l) ==> !n. (\i. f(i) pow n) --> l pow n`,
REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN
REWRITE_TAC[
real_pow;
SEQ_CONST] THEN MATCH_MP_TAC
SEQ_MUL THEN
ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Useful lemmas about nested intervals and proof by bisection *)
(*----------------------------------------------------------------------------*)
let NEST_LEMMA = prove(
`!f g. (!n. f(SUC n) >= f(n)) /\
(!n. g(SUC n) <= g(n)) /\
(!n. f(n) <= g(n)) ==>
?l m. l <= m /\ ((!n. f(n) <= l) /\ f --> l) /\
((!n. m <= g(n)) /\ g --> m)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `f:num->real`
MONO_SUC) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC(SPEC `g:num->real`
MONO_SUC) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN SUBGOAL_THEN `bounded((mr1), (>=) :num->num->bool) f`
ASSUME_TAC THENL
[MATCH_MP_TAC
SEQ_BOUNDED_2 THEN
MAP_EVERY EXISTS_TAC [`(f:num->real) 0`; `(g:num->real) 0`] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[
REAL_LE_REFL] THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `(f:num->real) n` THEN
RULE_ASSUM_TAC(REWRITE_RULE[
real_ge]) THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `g(SUC n):real` THEN
ASM_REWRITE_TAC[] THEN SPEC_TAC(`SUC n`,`m:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `g(m:num):real` THEN
ASM_REWRITE_TAC[]]; ALL_TAC] THEN
SUBGOAL_THEN `bounded((mr1), (>=) :num->num->bool) g` ASSUME_TAC THENL
[MATCH_MP_TAC
SEQ_BOUNDED_2 THEN
MAP_EVERY EXISTS_TAC [`(f:num->real) 0`; `(g:num->real) 0`] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[
REAL_LE_REFL] THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `(f:num->real) (SUC n)` THEN
ASM_REWRITE_TAC[] THEN SPEC_TAC(`SUC n`,`m:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `(f:num->real) m` THEN
RULE_ASSUM_TAC(REWRITE_RULE[
real_ge]) THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `(g:num->real) n` THEN
ASM_REWRITE_TAC[]]; ALL_TAC] THEN
MP_TAC(SPEC `f:num->real`
SEQ_BCONV) THEN ASM_REWRITE_TAC[
SEQ_LIM] THEN
DISCH_TAC THEN MP_TAC(SPEC `g:num->real`
SEQ_BCONV) THEN
ASM_REWRITE_TAC[
SEQ_LIM] THEN DISCH_TAC THEN
MAP_EVERY EXISTS_TAC [`lim f`; `lim g`] THEN ASM_REWRITE_TAC[] THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC
SEQ_LE THEN
MAP_EVERY EXISTS_TAC [`f:num->real`; `g:num->real`] THEN ASM_REWRITE_TAC[];
X_GEN_TAC `m:num` THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN
PURE_REWRITE_TAC[
REAL_NOT_LE] THEN DISCH_TAC THEN
UNDISCH_TAC `f --> lim f` THEN REWRITE_TAC[
SEQ] THEN
DISCH_THEN(MP_TAC o SPEC `f(m) - lim f`) THEN
ASM_REWRITE_TAC[
REAL_SUB_LT] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `p + m:num`) THEN
REWRITE_TAC[
GE;
LE_ADD] THEN REWRITE_TAC[
real_abs] THEN
SUBGOAL_THEN `!p. lim f <= f(p + m:num)` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES] THENL
[MATCH_MP_TAC
REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC;
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `f(p + m:num):real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[
real_ge]) THEN ASM_REWRITE_TAC[]];
ASM_REWRITE_TAC[
REAL_SUB_LE] THEN
REWRITE_TAC[
REAL_NOT_LT;
real_sub;
REAL_LE_RADD] THEN
SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[
REAL_LE_REFL;
ADD_CLAUSES] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `f(p + m:num):real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[
real_ge]) THEN ASM_REWRITE_TAC[]];
X_GEN_TAC `m:num` THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN
PURE_REWRITE_TAC[
REAL_NOT_LE] THEN DISCH_TAC THEN
UNDISCH_TAC `g --> lim g` THEN REWRITE_TAC[
SEQ] THEN
DISCH_THEN(MP_TAC o SPEC `lim g - g(m)`) THEN
ASM_REWRITE_TAC[
REAL_SUB_LT] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `p + m:num`) THEN
REWRITE_TAC[
GE;
LE_ADD] THEN REWRITE_TAC[
real_abs] THEN
SUBGOAL_THEN `!p. g(p + m:num) < lim g` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `g(p + m:num):real` THEN ASM_REWRITE_TAC[];
REWRITE_TAC[
REAL_SUB_LE] THEN ASM_REWRITE_TAC[GSYM
REAL_NOT_LT] THEN
REWRITE_TAC[
REAL_NOT_LT;
REAL_NEG_SUB] THEN
REWRITE_TAC[
real_sub;
REAL_LE_LADD;
REAL_LE_NEG] THEN
SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[
REAL_LE_REFL;
ADD_CLAUSES] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `g(p + m:num):real` THEN
ASM_REWRITE_TAC[]]]);;
let NEST_LEMMA_UNIQ = prove(
`!f g. (!n. f(SUC n) >= f(n)) /\
(!n. g(SUC n) <= g(n)) /\
(!n. f(n) <= g(n)) /\
(\n. f(n) - g(n)) --> &0 ==>
?l. ((!n. f(n) <= l) /\ f --> l) /\
((!n. l <= g(n)) /\ g --> l)`,
REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
REWRITE_TAC[
CONJ_ASSOC] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[GSYM
CONJ_ASSOC] THEN
DISCH_THEN(MP_TAC o MATCH_MP
NEST_LEMMA) THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `l:real` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `l:real = m` (fun th -> ASM_REWRITE_TAC[th]) THEN
MP_TAC(SPECL [`f:num->real`; `l:real`; `g:num->real`; `m:real`]
SEQ_SUB) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o CONJ(ASSUME `(\n. f(n) - g(n)) --> &0`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
SEQ_UNIQ) THEN
CONV_TAC(LAND_CONV SYM_CONV) THEN
REWRITE_TAC[
REAL_SUB_0]);;
let BOLZANO_LEMMA = prove(
`!P. (!a b c. a <= b /\ b <= c /\ P(a,b) /\ P(b,c) ==> P(a,c)) /\
(!x. ?d. &0 < d /\ !a b. a <= x /\ x <= b /\ (b - a) < d ==> P(a,b))
==> !a b. a <= b ==> P(a,b)`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN
(X_CHOOSE_THEN `f:num->real#real` STRIP_ASSUME_TAC o
EXISTENCE o BETA_RULE o C ISPECL
num_Axiom)
[`(a:real,(b:real))`;
`\fn (n:num). if P(
FST fn,(
FST fn +
SND fn)/ &2) then
((
FST fn +
SND fn)/ &2,
SND fn) else
(
FST fn,(
FST fn +
SND fn)/ &2)`] THEN
MP_TAC(SPECL
[`\n:num.
FST(f(n) :real#real)`; `\n:num.
SND(f(n) :real#real)`]
NEST_LEMMA_UNIQ) THEN BETA_TAC THEN
SUBGOAL_THEN `!n:num.
FST(f n) <=
SND(f n)` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN REWRITE_TAC[] THENL
[MATCH_MP_TAC
REAL_MIDDLE2; MATCH_MP_TAC
REAL_MIDDLE1] THEN
FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN REWRITE_TAC[
real_ge] THEN
SUBGOAL_THEN `!n.
FST(f n :real#real) <=
FST(f(SUC n))`
ASSUME_TAC THENL
[REWRITE_TAC[
real_ge] THEN INDUCT_TAC THEN
FIRST_ASSUM
(fun th -> GEN_REWRITE_TAC (funpow 2 RAND_CONV) [th]) THEN
COND_CASES_TAC THEN REWRITE_TAC[
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_MIDDLE1 THEN FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `!n. ~P(
FST((f:num->real#real) n),
SND(f n))` ASSUME_TAC THENL
[INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN UNDISCH_TAC `~P(
FST((f:num->real#real) n),
SND(f n))` THEN
PURE_REWRITE_TAC[
IMP_CLAUSES; NOT_CLAUSES] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(
FST(f(n:num)) +
SND(f(n))) / &2` THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_MIDDLE1; MATCH_MP_TAC
REAL_MIDDLE2] THEN
FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `!n.
SND(f(SUC n) :real#real) <=
SND(f n)` ASSUME_TAC THENL
[BETA_TAC THEN INDUCT_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC
(LAND_CONV o RAND_CONV) [th]) THEN
COND_CASES_TAC THEN REWRITE_TAC[
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_MIDDLE2 THEN FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `!n.
SND(f n) -
FST(f n) = (b - a) / (&2 pow n)`
ASSUME_TAC THENL
[INDUCT_TAC THENL
[ASM_REWRITE_TAC[pow;
real_div;
REAL_INV1;
REAL_MUL_RID]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_EQ_LMUL_IMP THEN EXISTS_TAC `&2` THEN
REWRITE_TAC[
REAL_SUB_LDISTRIB] THEN
(SUBGOAL_THEN `~(&2 = &0)` (fun th -> REWRITE_TAC[th] THEN
REWRITE_TAC[MATCH_MP
REAL_DIV_LMUL th]) THENL
[REWRITE_TAC[
REAL_INJ; num_CONV `2`;
NOT_SUC]; ALL_TAC]) THEN
REWRITE_TAC[GSYM
REAL_DOUBLE] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_ADD_SYM] THEN
(SUBGOAL_THEN `!x y z. (x + y) - (x + z) = y - z`
(fun th -> REWRITE_TAC[th])
THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[
real_sub;
REAL_NEG_ADD] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM
REAL_ADD_RID] THEN
SUBST1_TAC(SYM(SPEC `x:real` REAL_ADD_LINV)) THEN
REWRITE_TAC[
REAL_ADD_AC]; ALL_TAC]) THEN
ASM_REWRITE_TAC[
REAL_DOUBLE] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[
real_div; GSYM REAL_MUL_ASSOC] THEN
AP_TERM_TAC THEN REWRITE_TAC[pow] THEN
(SUBGOAL_THEN `~(&2 = &0) /\ ~(&2 pow n = &0)`
(fun th -> REWRITE_TAC[MATCH_MP
REAL_INV_MUL_WEAK th]) THENL
[CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC
POW_NZ] THEN
REWRITE_TAC[
REAL_INJ] THEN
REWRITE_TAC[num_CONV `2`;
NOT_SUC];
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN
GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV)
[GSYM REAL_MUL_LID] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC
REAL_MUL_RINV THEN REWRITE_TAC[
REAL_INJ] THEN
REWRITE_TAC[num_CONV `2`;
NOT_SUC]]);
ALL_TAC] THEN
FIRST_ASSUM(UNDISCH_TAC o check (can (find_term is_cond)) o concl) THEN
DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[] THEN
W(C SUBGOAL_THEN
(fun t -> REWRITE_TAC[t]) o fst o dest_imp o rand o snd) THENL
[ONCE_REWRITE_TAC[
SEQ_NEG] THEN BETA_TAC THEN
ASM_REWRITE_TAC[
REAL_NEG_SUB;
REAL_NEG_0] THEN
REWRITE_TAC[
real_div] THEN SUBGOAL_THEN `~(&2 = &0)` ASSUME_TAC THENL
[REWRITE_TAC[
REAL_INJ; num_CONV `2`;
NOT_SUC]; ALL_TAC] THEN
(MP_TAC o C SPECL
SEQ_MUL)
[`\n:num. b - a`; `b - a`; `\n. (inv (&2 pow n))`; `&0`] THEN
REWRITE_TAC[
SEQ_CONST;
REAL_MUL_RZERO] THEN BETA_TAC THEN
DISCH_THEN MATCH_MP_TAC THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
POW_INV th]) THEN
ONCE_REWRITE_TAC[GSYM
SEQ_ABS] THEN BETA_TAC THEN
REWRITE_TAC[GSYM
POW_ABS] THEN MATCH_MP_TAC
SEQ_POWER_ABS THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
ABS_INV th]) THEN
REWRITE_TAC[
ABS_N] THEN SUBGOAL_THEN `&0 < &2`
(fun th -> ONCE_REWRITE_TAC [GSYM (MATCH_MP
REAL_LT_RMUL_EQ th)]) THENL
[REWRITE_TAC[
REAL_LT; num_CONV `2`;
LT_0]; ALL_TAC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN
REWRITE_TAC[REAL_MUL_LID] THEN REWRITE_TAC[
REAL_LT] THEN
REWRITE_TAC[num_CONV `2`;
LESS_SUC_REFL];
DISCH_THEN(X_CHOOSE_THEN `l:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(X_CHOOSE_THEN `d:real` MP_TAC o SPEC `l:real`) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
UNDISCH_TAC `(\n:num.
SND(f n :real#real)) --> l` THEN
UNDISCH_TAC `(\n:num.
FST(f n :real#real)) --> l` THEN
REWRITE_TAC[
SEQ] THEN DISCH_THEN(MP_TAC o SPEC `d / &2`) THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(X_CHOOSE_THEN `N1:num` (ASSUME_TAC o BETA_RULE)) THEN
DISCH_THEN(MP_TAC o SPEC `d / &2`) THEN ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN
DISCH_THEN(X_CHOOSE_THEN `N2:num` (ASSUME_TAC o BETA_RULE)) THEN
DISCH_THEN(MP_TAC o
SPECL [`
FST((f:num->real#real) (N1 + N2))`;
`
SND((f:num->real#real) (N1 + N2))`]) THEN
UNDISCH_TAC `!n. (
SND(f n)) - (
FST(f n)) = (b - a) / ((& 2) pow n)` THEN
DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(
FST(f(N1 + N2:num)) - l) +
abs(
SND(f(N1 + N2:num)) - l)` THEN
GEN_REWRITE_TAC (funpow 2 RAND_CONV) [GSYM
REAL_HALF_DOUBLE] THEN
CONJ_TAC THENL
[GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [
ABS_SUB] THEN
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
REWRITE_TAC[
real_sub; GSYM REAL_ADD_ASSOC] THEN
REWRITE_TAC[AC
REAL_ADD_AC `a + b + c + d = (d + a) + (c + b)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID;
REAL_LE_REFL];
MATCH_MP_TAC
REAL_LT_ADD2 THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
GE;
LE_ADD] THEN
ONCE_REWRITE_TAC[
ADD_SYM] THEN REWRITE_TAC[
LE_ADD]]]);;
(* ------------------------------------------------------------------------- *)
(* This one is better for higher-order matching. *)
(* ------------------------------------------------------------------------- *)
let BOLZANO_LEMMA_ALT = prove
(`!P. (!a b c. a <= b /\ b <= c /\ P a b /\ P b c ==> P a c) /\
(!x. ?d. &0 < d /\ (!a b. a <= x /\ x <= b /\ b - a < d ==> P a b))
==> !a b. a <= b ==> P a b`,
GEN_TAC THEN MP_TAC(SPEC `\(x:real,y:real). P x y :bool`
BOLZANO_LEMMA) THEN
REWRITE_TAC[] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Define infinite sums *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* If summable then it sums to the sum (!) *)
(*----------------------------------------------------------------------------*)
let SUM_SUMMABLE = prove(
`!f l. f sums l ==> summable f`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[summable] THEN
EXISTS_TAC `l:real` THEN POP_ASSUM ACCEPT_TAC);;
let SUMMABLE_SUM = prove(
`!f. summable f ==> f sums (suminf f)`,
GEN_TAC THEN REWRITE_TAC[summable; suminf] THEN
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
MATCH_ACCEPT_TAC SELECT_AX);;
(*----------------------------------------------------------------------------*)
(* And the sum is unique *)
(*----------------------------------------------------------------------------*)
let SUM_UNIQ = prove(
`!f x. f sums x ==> (x = suminf f)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `summable f` MP_TAC THENL
[REWRITE_TAC[summable] THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[];
DISCH_THEN(ASSUME_TAC o MATCH_MP
SUMMABLE_SUM) THEN
MATCH_MP_TAC
SEQ_UNIQ THEN
EXISTS_TAC `\n. sum(0,n) f` THEN ASM_REWRITE_TAC[GSYM sums]]);;
(*----------------------------------------------------------------------------*)
(* Series which is zero beyond a certain point *)
(*----------------------------------------------------------------------------*)
let SER_0 = prove(
`!f n. (!m. n <= m ==> (f(m) = &0)) ==>
f sums (sum(0,n) f)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[sums;
SEQ] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN
X_GEN_TAC `m:num` THEN REWRITE_TAC[
GE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN
W(C SUBGOAL_THEN SUBST1_TAC o C (curry mk_eq) `&0` o rand o rator o snd) THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[
ABS_ZERO;
REAL_SUB_0] THEN
BETA_TAC THEN REWRITE_TAC[GSYM
SUM_TWO;
REAL_ADD_RID_UNIQ] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[
GE]
SUM_ZERO)) THEN
MATCH_ACCEPT_TAC
LE_REFL);;
(*----------------------------------------------------------------------------*)
(* summable series of positive terms has limit >(=) any partial sum *)
(*----------------------------------------------------------------------------*)
let SER_POS_LE = prove(
`!f n. summable f /\ (!m. n <= m ==> &0 <= f(m))
==> sum(0,n) f <= suminf f`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
SUMMABLE_SUM) THEN REWRITE_TAC[sums] THEN
MP_TAC(SPEC `sum(0,n) f`
SEQ_CONST) THEN
GEN_REWRITE_TAC I [IMP_IMP] THEN
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`]
SEQ_LE) THEN BETA_TAC THEN
EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[
GE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN
REWRITE_TAC[GSYM
SUM_TWO;
REAL_LE_ADDR] THEN
MATCH_MP_TAC
SUM_POS_GEN THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
let SER_POS_LT = prove(
`!f n. summable f /\ (!m. n <= m ==> &0 < f(m))
==> sum(0,n) f < suminf f`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `sum(0,n + 1) f` THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM
SUM_TWO;
REAL_LT_ADDR] THEN
REWRITE_TAC[num_CONV `1`; sum; REAL_ADD_LID;
ADD_CLAUSES] THEN
FIRST_ASSUM MATCH_MP_TAC THEN MATCH_ACCEPT_TAC
LE_REFL;
MATCH_MP_TAC
SER_POS_LE THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC
LE_TRANS THEN EXISTS_TAC `SUC n` THEN
REWRITE_TAC[
LESS_EQ_SUC_REFL] THEN ASM_REWRITE_TAC[
ADD1]]);;
(*----------------------------------------------------------------------------*)
(* Theorems about grouping and offsetting, *not* permuting, terms *)
(*----------------------------------------------------------------------------*)
let SER_GROUP = prove(
`!f k. summable f /\ 0 < k ==>
(\n. sum(n * k,k) f) sums (suminf f)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP
SUMMABLE_SUM) THEN
REWRITE_TAC[sums;
SEQ] THEN BETA_TAC THEN
DISCH_THEN(fun t -> X_GEN_TAC `e:real` THEN
DISCH_THEN(MP_TAC o MATCH_MP t)) THEN
REWRITE_TAC[
GE] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
REWRITE_TAC[
SUM_GROUP] THEN EXISTS_TAC `N:num` THEN
X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC
LE_TRANS THEN EXISTS_TAC `n:num` THEN
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `0 < k` THEN
STRUCT_CASES_TAC(SPEC `k:num`
num_CASES) THEN
REWRITE_TAC[
MULT_CLAUSES;
LE_ADD; CONJUNCT1
LE] THEN
REWRITE_TAC[
LT_REFL]);;
let SER_PAIR = prove(
`!f. summable f ==> (\n. sum(2 * n,2) f) sums (suminf f)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o C CONJ (SPEC `1:num`
LT_0)) THEN
REWRITE_TAC[SYM(num_CONV `2`)] THEN ONCE_REWRITE_TAC[
MULT_SYM] THEN
MATCH_ACCEPT_TAC
SER_GROUP);;
let SER_OFFSET = prove(
`!f. summable f ==> !k. (\n. f(n + k)) sums (suminf f - sum(0,k) f)`,
GEN_TAC THEN
DISCH_THEN((then_) GEN_TAC o MP_TAC o MATCH_MP
SUMMABLE_SUM) THEN
REWRITE_TAC[sums;
SEQ] THEN
DISCH_THEN(fun th -> GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP th)) THEN
BETA_TAC THEN REWRITE_TAC[
GE] THEN
DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
REWRITE_TAC[
SUM_OFFSET] THEN
REWRITE_TAC[
real_sub;
REAL_NEG_ADD;
REAL_NEGNEG] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (b + d) + (a + c)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID] THEN REWRITE_TAC[GSYM
real_sub] THEN
FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC
LE_TRANS THEN
EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[
LE_ADD]);;
let SER_OFFSET_REV = prove
(`!f k. summable(\n. f(n + k)) ==>
f sums (sum(0,k) f) + suminf (\n. f(n + k))`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP
SUMMABLE_SUM) THEN
REWRITE_TAC[sums;
SEQ] THEN REWRITE_TAC[
SUM_OFFSET] THEN
MATCH_MP_TAC
MONO_FORALL THEN GEN_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN
DISCH_TAC THEN REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[
ADD_SYM]
SUM_DIFF)] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `N + k:num` THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[
GE;
LE_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
ONCE_REWRITE_TAC[ARITH_RULE `(N + k) + d = k + N + d:num`] THEN
REWRITE_TAC[REAL_ARITH `a - (b + c) = a - b - c`] THEN
REWRITE_TAC[GSYM
SUM_DIFF] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ARITH_TAC);;
(*----------------------------------------------------------------------------*)
(* Similar version for pairing up terms *)
(*----------------------------------------------------------------------------*)
let SER_POS_LT_PAIR = prove(
`!f n. summable f /\
(!d. &0 < (f(n + (2 * d))) +
f(n + ((2 * d) + 1)))
==> sum(0,n) f < suminf f`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP
SUMMABLE_SUM) THEN
REWRITE_TAC[sums;
SEQ] THEN BETA_TAC THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[
REAL_NOT_LT] THEN DISCH_TAC THEN
DISCH_THEN(MP_TAC o SPEC `f(n) + f(n + 1)`) THEN
FIRST_ASSUM(MP_TAC o SPEC `0`) THEN
REWRITE_TAC[
ADD_CLAUSES;
MULT_CLAUSES] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN
SUBGOAL_THEN `sum(0,n + 2) f <= sum(0,(2 * (SUC N)) + n) f`
ASSUME_TAC THENL
[SPEC_TAC(`N:num`,`N:num`) THEN INDUCT_TAC THENL
[REWRITE_TAC[
MULT_CLAUSES;
ADD_CLAUSES] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [
ADD_SYM] THEN
MATCH_ACCEPT_TAC
REAL_LE_REFL;
ABBREV_TAC `M = SUC N` THEN
REWRITE_TAC[
MULT_CLAUSES] THEN
REWRITE_TAC[num_CONV `2`;
ADD_CLAUSES] THEN
REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[
ADD_SYM]
ADD1)] THEN
REWRITE_TAC[SYM(num_CONV `2`)] THEN REWRITE_TAC[
ADD_CLAUSES] THEN
GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [
ADD1] THEN
REWRITE_TAC[GSYM
ADD_ASSOC] THEN
REWRITE_TAC[GSYM
ADD1; SYM(num_CONV `2`)] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `sum(0,(2 * M) + n) f` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[sum] THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC;
REAL_LE_ADDR] THEN
REWRITE_TAC[
ADD_CLAUSES] THEN REWRITE_TAC[
ADD1] THEN
REWRITE_TAC[GSYM
ADD_ASSOC] THEN ONCE_REWRITE_TAC[
ADD_SYM] THEN
REWRITE_TAC[GSYM
ADD_ASSOC] THEN
ONCE_REWRITE_TAC[SPEC `1`
ADD_SYM] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]];
DISCH_THEN(MP_TAC o SPEC `(2 * (SUC N)) + n`) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o
funpow 2(fst o dest_imp) o snd) THENL
[REWRITE_TAC[num_CONV `2`;
MULT_CLAUSES] THEN
ONCE_REWRITE_TAC[AC
ADD_AC
`(a + (b + c)) + d:num = b + (a + (c + d))`] THEN
REWRITE_TAC[
GE;
LE_ADD]; ALL_TAC] THEN
SUBGOAL_THEN `(suminf f + (f(n) + f(n + 1))) <=
sum(0,(2 * (SUC N)) + n) f`
ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `sum(0,n + 2) f` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `sum(0,n) f + (f(n) + f(n + 1))` THEN
ASM_REWRITE_TAC[
REAL_LE_RADD] THEN
MATCH_MP_TAC
REAL_EQ_IMP_LE THEN
CONV_TAC(REDEPTH_CONV num_CONV) THEN
REWRITE_TAC[
ADD_CLAUSES; sum; REAL_ADD_ASSOC]; ALL_TAC] THEN
SUBGOAL_THEN `suminf f <= sum(0,(2 * (SUC N)) + n) f`
ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `suminf f + (f(n) + f(n + 1))` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[
REAL_LE_ADDR] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
REWRITE_TAC[
REAL_LT_SUB_RADD] THEN
GEN_REWRITE_TAC (funpow 2 RAND_CONV) [REAL_ADD_SYM] THEN
ASM_REWRITE_TAC[
REAL_NOT_LT]]);;
(*----------------------------------------------------------------------------*)
(* Prove a few composition formulas for series *)
(*----------------------------------------------------------------------------*)
let SER_ADD = prove(
`!x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. x(n) + y(n)) sums (x0 + y0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums;
SUM_ADD] THEN
CONV_TAC((RAND_CONV o EXACT_CONV)[X_BETA_CONV `n:num` `sum(0,n) x`]) THEN
CONV_TAC((RAND_CONV o EXACT_CONV)[X_BETA_CONV `n:num` `sum(0,n) y`]) THEN
MATCH_ACCEPT_TAC
SEQ_ADD);;
let SER_CMUL = prove(
`!x x0 c. x sums x0 ==> (\n. c * x(n)) sums (c * x0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums;
SUM_CMUL] THEN DISCH_TAC THEN
SUBGOAL_THEN `(\n. (\n. c) n * (\n. sum(0,n) x) n) --> c * x0` MP_TAC THENL
[MATCH_MP_TAC
SEQ_MUL THEN ASM_REWRITE_TAC[
SEQ_CONST];
REWRITE_TAC[
BETA_THM]]);;
let SER_SUB = prove(
`!x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. x(n) - y(n)) sums (x0 - y0)`,
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC (MATCH_MP
SER_ADD
(CONJ (CONJUNCT1 th) (MATCH_MP
SER_NEG (CONJUNCT2 th))))) THEN
BETA_TAC THEN REWRITE_TAC[
real_sub]);;
let SER_CDIV = prove(
`!x x0 c. x sums x0 ==> (\n. x(n) / c) sums (x0 / c)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_div] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MATCH_ACCEPT_TAC
SER_CMUL);;
(*----------------------------------------------------------------------------*)
(* Prove Cauchy-type criterion for convergence of series *)
(*----------------------------------------------------------------------------*)
let SER_CAUCHY = prove(
`!f. summable f <=>
!e. &0 < e ==> ?N. !m n. m >= N ==> abs(sum(m,n) f) < e`,
GEN_TAC THEN REWRITE_TAC[summable; sums] THEN
REWRITE_TAC[GSYM convergent] THEN
REWRITE_TAC[GSYM
SEQ_CAUCHY] THEN REWRITE_TAC[cauchy] THEN
AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[
GE] THEN BETA_TAC THEN
REWRITE_TAC[TAUT `((a ==> b) <=> (a ==> c)) <=> a ==> (b <=> c)`] THEN
DISCH_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN DISCH_TAC THENL
[ONCE_REWRITE_TAC[
SUM_DIFF] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
LE_TRANS THEN EXISTS_TAC `m:num` THEN
ASM_REWRITE_TAC[
LE_ADD];
DISJ_CASES_THEN MP_TAC (SPECL [`m:num`; `n:num`]
LE_CASES) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC o
MATCH_MP LESS_EQUAL_ADD) THENL
[ONCE_REWRITE_TAC[
ABS_SUB]; ALL_TAC] THEN
REWRITE_TAC[GSYM
SUM_DIFF] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* Show that if a series converges, the terms tend to 0 *)
(*----------------------------------------------------------------------------*)
let SER_ZERO = prove(
`!f. summable f ==> f --> &0`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[
SEQ] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
UNDISCH_TAC `summable f` THEN REWRITE_TAC[
SER_CAUCHY] THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN
DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN
DISCH_THEN((then_) (EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN
DISCH_TAC) o MP_TAC) THEN DISCH_THEN(MP_TAC o SPECL [`n:num`; `SUC 0`]) THEN
ASM_REWRITE_TAC[sum;
REAL_SUB_RZERO; REAL_ADD_LID;
ADD_CLAUSES]);;
(*----------------------------------------------------------------------------*)
(* Now prove the comparison test *)
(*----------------------------------------------------------------------------*)
let SER_COMPAR = prove(
`!f g. (?N. !n. n >= N ==> abs(f(n)) <= g(n)) /\ summable g ==>
summable f`,
REPEAT GEN_TAC THEN REWRITE_TAC[
SER_CAUCHY;
GE] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `N1:num`) MP_TAC) THEN
REWRITE_TAC[
SER_CAUCHY;
GE] THEN DISCH_TAC THEN
X_GEN_TAC `e:real` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `sum(m,n)(\k. abs(f k))` THEN REWRITE_TAC[
ABS_SUM] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `sum(m,n) g` THEN CONJ_TAC THENL
[MATCH_MP_TAC
SUM_LE THEN BETA_TAC THEN
X_GEN_TAC `p:num` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC
LE_TRANS THEN EXISTS_TAC `m:num` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
LE_TRANS THEN
EXISTS_TAC `N1 + N2:num` THEN ASM_REWRITE_TAC[
LE_ADD]; ALL_TAC] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `abs(sum(m,n) g)` THEN
REWRITE_TAC[
ABS_LE] THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC
LE_TRANS THEN EXISTS_TAC `N1 + N2:num` THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[
ADD_SYM] THEN
REWRITE_TAC[
LE_ADD]);;
(*----------------------------------------------------------------------------*)
(* And a similar version for absolute convergence *)
(*----------------------------------------------------------------------------*)
let SER_COMPARA = prove(
`!f g. (?N. !n. n >= N ==> abs(f(n)) <= g(n)) /\ summable g ==>
summable (\k. abs(f k))`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `!n. abs(f(n)) = abs((\k:num. abs(f k)) n)`
(fun th -> GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [th])
THENL
[GEN_TAC THEN BETA_TAC THEN REWRITE_TAC[
ABS_ABS];
MATCH_ACCEPT_TAC
SER_COMPAR]);;
(*----------------------------------------------------------------------------*)
(* Limit comparison property for series *)
(*----------------------------------------------------------------------------*)
let SER_LE = prove(
`!f g. (!n. f(n) <= g(n)) /\ summable f /\ summable g
==> suminf f <= suminf g`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN (fun th -> ASSUME_TAC th THEN ASSUME_TAC
(REWRITE_RULE[sums] (MATCH_MP
SUMMABLE_SUM th)))) THEN
MATCH_MP_TAC
SEQ_LE THEN REWRITE_TAC[
CONJ_ASSOC] THEN
MAP_EVERY EXISTS_TAC [`\n. sum(0,n) f`; `\n. sum(0,n) g`] THEN CONJ_TAC THENL
[REWRITE_TAC[GSYM sums] THEN CONJ_TAC THEN
MATCH_MP_TAC
SUMMABLE_SUM THEN FIRST_ASSUM ACCEPT_TAC;
EXISTS_TAC `0` THEN REWRITE_TAC[
GE;
LE_0] THEN
GEN_TAC THEN BETA_TAC THEN MATCH_MP_TAC
SUM_LE THEN
GEN_TAC THEN ASM_REWRITE_TAC[
LE_0]]);;
let SER_LE2 = prove(
`!f g. (!n. abs(f n) <= g(n)) /\ summable g ==>
summable f /\ suminf f <= suminf g`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `summable f` ASSUME_TAC THENL
[MATCH_MP_TAC
SER_COMPAR THEN EXISTS_TAC `g:num->real` THEN
ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]] THEN
MATCH_MP_TAC
SER_LE THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `n:num` THEN MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `abs(f(n:num))` THEN ASM_REWRITE_TAC[
ABS_LE]);;
(*----------------------------------------------------------------------------*)
(* Show that absolute convergence implies normal convergence *)
(*----------------------------------------------------------------------------*)
let SER_ACONV = prove(
`!f. summable (\n. abs(f n)) ==> summable f`,
GEN_TAC THEN REWRITE_TAC[
SER_CAUCHY] THEN REWRITE_TAC[
SUM_ABS] THEN
DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN
DISCH_THEN(IMP_RES_THEN (X_CHOOSE_TAC `N:num`)) THEN
EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `sum(m,n)(\m. abs(f m))` THEN ASM_REWRITE_TAC[
ABS_SUM]);;
(*----------------------------------------------------------------------------*)
(* Absolute value of series *)
(*----------------------------------------------------------------------------*)
let SER_ABS = prove(
`!f. summable(\n. abs(f n)) ==> abs(suminf f) <= suminf(\n. abs(f n))`,
GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
SUMMABLE_SUM o MATCH_MP
SER_ACONV) THEN
POP_ASSUM(MP_TAC o MATCH_MP
SUMMABLE_SUM) THEN
REWRITE_TAC[sums] THEN DISCH_TAC THEN
DISCH_THEN(ASSUME_TAC o BETA_RULE o MATCH_MP
SEQ_ABS_IMP) THEN
MATCH_MP_TAC
SEQ_LE THEN MAP_EVERY EXISTS_TAC
[`\n. abs(sum(0,n)f)`; `\n. sum(0,n)(\n. abs(f n))`] THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN
DISCH_THEN(K ALL_TAC) THEN BETA_TAC THEN MATCH_ACCEPT_TAC
SUM_ABS_LE);;
(*----------------------------------------------------------------------------*)
(* Prove sum of geometric progression (useful for comparison) *)
(*----------------------------------------------------------------------------*)
let GP_FINITE = prove(
`!x. ~(x = &1) ==>
!n. (sum(0,n) (\n. x pow n) = ((x pow n) - &1) / (x - &1))`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THENL
[REWRITE_TAC[sum; pow;
REAL_SUB_REFL;
REAL_DIV_LZERO];
REWRITE_TAC[sum; pow] THEN BETA_TAC THEN
ASM_REWRITE_TAC[
ADD_CLAUSES] THEN
SUBGOAL_THEN `~(x - &1 = &0)` ASSUME_TAC THEN
ASM_REWRITE_TAC[
REAL_SUB_0] THEN
MP_TAC(GENL [`p:real`; `q:real`]
(SPECL [`p:real`; `q:real`; `x - &1`] REAL_EQ_RMUL)) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN
REWRITE_TAC[
REAL_RDISTRIB] THEN SUBGOAL_THEN
`!p. (p / (x - &1)) * (x - &1) = p` (fun th -> REWRITE_TAC[th]) THENL
[GEN_TAC THEN MATCH_MP_TAC
REAL_DIV_RMUL THEN ASM_REWRITE_TAC[]; ALL_TAC]
THEN REWRITE_TAC[
REAL_SUB_LDISTRIB] THEN REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (c + b) + (d + a)`] THEN
REWRITE_TAC[
REAL_MUL_RID; REAL_ADD_LINV;
REAL_ADD_RID] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_MUL_SYM]);;
let GP = prove(
`!x. abs(x) < &1 ==> (\n. x pow n) sums inv(&1 - x)`,
GEN_TAC THEN ASM_CASES_TAC `x = &1` THEN
ASM_REWRITE_TAC[
ABS_1;
REAL_LT_REFL] THEN DISCH_TAC THEN
REWRITE_TAC[sums] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
GP_FINITE th]) THEN
REWRITE_TAC[REAL_INV_1OVER] THEN REWRITE_TAC[
real_div] THEN
GEN_REWRITE_TAC (LAND_CONV o ABS_CONV) [GSYM
REAL_NEG_MUL2] THEN
SUBGOAL_THEN `~(x - &1 = &0)`
(fun t -> REWRITE_TAC[MATCH_MP REAL_NEG_INV t]) THENL
[ASM_REWRITE_TAC[
REAL_SUB_0]; ALL_TAC] THEN
REWRITE_TAC[
REAL_NEG_SUB; GSYM
real_div] THEN
SUBGOAL_THEN `(\n. (\n. &1 - x pow n) n / (\n. &1 - x) n) --> &1 / (&1 - x)`
MP_TAC THENL [ALL_TAC; REWRITE_TAC[
BETA_THM]] THEN
MATCH_MP_TAC
SEQ_DIV THEN BETA_TAC THEN REWRITE_TAC[
SEQ_CONST] THEN
REWRITE_TAC[
REAL_SUB_0] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM
REAL_SUB_RZERO] THEN
SUBGOAL_THEN `(\n. (\n. &1) n - (\n. x pow n) n) --> &1 - &0`
MP_TAC THENL [ALL_TAC; REWRITE_TAC[
BETA_THM]] THEN
MATCH_MP_TAC
SEQ_SUB THEN BETA_TAC THEN REWRITE_TAC[
SEQ_CONST] THEN
MATCH_MP_TAC
SEQ_POWER THEN FIRST_ASSUM ACCEPT_TAC);;
(*----------------------------------------------------------------------------*)
(* Now prove the ratio test *)
(*----------------------------------------------------------------------------*)
let SER_RATIO = prove(
`!f c N. c < &1 /\
(!n. n >= N ==> abs(f(SUC n)) <= c * abs(f(n))) ==>
summable f`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
DISJ_CASES_TAC (SPECL [`c:real`; `&0`]
REAL_LET_TOTAL) THENL
[REWRITE_TAC[
SER_CAUCHY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
SUBGOAL_THEN `!n. n >= N ==> (f(SUC n) = &0)` ASSUME_TAC THENL
[GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
MATCH_MP_TAC
ABS_NEG_LEMMA THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `!n. n >= (SUC N) ==> (f(n) = &0)` ASSUME_TAC THENL
[GEN_TAC THEN STRUCT_CASES_TAC(SPEC `n:num`
num_CASES) THENL
[REWRITE_TAC[
GE] THEN DISCH_THEN(MP_TAC o MATCH_MP OR_LESS) THEN
REWRITE_TAC[
NOT_LESS_0];
REWRITE_TAC[
GE;
LE_SUC] THEN
ASM_REWRITE_TAC[GSYM
GE]]; ALL_TAC] THEN
EXISTS_TAC `SUC N` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP
SUM_ZERO) THEN
REPEAT GEN_TAC THEN
DISCH_THEN(ANTE_RES_THEN (fun th -> REWRITE_TAC[th])) THEN
ASM_REWRITE_TAC[
ABS_0];
MATCH_MP_TAC
SER_COMPAR THEN
EXISTS_TAC `\n. (abs(f N) / c pow N) * (c pow n)` THEN CONJ_TAC THENL
[EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN
REWRITE_TAC[
GE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD)
THEN BETA_TAC THEN REWRITE_TAC[
POW_ADD] THEN REWRITE_TAC[
real_div] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`(a * b) * (c * d) = (a * d) * (b * c)`] THEN
SUBGOAL_THEN `~(c pow N = &0)`
(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th;
REAL_MUL_RID]) THENL
[MATCH_MP_TAC
POW_NZ THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[pow;
ADD_CLAUSES;
REAL_MUL_RID;
REAL_LE_REFL] THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `c * abs(f(N + d:num))` THEN
CONJ_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[
GE;
LE_ADD];
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`a * (b * c) = b * (a * c)`] THEN
FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP
REAL_LE_LMUL_LOCAL th])];
REWRITE_TAC[summable] THEN
EXISTS_TAC `(abs(f(N:num)) / (c pow N)) * inv(&1 - c)` THEN
MATCH_MP_TAC
SER_CMUL THEN MATCH_MP_TAC
GP THEN
ASSUME_TAC(MATCH_MP
REAL_LT_IMP_LE (ASSUME `&0 < c`)) THEN
ASM_REWRITE_TAC[
real_abs]]]);;
(* ------------------------------------------------------------------------- *)
(* The error in truncating a convergent series is bounded by partial sums. *)
(* ------------------------------------------------------------------------- *)
let SEQ_TRUNCATION = prove
(`!f l n b.
f sums l /\ (!m. abs(sum(n,m) f) <= b)
==> abs(l - sum(0,n) f) <= b`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
SUM_SUMMABLE) THEN
DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP
SER_OFFSET) THEN
REWRITE_TAC[sums] THEN
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP
SUM_UNIQ) THEN
DISCH_THEN(ASSUME_TAC o MATCH_MP
SEQ_ABS_IMP) THEN
MATCH_MP_TAC
SEQ_LE THEN
REWRITE_TAC[
RIGHT_EXISTS_AND_THM] THEN
FIRST_ASSUM(fun th -> EXISTS_TAC (lhand(concl th)) THEN
CONJ_TAC THENL [ACCEPT_TAC th; ALL_TAC]) THEN
EXISTS_TAC `\r:num. b:real` THEN REWRITE_TAC[
SEQ_CONST] THEN
ASM_REWRITE_TAC[GSYM
SUM_REINDEX;
ADD_CLAUSES]);;
(*============================================================================*)
(* Theory of limits, continuity and differentiation of real->real functions *)
(*============================================================================*)
parse_as_infix ("tends_real_real",(12,"right"));;
parse_as_infix ("diffl",(12,"right"));;
parse_as_infix ("contl",(12,"right"));;
parse_as_infix ("differentiable",(12,"right"));;
(*----------------------------------------------------------------------------*)
(* Specialize nets theorems to the pointwise limit of real->real functions *)
(*----------------------------------------------------------------------------*)
override_interface ("-->",`(tends_real_real)`);;
let LIM = prove(
`!f y0 x0. (f --> y0)(x0) <=>
!e. &0 < e ==>
?d. &0 < d /\ !x. &0 < abs(x - x0) /\ abs(x - x0) < d ==>
abs(f(x) - y0) < e`,
let LIM_CONST = prove(
`!k x. ((\x. k) --> k)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
tends_real_real;
MTOP_TENDS] THEN
GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[
METRIC_SAME] THEN
REWRITE_TAC[tendsto;
REAL_LE_REFL] THEN
MP_TAC(REWRITE_RULE[
MTOP_LIMPT] (SPEC `x:real`
MR1_LIMPT)) THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` (ASSUME_TAC o CONJUNCT1)) THEN
EXISTS_TAC `z:real` THEN REWRITE_TAC[
MR1_DEF; GSYM
ABS_NZ] THEN
REWRITE_TAC[
REAL_SUB_0] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
ASM_REWRITE_TAC[]);;
let LIM_ADD = prove(
`!f g l m. (f --> l)(x) /\ (g --> m)(x) ==>
((\x. f(x) + g(x)) --> (l + m))(x)`,
let LIM_MUL = prove(
`!f g l m. (f --> l)(x) /\ (g --> m)(x) ==>
((\x. f(x) * g(x)) --> (l * m))(x)`,
let LIM_INV = prove(
`!f l. (f --> l)(x) /\ ~(l = &0) ==>
((\x. inv(f(x))) --> inv l)(x)`,
let LIM_SUB = prove(
`!f g l m. (f --> l)(x) /\ (g --> m)(x) ==>
((\x. f(x) - g(x)) --> (l - m))(x)`,
let LIM_DIV = prove(
`!f g l m. (f --> l)(x) /\ (g --> m)(x) /\ ~(m = &0) ==>
((\x. f(x) / g(x)) --> (l / m))(x)`,
let LIM_SUM = prove
(`!f l m n x.
(!r. m <= r /\ r < m + n ==> (f r --> l r)(x))
==> ((\x. sum(m,n) (\r. f r x)) --> sum(m,n) l)(x)`,
(*----------------------------------------------------------------------------*)
(* One extra theorem is handy *)
(*----------------------------------------------------------------------------*)
let LIM_X = prove(
`!x0. ((\x. x) --> x0)(x0)`,
GEN_TAC THEN REWRITE_TAC[
LIM] THEN X_GEN_TAC `e:real` THEN
DISCH_TAC THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN
BETA_TAC THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Uniqueness of limit *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Show that limits are equal when functions are equal except at limit point *)
(*----------------------------------------------------------------------------*)
let LIM_EQUAL = prove(
`!f g l x0. (!x. ~(x = x0) ==> (f x = g x)) ==>
((f --> l)(x0) <=> (g --> l)(x0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[
LIM] THEN DISCH_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN
ONCE_REWRITE_TAC[TAUT `(a ==> b <=> a ==> c) <=> a ==> (b <=> c)`] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[GSYM
REAL_SUB_0] THEN
ASM_REWRITE_TAC[
ABS_NZ]);;
(*----------------------------------------------------------------------------*)
(* A more general theorem about rearranging the body of a limit *)
(*----------------------------------------------------------------------------*)
let LIM_TRANSFORM = prove(
`!f g x0 l. ((\x. f(x) - g(x)) --> &0)(x0) /\ (g --> l)(x0)
==> (f --> l)(x0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
LIM] THEN
DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2`)) THEN
ASM_REWRITE_TAC[
REAL_LT_HALF1] THEN BETA_TAC THEN
REWRITE_TAC[
REAL_SUB_RZERO] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`c:real`; `d:real`]
REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `x:real` THEN DISCH_THEN STRIP_ASSUME_TAC THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `(e / &2) + (e / &2)` THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [
REAL_HALF_DOUBLE] THEN
REWRITE_TAC[
REAL_LE_REFL] THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `abs(f(x:real) - g(x)) + abs(g(x) - l)` THEN
SUBST1_TAC(SYM(SPECL
[`(f:real->real) x`; `(g:real->real) x`; `l:real`]
REAL_SUB_TRIANGLE)) THEN
REWRITE_TAC[
ABS_TRIANGLE] THEN MATCH_MP_TAC
REAL_LT_ADD2 THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LT_TRANS THEN EXISTS_TAC `b:real` THEN
ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Define differentiation and continuity *)
(*----------------------------------------------------------------------------*)
(*----------------------------------------------------------------------------*)
(* Derivative is unique *)
(*----------------------------------------------------------------------------*)
let DIFF_UNIQ = prove(
`!f l m x. (f diffl l)(x) /\ (f diffl m)(x) ==> (l = m)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN
MATCH_ACCEPT_TAC
LIM_UNIQ);;
(*----------------------------------------------------------------------------*)
(* Differentiability implies continuity *)
(*----------------------------------------------------------------------------*)
let DIFF_CONT = prove(
`!f l x. (f diffl l)(x) ==> f contl x`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl; contl] THEN DISCH_TAC THEN
REWRITE_TAC[
tends_real_real] THEN ONCE_REWRITE_TAC[
NET_NULL] THEN
REWRITE_TAC[GSYM
tends_real_real] THEN BETA_TAC THEN
SUBGOAL_THEN `((\h. f(x + h) - f(x)) --> &0)(&0) <=>
((\h. ((f(x + h) - f(x)) / h) * h) --> &0)(&0)` SUBST1_TAC
THENL
[MATCH_MP_TAC
LIM_EQUAL THEN
X_GEN_TAC `z:real` THEN BETA_TAC THEN
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP
REAL_DIV_RMUL th]); ALL_TAC] THEN
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o ABS_CONV o RAND_CONV)
[SYM(BETA_CONV `(\h:real. h) h`)] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `(f(x + h) - f(x)) / h`]) THEN
SUBST1_TAC(SYM(SPEC `l:real`
REAL_MUL_RZERO)) THEN
MATCH_MP_TAC
LIM_MUL THEN BETA_TAC THEN REWRITE_TAC[
REAL_MUL_RZERO] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[
LIM] THEN BETA_TAC THEN
REWRITE_TAC[
REAL_SUB_RZERO] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e:real` THEN
ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Alternative definition of continuity *)
(*----------------------------------------------------------------------------*)
let CONTL_LIM = prove(
`!f x. f contl x <=> (f --> f(x))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[contl;
LIM] THEN
AP_TERM_TAC THEN ABS_TAC THEN
ONCE_REWRITE_TAC[TAUT `(a ==> b <=> a ==> c) <=> a ==> (b <=> c)`] THEN
DISCH_TAC THEN BETA_TAC THEN REWRITE_TAC[
REAL_SUB_RZERO] THEN
EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:real` THENL
[DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[
REAL_SUB_ADD2];
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
REAL_ADD_SUB]]);;
(*----------------------------------------------------------------------------*)
(* Simple combining theorems for continuity *)
(*----------------------------------------------------------------------------*)
let CONT_ADD = prove(
`!x. f contl x /\ g contl x ==> (\x. f(x) + g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC THEN
MATCH_ACCEPT_TAC
LIM_ADD);;
let CONT_MUL = prove(
`!x. f contl x /\ g contl x ==> (\x. f(x) * g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC THEN
MATCH_ACCEPT_TAC
LIM_MUL);;
let CONT_INV = prove(
`!x. f contl x /\ ~(f x = &0) ==> (\x. inv(f(x))) contl x`,
GEN_TAC THEN REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC THEN
MATCH_ACCEPT_TAC
LIM_INV);;
let CONT_SUB = prove(
`!x. f contl x /\ g contl x ==> (\x. f(x) - g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC THEN
MATCH_ACCEPT_TAC
LIM_SUB);;
let CONT_DIV = prove(
`!x. f contl x /\ g contl x /\ ~(g x = &0) ==>
(\x. f(x) / g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC THEN
MATCH_ACCEPT_TAC
LIM_DIV);;
let CONT_ABS = prove
(`!f x. f contl x ==> (\x. abs(f x)) contl x`,
REWRITE_TAC[
CONTL_LIM;
LIM] THEN
MESON_TAC[REAL_ARITH `abs(a - b) < e ==> abs(abs a - abs b) < e`]);;
(* ------------------------------------------------------------------------- *)
(* Composition of continuous functions is continuous. *)
(* ------------------------------------------------------------------------- *)
let CONT_COMPOSE = prove(
`!f g x. f contl x /\ g contl (f x) ==> (\x. g(f x)) contl x`,
REPEAT GEN_TAC THEN REWRITE_TAC[contl;
LIM;
REAL_SUB_RZERO] THEN
BETA_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `h:real` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
ASM_CASES_TAC `&0 < abs(f(x + h) - f(x))` THENL
[UNDISCH_TAC `&0 < abs(f(x + h) - f(x))` THEN
DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[
REAL_SUB_ADD2];
UNDISCH_TAC `~(&0 < abs(f(x + h) - f(x)))` THEN
REWRITE_TAC[GSYM
ABS_NZ;
REAL_SUB_0] THEN DISCH_THEN SUBST1_TAC THEN
ASM_REWRITE_TAC[
REAL_SUB_REFL;
ABS_0]]);;
(*----------------------------------------------------------------------------*)
(* Intermediate Value Theorem (we prove contrapositive by bisection) *)
(*----------------------------------------------------------------------------*)
let IVT = prove(
`!f a b y. a <= b /\
(f(a) <= y /\ y <= f(b)) /\
(!x. a <= x /\ x <= b ==> f contl x)
==> (?x. a <= x /\ x <= b /\ (f(x) = y))`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN
CONV_TAC CONTRAPOS_CONV THEN
DISCH_THEN(ASSUME_TAC o CONV_RULE NOT_EXISTS_CONV) THEN
(MP_TAC o C SPEC
BOLZANO_LEMMA)
`\(u,v). a <= u /\ u <= v /\ v <= b ==> ~(f(u) <= y /\ y <= f(v))` THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o
funpow 2 (fst o dest_imp) o snd) THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN
ASM_REWRITE_TAC[
REAL_LE_REFL]] THEN
CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`u:real`; `v:real`; `w:real`] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM; NOT_IMP] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY ASM_CASES_TAC [`u <= v`; `v <= w`] THEN ASM_REWRITE_TAC[] THEN
DISJ_CASES_TAC(SPECL [`y:real`; `(f:real->real) v`]
REAL_LE_TOTAL) THEN
ASM_REWRITE_TAC[] THENL [DISJ1_TAC; DISJ2_TAC] THEN
MATCH_MP_TAC
REAL_LE_TRANS THENL
[EXISTS_TAC `w:real`; EXISTS_TAC `u:real`] THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
X_GEN_TAC `x:real` THEN ASM_CASES_TAC `a <= x /\ x <= b` THENL
[ALL_TAC;
EXISTS_TAC `&1` THEN REWRITE_TAC[
REAL_LT_01] THEN
MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `~(a <= x /\ x <= b)` THEN
REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC
REAL_LE_TRANS THENL
[EXISTS_TAC `u:real`; EXISTS_TAC `v:real`] THEN
ASM_REWRITE_TAC[]] THEN
UNDISCH_TAC `!x. ~(a <= x /\ x <= b /\ (f(x) = (y:real)))` THEN
DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
UNDISCH_TAC `!x. a <= x /\ x <= b ==> f contl x` THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN
REWRITE_TAC[contl;
LIM] THEN
DISCH_THEN(MP_TAC o SPEC `abs(y - f(x:real))`) THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM
ABS_NZ] THEN
REWRITE_TAC[
REAL_SUB_0;
REAL_SUB_RZERO] THEN BETA_TAC THEN
ASSUM_LIST(fun thl -> REWRITE_TAC(map GSYM thl)) THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`(f:real->real) x`; `y:real`]
REAL_LT_TOTAL) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THENL
[DISCH_THEN(MP_TAC o SPEC `v - x`) THEN REWRITE_TAC[NOT_IMP] THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE;
REAL_SUB_LT] THEN
ASM_REWRITE_TAC[
REAL_LT_LE] THEN DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `f(v:real) < y` THEN ASM_REWRITE_TAC[GSYM
REAL_NOT_LE];
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `v - u` THEN
ASM_REWRITE_TAC[
real_sub;
REAL_LE_LADD;
REAL_LE_NEG;
REAL_LE_RADD];
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[
REAL_SUB_ADD] THEN
REWRITE_TAC[
REAL_NOT_LT;
real_abs;
REAL_SUB_LE] THEN
SUBGOAL_THEN `f(x:real) <= y` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
SUBGOAL_THEN `f(x:real) <= f(v)` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `y:real`; ALL_TAC] THEN
ASM_REWRITE_TAC[
real_sub;
REAL_LE_RADD]];
DISCH_THEN(MP_TAC o SPEC `u - x`) THEN REWRITE_TAC[NOT_IMP] THEN
REPEAT CONJ_TAC THENL
[ONCE_REWRITE_TAC[
ABS_SUB] THEN
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE;
REAL_SUB_LT] THEN
ASM_REWRITE_TAC[
REAL_LT_LE] THEN DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `y < f(x:real)` THEN ASM_REWRITE_TAC[GSYM
REAL_NOT_LE];
ONCE_REWRITE_TAC[
ABS_SUB] THEN ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `v - u` THEN
ASM_REWRITE_TAC[
real_sub;
REAL_LE_LADD;
REAL_LE_NEG;
REAL_LE_RADD];
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[
REAL_SUB_ADD] THEN
REWRITE_TAC[
REAL_NOT_LT;
real_abs;
REAL_SUB_LE] THEN
SUBGOAL_THEN `f(u:real) < f(x)` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[GSYM
REAL_NOT_LT] THEN
ASM_REWRITE_TAC[
REAL_NOT_LT;
REAL_LE_NEG;
real_sub;
REAL_LE_RADD]]]);;
(*----------------------------------------------------------------------------*)
(* Intermediate value theorem where value at the left end is bigger *)
(*----------------------------------------------------------------------------*)
let IVT2 = prove(
`!f a b y. (a <= b) /\ (f(b) <= y /\ y <= f(a)) /\
(!x. a <= x /\ x <= b ==> f contl x) ==>
?x. a <= x /\ x <= b /\ (f(x) = y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`\x:real. --(f x)`; `a:real`; `b:real`; `--y`]
IVT) THEN
BETA_TAC THEN ASM_REWRITE_TAC[
REAL_LE_NEG;
REAL_NEG_EQ;
REAL_NEGNEG] THEN
DISCH_THEN MATCH_MP_TAC THEN GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC
CONT_NEG THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Prove the simple combining theorems for differentiation *)
(*----------------------------------------------------------------------------*)
let DIFF_ADD = prove(
`!f g l m x. (f diffl l)(x) /\ (g diffl m)(x) ==>
((\x. f(x) + g(x)) diffl (l + m))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN
DISCH_TAC THEN BETA_TAC THEN
REWRITE_TAC[
REAL_ADD2_SUB2] THEN
REWRITE_TAC[
real_div;
REAL_RDISTRIB] THEN
REWRITE_TAC[GSYM
real_div] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `(f(x + h) - f(x)) / h`]) THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `(g(x + h) - g(x)) / h`]) THEN
MATCH_MP_TAC
LIM_ADD THEN ASM_REWRITE_TAC[]);;
let DIFF_MUL = prove(
`!f g l m x. (f diffl l)(x) /\ (g diffl m)(x) ==>
((\x. f(x) * g(x)) diffl ((l * g(x)) + (m * f(x))))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN
DISCH_TAC THEN BETA_TAC THEN SUBGOAL_THEN
`!a b c d. (a * b) - (c * d) = ((a * b) - (a * d)) + ((a * d) - (c * d))`
(fun th -> ONCE_REWRITE_TAC[GEN_ALL th]) THENL
[REWRITE_TAC[
real_sub] THEN
ONCE_REWRITE_TAC[AC
REAL_ADD_AC
`(a + b) + (c + d) = (b + c) + (a + d)`] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]; ALL_TAC] THEN
REWRITE_TAC[GSYM
REAL_SUB_LDISTRIB; GSYM
REAL_SUB_RDISTRIB] THEN SUBGOAL_THEN
`!a b c d e. ((a * b) + (c * d)) / e = ((b / e) * a) + ((c / e) * d)`
(fun th -> ONCE_REWRITE_TAC[th]) THENL
[REPEAT GEN_TAC THEN REWRITE_TAC[
real_div] THEN
REWRITE_TAC[
REAL_RDISTRIB] THEN BINOP_TAC THEN
REWRITE_TAC[
REAL_MUL_AC]; ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [REAL_ADD_SYM] THEN
CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`)
[`((g(x + h) - g(x)) / h) * f(x + h)`;
`((f(x + h) - f(x)) / h) * g(x)`])) THEN
MATCH_MP_TAC
LIM_ADD THEN
CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`)
[`(g(x + h) - g(x)) / h`; `f(x + h):real`;
`(f(x + h) - f(x)) / h`; `g(x:real):real`])) THEN
CONJ_TAC THEN MATCH_MP_TAC
LIM_MUL THEN
BETA_TAC THEN ASM_REWRITE_TAC[
LIM_CONST] THEN
REWRITE_TAC[GSYM contl] THEN
MATCH_MP_TAC
DIFF_CONT THEN EXISTS_TAC `l:real` THEN
ASM_REWRITE_TAC[diffl]);;
let DIFF_CMUL = prove(
`!f c l x. (f diffl l)(x) ==> ((\x. c * f(x)) diffl (c * l))(x)`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o CONJ (SPECL [`c:real`; `x:real`]
DIFF_CONST)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_MUL) THEN BETA_TAC THEN
REWRITE_TAC[
REAL_MUL_LZERO; REAL_ADD_LID] THEN
MATCH_MP_TAC(TAUT(`(a <=> b) ==> a ==> b`)) THEN AP_THM_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN
REWRITE_TAC[]);;
let DIFF_NEG = prove(
`!f l x. (f diffl l)(x) ==> ((\x. --(f x)) diffl --l)(x)`,
let DIFF_SUB = prove(
`!f g l m x. (f diffl l)(x) /\ (g diffl m)(x) ==>
((\x. f(x) - g(x)) diffl (l - m))(x)`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_ADD o (uncurry CONJ) o
(I F_F MATCH_MP
DIFF_NEG) o CONJ_PAIR) THEN
BETA_TAC THEN REWRITE_TAC[
real_sub]);;
(* ------------------------------------------------------------------------- *)
(* Carathe'odory definition makes the chain rule proof much easier. *)
(* ------------------------------------------------------------------------- *)
let DIFF_CARAT = prove(
`!f l x. (f diffl l)(x) <=>
?g. (!z. f(z) - f(x) = g(z) * (z - x)) /\ g contl x /\ (g(x) = l)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[EXISTS_TAC `\z. if z = x then l else (f(z) - f(x)) / (z - x)` THEN
BETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL
[X_GEN_TAC `z:real` THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[
REAL_SUB_REFL;
REAL_MUL_RZERO] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_RMUL THEN
ASM_REWRITE_TAC[
REAL_SUB_0];
POP_ASSUM MP_TAC THEN MATCH_MP_TAC EQ_IMP THEN
REWRITE_TAC[diffl; contl] THEN BETA_TAC THEN REWRITE_TAC[] THEN
MATCH_MP_TAC
LIM_EQUAL THEN GEN_TAC THEN DISCH_TAC THEN BETA_TAC THEN
ASM_REWRITE_TAC[
REAL_ADD_RID_UNIQ;
REAL_ADD_SUB]];
POP_ASSUM(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN UNDISCH_TAC `g contl x` THEN
ASM_REWRITE_TAC[contl; diffl;
REAL_ADD_SUB] THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC
LIM_EQUAL THEN GEN_TAC THEN DISCH_TAC THEN BETA_TAC THEN
REWRITE_TAC[
real_div; GSYM REAL_MUL_ASSOC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_MUL_RINV th]) THEN
REWRITE_TAC[
REAL_MUL_RID]]);;
(*----------------------------------------------------------------------------*)
(* Now the chain rule *)
(*----------------------------------------------------------------------------*)
let DIFF_CHAIN = prove(
`!f g l m x.
(f diffl l)(g x) /\ (g diffl m)(x) ==> ((\x. f(g x)) diffl (l * m))(x)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP
DIFF_CONT th)) THEN
REWRITE_TAC[
DIFF_CARAT] THEN
DISCH_THEN(X_CHOOSE_THEN `g':real->real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `f':real->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC
`\z. if z = x then l * m else (f(g(z):real) - f(g(x))) / (z - x)` THEN
BETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[
REAL_SUB_REFL;
REAL_MUL_RZERO] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_RMUL THEN
ASM_REWRITE_TAC[
REAL_SUB_0];
MP_TAC(CONJ (ASSUME `g contl x`) (ASSUME `f' contl (g(x:real))`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
CONT_COMPOSE) THEN
DISCH_THEN(MP_TAC o C CONJ (ASSUME `g' contl x`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
CONT_MUL) THEN BETA_TAC THEN
ASM_REWRITE_TAC[contl] THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC
LIM_EQUAL THEN X_GEN_TAC `z:real` THEN
DISCH_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[
REAL_ADD_RID_UNIQ] THEN
REWRITE_TAC[
real_div; GSYM REAL_MUL_ASSOC;
REAL_ADD_SUB] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_MUL_RINV th]) THEN
REWRITE_TAC[
REAL_MUL_RID]]);;
(*----------------------------------------------------------------------------*)
(* Differentiation of natural number powers *)
(*----------------------------------------------------------------------------*)
let DIFF_X = prove(
`!x. ((\x. x) diffl &1)(x)`,
GEN_TAC THEN REWRITE_TAC[diffl] THEN BETA_TAC THEN
REWRITE_TAC[
REAL_ADD_SUB] THEN REWRITE_TAC[
LIM;
REAL_SUB_RZERO] THEN
BETA_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
EXISTS_TAC `&1` THEN REWRITE_TAC[
REAL_LT_01] THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[GSYM
ABS_NZ] THEN
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP
REAL_DIV_REFL th]) THEN
ASM_REWRITE_TAC[
REAL_SUB_REFL;
ABS_0]);;
let DIFF_POW = prove(
`!n x. ((\x. x pow n) diffl (&n * (x pow (n - 1))))(x)`,
INDUCT_TAC THEN REWRITE_TAC[pow;
DIFF_CONST;
REAL_MUL_LZERO] THEN
X_GEN_TAC `x:real` THEN
POP_ASSUM(MP_TAC o CONJ(SPEC `x:real`
DIFF_X) o SPEC `x:real`) THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_MUL) THEN BETA_TAC THEN
MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_MUL_LID] THEN
REWRITE_TAC[
REAL;
REAL_RDISTRIB; REAL_MUL_LID] THEN
GEN_REWRITE_TAC RAND_CONV [REAL_ADD_SYM] THEN BINOP_TAC THENL
[REWRITE_TAC[
ADD1;
ADD_SUB];
STRUCT_CASES_TAC (SPEC `n:num`
num_CASES) THEN
REWRITE_TAC[
REAL_MUL_LZERO] THEN
REWRITE_TAC[
ADD1;
ADD_SUB;
POW_ADD] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN
REWRITE_TAC[num_CONV `1`; pow] THEN
REWRITE_TAC[SYM(num_CONV `1`);
REAL_MUL_RID]]);;
(*----------------------------------------------------------------------------*)
(* Now power of -1 (then differentiation of inverses follows from chain rule) *)
(*----------------------------------------------------------------------------*)
let DIFF_XM1 = prove(
`!x. ~(x = &0) ==> ((\x. inv(x)) diffl (--(inv(x) pow 2)))(x)`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[diffl] THEN BETA_TAC THEN
MATCH_MP_TAC
LIM_TRANSFORM THEN
EXISTS_TAC `\h. --(inv(x + h) * inv(x))` THEN
BETA_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[
LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
EXISTS_TAC `abs(x)` THEN
EVERY_ASSUM(fun th -> REWRITE_TAC[REWRITE_RULE[
ABS_NZ] th]) THEN
X_GEN_TAC `h:real` THEN REWRITE_TAC[
REAL_SUB_RZERO] THEN
DISCH_THEN STRIP_ASSUME_TAC THEN BETA_TAC THEN
W(C SUBGOAL_THEN SUBST1_TAC o C (curry mk_eq) `&0` o
rand o rator o snd) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
ABS_ZERO;
REAL_SUB_0] THEN
SUBGOAL_THEN `~(x + h = &0)` ASSUME_TAC THENL
[REWRITE_TAC[
REAL_LNEG_UNIQ] THEN DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `abs(h) < abs(--h)` THEN
REWRITE_TAC[
ABS_NEG;
REAL_LT_REFL]; ALL_TAC] THEN
W(fun (asl,w) -> MP_TAC
(SPECL [`x * (x + h)`; lhs w; rhs w]
REAL_EQ_LMUL)) THEN
ASM_REWRITE_TAC[
REAL_ENTIRE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[GSYM
REAL_NEG_LMUL; GSYM
REAL_NEG_RMUL] THEN
REWRITE_TAC[
real_div;
REAL_SUB_LDISTRIB;
REAL_SUB_RDISTRIB] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`(a * b) * (c * d) = (c * b) * (d * a)`] THEN
REWRITE_TAC(map (MATCH_MP REAL_MUL_LINV o ASSUME)
[`~(x = &0)`; `~(x + h = &0)`]) THEN REWRITE_TAC[REAL_MUL_LID] THEN
ONCE_REWRITE_TAC[AC
REAL_MUL_AC
`(a * b) * (c * d) = (a * d) * (c * b)`] THEN
REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x = &0)`)] THEN
REWRITE_TAC[REAL_MUL_LID; GSYM
REAL_SUB_LDISTRIB] THEN
REWRITE_TAC[REWRITE_RULE[
REAL_NEG_SUB]
(AP_TERM `(--)` (SPEC_ALL
REAL_ADD_SUB))] THEN
REWRITE_TAC[GSYM
REAL_NEG_RMUL] THEN AP_TERM_TAC THEN
MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[
ABS_NZ];
REWRITE_TAC[
POW_2] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `inv(x + h) * inv(x)`]) THEN
REWRITE_TAC[GSYM
LIM_NEG] THEN
CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`) [`inv(x + h)`; `inv(x)`]))
THEN MATCH_MP_TAC
LIM_MUL THEN BETA_TAC THEN
REWRITE_TAC[
LIM_CONST] THEN
CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `x + h`]) THEN
MATCH_MP_TAC
LIM_INV THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
REAL_ADD_RID] THEN
CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`) [`x:real`; `h:real`])) THEN
MATCH_MP_TAC
LIM_ADD THEN BETA_TAC THEN REWRITE_TAC[
LIM_CONST] THEN
MATCH_ACCEPT_TAC
LIM_X]);;
(*----------------------------------------------------------------------------*)
(* Now differentiation of inverse and quotient *)
(*----------------------------------------------------------------------------*)
let DIFF_INV = prove(
`!f l x. (f diffl l)(x) /\ ~(f(x) = &0) ==>
((\x. inv(f x)) diffl --(l / (f(x) pow 2)))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_div;
REAL_NEG_RMUL] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN DISCH_TAC THEN
MATCH_MP_TAC
DIFF_CHAIN THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
POW_INV (CONJUNCT2 th)]) THEN
MATCH_MP_TAC(CONV_RULE(ONCE_DEPTH_CONV ETA_CONV)
DIFF_XM1) THEN
ASM_REWRITE_TAC[]);;
let DIFF_DIV = prove(
`!f g l m. (f diffl l)(x) /\ (g diffl m)(x) /\ ~(g(x) = &0) ==>
((\x. f(x) / g(x)) diffl (((l * g(x)) - (m * f(x))) / (g(x) pow 2)))(x)`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
REWRITE_TAC[
real_div] THEN
MP_TAC(SPECL [`g:real->real`; `m:real`; `x:real`]
DIFF_INV) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o CONJ(ASSUME `(f diffl l)(x)`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_MUL) THEN BETA_TAC THEN
W(C SUBGOAL_THEN SUBST1_TAC o mk_eq o
((rand o rator) F_F (rand o rator)) o dest_imp o snd) THEN
REWRITE_TAC[] THEN REWRITE_TAC[
real_sub] THEN
REWRITE_TAC[REAL_LDISTRIB;
REAL_RDISTRIB] THEN BINOP_TAC THENL
[REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN
REWRITE_TAC[
POW_2] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_INV_MUL_WEAK (W CONJ th)]) THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_MUL_RINV th]) THEN
REWRITE_TAC[REAL_MUL_LID];
REWRITE_TAC[
real_div; GSYM
REAL_NEG_LMUL; GSYM
REAL_NEG_RMUL] THEN
AP_TERM_TAC THEN REWRITE_TAC[
REAL_MUL_AC]]);;
(*----------------------------------------------------------------------------*)
(* Differentiation of finite sum *)
(*----------------------------------------------------------------------------*)
let DIFF_SUM = prove(
`!f f' m n x. (!r. m <= r /\ r < (m + n)
==> ((\x. f r x) diffl (f' r x))(x))
==> ((\x. sum(m,n)(\n. f n x)) diffl (sum(m,n) (\r. f' r x)))(x)`,
REPEAT GEN_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[sum;
DIFF_CONST] THEN DISCH_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC
DIFF_ADD THEN
BETA_TAC THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
LT_TRANS THEN
EXISTS_TAC `m + n:num` THEN ASM_REWRITE_TAC[
ADD_CLAUSES;
LESS_SUC_REFL];
REWRITE_TAC[
LE_ADD;
ADD_CLAUSES;
LESS_SUC_REFL]]);;
(*----------------------------------------------------------------------------*)
(* By bisection, function continuous on closed interval is bounded above *)
(*----------------------------------------------------------------------------*)
let CONT_BOUNDED = prove(
`!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x)
==> ?M. !x. a <= x /\ x <= b ==> f(x) <= M`,
REPEAT STRIP_TAC THEN
(MP_TAC o C SPEC
BOLZANO_LEMMA)
`\(u,v). a <= u /\ u <= v /\ v <= b ==>
?M. !x. u <= x /\ x <= v ==> f x <= M` THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o
funpow 2(fst o dest_imp) o snd) THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN
ASM_REWRITE_TAC[
REAL_LE_REFL]] THEN
CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`u:real`; `v:real`; `w:real`] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
DISCH_TAC THEN
REPEAT(FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl)) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `v <= b` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `w:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `a <= v` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `u:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_TAC `M1:real`) THEN
DISCH_THEN(X_CHOOSE_TAC `M2:real`) THEN
DISJ_CASES_TAC(SPECL [`M1:real`; `M2:real`]
REAL_LE_TOTAL) THENL
[EXISTS_TAC `M2:real` THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN
DISJ_CASES_TAC(SPECL [`x:real`; `v:real`]
REAL_LE_TOTAL) THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `M1:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
EXISTS_TAC `M1:real` THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN
DISJ_CASES_TAC(SPECL [`x:real`; `v:real`]
REAL_LE_TOTAL) THENL
[ALL_TAC; MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `M2:real` THEN ASM_REWRITE_TAC[]] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
ALL_TAC] THEN
X_GEN_TAC `x:real` THEN ASM_CASES_TAC `a <= x /\ x <= b` THENL
[ALL_TAC;
EXISTS_TAC `&1` THEN REWRITE_TAC[
REAL_LT_01] THEN
MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `~(a <= x /\ x <= b)` THEN
CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC
REAL_LE_TRANS THENL
[EXISTS_TAC `u:real`; EXISTS_TAC `v:real`] THEN
ASM_REWRITE_TAC[]] THEN
UNDISCH_TAC `!x. a <= x /\ x <= b ==> f contl x` THEN
DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[contl;
LIM] THEN
DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[
REAL_LT_01] THEN
ASM_REWRITE_TAC[
REAL_SUB_RZERO] THEN BETA_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN REPEAT STRIP_TAC THEN
EXISTS_TAC `abs(f(x:real)) + &1` THEN
X_GEN_TAC `z:real` THEN STRIP_TAC THEN
FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPEC `z - x`) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_ADD_SYM] THEN
REWRITE_TAC[
REAL_SUB_ADD] THEN DISCH_TAC THEN
MP_TAC(SPECL [`f(z:real) - f(x)`; `(f:real->real) x`]
ABS_TRIANGLE) THEN
REWRITE_TAC[
REAL_SUB_ADD] THEN
DISCH_THEN(ASSUME_TAC o ONCE_REWRITE_RULE[REAL_ADD_SYM]) THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `abs(f(z:real))` THEN
REWRITE_TAC[
ABS_LE] THEN MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `abs(f(x:real)) + (abs(f(z) - f(x)))` THEN
ASM_REWRITE_TAC[
REAL_LE_LADD] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
ASM_CASES_TAC `z:real = x` THENL
[ASM_REWRITE_TAC[
REAL_SUB_REFL;
ABS_0;
REAL_LT_01];
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GSYM
ABS_NZ] THEN
ASM_REWRITE_TAC[
REAL_SUB_0;
real_abs;
REAL_SUB_LE] THEN
REWRITE_TAC[
REAL_NEG_SUB] THEN COND_CASES_TAC THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `v - u` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LE_TRANS THENL
[EXISTS_TAC `v - x`; EXISTS_TAC `v - z`] THEN
ASM_REWRITE_TAC[
real_sub;
REAL_LE_RADD;
REAL_LE_LADD;
REAL_LE_NEG]]);;
let CONT_BOUNDED_ABS = prove
(`!f a b. (!x. a <= x /\ x <= b ==> f contl x)
==> ?M. !x. a <= x /\ x <= b ==> abs(f(x)) <= M`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `a <= b` THENL
[ALL_TAC;
ASM_SIMP_TAC[REAL_ARITH `~(a <= b) ==> ~(a <= x /\ x <= b)`]] THEN
MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`]
CONT_BOUNDED) THEN
MP_TAC(SPECL [`\x:real. --(f x)`; `a:real`; `b:real`]
CONT_BOUNDED) THEN
ASM_SIMP_TAC[
CONT_NEG] THEN
DISCH_THEN(X_CHOOSE_TAC `M1:real`) THEN
DISCH_THEN(X_CHOOSE_TAC `M2:real`) THEN
EXISTS_TAC `abs(M1) + abs(M2)` THEN
ASM_SIMP_TAC[REAL_ARITH
`x <= m1 /\ --x <= m2 ==> abs(x) <= abs(m2) + abs(m1)`]);;
(*----------------------------------------------------------------------------*)
(* Refine the above to existence of least upper bound *)
(*----------------------------------------------------------------------------*)
let CONT_HASSUP = prove(
`!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x)
==> ?M. (!x. a <= x /\ x <= b ==> f(x) <= M) /\
(!N. N < M ==> ?x. a <= x /\ x <= b /\ N < f(x))`,
let tm = `\y:real. ?x. a <= x /\ x <= b /\ (y = f(x))` in
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC tm
REAL_SUP_LE) THEN
BETA_TAC THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd)
THENL
[CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`(f:real->real) a`; `a:real`] THEN
ASM_REWRITE_TAC[
REAL_LE_REFL;
REAL_LE_LT];
POP_ASSUM(X_CHOOSE_TAC `M:real` o MATCH_MP
CONT_BOUNDED) THEN
EXISTS_TAC `M:real` THEN X_GEN_TAC `y:real` THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN
REWRITE_TAC[
CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC) THEN
POP_ASSUM MATCH_ACCEPT_TAC];
DISCH_TAC THEN EXISTS_TAC (mk_comb(`sup`,tm)) THEN CONJ_TAC THENL
[X_GEN_TAC `x:real` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC (mk_comb(`sup`,tm))) THEN
REWRITE_TAC[
REAL_LT_REFL] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
DISCH_THEN(MP_TAC o SPEC `(f:real->real) x`) THEN
REWRITE_TAC[DE_MORGAN_THM;
REAL_NOT_LT] THEN
CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[];
GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `N:real`) THEN
DISCH_THEN(X_CHOOSE_THEN `y:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN
REWRITE_TAC[
CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC SUBST_ALL_TAC) THEN
DISCH_TAC THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*)
(* Now show that it attains its upper bound *)
(*----------------------------------------------------------------------------*)
let CONT_ATTAINS = prove(
`!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x)
==> ?M. (!x. a <= x /\ x <= b ==> f(x) <= M) /\
(?x. a <= x /\ x <= b /\ (f(x) = M))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `M:real` STRIP_ASSUME_TAC o MATCH_MP
CONT_HASSUP)
THEN EXISTS_TAC `M:real` THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN
CONV_TAC(RAND_CONV NOT_EXISTS_CONV) THEN
REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN
DISCH_TAC THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> f(x) < M` MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[
REAL_LT_LE] THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN
PURE_ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN DISCH_TAC THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (\x. inv(M - f(x))) contl x`
ASSUME_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN
MATCH_MP_TAC
CONT_INV THEN BETA_TAC THEN
REWRITE_TAC[
REAL_SUB_0] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC
REAL_LT_IMP_NE THEN
ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN
MATCH_MP_TAC
CONT_SUB THEN BETA_TAC THEN
REWRITE_TAC[
CONT_CONST] THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `?k. !x. a <= x /\ x <= b ==> (\x. inv(M - (f x))) x <= k`
MP_TAC THENL
[MATCH_MP_TAC
CONT_BOUNDED THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
BETA_TAC THEN DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> &0 < inv(M - f(x))` ASSUME_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
REAL_INV_POS THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (\x. inv(M - (f x))) x < (k + &1)`
ASSUME_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `k:real` THEN REWRITE_TAC[
REAL_LT_ADDR;
REAL_LT_01] THEN
BETA_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==>
inv(k + &1) < inv((\x. inv(M - (f x))) x)` MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
REAL_LT_INV2 THEN
CONJ_TAC THENL
[BETA_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN
BETA_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> inv(k + &1) < (M - (f x))`
MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `~(M - f(x:real) = &0)`
(SUBST1_TAC o SYM o MATCH_MP
REAL_INVINV) THENL
[CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC
REAL_LT_IMP_NE THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN
REWRITE_TAC[
REAL_LT_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
ONCE_REWRITE_TAC[GSYM
REAL_LT_SUB_LADD] THEN DISCH_TAC THEN
UNDISCH_TAC `!N. N < M ==> (?x. a <= x /\ x <= b /\ N < (f x))` THEN
DISCH_THEN(MP_TAC o SPEC `M - inv(k + &1)`) THEN
REWRITE_TAC[
REAL_LT_SUB_RADD;
REAL_LT_ADDR] THEN
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_INV_POS THEN MATCH_MP_TAC
REAL_LT_TRANS THEN
EXISTS_TAC `k:real` THEN REWRITE_TAC[
REAL_LT_ADDR;
REAL_LT_01] THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `inv(M - f(a:real))` THEN
CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
REAL_LE_REFL];
DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN REWRITE_TAC[
CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[
REAL_NOT_LT] THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN
ONCE_REWRITE_TAC[GSYM
REAL_LT_SUB_LADD] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*)
(* Same theorem for lower bound *)
(*----------------------------------------------------------------------------*)
let CONT_ATTAINS2 = prove(
`!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x)
==> ?M. (!x. a <= x /\ x <= b ==> M <= f(x)) /\
(?x. a <= x /\ x <= b /\ (f(x) = M))`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (\x. --(f x)) contl x` MP_TAC THENL
[GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
CONT_NEG THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o CONJ (ASSUME `a <= b`)) THEN
DISCH_THEN(X_CHOOSE_THEN `M:real` MP_TAC o MATCH_MP
CONT_ATTAINS) THEN
BETA_TAC THEN DISCH_TAC THEN EXISTS_TAC `--M` THEN CONJ_TAC THENL
[GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM
REAL_LE_NEG] THEN
ASM_REWRITE_TAC[
REAL_NEGNEG];
ASM_REWRITE_TAC[GSYM
REAL_NEG_EQ]]);;
(* ------------------------------------------------------------------------- *)
(* Another version. *)
(* ------------------------------------------------------------------------- *)
let CONT_ATTAINS_ALL = prove(
`!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x)
==> ?L M. (!x. a <= x /\ x <= b ==> L <= f(x) /\ f(x) <= M) /\
!y. L <= y /\ y <= M ==> ?x. a <= x /\ x <= b /\ (f(x) = y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `L:real` MP_TAC o MATCH_MP
CONT_ATTAINS2) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `x1:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(X_CHOOSE_THEN `M:real` MP_TAC o MATCH_MP
CONT_ATTAINS) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `x2:real` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`L:real`; `M:real`] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
DISJ_CASES_TAC(SPECL [`x1:real`; `x2:real`]
REAL_LE_TOTAL) THEN
REPEAT STRIP_TAC THENL
[MP_TAC(SPECL [`f:real->real`; `x1:real`; `x2:real`; `y:real`]
IVT) THEN
ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN
(fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2);
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]] THEN
(CONJ_TAC THEN MATCH_MP_TAC
REAL_LE_TRANS THENL
[EXISTS_TAC `x1:real`; EXISTS_TAC `x2:real`] THEN
ASM_REWRITE_TAC[]);
MP_TAC(SPECL [`f:real->real`; `x2:real`; `x1:real`; `y:real`]
IVT2) THEN
ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN
(fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2);
DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]] THEN
(CONJ_TAC THEN MATCH_MP_TAC
REAL_LE_TRANS THENL
[EXISTS_TAC `x2:real`; EXISTS_TAC `x1:real`] THEN
ASM_REWRITE_TAC[])]);;
(*----------------------------------------------------------------------------*)
(* If f'(x) > 0 then x is locally strictly increasing at the right *)
(*----------------------------------------------------------------------------*)
let DIFF_LINC = prove(
`!f x l. (f diffl l)(x) /\ &0 < l ==>
?d. &0 < d /\ !h. &0 < h /\ h < d ==> f(x) < f(x + h)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[diffl;
LIM;
REAL_SUB_RZERO] THEN
DISCH_THEN(MP_TAC o SPEC `l:real`) THEN ASM_REWRITE_TAC[] THEN BETA_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
REAL_INV_POS o CONJUNCT1) THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP
REAL_LT_RMUL_EQ th)]) THEN
REWRITE_TAC[
REAL_MUL_LZERO] THEN REWRITE_TAC[GSYM
real_div] THEN
MATCH_MP_TAC
ABS_SIGN THEN EXISTS_TAC `l:real` THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP
REAL_LT_IMP_LE o CONJUNCT1) THEN
ASM_REWRITE_TAC[
real_abs]);;
(*----------------------------------------------------------------------------*)
(* If f'(x) < 0 then x is locally strictly increasing at the left *)
(*----------------------------------------------------------------------------*)
let DIFF_LDEC = prove(
`!f x l. (f diffl l)(x) /\ l < &0 ==>
?d. &0 < d /\ !h. &0 < h /\ h < d ==> f(x) < f(x - h)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
REWRITE_TAC[diffl;
LIM;
REAL_SUB_RZERO] THEN
DISCH_THEN(MP_TAC o SPEC `--l`) THEN
ONCE_REWRITE_TAC[GSYM
REAL_NEG_LT0] THEN ASM_REWRITE_TAC[
REAL_NEGNEG] THEN
REWRITE_TAC[
REAL_NEG_LT0] THEN BETA_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM
REAL_SUB_LT] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
REAL_INV_POS o CONJUNCT1) THEN
DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP
REAL_LT_RMUL_EQ th)]) THEN
REWRITE_TAC[
REAL_MUL_LZERO] THEN
REWRITE_TAC[GSYM
REAL_NEG_LT0;
REAL_NEG_RMUL] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_NEG_INV
(GSYM (MATCH_MP
REAL_LT_IMP_NE (CONJUNCT1 th)))]) THEN
MATCH_MP_TAC
ABS_SIGN2 THEN EXISTS_TAC `l:real` THEN
REWRITE_TAC[GSYM
real_div] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o funpow 3 LAND_CONV o RAND_CONV)
[
real_sub] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP
REAL_LT_IMP_LE o CONJUNCT1) THEN
REWRITE_TAC[
real_abs; GSYM
REAL_NEG_LE0;
REAL_NEGNEG] THEN
ASM_REWRITE_TAC[GSYM
REAL_NOT_LT]);;
(*----------------------------------------------------------------------------*)
(* If f is differentiable at a local maximum x, f'(x) = 0 *)
(*----------------------------------------------------------------------------*)
let DIFF_LMAX = prove(
`!f x l. (f diffl l)(x) /\
(?d. &0 < d /\ (!y. abs(x - y) < d ==> f(y) <= f(x))) ==> (l = &0)`,
REPEAT GEN_TAC THEN DISCH_THEN
(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC)) THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(SPECL [`l:real`; `&0`]
REAL_LT_TOTAL) THEN
ASM_REWRITE_TAC[] THENL
[DISCH_THEN(MP_TAC o C CONJ(ASSUME `l < &0`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_LDEC) THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MP_TAC(SPECL [`k:real`; `e:real`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPEC `x - d`) THEN REWRITE_TAC[
REAL_SUB_SUB2] THEN
SUBGOAL_THEN `&0 <= d` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[
real_abs] THEN ASM_REWRITE_TAC[GSYM
REAL_NOT_LT];
DISCH_THEN(MP_TAC o C CONJ(ASSUME `&0 < l`)) THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_LINC) THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MP_TAC(SPECL [`k:real`; `e:real`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
DISCH_THEN(MP_TAC o SPEC `x + d`) THEN REWRITE_TAC[
REAL_ADD_SUB2] THEN
SUBGOAL_THEN `&0 <= d` ASSUME_TAC THENL
[MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[
ABS_NEG] THEN
ASM_REWRITE_TAC[
real_abs] THEN ASM_REWRITE_TAC[GSYM
REAL_NOT_LT]]);;
(*----------------------------------------------------------------------------*)
(* Similar theorem for a local minimum *)
(*----------------------------------------------------------------------------*)
let DIFF_LMIN = prove(
`!f x l. (f diffl l)(x) /\
(?d. &0 < d /\ (!y. abs(x - y) < d ==> f(x) <= f(y))) ==> (l = &0)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPECL [`\x:real. --(f x)`; `x:real`; `--l`]
DIFF_LMAX) THEN
BETA_TAC THEN REWRITE_TAC[
REAL_LE_NEG;
REAL_NEG_EQ0] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
DIFF_NEG THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* In particular if a function is locally flat *)
(*----------------------------------------------------------------------------*)
let DIFF_LCONST = prove(
`!f x l. (f diffl l)(x) /\
(?d. &0 < d /\ (!y. abs(x - y) < d ==> (f(y) = f(x)))) ==> (l = &0)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC
DIFF_LMAX THEN
MAP_EVERY EXISTS_TAC [`f:real->real`; `x:real`] THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_ASSUM(SUBST1_TAC o C MATCH_MP th)) THEN
MATCH_ACCEPT_TAC
REAL_LE_REFL);;
(*----------------------------------------------------------------------------*)
(* Lemma about introducing open ball in open interval *)
(*----------------------------------------------------------------------------*)
let INTERVAL_LEMMA = prove(
`!a b x. a < x /\ x < b ==>
?d. &0 < d /\ !y. abs(x - y) < d ==> a <= y /\ y <= b`,
REPEAT GEN_TAC THEN
DISCH_THEN(X_CHOOSE_TAC `d:real` o MATCH_MP
INTERVAL_LEMMA_LT) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*)
(* Now Rolle's theorem *)
(*----------------------------------------------------------------------------*)
let ROLLE = prove(
`!f a b. a < b /\
(f(a) = f(b)) /\
(!x. a <= x /\ x <= b ==> f contl x) /\
(!x. a < x /\ x < b ==> f differentiable x)
==> ?z. a < z /\ z < b /\ (f diffl &0)(z)`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP
REAL_LT_IMP_LE) THEN
MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`]
CONT_ATTAINS) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `M:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `x1:real`)) THEN
MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`]
CONT_ATTAINS2) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `m:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `x2:real`)) THEN
ASM_CASES_TAC `a < x1 /\ x1 < b` THENL
[FIRST_ASSUM(X_CHOOSE_THEN `d:real` MP_TAC o MATCH_MP
INTERVAL_LEMMA) THEN
DISCH_THEN STRIP_ASSUME_TAC THEN EXISTS_TAC `x1:real` THEN
ASM_REWRITE_TAC[] THEN SUBGOAL_THEN
`?l. (f diffl l)(x1) /\
?d. &0 < d /\ (!y. abs(x1 - y) < d ==> f(y) <= f(x1))` MP_TAC THENL
[CONV_TAC EXISTS_AND_CONV THEN CONJ_TAC THENL
[REWRITE_TAC[GSYM differentiable] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[];
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN
DISCH_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC) THEN
ASM_REWRITE_TAC[]]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN
SUBST_ALL_TAC(MATCH_MP
DIFF_LMAX th))
THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_CASES_TAC `a < x2 /\ x2 < b` THENL
[FIRST_ASSUM(X_CHOOSE_THEN `d:real` MP_TAC o MATCH_MP
INTERVAL_LEMMA) THEN
DISCH_THEN STRIP_ASSUME_TAC THEN EXISTS_TAC `x2:real` THEN
ASM_REWRITE_TAC[] THEN SUBGOAL_THEN
`?l. (f diffl l)(x2) /\
?d. &0 < d /\ (!y. abs(x2 - y) < d ==> f(x2) <= f(y))` MP_TAC THENL
[CONV_TAC EXISTS_AND_CONV THEN CONJ_TAC THENL
[REWRITE_TAC[GSYM differentiable] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[];
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN
DISCH_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC) THEN
ASM_REWRITE_TAC[]]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN
SUBST_ALL_TAC(MATCH_MP
DIFF_LMIN th)) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (f(x):real = f(b))` MP_TAC THENL
[REPEAT(FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl)) THEN
ASM_REWRITE_TAC[
REAL_LT_LE] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
REPEAT (DISCH_THEN(DISJ_CASES_THEN2 (MP_TAC o SYM) MP_TAC) THEN
DISCH_THEN(SUBST_ALL_TAC o AP_TERM `f:real->real`)) THEN
UNDISCH_TAC `(f:real->real) a = f b` THEN
DISCH_THEN(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THEN
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
(CONJ_TAC THENL
[SUBGOAL_THEN `(f:real->real) b = M` SUBST1_TAC THENL
[FIRST_ASSUM(ACCEPT_TAC o el 2 o CONJUNCTS);
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]];
SUBGOAL_THEN `(f:real->real) b = m` SUBST1_TAC THENL
[FIRST_ASSUM(ACCEPT_TAC o el 2 o CONJUNCTS);
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]]);
X_CHOOSE_TAC `x:real` (MATCH_MP
REAL_MEAN (ASSUME `a < b`)) THEN
DISCH_TAC THEN EXISTS_TAC `x:real` THEN
REWRITE_TAC[ASSUME `a < x /\ x < b`] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
INTERVAL_LEMMA) THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `?l. (f diffl l)(x) /\
(?d. &0 < d /\ (!y. abs(x - y) < d ==> (f(y) = f(x))))` MP_TAC THENL
[CONV_TAC(ONCE_DEPTH_CONV EXISTS_AND_CONV) THEN CONJ_TAC THENL
[REWRITE_TAC[GSYM differentiable] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[];
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN SUBST1_TAC THEN CONV_TAC SYM_CONV THEN
FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]];
DISCH_THEN(X_CHOOSE_THEN `l:real` (fun th ->
ASSUME_TAC th THEN SUBST_ALL_TAC(MATCH_MP
DIFF_LCONST th))) THEN
ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*)
(* Mean value theorem *)
(*----------------------------------------------------------------------------*)
let MVT_LEMMA = prove(
`!(f:real->real) a b.
(\x. f(x) - (((f(b) - f(a)) / (b - a)) * x))(a) =
(\x. f(x) - (((f(b) - f(a)) / (b - a)) * x))(b)`,
REPEAT GEN_TAC THEN BETA_TAC THEN
ASM_CASES_TAC `b:real = a` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM
REAL_SUB_0]) THEN
MP_TAC(GENL [`x:real`; `y:real`]
(SPECL [`x:real`; `y:real`; `b - a`] REAL_EQ_RMUL)) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
REWRITE_TAC[
REAL_SUB_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP
REAL_DIV_RMUL th]) THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN
REWRITE_TAC[
real_sub; REAL_LDISTRIB;
REAL_RDISTRIB] THEN
REWRITE_TAC[GSYM
REAL_NEG_LMUL; GSYM
REAL_NEG_RMUL;
REAL_NEG_ADD;
REAL_NEGNEG] THEN
REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN
REWRITE_TAC[AC
REAL_ADD_AC
`w + x + y + z = (y + w) + (x + z)`; REAL_ADD_LINV; REAL_ADD_LID] THEN
REWRITE_TAC[
REAL_ADD_RID]);;
let MVT = prove(
`!f a b. a < b /\
(!x. a <= x /\ x <= b ==> f contl x) /\
(!x. a < x /\ x < b ==> f differentiable x)
==> ?l z. a < z /\ z < b /\ (f diffl l)(z) /\
(f(b) - f(a) = (b - a) * l)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`\x. f(x) - (((f(b) - f(a)) / (b - a)) * x)`;
`a:real`; `b:real`]
ROLLE) THEN
W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o
funpow 2 (fst o dest_imp) o snd) THENL
[ASM_REWRITE_TAC[
MVT_LEMMA] THEN BETA_TAC THEN
CONJ_TAC THEN X_GEN_TAC `x:real` THENL
[DISCH_TAC THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN
MATCH_MP_TAC
CONT_SUB THEN CONJ_TAC THENL
[CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC
CONT_MUL THEN
REWRITE_TAC[
CONT_CONST] THEN MATCH_MP_TAC
DIFF_CONT THEN
EXISTS_TAC `&1` THEN MATCH_ACCEPT_TAC
DIFF_X];
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
REWRITE_TAC[differentiable] THEN DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN
EXISTS_TAC `l - ((f(b) - f(a)) / (b - a))` THEN
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC
DIFF_SUB THEN
CONJ_TAC THENL
[CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSUM ACCEPT_TAC;
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
REAL_MUL_RID] THEN
MATCH_MP_TAC
DIFF_CMUL THEN MATCH_ACCEPT_TAC
DIFF_X]];
ALL_TAC] THEN
REWRITE_TAC[
CONJ_ASSOC] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN((then_) (MAP_EVERY EXISTS_TAC
[`((f(b) - f(a)) / (b - a))`; `z:real`]) o MP_TAC) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN((then_) CONJ_TAC o MP_TAC) THENL
[ALL_TAC; DISCH_THEN(K ALL_TAC) THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC
REAL_DIV_LMUL THEN REWRITE_TAC[
REAL_SUB_0] THEN
DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `a < a` THEN
REWRITE_TAC[
REAL_LT_REFL]] THEN
SUBGOAL_THEN `((\x. ((f(b) - f(a)) / (b - a)) * x ) diffl
((f(b) - f(a)) / (b - a)))(z)`
(fun th -> DISCH_THEN(MP_TAC o C CONJ th)) THENL
[CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
REAL_MUL_RID] THEN
MATCH_MP_TAC
DIFF_CMUL THEN REWRITE_TAC[
DIFF_X]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIFF_ADD) THEN BETA_TAC THEN
REWRITE_TAC[
REAL_SUB_ADD] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
REWRITE_TAC[REAL_ADD_LID]);;
(* ------------------------------------------------------------------------- *)
(* Simple version with pure differentiability assumption. *)
(* ------------------------------------------------------------------------- *)
let MVT_ALT = prove
(`!f f' a b.
a < b /\ (!x. a <= x /\ x <= b ==> (f diffl f'(x))(x))
==> ?z. a < z /\ z < b /\ (f b - f a = (b - a) * f'(z))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`?l z. a < z /\ z < b /\ (f diffl l) z /\ (f b - f a = (b - a) * l)`
MP_TAC THENL
[MATCH_MP_TAC
MVT THEN REWRITE_TAC[differentiable] THEN
ASM_MESON_TAC[
DIFF_CONT;
REAL_LT_IMP_LE];
ASM_MESON_TAC[
DIFF_UNIQ;
REAL_LT_IMP_LE]]);;
(*----------------------------------------------------------------------------*)
(* Theorem that function is constant if its derivative is 0 over an interval. *)
(* *)
(* We could have proved this directly by bisection; consider instantiating *)
(* BOLZANO_LEMMA with *)
(* *)
(* \(x,y). f(y) - f(x) <= C * (y - x) *)
(* *)
(* However the Rolle and Mean Value theorems are useful to have anyway *)
(*----------------------------------------------------------------------------*)
let DIFF_ISCONST_END = prove(
`!f a b. a < b /\
(!x. a <= x /\ x <= b ==> f contl x) /\
(!x. a < x /\ x < b ==> (f diffl &0)(x))
==> (f b = f a)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`]
MVT) THEN
ASM_REWRITE_TAC[] THEN
W(C SUBGOAL_THEN MP_TAC o funpow 2 (fst o dest_imp) o snd) THENL
[GEN_TAC THEN REWRITE_TAC[differentiable] THEN
DISCH_THEN((then_) (EXISTS_TAC `&0`) o MP_TAC) THEN
ASM_REWRITE_TAC[];
DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN
DISCH_THEN(X_CHOOSE_THEN `l:real` (X_CHOOSE_THEN `x:real` MP_TAC)) THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> (a /\ b) /\ (c /\ d)`] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN(MP_TAC o CONJ (ASSUME `(f diffl l)(x)`)) THEN
DISCH_THEN(SUBST_ALL_TAC o MATCH_MP
DIFF_UNIQ) THEN
RULE_ASSUM_TAC(REWRITE_RULE[
REAL_MUL_RZERO;
REAL_SUB_0]) THEN
FIRST_ASSUM ACCEPT_TAC);;
let DIFF_ISCONST = prove(
`!f a b. a < b /\
(!x. a <= x /\ x <= b ==> f contl x) /\
(!x. a < x /\ x < b ==> (f diffl &0)(x))
==> !x. a <= x /\ x <= b ==> (f x = f a)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`f:real->real`; `a:real`; `x:real`]
DIFF_ISCONST_END) THEN
DISJ_CASES_THEN MP_TAC (REWRITE_RULE[
REAL_LE_LT] (ASSUME `a <= x`)) THENL
[DISCH_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
CONJ_TAC THEN X_GEN_TAC `z:real` THEN STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `x:real`;
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `x:real`] THEN
ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]]);;
let DIFF_ISCONST_ALL = prove(
`!f x y. (!x. (f diffl &0)(x)) ==> (f(x) = f(y))`,
REWRITE_TAC[
RIGHT_FORALL_IMP_THM] THEN
GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `!x. f contl x` ASSUME_TAC THENL
[GEN_TAC THEN MATCH_MP_TAC
DIFF_CONT THEN
EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REPEAT GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC
(SPECL [`x:real`; `y:real`]
REAL_LT_TOTAL) THENL
[DISCH_THEN SUBST1_TAC THEN REFL_TAC;
CONV_TAC(RAND_CONV SYM_CONV);
ALL_TAC] THEN
DISCH_TAC THEN MATCH_MP_TAC
DIFF_ISCONST_END THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------ *)
(* Boring lemma about distances *)
(* ------------------------------------------------------------------------ *)
let INTERVAL_ABS = REAL_ARITH
`!x z d. (x - d) <= z /\ z <= (x + d) <=> abs(z - x) <= d`;;
(* ------------------------------------------------------------------------ *)
(* Dull lemma that an continuous injection on an interval must have a strict*)
(* maximum at an end point, not in the middle. *)
(* ------------------------------------------------------------------------ *)
let CONT_INJ_LEMMA = prove(
`!f g x d. &0 < d /\
(!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\
(!z. abs(z - x) <= d ==> f contl z) ==>
~(!z. abs(z - x) <= d ==> f(z) <= f(x))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
IMP_RES_THEN ASSUME_TAC
REAL_LT_IMP_LE THEN
DISCH_THEN(fun th -> MAP_EVERY (MP_TAC o C SPEC th) [`x - d`; `x + d`]) THEN
REWRITE_TAC[
REAL_ADD_SUB;
REAL_SUB_SUB;
ABS_NEG] THEN
ASM_REWRITE_TAC[
real_abs;
REAL_LE_REFL] THEN
DISCH_TAC THEN DISCH_TAC THEN DISJ_CASES_TAC
(SPECL [`f(x - d):real`; `f(x + d):real`]
REAL_LE_TOTAL) THENL
[MP_TAC(SPECL [`f:real->real`; `x - d`; `x:real`; `f(x + d):real`]
IVT) THEN
ASM_REWRITE_TAC[
REAL_LE_SUB_RADD;
REAL_LE_ADDR] THEN
W(C SUBGOAL_THEN MP_TAC o fst o dest_imp o dest_neg o snd) THENL
[X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[GSYM
ABS_NEG] THEN
REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
ASM_REWRITE_TAC[
REAL_NEG_SUB;
REAL_SUB_LE;
REAL_LE_SUB_RADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[];
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o AP_TERM `g:real->real`) THEN
SUBGOAL_THEN `g((f:real->real) z) = z` SUBST1_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[GSYM
ABS_NEG] THEN
REWRITE_TAC[
real_abs;
REAL_SUB_LE] THEN
ASM_REWRITE_TAC[
REAL_NEG_SUB;
REAL_SUB_LE;
REAL_LE_SUB_RADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `g(f(x + d):real) = x + d` SUBST1_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[
REAL_ADD_SUB] THEN
ASM_REWRITE_TAC[
real_abs;
REAL_LE_REFL]; ALL_TAC] THEN
REWRITE_TAC[] THEN MATCH_MP_TAC
REAL_LT_IMP_NE THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `x:real` THEN
ASM_REWRITE_TAC[
REAL_LT_ADDR]];
MP_TAC(SPECL [`f:real->real`; `x:real`; `x + d`; `f(x - d):real`]
IVT2) THEN
ASM_REWRITE_TAC[
REAL_LE_SUB_RADD;
REAL_LE_ADDR] THEN
W(C SUBGOAL_THEN MP_TAC o fst o dest_imp o dest_neg o snd) THENL
[X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE;
REAL_LE_SUB_RADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[];
DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o AP_TERM `g:real->real`) THEN
SUBGOAL_THEN `g((f:real->real) z) = z` SUBST1_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
real_abs;
REAL_SUB_LE;
REAL_LE_SUB_RADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `g(f(x - d):real) = x - d` SUBST1_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
REAL_SUB_SUB;
ABS_NEG] THEN
ASM_REWRITE_TAC[
real_abs;
REAL_LE_REFL]; ALL_TAC] THEN
REWRITE_TAC[] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN
MATCH_MP_TAC
REAL_LT_IMP_NE THEN
MATCH_MP_TAC
REAL_LTE_TRANS THEN EXISTS_TAC `x:real` THEN
ASM_REWRITE_TAC[
REAL_LT_SUB_RADD;
REAL_LT_ADDR]]]);;
(* ------------------------------------------------------------------------ *)
(* Similar version for lower bound *)
(* ------------------------------------------------------------------------ *)
let CONT_INJ_LEMMA2 = prove(
`!f g x d. &0 < d /\
(!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\
(!z. abs(z - x) <= d ==> f contl z) ==>
~(!z. abs(z - x) <= d ==> f(x) <= f(z))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`\x:real. --(f x)`; `\y. (g(--y):real)`; `x:real`; `d:real`]
CONT_INJ_LEMMA) THEN
BETA_TAC THEN ASM_REWRITE_TAC[
REAL_NEGNEG;
REAL_LE_NEG] THEN
DISCH_THEN MATCH_MP_TAC THEN
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
CONT_NEG THEN
FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
(* ------------------------------------------------------------------------ *)
(* Show there's an interval surrounding f(x) in f[[x - d, x + d]] *)
(* ------------------------------------------------------------------------ *)
let CONT_INJ_RANGE = prove(
`!f g x d. &0 < d /\
(!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\
(!z. abs(z - x) <= d ==> f contl z) ==>
?e. &0 < e /\
(!y. abs(y - f(x)) <= e ==> ?z. abs(z - x) <= d /\ (f z = y))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
IMP_RES_THEN ASSUME_TAC
REAL_LT_IMP_LE THEN
MP_TAC(SPECL [`f:real->real`; `x - d`; `x + d`]
CONT_ATTAINS_ALL) THEN
ASM_REWRITE_TAC[INTERVAL_ABS;
REAL_LE_SUB_RADD] THEN
ASM_REWRITE_TAC[GSYM REAL_ADD_ASSOC;
REAL_LE_ADDR;
REAL_LE_DOUBLE] THEN
DISCH_THEN(X_CHOOSE_THEN `L:real` (X_CHOOSE_THEN `M:real` MP_TAC)) THEN
STRIP_TAC THEN
SUBGOAL_THEN `L <= f(x:real) /\ f(x) <= M` STRIP_ASSUME_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[
REAL_SUB_REFL;
ABS_0]; ALL_TAC] THEN
SUBGOAL_THEN `L < f(x:real) /\ f(x:real) < M` STRIP_ASSUME_TAC THENL
[CONJ_TAC THEN ASM_REWRITE_TAC[
REAL_LT_LE] THENL
[DISCH_THEN SUBST_ALL_TAC THEN (MP_TAC o C SPECL
CONT_INJ_LEMMA2)
[`f:real->real`; `g:real->real`; `x:real`; `d:real`];
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN (MP_TAC o C SPECL
CONT_INJ_LEMMA)
[`f:real->real`; `g:real->real`; `x:real`; `d:real`]] THEN
ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun t -> FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP th t] THEN
NO_TAC));
MP_TAC(SPECL [`f(x:real) - L`; `M - f(x:real)`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[
REAL_SUB_LT] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM INTERVAL_ABS] THEN
REWRITE_TAC[
REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[GSYM
CONJ_ASSOC] THEN
FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `abs(y - f(x:real)) <= e` THEN
REWRITE_TAC[GSYM INTERVAL_ABS] THEN STRIP_TAC THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `f(x:real) - e` THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[
REAL_LE_SUB_LADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
REWRITE_TAC[GSYM
REAL_LE_SUB_LADD];
MATCH_MP_TAC
REAL_LE_TRANS THEN
EXISTS_TAC `f(x:real) + (M - f(x))` THEN CONJ_TAC THENL
[MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `f(x:real) + e` THEN
ASM_REWRITE_TAC[
REAL_LE_LADD];
REWRITE_TAC[
REAL_SUB_ADD2;
REAL_LE_REFL]]] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------ *)
(* Continuity of inverse function *)
(* ------------------------------------------------------------------------ *)
let CONT_INVERSE = prove(
`!f g x d. &0 < d /\
(!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\
(!z. abs(z - x) <= d ==> f contl z)
==> g contl (f x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[contl;
LIM] THEN
X_GEN_TAC `a:real` THEN DISCH_TAC THEN
MP_TAC(SPECL [`a:real`; `d:real`]
REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
IMP_RES_THEN ASSUME_TAC
REAL_LT_IMP_LE THEN
SUBGOAL_THEN `!z. abs(z - x) <= e ==> (g(f z :real) = z)` ASSUME_TAC THENL
[X_GEN_TAC `z:real` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!z. abs(z - x) <= e ==> (f contl z)` ASSUME_TAC THENL
[X_GEN_TAC `z:real` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
MATCH_MP_TAC
REAL_LE_TRANS THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
UNDISCH_TAC `!z. abs(z - x) <= d ==> (g(f z :real) = z)` THEN
UNDISCH_TAC `!z. abs(z - x) <= d ==> (f contl z)` THEN
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN
(MP_TAC o C SPECL
CONT_INJ_RANGE)
[`f:real->real`; `g:real->real`; `x:real`; `e:real`] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `k:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `h:real` THEN BETA_TAC THEN REWRITE_TAC[
REAL_SUB_RZERO] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC
(ASSUME_TAC o MATCH_MP
REAL_LT_IMP_LE)) THEN
REWRITE_TAC[GSYM
ABS_NZ] THEN DISCH_TAC THEN
FIRST_ASSUM(fun th -> MP_TAC(SPEC `f(x:real) + h` th) THEN
REWRITE_TAC[
REAL_ADD_SUB; ASSUME `abs(h) <= k`] THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC)) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `e:real` THEN
SUBGOAL_THEN `(g((f:real->real)(z)) = z) /\ (g(f(x)) = x)`
(fun t -> ASM_REWRITE_TAC[t]) THEN CONJ_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[
REAL_SUB_REFL;
ABS_0]);;
(* ------------------------------------------------------------------------ *)
(* Differentiability of inverse function *)
(* ------------------------------------------------------------------------ *)
let DIFF_INVERSE = prove(
`!f g l x d. &0 < d /\
(!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\
(!z. abs(z - x) <= d ==> f contl z) /\
(f diffl l)(x) /\
~(l = &0)
==> (g diffl (inv l))(f x)`,
REPEAT STRIP_TAC THEN UNDISCH_TAC `(f diffl l)(x)` THEN
DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP
DIFF_CONT th) THEN MP_TAC th) THEN
REWRITE_TAC[
DIFF_CARAT] THEN
DISCH_THEN(X_CHOOSE_THEN `h:real->real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `\y. if y = f(x) then
inv(h(g y)) else (g(y) - g(f(x:real))) / (y - f(x))` THEN BETA_TAC THEN
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[X_GEN_TAC `z:real` THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[
REAL_SUB_REFL;
REAL_MUL_RZERO] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC
REAL_DIV_RMUL THEN
ASM_REWRITE_TAC[
REAL_SUB_0];
ALL_TAC;
FIRST_ASSUM(SUBST1_TAC o SYM) THEN REPEAT AP_TERM_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
REAL_SUB_REFL;
ABS_0] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC THEN REWRITE_TAC[] THEN
SUBGOAL_THEN `g((f:real->real)(x)) = x` ASSUME_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[
REAL_SUB_REFL;
ABS_0] THEN
MATCH_MP_TAC
REAL_LT_IMP_LE; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
LIM_TRANSFORM THEN EXISTS_TAC `\y:real. inv(h(g(y):real))` THEN
BETA_TAC THEN CONJ_TAC THENL
[ALL_TAC;
(SUBST1_TAC o SYM o ONCE_DEPTH_CONV BETA_CONV)
`\y. inv((\y:real. h(g(y):real)) y)` THEN
MATCH_MP_TAC
LIM_INV THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `(\y:real. h(g(y):real)) contl (f(x:real))` MP_TAC THENL
[MATCH_MP_TAC
CONT_COMPOSE THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
CONT_INVERSE THEN EXISTS_TAC `d:real`;
REWRITE_TAC[
CONTL_LIM] THEN BETA_TAC] THEN
ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `?e. &0 < e /\
!y. &0 < abs(y - f(x:real)) /\
abs(y - f(x:real)) < e ==>
(f(g(y)) = y) /\ ~(h(g(y)) = &0)`
STRIP_ASSUME_TAC THENL
[ALL_TAC;
REWRITE_TAC[
LIM] THEN X_GEN_TAC `k:real` THEN DISCH_TAC THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN
DISCH_THEN(fun th -> FIRST_ASSUM(STRIP_ASSUME_TAC o C MATCH_MP th) THEN
ASSUME_TAC(REWRITE_RULE[GSYM
ABS_NZ;
REAL_SUB_0] (CONJUNCT1 th))) THEN
BETA_TAC THEN ASM_REWRITE_TAC[
REAL_SUB_RZERO] THEN
SUBGOAL_THEN `y - f(x) = h(g(y)) * (g(y) - x)` SUBST1_TAC THENL
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
REWRITE_TAC[ASSUME `f((g:real->real)(y)) = y`];
UNDISCH_TAC `&0 < k` THEN
MATCH_MP_TAC EQ_IMP THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
CONV_TAC SYM_CONV THEN REWRITE_TAC[
ABS_ZERO;
REAL_SUB_0]] THEN
SUBGOAL_THEN `~(g(y:real) - x = &0)` ASSUME_TAC THENL
[REWRITE_TAC[
REAL_SUB_0] THEN
DISCH_THEN(MP_TAC o AP_TERM `f:real->real`) THEN
ASM_REWRITE_TAC[]; REWRITE_TAC[
real_div]] THEN
SUBGOAL_THEN `inv((h(g(y))) * (g(y:real) - x)) =
inv(h(g(y))) * inv(g(y) - x)` SUBST1_TAC THENL
[MATCH_MP_TAC
REAL_INV_MUL_WEAK THEN ASM_REWRITE_TAC[];
REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[REAL_MUL_ASSOC] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[]]] THEN
SUBGOAL_THEN
`?e. &0 < e /\
!y. &0 < abs(y - f(x:real)) /\ abs(y - f(x)) < e ==> (f(g(y)) = y)`
(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THENL
[MP_TAC(SPECL [`f:real->real`; `g:real->real`; `x:real`; `d:real`]
CONT_INJ_RANGE) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `y:real` THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN
DISCH_THEN(MP_TAC o MATCH_MP
REAL_LT_IMP_LE) THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `(f:real->real)(z) = y` THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`?e. &0 < e /\
!y. &0 < abs(y - f(x:real)) /\ abs(y - f(x)) < e
==> ~((h:real->real)(g(y)) = &0)`
(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THENL
[ALL_TAC;
MP_TAC(SPECL [`b:real`; `c:real`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `y:real` THEN STRIP_TAC THEN CONJ_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_LT_TRANS THEN EXISTS_TAC `e:real` THEN
ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN `(\y. h(g(y:real):real)) contl (f(x:real))` MP_TAC THENL
[MATCH_MP_TAC
CONT_COMPOSE THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
CONT_INVERSE THEN EXISTS_TAC `d:real` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[
CONTL_LIM;
LIM] THEN DISCH_THEN(MP_TAC o SPEC `abs(l)`) THEN
ASM_REWRITE_TAC[GSYM
ABS_NZ] THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[
ABS_NZ] THEN X_GEN_TAC `y:real` THEN
RULE_ASSUM_TAC(REWRITE_RULE[
ABS_NZ]) THEN
DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN
REWRITE_TAC[GSYM
ABS_NZ] THEN
CONV_TAC CONTRAPOS_CONV THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[
REAL_SUB_LZERO;
ABS_NEG;
REAL_LT_REFL]);;
let DIFF_INVERSE_LT = prove(
`!f g l x d. &0 < d /\
(!z. abs(z - x) < d ==> (g(f(z)) = z)) /\
(!z. abs(z - x) < d ==> f contl z) /\
(f diffl l)(x) /\
~(l = &0)
==> (g diffl (inv l))(f x)`,
(* ------------------------------------------------------------------------- *)
(* Every derivative is Darboux continuous. *)
(* ------------------------------------------------------------------------- *)
let IVT_DERIVATIVE_0 = prove
(`!f f' a b.
a <= b /\
(!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) /\
f'(a) > &0 /\ f'(b) < &0
==> ?z. a < z /\ z < b /\ (f'(z) = &0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
real_gt] THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [
REAL_LE_LT] THEN
STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[
REAL_LT_ANTISYM]] THEN
SUBGOAL_THEN `?w. (!x. a <= x /\ x <= b ==> f x <= w) /\
(?x. a <= x /\ x <= b /\ (f x = w))`
MP_TAC THENL
[MATCH_MP_TAC
CONT_ATTAINS THEN
ASM_MESON_TAC[
REAL_LT_IMP_LE;
DIFF_CONT]; ALL_TAC] THEN
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `z:real` THEN ASM_CASES_TAC `z:real = a` THENL
[UNDISCH_THEN `z:real = a` SUBST_ALL_TAC THEN
MP_TAC(SPECL[`f:real->real`; `a:real`; `(f':real->real) a`]
DIFF_LINC) THEN
ASM_SIMP_TAC[
REAL_LE_REFL;
REAL_LT_IMP_LE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d:real`; `b - a`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[
REAL_LT_SUB_LADD; REAL_ADD_LID] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `!h. &0 < h /\ h < d ==> w < f (a + h)` THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[
REAL_NOT_LT] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
ASM_SIMP_TAC[
REAL_LE_ADDL;
REAL_LT_IMP_LE]; ALL_TAC] THEN
ASM_CASES_TAC `z:real = b` THENL
[UNDISCH_THEN `z:real = b` SUBST_ALL_TAC THEN
MP_TAC(SPECL[`f:real->real`; `b:real`; `(f':real->real) b`]
DIFF_LDEC) THEN
ASM_SIMP_TAC[
REAL_LE_REFL;
REAL_LT_IMP_LE] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d:real`; `b - a`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[
REAL_LT_SUB_LADD; REAL_ADD_LID] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `!h. &0 < h /\ h < d ==> w < f (b - h)` THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[
REAL_NOT_LT] THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[
REAL_LE_SUB_LADD;
REAL_LE_SUB_RADD] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN
ASM_SIMP_TAC[
REAL_LE_ADDL;
REAL_LT_IMP_LE]; ALL_TAC] THEN
SUBGOAL_THEN `a < z /\ z < b` STRIP_ASSUME_TAC THENL
[ASM_REWRITE_TAC[
REAL_LT_LE]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC
DIFF_LMAX THEN
MP_TAC(SPECL [`z - a`; `b - z`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[
REAL_LT_SUB_LADD; REAL_ADD_LID] THEN
DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`f:real->real`; `z:real`] THEN
ASM_SIMP_TAC[
REAL_LT_IMP_LE] THEN
EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> FIRST_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN
MAP_EVERY UNDISCH_TAC [`e + z < b`; `e + a < z`] THEN
REAL_ARITH_TAC);;
let IVT_DERIVATIVE_POS = prove
(`!f f' a b y.
a <= b /\
(!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) /\
f'(a) > y /\ f'(b) < y
==> ?z. a < z /\ z < b /\ (f'(z) = y)`,
let IVT_DERIVATIVE_NEG = prove
(`!f f' a b y.
a <= b /\
(!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) /\
f'(a) < y /\ f'(b) > y
==> ?z. a < z /\ z < b /\ (f'(z) = y)`,
(* ------------------------------------------------------------------------- *)
(* Uniformly convergent sequence of continuous functions is continuous. *)
(* (Continuity at a point; uniformity in some neighbourhood of that point.) *)
(* ------------------------------------------------------------------------- *)
let SEQ_CONT_UNIFORM = prove
(`!s f x0. (!e. &0 < e
==> ?N d. &0 < d /\
!x n. abs(x - x0) < d /\ n >= N
==> abs(s n x - f(x)) < e) /\
(?N:num. !n. n >= N ==> (s n) contl x0)
==> f contl x0`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `M:num`)) THEN
REWRITE_TAC[
CONTL_LIM;
LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `e / &3`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH;
LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`N:num`; `d1:real`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `M + N:num`) THEN REWRITE_TAC[
GE;
LE_ADD] THEN
REWRITE_TAC[
CONTL_LIM;
LIM] THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d1:real`; `d2:real`]
REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`!fx sx fx0 sx0 e3.
abs(sx - fx) < e3 /\ abs(sx0 - fx0) < e3 /\ abs(sx - sx0) < e3 /\
(&3 * e3 = e)
==> abs(fx - fx0) < e`) THEN
MAP_EVERY EXISTS_TAC
[`(s:num->real->real) (M + N) x`;
`(s:num->real->real) (M + N) x0`;
`e / &3`] THEN
ASM_SIMP_TAC[
REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN
ASM_MESON_TAC[
REAL_SUB_REFL;
REAL_ABS_NUM;
REAL_LT_TRANS;
ARITH_RULE `M + N >= N:num`]);;
(* ------------------------------------------------------------------------- *)
(* Comparison test gives uniform convergence of sum in a neighbourhood. *)
(* ------------------------------------------------------------------------- *)
let SER_COMPARA_UNIFORM = prove
(`!s x0 g.
(?N d. &0 < d /\
!n x. abs(x - x0) < d /\ n >= N
==> abs(s x n) <= g n) /\ summable g
==> ?f d. &0 < d /\
!e. &0 < e
==> ?N. !x n. abs(x - x0) < d /\ n >= N
==> abs(sum(0,n) (s x) - f(x)) < e`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!x. abs(x - x0) < d ==> ?y. (s x) sums y` MP_TAC THENL
[ASM_MESON_TAC[summable;
SER_COMPAR]; ALL_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[
RIGHT_IMP_EXISTS_THM;
SKOLEM_THM] THEN
MATCH_MP_TAC
MONO_EXISTS THEN X_GEN_TAC `f:real->real` THEN DISCH_TAC THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `e:real` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
SER_CAUCHY]) THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN
EXISTS_TAC `M + N:num` THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `n:num`] THEN STRIP_TAC THEN
FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (ARITH_RULE
`n >= M + N ==> n >= M /\ n >= N:num`)) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[sums;
SEQ] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` (MP_TAC o SPEC `m + n:num`)) THEN
REWRITE_TAC[
GE;
LE_ADD] THEN ONCE_REWRITE_TAC[
ADD_SYM] THEN
ONCE_REWRITE_TAC[GSYM
SUM_TWO] THEN
MATCH_MP_TAC(REAL_ARITH
`abs(snm) < e2 /\ (&2 * e2 = e)
==> abs((sn + snm) - fx) < e2 ==> abs(sn - fx) < e`) THEN
SIMP_TAC[
REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN
EXISTS_TAC `sum(n,m) (\n. abs(s (x:real) n))` THEN
REWRITE_TAC[
SUM_ABS_LE] THEN
MATCH_MP_TAC
REAL_LET_TRANS THEN EXISTS_TAC `sum(n,m) g` THEN CONJ_TAC THENL
[MATCH_MP_TAC
SUM_LE THEN X_GEN_TAC `r:num` THEN STRIP_TAC THEN
REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[
GE;
LE_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH `abs(x) < a ==> x < a`) THEN ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* A weaker variant matching the requirement for continuity of limit. *)
(* ------------------------------------------------------------------------- *)
let SER_COMPARA_UNIFORM_WEAK = prove
(`!s x0 g.
(?N d. &0 < d /\
!n x. abs(x - x0) < d /\ n >= N
==> abs(s x n) <= g n) /\ summable g
==> ?f. !e. &0 < e
==> ?N d. &0 < d /\
!x n. abs(x - x0) < d /\ n >= N
==> abs(sum(0,n) (s x) - f(x)) < e`,
(* ------------------------------------------------------------------------- *)
(* More convenient formulation of continuity. *)
(* ------------------------------------------------------------------------- *)
let CONTL = prove
(`!f x. f contl x <=>
!e. &0 < e ==> ?d. &0 < d /\ !x'. abs(x' - x) < d
==> abs(f(x') - f(x)) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[
CONTL_LIM;
LIM] THEN
REWRITE_TAC[REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`] THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
DISCH_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);;
(* ------------------------------------------------------------------------- *)
(* Of course we also have this and similar results for sequences. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Uniformity of continuity over closed interval. *)
(* ------------------------------------------------------------------------- *)
let SUP_INTERVAL = prove
(`!P a b.
(?x. a <= x /\ x <= b /\ P x)
==> ?s. a <= s /\ s <= b /\
!y. y < s <=> (?x. a <= x /\ x <= b /\ P x /\ y < x)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\x. a <= x /\ x <= b /\ P x`
REAL_SUP) THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[ARITH_RULE `x <= b ==> x < b + &1`];
ALL_TAC] THEN
ABBREV_TAC `s = sup (\x. a <= x /\ x <= b /\ P x)` THEN
REWRITE_TAC[] THEN DISCH_TAC THEN EXISTS_TAC `s:real` THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[
REAL_LTE_TRANS;
REAL_NOT_LE;
REAL_LT_ANTISYM]);;
let CONT_UNIFORM = prove
(`!f a b. a <= b /\ (!x. a <= x /\ x <= b ==> f contl x)
==> !e. &0 < e ==> ?d. &0 < d /\
!x y. a <= x /\ x <= b /\
a <= y /\ y <= b /\
abs(x - y) < d
==> abs(f(x) - f(y)) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\c. ?d. &0 < d /\
!x y. a <= x /\ x <= c /\
a <= y /\ y <= c /\
abs(x - y) < d
==> abs(f(x) - f(y)) < e`
SUP_INTERVAL) THEN
DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN ANTS_TAC THENL
[EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[
REAL_LE_REFL] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `&1` THEN
REWRITE_TAC[
REAL_OF_NUM_LT; ARITH] THEN
ASM_MESON_TAC[REAL_LE_ANTISYM; REAL_ARITH `abs(x - x) = &0`];
ALL_TAC] THEN
REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `s:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `?t. s < t /\ ?d. &0 < d /\
!x y. a <= x /\ x <= t /\ a <= y /\ y <= t /\
abs(x - y) < d ==> abs(f(x) - f(y)) < e`
MP_TAC THENL
[UNDISCH_TAC `!x. a <= x /\ x <= b ==> f contl x` THEN
DISCH_THEN(MP_TAC o SPEC `s:real`) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
CONTL_LIM;
LIM] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `&0 < d1 / &2 /\ d1 / &2 < d1` STRIP_ASSUME_TAC THENL
[ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH;
REAL_LT_LDIV_EQ;
REAL_ARITH `d < d * &2 <=> &0 < d`];
ALL_TAC] THEN
SUBGOAL_THEN `!x y. abs(x - s) < d1 /\ abs(y - s) < d1
==> abs(f(x) - f(y)) < e`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`!a. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 /\ (&2 * e / &2 = e)
==> abs(x - y) < e`) THEN
EXISTS_TAC `(f:real->real) s` THEN
SIMP_TAC[
REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN
SUBGOAL_THEN `!x. abs(x - s) < d1 ==> abs(f x - f s) < e / &2`
(fun th -> ASM_MESON_TAC[th]) THEN
X_GEN_TAC `u:real` THEN
REPEAT STRIP_TAC THEN ASM_CASES_TAC `u:real = s` THENL
[ASM_SIMP_TAC[
REAL_SUB_REFL;
REAL_ABS_NUM;
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH];
ALL_TAC] THEN
ASM_MESON_TAC[REAL_ARITH `&0 < abs(x - s) <=> ~(x = s)`];
ALL_TAC] THEN
SUBGOAL_THEN `s - d1 / &2 < s` MP_TAC THENL
[ASM_REWRITE_TAC[REAL_ARITH `x - y < x <=> &0 < y`];
ALL_TAC] THEN
DISCH_THEN(fun th -> FIRST_ASSUM(fun th' ->
MP_TAC(GEN_REWRITE_RULE I [th'] th))) THEN
DISCH_THEN(X_CHOOSE_THEN `r:real` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d2:real`; `d1 / &2`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `s + d / &2` THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH;
REAL_ARITH `s < s + d <=> &0 < d`] THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN
ASM_CASES_TAC `x <= r /\ y <= r` THENL
[ASM_MESON_TAC[
REAL_LT_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC(ASSUME
`!x y. abs(x - s) < d1 /\ abs(y - s) < d1 ==> abs(f x - f y) < e`) THEN
MATCH_MP_TAC(REAL_ARITH
`!r t d d12.
~(x <= r /\ y <= r) /\
abs(x - y) < d /\
s - d12 < r /\ t <= s + d /\
x <= t /\ y <= t /\ &2 * d12 <= e /\
&2 * d < e ==> abs(x - s) < e /\ abs(y - s) < e`) THEN
MAP_EVERY EXISTS_TAC [`r:real`; `s + d / &2`; `d:real`; `d1 / &2`] THEN
ASM_REWRITE_TAC[
REAL_LE_LADD] THEN
SIMP_TAC[
REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
SIMP_TAC[
REAL_LE_LDIV_EQ; GSYM
REAL_LT_RDIV_EQ;
REAL_OF_NUM_LT; ARITH] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < d ==> d <= d * &2`;
REAL_LE_REFL];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `t:real` (CONJUNCTS_THEN ASSUME_TAC)) THEN
SUBGOAL_THEN `b <= t` (fun th -> ASM_MESON_TAC[
REAL_LE_TRANS; th]) THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
UNDISCH_THEN `!x. a <= x /\ x <= b ==> f contl x` (K ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o check(is_eq o concl) o SPEC `s:real`) THEN
REWRITE_TAC[
REAL_LT_REFL] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[
REAL_NOT_LE] THEN
DISCH_TAC THEN EXISTS_TAC `t:real` THEN
ASM_MESON_TAC[
REAL_LT_IMP_LE;
REAL_LE_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Slightly stronger version exploiting 2-sided continuity at ends. *)
(* ------------------------------------------------------------------------- *)
let CONT_UNIFORM_STRONG = prove
(`!f a b. (!x. a <= x /\ x <= b ==> f contl x)
==> !e. &0 < e
==> ?d. &0 < d /\
!x y. (a <= x /\ x <= b \/ a <= y /\ y <= b) /\
abs(x - y) < d
==> abs(f(x) - f(y)) < e`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `a <= b` THENL
[ALL_TAC; ASM_MESON_TAC[
REAL_LE_TRANS;
REAL_LT_01]] THEN
FIRST_ASSUM(fun th ->
MP_TAC(SPEC `a:real` th) THEN MP_TAC(SPEC `b:real` th)) THEN
REWRITE_TAC[
CONTL;
REAL_LE_REFL] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
ASM_SIMP_TAC[
REAL_LT_DIV;
REAL_OF_NUM_LT; ARITH] THEN
DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d1:real`; `d2:real`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d0:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`]
CONT_UNIFORM) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d3:real` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`d0:real`; `d3:real`]
REAL_DOWN2) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
REAL_WLOG_LE THEN CONJ_TAC THENL
[MESON_TAC[
REAL_ABS_SUB]; ALL_TAC] THEN
REPEAT STRIP_TAC THENL
[ASM_CASES_TAC `y <= b` THENL
[ASM_MESON_TAC[
REAL_LT_TRANS;
REAL_LE_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`!a. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 /\ (&2 * e / &2 = e)
==> abs(x - y) < e`) THEN
EXISTS_TAC `(f:real->real) b` THEN
SIMP_TAC[
REAL_DIV_LMUL; REAL_OF_NUM_EQ;
ARITH_EQ] THEN
ASM_MESON_TAC[
REAL_LT_TRANS; REAL_ARITH
`x <= b /\ ~(y <= b) /\ abs(x - y) < d /\ d < d1
==> abs(x - b) < d1 /\ abs(y - b) < d1`];
ASM_CASES_TAC `a <= x` THENL
[ASM_MESON_TAC[
REAL_LT_TRANS;
REAL_LE_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_ARITH
`!a. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 /\ (&2 * e / &2 = e)
==> abs(x - y) < e`) THEN
EXISTS_TAC `(f:real->real) a` THEN
SIMP_TAC[
REAL_DIV_LMUL; REAL_OF_NUM_EQ;
ARITH_EQ] THEN
ASM_MESON_TAC[
REAL_LT_TRANS; REAL_ARITH
`~(a <= x) /\ a <= y /\ abs(x - y) < d /\ d < d1
==> abs(x - a) < d1 /\ abs(y - a) < d1`]]);;
(* ------------------------------------------------------------------------- *)
(* Get rid of special syntax status of '-->'. *)
(* ------------------------------------------------------------------------- *)
remove_interface "-->";;