(* ========================================================================= *)
(* HOL primality proving via Pocklington-optimized  Pratt certificates.      *)
(* ========================================================================= *)

needs "Library/iter.ml";;
needs "Library/prime.ml";;

prioritize_num();;

let num_0 = Int 0;;
let num_1 = Int 1;;
let num_2 = Int 2;;

(* ------------------------------------------------------------------------- *)
(* Mostly for compatibility. Should eliminate this eventually.               *)
(* ------------------------------------------------------------------------- *)

let nat_mod_lemma = 
prove (`!x y n:num. (x == y) (mod n) /\ y <= x ==> ?q. x = y + n * q`,
REPEAT GEN_TAC THEN REWRITE_TAC[num_congruent] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ONCE_REWRITE_TAC [INTEGER_RULE `(x == y) (mod &n) <=> &n divides (x - y)`] THEN ASM_SIMP_TAC[INT_OF_NUM_SUB; ARITH_RULE `x <= y ==> (y:num = x + d <=> y - x = d)`] THEN REWRITE_TAC[GSYM num_divides; divides]);;
let nat_mod = 
prove (`!x y n:num. (mod n) x y <=> ?q1 q2. x + n * q1 = y + n * q2`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM cong] THEN EQ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN MP_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THEN REWRITE_TAC[TAUT `a \/ b ==> c ==> d <=> (c /\ b) \/ (c /\ a) ==> d`] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; ONCE_REWRITE_TAC[NUMBER_RULE `(x:num == y) (mod n) <=> (y == x) (mod n)`]] THEN MESON_TAC[nat_mod_lemma; ARITH_RULE `x + y * 0 = x`]);;
(* ------------------------------------------------------------------------- *) (* Lemmas about previously defined terms. *) (* ------------------------------------------------------------------------- *)
let PRIME = 
prove (`!p. prime p <=> ~(p = 0) /\ ~(p = 1) /\ !m. 0 < m /\ m < p ==> coprime(p,m)`,
GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP PRIME_COPRIME) THEN DISCH_TAC THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN STRIP_TAC THEN ASM_REWRITE_TAC[COPRIME_1] THEN ASM_MESON_TAC[NOT_LT; LT_REFL; DIVIDES_LE]; ALL_TAC] THEN FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN SUBGOAL_THEN `~(coprime(p,q))` (fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[coprime; NOT_FORALL_THM] THEN EXISTS_TAC `q:num` THEN ASM_REWRITE_TAC[DIVIDES_REFL] THEN ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[LT_LE; LE_0] THEN ASM_CASES_TAC `p:num = q` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN DISCH_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[DIVIDES_ZERO]);;
let FINITE_NUMBER_SEGMENT = 
prove (`!n. { m | 0 < m /\ m < n } HAS_SIZE (n - 1)`,
INDUCT_TAC THENL [SUBGOAL_THEN `{m | 0 < m /\ m < 0} = EMPTY` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV; ASM_CASES_TAC `n = 0` THENL [SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = EMPTY` SUBST1_TAC THENL [ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[HAS_SIZE_0]; SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = n INSERT {m | 0 < m /\ m < n}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN UNDISCH_TAC `~(n = 0)` THEN POP_ASSUM MP_TAC THEN SIMP_TAC[FINITE_RULES; HAS_SIZE; CARD_CLAUSES] THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LT_REFL] THEN ARITH_TAC]]);;
let COPRIME_MOD = 
prove (`!a n. ~(n = 0) ==> (coprime(a MOD n,n) <=> coprime(a,n))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [MATCH_MP DIVISION th]) THEN REWRITE_TAC[coprime] THEN AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN MESON_TAC[DIVIDES_ADD; DIVIDES_ADD_REVR; DIVIDES_ADD_REVL; DIVIDES_LMUL; DIVIDES_RMUL]);;
(* ------------------------------------------------------------------------- *) (* Congruences. *) (* ------------------------------------------------------------------------- *)
let CONG = 
prove (`!x y n. ~(n = 0) ==> ((x == y) (mod n) <=> (x MOD n = y MOD n))`,
REWRITE_TAC[cong; nat_mod] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [ASM_CASES_TAC `x <= y` THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN EXISTS_TAC `q1 - q2`; MATCH_MP_TAC MOD_EQ THEN EXISTS_TAC `q2 - q1`] THEN REWRITE_TAC[RIGHT_SUB_DISTRIB] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC; MAP_EVERY EXISTS_TAC [`y DIV n`; `x DIV n`] THEN UNDISCH_TAC `x MOD n = y MOD n` THEN MATCH_MP_TAC(ARITH_RULE `(y = dy + my) /\ (x = dx + mx) ==> (mx = my) ==> (x + dy = y + dx)`) THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[DIVISION]]);;
let CONG_MOD_0 = 
prove (`!x y. (x == y) (mod 0) <=> (x = y)`,
NUMBER_TAC);;
let CONG_MOD_1 = 
prove (`!x y. (x == y) (mod 1)`,
NUMBER_TAC);;
let CONG_0 = 
prove (`!x n. ((x == 0) (mod n) <=> n divides x)`,
NUMBER_TAC);;
let CONG_SUB_CASES = 
prove (`!x y n. (x == y) (mod n) <=> if x <= y then (y - x == 0) (mod n) else (x - y == 0) (mod n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN COND_CASES_TAC THENL [GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM]; ALL_TAC] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;
let CONG_CASES = 
prove (`!x y n. (x == y) (mod n) <=> (?q. x = q * n + y) \/ (?q. y = q * n + x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[] THEN NUMBER_TAC] THEN REWRITE_TAC[cong; nat_mod; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`q1:num`; `q2:num`] THEN DISCH_THEN(MP_TAC o MATCH_MP(ARITH_RULE `x + a = y + b ==> x = (b - a) + y \/ y = (a - b) + x`)) THEN REWRITE_TAC[GSYM LEFT_SUB_DISTRIB] THEN MESON_TAC[MULT_SYM]);;
let CONG_MULT_LCANCEL = 
prove (`!a n x y. coprime(a,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_MULT_RCANCEL = 
prove (`!a n x y. coprime(a,n) /\ (x * a == y * a) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_REFL = 
prove (`!x n. (x == x) (mod n)`,
NUMBER_TAC);;
let EQ_IMP_CONG = 
prove (`!a b n. a = b ==> (a == b) (mod n)`,
SIMP_TAC[CONG_REFL]);;
let CONG_SYM = 
prove (`!x y n. (x == y) (mod n) <=> (y == x) (mod n)`,
NUMBER_TAC);;
let CONG_TRANS = 
prove (`!x y z n. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`,
NUMBER_TAC);;
let CONG_ADD = 
prove (`!x x' y y'. (x == x') (mod n) /\ (y == y') (mod n) ==> (x + y == x' + y') (mod n)`,
NUMBER_TAC);;
let CONG_MULT = 
prove (`!x x' y y'. (x == x') (mod n) /\ (y == y') (mod n) ==> (x * y == x' * y') (mod n)`,
NUMBER_TAC);;
let CONG_EXP = 
prove (`!n k x y. (x == y) (mod n) ==> (x EXP k == y EXP k) (mod n)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[CONG_MULT; EXP; CONG_REFL]);;
let CONG_SUB = 
prove (`!x x' y y'. (x == x') (mod n) /\ (y == y') (mod n) /\ y <= x /\ y' <= x' ==> (x - y == x' - y') (mod n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `(x + a = x' + a') /\ (y + b = y' + b') /\ y <= x /\ y' <= x' ==> ((x - y) + (a + b') = (x' - y') + (a' + b))`)) THEN REWRITE_TAC[GSYM LEFT_ADD_DISTRIB] THEN MESON_TAC[]);;
let CONG_MULT_LCANCEL_EQ = 
prove (`!a n x y. coprime(a,n) ==> ((a * x == a * y) (mod n) <=> (x == y) (mod n))`,
NUMBER_TAC);;
let CONG_MULT_RCANCEL_EQ = 
prove (`!a n x y. coprime(a,n) ==> ((x * a == y * a) (mod n) <=> (x == y) (mod n))`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL_EQ = 
prove (`!a n x y. (a + x == a + y) (mod n) <=> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL_EQ = 
prove (`!a n x y. (x + a == y + a) (mod n) <=> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL = 
prove (`!a n x y. (x + a == y + a) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL = 
prove (`!a n x y. (a + x == a + y) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL_EQ_0 = 
prove (`!a n x y. (a + x == a) (mod n) <=> (x == 0) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL_EQ_0 = 
prove (`!a n x y. (x + a == a) (mod n) <=> (x == 0) (mod n)`,
NUMBER_TAC);;
let CONG_IMP_EQ = 
prove (`!x y n. x < n /\ y < n /\ (x == y) (mod n) ==> x = y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LT] THEN ASM_MESON_TAC[CONG; MOD_LT]);;
let CONG_DIVIDES_MODULUS = 
prove (`!x y m n. (x == y) (mod m) /\ n divides m ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_0_DIVIDES = 
prove (`!n x. (x == 0) (mod n) <=> n divides x`,
NUMBER_TAC);;
let CONG_1_DIVIDES = 
prove (`!n x. (x == 1) (mod n) ==> n divides (x - 1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides; cong; nat_mod] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `(x + q1 = 1 + q2) ==> ~(x = 0) ==> (x - 1 = q2 - q1)`)) THEN ASM_CASES_TAC `x = 0` THEN ASM_REWRITE_TAC[ARITH; GSYM LEFT_SUB_DISTRIB] THEN ASM_MESON_TAC[MULT_CLAUSES]);;
let CONG_DIVIDES = 
prove (`!x y n. (x == y) (mod n) ==> (n divides x <=> n divides y)`,
NUMBER_TAC);;
let CONG_COPRIME = 
prove (`!x y n. (x == y) (mod n) ==> (coprime(n,x) <=> coprime(n,y))`,
NUMBER_TAC);;
let CONG_MOD = 
prove (`!a n. ~(n = 0) ==> (a MOD n == a) (mod n)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN DISCH_THEN(MP_TAC o SPEC `a:num`) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [th]) THEN REWRITE_TAC[cong; nat_mod] THEN MAP_EVERY EXISTS_TAC [`a DIV n`; `0`] THEN REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; ADD_AC; MULT_AC]);;
let MOD_MULT_CONG = 
prove (`!a b x y. ~(a = 0) /\ ~(b = 0) ==> ((x MOD (a * b) == y) (mod a) <=> (x == y) (mod a))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x MOD (a * b) == x) (mod a)` (fun th -> MESON_TAC[th; CONG_TRANS; CONG_SYM]) THEN MATCH_MP_TAC CONG_DIVIDES_MODULUS THEN EXISTS_TAC `a * b` THEN ASM_SIMP_TAC[CONG_MOD; MULT_EQ_0; DIVIDES_RMUL; DIVIDES_REFL]);;
let CONG_MOD_MULT = 
prove (`!x y m n. (x == y) (mod n) /\ m divides n ==> (x == y) (mod m)`,
NUMBER_TAC);;
let CONG_LMOD = 
prove (`!x y n. ~(n = 0) ==> ((x MOD n == y) (mod n) <=> (x == y) (mod n))`,
MESON_TAC[CONG_MOD; CONG_TRANS; CONG_SYM]);;
let CONG_RMOD = 
prove (`!x y n. ~(n = 0) ==> ((x == y MOD n) (mod n) <=> (x == y) (mod n))`,
MESON_TAC[CONG_MOD; CONG_TRANS; CONG_SYM]);;
let CONG_MOD_LT = 
prove (`!y. y < n ==> (x MOD n = y <=> (x == y) (mod n))`,
MESON_TAC[MOD_LT; CONG; LT]);;
(* ------------------------------------------------------------------------- *) (* Some things when we know more about the order. *) (* ------------------------------------------------------------------------- *)
let CONG_LT = 
prove (`!x y n. y < n ==> ((x == y) (mod n) <=> ?d. x = d * n + y)`,
REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_LT; GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN REWRITE_TAC[num_congruent; int_congruent] THEN REWRITE_TAC[INT_ARITH `x = m * n + y <=> x - y:int = n * m`] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN DISCH_THEN(X_CHOOSE_TAC `d:int`) THEN DISJ_CASES_TAC(SPEC `d:int` INT_IMAGE) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o MATCH_MP (INT_ARITH `x - y:int = n * --m ==> y = x + n * m`)) THEN POP_ASSUM MP_TAC THEN DISJ_CASES_TAC(ARITH_RULE `m = 0 \/ 1 <= m`) THEN ASM_REWRITE_TAC[INT_MUL_RZERO; INT_ARITH `x - (x + a):int = --a`] THENL [STRIP_TAC THEN EXISTS_TAC `0` THEN INT_ARITH_TAC; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_LT] THEN ARITH_TAC]);;
let CONG_LE = 
prove (`!x y n. y <= x ==> ((x == y) (mod n) <=> ?q. x = q * n + y)`,
ONCE_REWRITE_TAC[CONG_SYM] THEN ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN SIMP_TAC[ARITH_RULE `y <= x ==> (x = a + y <=> x - y = a)`] THEN REWRITE_TAC[CONG_0; divides] THEN MESON_TAC[MULT_SYM]);;
let CONG_TO_1 = 
prove (`!a n. (a == 1) (mod n) <=> a = 0 /\ n = 1 \/ ?m. a = 1 + m * n`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[CONG_MOD_1] THENL [MESON_TAC[ARITH_RULE `n = 0 \/ n = 1 + (n - 1) * 1`]; ALL_TAC] THEN DISJ_CASES_TAC(ARITH_RULE `a = 0 \/ ~(a = 0) /\ 1 <= a`) THEN ASM_SIMP_TAC[CONG_LE] THENL [ALL_TAC; MESON_TAC[ADD_SYM; MULT_SYM]] THEN ASM_MESON_TAC[CONG_SYM; CONG_0; DIVIDES_ONE; ARITH_RULE `~(0 = 1 + a)`]);;
(* ------------------------------------------------------------------------- *) (* In particular two common cases. *) (* ------------------------------------------------------------------------- *)
let EVEN_MOD_2 = 
prove (`EVEN n <=> (n == 0) (mod 2)`,
SIMP_TAC[EVEN_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; MULT_AC]);;
let ODD_MOD_2 = 
prove (`ODD n <=> (n == 1) (mod 2)`,
SIMP_TAC[ODD_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; ADD1; MULT_AC]);;
(* ------------------------------------------------------------------------- *) (* Conversion to evaluate congruences. *) (* ------------------------------------------------------------------------- *) let CONG_CONV =
let pth = 
prove (`(x == y) (mod n) <=> if x <= y then n divides (y - x) else n divides (x - y)`,
ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN REWRITE_TAC[CONG_0_DIVIDES]) in GEN_REWRITE_CONV I [pth] THENC RATOR_CONV(LAND_CONV NUM_LE_CONV) THENC GEN_REWRITE_CONV I [COND_CLAUSES] THENC RAND_CONV NUM_SUB_CONV THENC DIVIDES_CONV;;
(* ------------------------------------------------------------------------- *) (* Some basic theorems about solving congruences. *) (* ------------------------------------------------------------------------- *)
let CONG_SOLVE = 
prove (`!a b n. coprime(a,n) ==> ?x. (a * x == b) (mod n)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`a:num`; `n:num`] BEZOUT_ADD_STRONG) THEN ASM_CASES_TAC `a = 0` THENL [ASM_MESON_TAC[COPRIME_0; COPRIME_SYM; CONG_MOD_1]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `d:num`; `y:num`] THEN ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[COPRIME]] THEN STRIP_TAC THEN EXISTS_TAC `x * b:num` THEN ASM_REWRITE_TAC[MULT_ASSOC] THEN REWRITE_TAC[RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `b = 0 + b`] THEN MATCH_MP_TAC CONG_ADD THEN REWRITE_TAC[CONG_REFL] THEN REWRITE_TAC[CONG_0; GSYM MULT_ASSOC] THEN MESON_TAC[divides]);;
let CONG_SOLVE_UNIQUE = 
prove (`!a b n. coprime(a,n) /\ ~(n = 0) ==> ?!x. x < n /\ (a * x == b) (mod n)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN MP_TAC(SPECL [`a:num`; `b:num`; `n:num`] CONG_SOLVE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `x:num`) THEN EXISTS_TAC `x MOD n` THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[DIVISION] THEN MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `a * x:num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONG_MULT THEN REWRITE_TAC[CONG_REFL] THEN ASM_SIMP_TAC[CONG; MOD_MOD_REFL]; ALL_TAC] THEN STRIP_TAC THEN X_GEN_TAC `y:num` THEN STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `y MOD n` THEN CONJ_TAC THENL [ASM_SIMP_TAC[MOD_LT]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM CONG] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a:num` THEN ASM_MESON_TAC[CONG_TRANS; CONG_SYM]);;
let CONG_SOLVE_UNIQUE_NONTRIVIAL = 
prove (`!a p x. prime p /\ coprime(p,a) /\ 0 < x /\ x < p ==> ?!y. 0 < y /\ y < p /\ (x * y == a) (mod p)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `1 < p` ASSUME_TAC THENL [REWRITE_TAC[ARITH_RULE `1 < p <=> ~(p = 0) /\ ~(p = 1)`] THEN ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN MP_TAC(SPECL [`x:num`; `a:num`; `p:num`] CONG_SOLVE_UNIQUE) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_0]] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MP_TAC(SPECL [`x:num`; `p:num`] PRIME_COPRIME) THEN ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN ASM_MESON_TAC[COPRIME_SYM; NOT_LT; DIVIDES_LE; LT_REFL]; ALL_TAC] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `r:num` THEN REWRITE_TAC[] THEN REWRITE_TAC[ARITH_RULE `0 < r <=> ~(r = 0)`] THEN ASM_CASES_TAC `r = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN ONCE_REWRITE_TAC[CONG_SYM] THEN REWRITE_TAC[CONG_0] THEN ASM_MESON_TAC[DIVIDES_REFL; PRIME_1; coprime]);;
let CONG_UNIQUE_INVERSE_PRIME = 
prove (`!p x. prime p /\ 0 < x /\ x < p ==> ?!y. 0 < y /\ y < p /\ (x * y == 1) (mod p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_SOLVE_UNIQUE_NONTRIVIAL THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[COPRIME_1; COPRIME_SYM]);;
(* ------------------------------------------------------------------------- *) (* Forms of the Chinese remainder theorem. *) (* ------------------------------------------------------------------------- *)
let CONG_CHINESE = 
prove (`coprime(a,b) /\ (x == y) (mod a) /\ (x == y) (mod b) ==> (x == y) (mod (a * b))`,
ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN MESON_TAC[CONG_0; DIVIDES_MUL]);;
let CHINESE_REMAINDER_UNIQUE = 
prove (`!a b m n. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) ==> ?!x. x < a * b /\ (x == m) (mod a) /\ (x == n) (mod b)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL [MP_TAC(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `q1:num`; `q2:num`] THEN DISCH_TAC THEN EXISTS_TAC `x MOD (a * b)` THEN CONJ_TAC THENL [ASM_MESON_TAC[DIVISION; MULT_EQ_0]; ALL_TAC] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN CONJ_TAC THENL [FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT1); FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT2)] THEN ASM_SIMP_TAC[MOD_MULT_CONG] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[cong; nat_mod; GSYM ADD_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `a * b` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CONG_CHINESE; CONG_SYM; CONG_TRANS]]);;
let CHINESE_REMAINDER_COPRIME_UNIQUE = 
prove (`!a b m n. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) /\ coprime(m,a) /\ coprime(n,b) ==> ?!x. coprime(x,a * b) /\ x < a * b /\ (x == m) (mod a) /\ (x == n) (mod b)`,
REPEAT STRIP_TAC THEN MP_TAC (SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_UNIQUE) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `(!x. P(x) ==> Q(x)) ==> (?!x. P x) ==> ?!x. Q(x) /\ P(x)`) THEN ASM_SIMP_TAC[CHINESE_REMAINDER_UNIQUE] THEN ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; COPRIME_MUL]);;
let CONG_CHINESE_EQ = 
prove (`!a b x y. coprime(a,b) ==> ((x == y) (mod (a * b)) <=> (x == y) (mod a) /\ (x == y) (mod b))`,
NUMBER_TAC);;
(* ------------------------------------------------------------------------- *) (* Euler totient function. *) (* ------------------------------------------------------------------------- *)
let phi = new_definition
  `phi(n) = CARD { m | 0 < m /\ m <= n /\ coprime(m,n) }`;;
let PHI_ALT = 
prove (`phi(n) = CARD { m | coprime(m,n) /\ m < n}`,
REWRITE_TAC[phi] THEN ASM_CASES_TAC `n = 0` THENL [AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[LT; NOT_LT]; ALL_TAC] THEN ASM_CASES_TAC `n = 1` THENL [SUBGOAL_THEN `({m | 0 < m /\ m <= n /\ coprime (m,n)} = {1}) /\ ({m | coprime (m,n) /\ m < n} = {0})` (CONJUNCTS_THEN SUBST1_TAC) THENL [ALL_TAC; SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY]] THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN ARITH_TAC; ALL_TAC] THEN AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[LT] THENL [ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]; ASM_MESON_TAC[LE_LT; COPRIME_REFL; LT_NZ]]);;
let PHI_FINITE_LEMMA = 
prove (`!P n. FINITE {m | coprime(m,n) /\ m < n}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_ELIM_THM] THEN ARITH_TAC);;
let PHI_ANOTHER = 
prove (`!n. ~(n = 1) ==> (phi(n) = CARD {m | 0 < m /\ m < n /\ coprime(m,n)})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[phi] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[LE_LT; COPRIME_REFL; COPRIME_1; LT_NZ]);;
let PHI_LIMIT = 
prove (`!n. phi(n) <= n`,
GEN_TAC THEN REWRITE_TAC[PHI_ALT] THEN GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[FINITE_NUMSEG_LT] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_LIMIT_STRONG = 
prove (`!n. ~(n = 1) ==> phi(n) <= n - 1`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_0 = 
prove (`phi 0 = 0`,
MP_TAC(SPEC `0` PHI_LIMIT) THEN REWRITE_TAC[ARITH] THEN ARITH_TAC);;
let PHI_1 = 
prove (`phi 1 = 1`,
REWRITE_TAC[PHI_ALT; COPRIME_1; CARD_NUMSEG_LT]);;
let PHI_LOWERBOUND_1_STRONG = 
prove (`!n. 1 <= n ==> 1 <= phi(n)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `1 = CARD {1}` SUBST1_TAC THENL [SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]; ALL_TAC] THEN REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL [SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN GEN_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]]);;
let PHI_LOWERBOUND_1 = 
prove (`!n. 2 <= n ==> 1 <= phi(n)`,
MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_TRANS; ARITH_RULE `1 <= 2`]);;
let PHI_LOWERBOUND_2 = 
prove (`!n. 3 <= n ==> 2 <= phi(n)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `2 = CARD {1,(n-1)}` SUBST1_TAC THENL [SIMP_TAC[CARD_CLAUSES; IN_INSERT; NOT_IN_EMPTY; FINITE_RULES; ARITH] THEN ASM_SIMP_TAC[ARITH_RULE `3 <= n ==> ~(1 = n - 1)`]; ALL_TAC] THEN REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL [SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN ASM_SIMP_TAC[ARITH; ARITH_RULE `3 <= n ==> 0 < n - 1 /\ n - 1 <= n /\ 1 <= n`] THEN REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN MP_TAC(SPEC `n:num` COPRIME_1) THEN REWRITE_TAC[coprime] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `1 = n - (n - 1)` SUBST1_TAC THENL [UNDISCH_TAC `3 <= n` THEN ARITH_TAC; ASM_SIMP_TAC[DIVIDES_SUB]]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]]);;
let PHI_EQ_0 = 
prove (`!n. phi n = 0 <=> n = 0`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PHI_0] THEN MP_TAC(SPEC `n:num` PHI_LOWERBOUND_1_STRONG) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Value on primes and prime powers. *) (* ------------------------------------------------------------------------- *)
let PHI_PRIME_EQ = 
prove (`!n. (phi n = n - 1) /\ ~(n = 0) /\ ~(n = 1) <=> prime n`,
GEN_TAC THEN REWRITE_TAC[PRIME] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `{m | 0 < m /\ m < n /\ coprime (m,n)} = {m | 0 < m /\ m < n}` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[COPRIME_SYM] THEN CONV_TAC TAUT] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_PRIME = 
prove (`!p. prime p ==> phi p = p - 1`,
MESON_TAC[PHI_PRIME_EQ]);;
let PHI_PRIMEPOW_SUC = 
prove (`!p k. prime(p) ==> phi(p EXP (k + 1)) = p EXP (k + 1) - p EXP k`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PHI_ALT; COPRIME_PRIMEPOW; ADD_EQ_0; ARITH] THEN REWRITE_TAC[SET_RULE `{n | ~(P n) /\ Q n} = {n | Q n} DIFF {n | P n /\ Q n}`] THEN SIMP_TAC[FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; CARD_DIFF] THEN REWRITE_TAC[CARD_NUMSEG_LT] THEN AP_TERM_TAC THEN SUBGOAL_THEN `{m | p divides m /\ m < p EXP (k + 1)} = IMAGE (\x. p * x) {m | m < p EXP k}` (fun th -> ASM_SIMP_TAC[th; CARD_IMAGE_INJ; EQ_MULT_LCANCEL; PRIME_IMP_NZ; FINITE_NUMSEG_LT; CARD_NUMSEG_LT]) THEN REWRITE_TAC[EXTENSION; TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`; FORALL_AND_THM; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[IN_ELIM_THM; GSYM ADD1; EXP; LT_MULT_LCANCEL; PRIME_IMP_NZ] THEN CONJ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN EXISTS_TAC `n:num` THEN UNDISCH_TAC `p * n < p * p EXP k` THEN ASM_SIMP_TAC[LT_MULT_LCANCEL; PRIME_IMP_NZ]);;
let PHI_PRIMEPOW = 
prove (`!p k. prime p ==> phi(p EXP k) = if k = 0 then 1 else p EXP k - p EXP (k - 1)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; CONJUNCT1 EXP; PHI_1] THEN ASM_SIMP_TAC[ADD1; PHI_PRIMEPOW_SUC; ADD_SUB]);;
let PHI_2 = 
prove (`phi 2 = 1`,
SIMP_TAC[PHI_PRIME; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *) (* Multiplicativity property. *) (* ------------------------------------------------------------------------- *)
let PHI_MULTIPLICATIVE = 
prove (`!a b. coprime(a,b) ==> phi(a * b) = phi(a) * phi(b)`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`a = 0`; `b = 0`] THEN ASM_REWRITE_TAC[PHI_0; MULT_CLAUSES] THEN SIMP_TAC[PHI_ALT; GSYM CARD_PRODUCT; PHI_FINITE_LEMMA] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN EXISTS_TAC `\p. p MOD a,p MOD b` THEN REWRITE_TAC[PHI_FINITE_LEMMA; IN_ELIM_PAIR_THM] THEN ASM_SIMP_TAC[IN_ELIM_THM; COPRIME_MOD; DIVISION] THEN CONJ_TAC THENL [MESON_TAC[COPRIME_LMUL2; COPRIME_RMUL2]; ALL_TAC] THEN X_GEN_TAC `pp:num#num` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN MP_TAC(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_COPRIME_UNIQUE) THEN ASM_SIMP_TAC[CONG; MOD_LT]);;
(* ------------------------------------------------------------------------- *) (* Even-ness of phi for most arguments. *) (* ------------------------------------------------------------------------- *)
let EVEN_PHI = 
prove (`!n. 3 <= n ==> EVEN(phi n)`,
REWRITE_TAC[ARITH_RULE `3 <= n <=> 1 < n /\ ~(n = 2)`; IMP_CONJ] THEN MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN SIMP_TAC[PHI_PRIMEPOW; PHI_MULTIPLICATIVE; EVEN_MULT; EVEN_SUB] THEN CONJ_TAC THENL [MESON_TAC[COPRIME_REFL; ARITH_RULE `~(2 = 1)`]; ALL_TAC] THEN REWRITE_TAC[EVEN_EXP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP PRIME_ODD) THEN ASM_REWRITE_TAC[] THENL [ASM_CASES_TAC `k = 1` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; ASM_REWRITE_TAC[GSYM NOT_ODD]]);;
let EVEN_PHI_EQ = 
prove (`!n. EVEN(phi n) <=> n = 0 \/ 3 <= n`,
GEN_TAC THEN EQ_TAC THENL [ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[ARITH_RULE `~(n = 0 \/ 3 <= n) <=> n = 1 \/ n = 2`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[PHI_1; PHI_2] THEN CONV_TAC NUM_REDUCE_CONV; STRIP_TAC THEN ASM_SIMP_TAC[PHI_0; EVEN_PHI; EVEN]]);;
let ODD_PHI_EQ = 
prove (`!n. ODD(phi n) <=> n = 1 \/ n = 2`,
REWRITE_TAC[GSYM NOT_EVEN; EVEN_PHI_EQ] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Some iteration theorems. *) (* ------------------------------------------------------------------------- *)
let NPRODUCT_MOD = 
prove (`!s a:A->num n. FINITE s /\ ~(n = 0) ==> (iterate (*) s (\m. a(m) MOD n) == iterate (*) s a) (mod n)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x y. (x == y) (mod n)` (MATCH_MP ITERATE_RELATED MONOIDAL_MUL)) THEN SIMP_TAC[NEUTRAL_MUL; CONG_MULT; CONG_REFL] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[CONG_MOD]);;
let NPRODUCT_CMUL = 
prove (`!s a c n. FINITE s ==> iterate (*) s (\m. c * a(m)) = c EXP (CARD s) * iterate (*) s a`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL; CARD_CLAUSES; EXP; MULT_CLAUSES] THEN REWRITE_TAC[MULT_AC]);;
let COPRIME_NPRODUCT = prove
 (`!s n. FINITE s /\ (!x. x IN s ==> coprime(n,a(x)))
         ==> coprime(n,iterate (*) s a)`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL;
           IN_INSERT; COPRIME_MUL; COPRIME_1]);;

let ITERATE_OVER_COPRIME = prove
 (`!op f n k.
        monoidal(op) /\ coprime(k,n) /\
        (!x y. (x == y) (mod n) ==> f x = f y)
        ==> iterate op {d | coprime(d,n) /\ d < n} (\m. f(k * m)) =
            iterate op {d | coprime(d,n) /\ d < n} f`,
  let lemma = prove
   (`~(n = 0) ==> ((a * x MOD n == b) (mod n) <=> (a * x == b) (mod n))`,
    MESON_TAC[CONG_REFL; CONG_SYM; CONG_TRANS; CONG_MULT; CONG_MOD]) in
  REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_SIMP_TAC[LT; SET_RULE `{x | F} = {}`; ITERATE_CLAUSES]; ALL_TAC] THEN
  STRIP_TAC THEN SUBGOAL_THEN `?m. (k * m == 1) (mod n)` CHOOSE_TAC THENL
   [ASM_MESON_TAC[CONG_SOLVE; MULT_SYM; CONG_SYM]; ALL_TAC] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ_GENERAL_INVERSES) THEN
  MAP_EVERY EXISTS_TAC [`\x. (k * x) MOD n`; `\x. (m * x) MOD n`] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  ASM_SIMP_TAC[COPRIME_MOD; CONG_MOD_LT; CONG_LMOD; DIVISION; lemma;
               COPRIME_LMUL] THEN
  REPEAT STRIP_TAC THEN
  TRY(FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[CONG_LMOD]) THEN
  UNDISCH_TAC `(k * m == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;

let ITERATE_ITERATE_DIVISORS = prove
 (`!op:A->A->A f x.
        monoidal op
        ==> iterate op (1..x) (\n. iterate op {d | d divides n} (f n)) =
            iterate op (1..x)
                       (\n. iterate op (1..(x DIV n)) (\k. f (k * n) n))`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[ITERATE_ITERATE_PRODUCT; FINITE_NUMSEG; FINITE_DIVISORS;
               IN_NUMSEG; LE_1] THEN
  MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]
      ITERATE_EQ_GENERAL_INVERSES) THEN
  MAP_EVERY EXISTS_TAC [`\(n,d). d,n DIV d`; `\(n:num,k). n * k,n`] THEN
  ASM_SIMP_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN CONJ_TAC THEN
  REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:num` THENL
   [X_GEN_TAC `k:num` THEN SIMP_TAC[DIV_MULT; LE_1; GSYM LE_RDIV_EQ] THEN
    SIMP_TAC[MULT_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
    DISCH_THEN(K ALL_TAC) THEN NUMBER_TAC;
    X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN
    ASM_REWRITE_TAC[DIVIDES_ZERO] THENL [ARITH_TAC; ALL_TAC] THEN
    STRIP_TAC THEN ASM_SIMP_TAC[DIV_MONO] THEN CONJ_TAC THENL
     [ALL_TAC; ASM_MESON_TAC[DIVIDES_DIV_MULT; MULT_SYM]] THEN
    FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
    ASM_SIMP_TAC[DIV_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
    ASM_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Fermat's Little theorem / Fermat-Euler theorem.                           *)
(* ------------------------------------------------------------------------- *)

let FERMAT_LITTLE = 
prove (`!a n. coprime(a,n) ==> (a EXP (phi n) == 1) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[COPRIME_0; PHI_0; CONG_MOD_0] THEN CONV_TAC NUM_REDUCE_CONV THEN DISCH_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `iterate (*) {m | coprime (m,n) /\ m < n} (\m. m)` THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[PHI_ALT; MULT_CLAUSES] THEN SIMP_TAC[IN_ELIM_THM; ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_NPRODUCT; PHI_FINITE_LEMMA; GSYM NPRODUCT_CMUL] THEN ONCE_REWRITE_TAC[CONG_SYM] THEN MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `iterate (*) {m | coprime(m,n) /\ m < n} (\m. (a * m) MOD n)` THEN ASM_SIMP_TAC[NPRODUCT_MOD; PHI_FINITE_LEMMA] THEN MP_TAC(ISPECL [`( * ):num->num->num`; `\x. x MOD n`; `n:num`; `a:num`] ITERATE_OVER_COPRIME) THEN ASM_SIMP_TAC[MONOIDAL_MUL; GSYM CONG] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[CONG_SYM] THEN MATCH_MP_TAC NPRODUCT_MOD THEN ASM_SIMP_TAC[PHI_FINITE_LEMMA]);;
let FERMAT_LITTLE_PRIME = 
prove (`!a p. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
MESON_TAC[FERMAT_LITTLE; PHI_PRIME_EQ]);;
(* ------------------------------------------------------------------------- *) (* Lucas's theorem. *) (* ------------------------------------------------------------------------- *)
let LUCAS_COPRIME_LEMMA = 
prove (`!m n a. ~(m = 0) /\ (a EXP m == 1) (mod n) ==> coprime(a,n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[CONG_MOD_0; EXP_EQ_1] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[COPRIME_1]; ALL_TAC] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN ASM_SIMP_TAC[CONG] THEN SUBGOAL_THEN `1 MOD n = 1` SUBST1_TAC THENL [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `d divides (a EXP m) MOD n` MP_TAC THENL [ALL_TAC; ASM_SIMP_TAC[DIVIDES_ONE]] THEN MATCH_MP_TAC DIVIDES_ADD_REVR THEN EXISTS_TAC `a EXP m DIV n * n` THEN ASM_SIMP_TAC[GSYM DIVISION; DIVIDES_LMUL] THEN SUBGOAL_THEN `m = SUC(m - 1)` SUBST1_TAC THENL [UNDISCH_TAC `~(m = 0)` THEN ARITH_TAC; ASM_SIMP_TAC[EXP; DIVIDES_RMUL]]);;
let LUCAS_WEAK = 
prove (`!a n. 2 <= n /\ (a EXP (n - 1) == 1) (mod n) /\ (!m. 0 < m /\ m < n - 1 ==> ~(a EXP m == 1) (mod n)) ==> prime(n)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM PHI_PRIME_EQ; PHI_LIMIT_STRONG; GSYM LE_ANTISYM; ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN FIRST_X_ASSUM(MP_TAC o SPEC `phi n`) THEN SUBGOAL_THEN `coprime(a,n)` (fun th -> SIMP_TAC[FERMAT_LITTLE; th]) THENL [MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `n - 1` THEN ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n - 1 = 0)`]; ALL_TAC] THEN REWRITE_TAC[GSYM NOT_LT] THEN MATCH_MP_TAC(TAUT `a ==> ~(a /\ b) ==> ~b`) THEN ASM_SIMP_TAC[PHI_LOWERBOUND_1; ARITH_RULE `1 <= n ==> 0 < n`]);;
let LUCAS = 
prove (`!a n. 2 <= n /\ (a EXP (n - 1) == 1) (mod n) /\ (!p. prime(p) /\ p divides (n - 1) ==> ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ==> prime(n)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `2 <= n ==> ~(n = 0)`)) THEN MATCH_MP_TAC LUCAS_WEAK THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; GSYM NOT_EXISTS_THM] THEN ONCE_REWRITE_TAC[num_WOP] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN SUBGOAL_THEN `m divides (n - 1)` MP_TAC THENL [REWRITE_TAC[divides] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[GSYM MOD_EQ_0] THEN MATCH_MP_TAC(ARITH_RULE `~(0 < n) ==> (n = 0)`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(n - 1) MOD m`) THEN ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL [MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a EXP ((n - 1) DIV m * m)` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM EXP_ADD] THEN ASM_SIMP_TAC[GSYM DIVISION] THEN REWRITE_TAC[MULT_CLAUSES] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM EXP_EXP] THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN ASM_SIMP_TAC[CONG] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `((a EXP m) MOD n) EXP ((n - 1) DIV m) MOD n` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[MOD_EXP_MOD]] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN REWRITE_TAC[EXP_ONE]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST_ALL_TAC) THEN SUBGOAL_THEN `~(r = 1)` MP_TAC THENL [UNDISCH_TAC `m < m * r` THEN CONV_TAC CONTRAPOS_CONV THEN SIMP_TAC[MULT_CLAUSES; LT_REFL]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_FACTOR) THEN DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN STRIP_TAC THEN UNDISCH_TAC `!p. prime p /\ p divides m * r ==> ~(a EXP ((m * r) DIV p) == 1) (mod n)` THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_SIMP_TAC[DIVIDES_LMUL] THEN SUBGOAL_THEN `(m * r) DIV p = m * (r DIV p)` SUBST1_TAC THENL [MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN UNDISCH_TAC `prime p` THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN DISCH_TAC THEN REWRITE_TAC[ADD_CLAUSES; GSYM MULT_ASSOC] THEN AP_TERM_TAC THEN UNDISCH_TAC `p divides r` THEN REWRITE_TAC[divides] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DIV_MULT] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN ASM_SIMP_TAC[CONG] THEN DISCH_THEN(MP_TAC o C AP_THM `r DIV p` o AP_TERM `(EXP)`) THEN DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN REWRITE_TAC[EXP_EXP; EXP_ONE]);;
(* ------------------------------------------------------------------------- *) (* Definition of the order of a number mod n (always 0 in non-coprime case). *) (* ------------------------------------------------------------------------- *)
let order = new_definition
 `order n a = @d. !k. (a EXP k == 1) (mod n) <=> d divides k`;;
let EXP_ITER = 
prove (`!x n. x EXP n = ITER n (\y. x * y) (1)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ITER; EXP]);;
let ORDER_DIVIDES = 
prove (`!n a d. (a EXP d == 1) (mod n) <=> order(n) a divides d`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[order] THEN CONV_TAC SELECT_CONV THEN MP_TAC(ISPECL [`\x y:num. (x == y) (mod n)`; `\x:num. a * x`; `1`] ORDER_EXISTENCE_ITER) THEN REWRITE_TAC[GSYM EXP_ITER] THEN DISCH_THEN MATCH_MP_TAC THEN NUMBER_TAC);;
let ORDER = 
prove (`!n a. (a EXP (order(n) a) == 1) (mod n)`,
REWRITE_TAC[ORDER_DIVIDES; DIVIDES_REFL]);;
let ORDER_MINIMAL = 
prove (`!n a m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
REWRITE_TAC[ORDER_DIVIDES] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);;
let ORDER_WORKS = 
prove (`!n a. (a EXP (order(n) a) == 1) (mod n) /\ !m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
MESON_TAC[ORDER; ORDER_MINIMAL]);;
let ORDER_1 = 
prove (`!n. order n 1 = 1`,
REWRITE_TAC[GSYM DIVIDES_ONE; GSYM ORDER_DIVIDES; EXP_1; CONG_REFL]);;
let ORDER_EQ_0 = 
prove (`!n a. order(n) a = 0 <=> ~coprime(n,a)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [ONCE_REWRITE_TAC[COPRIME_SYM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FERMAT_LITTLE) THEN ASM_REWRITE_TAC[ORDER_DIVIDES; DIVIDES_ZERO; PHI_EQ_0] THEN ASM_MESON_TAC[COPRIME_0; ORDER_1; ARITH_RULE `~(1 = 0)`]; MP_TAC(SPECL [`n:num`; `a:num`] ORDER) THEN SPEC_TAC(`order n a`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT `~p ==> (q ==> p) ==> q ==> r`)) THEN REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE]);;
let ORDER_CONG = 
prove (`!n a b. (a == b) (mod n) ==> order n a = order n b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[order] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[CONG_EXP; CONG_REFL; CONG_SYM; CONG_TRANS]);;
let COPRIME_ORDER = 
prove (`!n a. coprime(n,a) ==> order(n) a > 0 /\ (a EXP (order(n) a) == 1) (mod n) /\ !m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
SIMP_TAC[ARITH_RULE `n > 0 <=> ~(n = 0)`; ORDER_EQ_0] THEN MESON_TAC[ORDER; ORDER_MINIMAL]);;
let ORDER_DIVIDES_PHI = 
prove (`!a n. coprime(n,a) ==> (order n a) divides (phi n)`,
MESON_TAC[ORDER_DIVIDES; FERMAT_LITTLE; COPRIME_SYM]);;
let ORDER_DIVIDES_EXPDIFF = 
prove (`!a n d e. coprime(n,a) ==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`,
SUBGOAL_THEN `!a n d e. coprime(n,a) /\ e <= d ==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))` (fun th -> MESON_TAC[th; LE_CASES; CONG_SYM]) THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `c:num` SUBST1_TAC) THEN SUBST1_TAC(ARITH_RULE `e = e + 0`) THEN REWRITE_TAC[ARITH_RULE `(e + 0) + c = e + c`] THEN REWRITE_TAC[EXP_ADD] THEN ASM_SIMP_TAC[CONG_ADD_LCANCEL_EQ; COPRIME_EXP; ONCE_REWRITE_RULE[COPRIME_SYM] CONG_MULT_LCANCEL_EQ] THEN REWRITE_TAC[EXP; CONG_0_DIVIDES; ORDER_DIVIDES]);;
let ORDER_UNIQUE = 
prove (`!n a k. 0 < k /\ (a EXP k == 1) (mod n) /\ (!m. 0 < m /\ m < k ==> ~(a EXP m == 1) (mod n)) ==> order n a = k`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `order n a`) THEN MP_TAC(ISPECL [`n:num`; `a:num`] ORDER_WORKS) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `order n a = 0` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_ARITH_TAC] THEN FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [ORDER_EQ_0]) THEN MP_TAC(ISPECL [`n:num`; `a:num`; `k:num`] COPRIME_REXP) THEN ASM_SIMP_TAC[LE_1; LT] THEN UNDISCH_TAC `(a EXP k == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;
(* ------------------------------------------------------------------------- *) (* Another trivial primality characterization. *) (* ------------------------------------------------------------------------- *)
let PRIME_PRIME_FACTOR = 
prove (`!n. prime n <=> ~(n = 1) /\ !p. prime p /\ p divides n ==> (p = n)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN STRIP_TAC THEN X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN ASM_MESON_TAC[DIVIDES_TRANS; DIVIDES_ANTISYM]);;
let PRIME_DIVISOR_SQRT = 
prove (`!n. prime(n) <=> ~(n = 1) /\ !d. d divides n /\ d EXP 2 <= n ==> (d = 1)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN ASM_CASES_TAC `n = 1` THEN ASM_SIMP_TAC[DIVIDES_ONE] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[DIVIDES_0; LE; EXP_EQ_0; ARITH_EQ] THEN MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN CONJ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `2`) THEN REWRITE_TAC[ARITH]; DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[ARITH]]; ALL_TAC] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `d:num` THEN STRIP_TAC THENL [ASM_CASES_TAC `d = n:num` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN UNDISCH_TAC `d EXP 2 <= n` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXP_2; ARITH_RULE `~(n * n <= n) <=> n * 1 < n * n`] THEN ASM_REWRITE_TAC[LT_MULT_LCANCEL] THEN MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC; ALL_TAC] THEN UNDISCH_TAC `d divides n` THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `e:num` SUBST_ALL_TAC) THEN SUBGOAL_THEN `d EXP 2 <= d * e \/ e EXP 2 <= d * e` MP_TAC THENL [REWRITE_TAC[EXP_2; LE_MULT_LCANCEL; LE_MULT_RCANCEL] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN DISJ_CASES_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `d:num`); FIRST_X_ASSUM(MP_TAC o SPEC `e:num`)] THEN ASM_SIMP_TAC[DIVIDES_RMUL; DIVIDES_LMUL; DIVIDES_REFL; MULT_CLAUSES]);;
let PRIME_PRIME_FACTOR_SQRT = 
prove (`!n. prime n <=> ~(n = 0) /\ ~(n = 1) /\ ~(?p. prime p /\ p divides n /\ p EXP 2 <= n)`,
GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN GEN_REWRITE_TAC LAND_CONV [PRIME_DIVISOR_SQRT] THEN EQ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `d EXP 2` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[num_CONV `2`; EXP_MONO_LE_SUC] THEN ASM_MESON_TAC[DIVIDES_LE; DIVIDES_ZERO]);;
(* ------------------------------------------------------------------------- *) (* Pocklington theorem. *) (* ------------------------------------------------------------------------- *)
let POCKLINGTON_LEMMA = 
prove (`!a n q r. 2 <= n /\ (n - 1 = q * r) /\ (a EXP (n - 1) == 1) (mod n) /\ (!p. prime(p) /\ p divides q ==> coprime(a EXP ((n - 1) DIV p) - 1,n)) ==> !p. prime p /\ p divides n ==> (p == 1) (mod q)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `order p (a EXP r) = q` ASSUME_TAC THENL [ALL_TAC; SUBGOAL_THEN `coprime(a EXP r,p)` (MP_TAC o MATCH_MP FERMAT_LITTLE) THENL [ALL_TAC; ASM_REWRITE_TAC[ORDER_DIVIDES] THEN SUBGOAL_THEN `phi p = p - 1` SUBST1_TAC THENL [ASM_MESON_TAC[PHI_PRIME_EQ]; ALL_TAC] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `(p - 1 = q * d) ==> ~(p = 0) ==> (p + q * 0 = 1 + q * d)`)) THEN REWRITE_TAC[nat_mod; cong] THEN ASM_MESON_TAC[PRIME_0]] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[coprime; NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `d = p:num` SUBST_ALL_TAC THENL [ASM_MESON_TAC[prime]; ALL_TAC] THEN SUBGOAL_THEN `p divides (a EXP (n - 1))` ASSUME_TAC THENL [FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE `2 <= n ==> (n - 1 = SUC(n - 2))`)) THEN REWRITE_TAC[EXP] THEN ASM_SIMP_TAC[DIVIDES_RMUL]; ALL_TAC] THEN REWRITE_TAC[cong; nat_mod] THEN SUBGOAL_THEN `~(p divides 1)` MP_TAC THENL [ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_ADD; DIVIDES_ADD_REVL]] THEN SUBGOAL_THEN `(order p (a EXP r)) divides q` MP_TAC THENL [REWRITE_TAC[GSYM ORDER_DIVIDES; EXP_EXP] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `b:num` SUBST_ALL_TAC) THEN REWRITE_TAC[cong; nat_mod] THEN MESON_TAC[MULT_AC]; ALL_TAC] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN DISCH_THEN(X_CHOOSE_THEN `P:num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `P divides q` ASSUME_TAC THENL [ASM_MESON_TAC[DIVIDES_LMUL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `P:num`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN UNDISCH_TAC `P divides q` THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `s:num` SUBST_ALL_TAC) THEN REWRITE_TAC[GSYM MULT_ASSOC] THEN SUBGOAL_THEN `~(P = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN ASM_SIMP_TAC[DIV_MULT] THEN UNDISCH_TAC `P divides d` THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `t:num` SUBST_ALL_TAC) THEN UNDISCH_TAC `order p (a EXP r) * P * t = P * s` THEN ONCE_REWRITE_TAC[ARITH_RULE `(a * p * b = p * c) <=> (p * a * b = p * c)`] THEN REWRITE_TAC[EQ_MULT_LCANCEL] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_1]] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[AC MULT_AC `(d * t) * r = r * d * t`] THEN REWRITE_TAC[EXP_MULT] THEN MATCH_MP_TAC CONG_1_DIVIDES THEN MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `1 EXP t` THEN SIMP_TAC[CONG_EXP; ORDER] THEN REWRITE_TAC[EXP_ONE; CONG_REFL]);;
let POCKLINGTON = 
prove (`!a n q r. 2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\ (a EXP (n - 1) == 1) (mod n) /\ (!p. prime(p) /\ p divides q ==> coprime(a EXP ((n - 1) DIV p) - 1,n)) ==> prime(n)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[PRIME_PRIME_FACTOR_SQRT] THEN ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`a:num`; `n:num`; `q:num`; `r:num`] POCKLINGTON_LEMMA) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `p EXP 2 <= q EXP 2` MP_TAC THENL [ASM_MESON_TAC[LE_TRANS]; ALL_TAC] THEN REWRITE_TAC[num_CONV `2`; EXP_MONO_LE_SUC] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP CONG_1_DIVIDES) THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Variant for application, to separate the exponentiation. *) (* ------------------------------------------------------------------------- *)
let POCKLINGTON_ALT = 
prove (`!a n q r. 2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\ (a EXP (n - 1) == 1) (mod n) /\ (!p. prime(p) /\ p divides q ==> ?b. (a EXP ((n - 1) DIV p) == b) (mod n) /\ coprime(b - 1,n)) ==> prime(n)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b:num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(a EXP ((q * r) DIV p) - 1 == b - 1) (mod n)` (fun th -> ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; th]) THEN MATCH_MP_TAC CONG_SUB THEN ASM_REWRITE_TAC[CONG_REFL] THEN REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; EXP_EQ_0] THEN SUBGOAL_THEN `~(a = 0)` ASSUME_TAC THENL [DISCH_TAC THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN SIMP_TAC[ARITH_RULE `2 <= n ==> (n - 1 = SUC(n - 2))`; ASSUME `a = 0`; ASSUME `2 <= n`] THEN REWRITE_TAC[MULT_CLAUSES; EXP] THEN ONCE_REWRITE_TAC[CONG_SYM] THEN REWRITE_TAC[CONG_0_DIVIDES; DIVIDES_ONE] THEN UNDISCH_TAC `2 <= n` THEN ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(a EXP ((q * r) DIV p) == b) (mod n)` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[CONG_0_DIVIDES] THEN SUBGOAL_THEN `~(n divides (a EXP (n - 1)))` MP_TAC THENL [ASM_MESON_TAC[CONG_DIVIDES; DIVIDES_ONE; ARITH_RULE `~(2 <= 1)`]; ALL_TAC] THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN UNDISCH_TAC `p divides q` THEN GEN_REWRITE_TAC LAND_CONV [divides] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN REWRITE_TAC[GSYM MULT_ASSOC] THEN SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN ASM_SIMP_TAC[DIV_MULT] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EXP_MULT] THEN SUBGOAL_THEN `p = SUC(p - 1)` SUBST1_TAC THENL [UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[EXP; DIVIDES_RMUL]);;
(* ------------------------------------------------------------------------- *) (* Prime factorizations. *) (* ------------------------------------------------------------------------- *)
let primefact = new_definition
  `primefact ps n <=> (ITLIST (*) ps 1 = n) /\ !p. MEM p ps ==> prime(p)`;;

let PRIMEFACT = prove
 (`!n. ~(n = 0) ==> ?ps. primefact ps n`,
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THENL
   [REPEAT DISCH_TAC THEN EXISTS_TAC `[]:num list` THEN
    REWRITE_TAC[primefact; ITLIST; MEM]; ALL_TAC] THEN
  DISCH_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
    MATCH_MP PRIME_FACTOR) THEN
  UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  UNDISCH_TAC `~(p * m = 0)` THEN
  ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN DISCH_TAC THEN
  GEN_REWRITE_TAC (funpow 3 LAND_CONV) [ARITH_RULE `n = 1 * n`] THEN
  ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
  SUBGOAL_THEN `1 < p` (fun th -> REWRITE_TAC[th]) THENL
   [MATCH_MP_TAC(ARITH_RULE `~(p = 0) /\ ~(p = 1) ==> 1 < p`) THEN
    REPEAT STRIP_TAC THEN UNDISCH_TAC `prime p` THEN
    ASM_REWRITE_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN
  REWRITE_TAC[primefact] THEN
  DISCH_THEN(X_CHOOSE_THEN `ps:num list` ASSUME_TAC) THEN
  EXISTS_TAC `CONS (p:num) ps` THEN
  ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[]);;

let PRIMAFACT_CONTAINS = prove
 (`!ps n. primefact ps n ==> !p. prime p /\ p divides n ==> MEM p ps`,
  REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  POP_ASSUM(SUBST1_TAC o SYM) THEN
  SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
  REWRITE_TAC[ITLIST; MEM] THENL
   [ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
  STRIP_TAC THEN GEN_TAC THEN
  DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN
  DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN
  ASM_MESON_TAC[prime; PRIME_1]);;

let PRIMEFACT_VARIANT = prove
 (`!ps n. primefact ps n <=> (ITLIST (*) ps 1 = n) /\ ALL prime ps`,
  REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN AP_TERM_TAC THEN
  SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
  ASM_REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Variant of Lucas theorem. *) (* ------------------------------------------------------------------------- *)
let LUCAS_PRIMEFACT = prove
 (`2 <= n /\
   (a EXP (n - 1) == 1) (mod n) /\
   (ITLIST (*) ps 1 = n - 1) /\
   ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps
   ==> prime n`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LUCAS THEN
  EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `primefact ps (n - 1)` MP_TAC THENL
   [ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
    EXISTS_TAC `\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)` THEN
    ASM_SIMP_TAC[]; ALL_TAC] THEN
  DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
  X_GEN_TAC `p:num` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN UNDISCH_TAC
   `ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps` THEN
  SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
  SIMP_TAC[ALL; MEM] THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Variant of Pocklington theorem.                                           *)
(* ------------------------------------------------------------------------- *)

let POCKLINGTON_PRIMEFACT = prove
 (`2 <= n /\ (q * r = n - 1) /\ n <= q * q
   ==> ((a EXP r) MOD n = b)
       ==> (ITLIST (*) ps 1 = q)
           ==> ((b EXP q) MOD n = 1)
               ==> ALL (\p. prime p /\
                            coprime((b EXP (q DIV p)) MOD n - 1,n)) ps
                   ==> prime n`,
  DISCH_THEN(fun th -> DISCH_THEN(SUBST1_TAC o SYM) THEN MP_TAC th) THEN
  SIMP_TAC[MOD_EXP_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  SIMP_TAC[ONCE_REWRITE_RULE[MULT_SYM] EXP_EXP] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
  MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
  ASM_REWRITE_TAC[EXP_2] THEN CONJ_TAC THENL
   [MP_TAC(SPECL [`a EXP (n - 1)`; `n:num`] DIVISION) THEN
    ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
    STRIP_TAC THEN ABBREV_TAC `Q = a EXP (n - 1) DIV n` THEN
    ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[cong; nat_mod] THEN
    MAP_EVERY EXISTS_TAC [`0`; `Q:num`] THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `primefact ps q` MP_TAC THENL
   [ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
    EXISTS_TAC `\p. prime p /\ coprime(a EXP (q DIV p * r) MOD n - 1,n)` THEN
    ASM_SIMP_TAC[]; ALL_TAC] THEN
  DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
  X_GEN_TAC `p:num` THEN
  DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
  DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[GSYM ALL_MEM]) THEN
  DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
  MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> a /\ b ==> c`) THEN
  DISCH_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
  SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
   [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
  SUBGOAL_THEN `q DIV p * r = (n - 1) DIV p` SUBST1_TAC THENL
   [UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
    UNDISCH_THEN `(p * d) * r = n - 1` (SUBST1_TAC o SYM) THEN
    ASM_SIMP_TAC[DIV_MULT; GSYM MULT_ASSOC];
    ALL_TAC] THEN
  MATCH_MP_TAC CONG_COPRIME THEN MATCH_MP_TAC CONG_SUB THEN
  ASM_SIMP_TAC[CONG_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`; CONG_REFL] THEN
  MATCH_MP_TAC(ARITH_RULE `a <= b /\ ~(a = 0) ==> 1 <= a /\ 1 <= b`) THEN
  ASM_SIMP_TAC[MOD_LE; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  ASM_SIMP_TAC[MOD_EQ_0; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:num` MP_TAC) THEN
  DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(EXP)`) THEN
  REWRITE_TAC[EXP_EXP] THEN
  SUBGOAL_THEN `(n - 1) DIV p * p = n - 1` SUBST1_TAC THENL
   [SUBST1_TAC(SYM(ASSUME `q * r = n - 1`)) THEN
    UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
    REWRITE_TAC[GSYM MULT_ASSOC] THEN
    ASM_MESON_TAC[DIV_MULT; MULT_AC; PRIME_0];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
   `~(p = 0) ==> (p = SUC(p - 1))`)) THEN
  ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[EXP; GSYM MULT_ASSOC] THEN
  ASM_SIMP_TAC[MOD_MULT; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
  REWRITE_TAC[ARITH_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Utility functions.                                                        *)
(* ------------------------------------------------------------------------- *)

let even_num n =
  mod_num n num_2 =/ num_0;;
let odd_num = not o even_num;; (* ------------------------------------------------------------------------- *) (* Least p >= 0 with x <= 2^p. *) (* ------------------------------------------------------------------------- *) let log2 = let rec log2 x y = if x </ num_1 then y else log2 (quo_num x num_2) (y +/ num_1) in fun x -> log2 (x -/ num_1) num_0;; (* ------------------------------------------------------------------------- *) (* Raise number to power (x^m) modulo n. *) (* ------------------------------------------------------------------------- *) let rec powermod x m n = if m =/ num_0 then num_1 else let y = powermod x (quo_num m num_2) n in let z = mod_num (y */ y) n in if even_num m then z else mod_num (x */ z) n;; (* ------------------------------------------------------------------------- *) (* Make a call to PARI/GP to factor a number into (probable) primes. *) (* ------------------------------------------------------------------------- *) let factor = let suck_file s = let data = string_of_file s in Sys.remove s; data in let extract_output s = let l0 = explode s in let l0' = rev l0 in let l1 = snd(chop_list(index "]" l0') l0') in let l2 = "["::rev(fst(chop_list(index "[" l1) l1)) in let tm = parse_term (implode l2) in map ((dest_numeral F_F dest_numeral) o dest_pair) (dest_list tm) in fun n -> if n =/ num_1 then [] else let filename = Filename.temp_file "pocklington" ".out" in let s = "echo 'print(factorint(" ^ (string_of_num n) ^ ")) \n quit' | gp >" ^ filename ^ " 2>/dev/null" in if Sys.command s = 0 then let output = suck_file filename in extract_output output else failwith "factor: Call to GP/PARI failed";; (* ------------------------------------------------------------------------- *) (* Alternative giving multiset instead of set plus indices. *) (* Also just use a stupid algorithm for small enough numbers or if PARI/GP *) (* is not installed. I should really write a better factoring algorithm. *) (* ------------------------------------------------------------------------- *) let PARI_THRESHOLD = pow2 25;; let multifactor = let rec findfactor m n = if mod_num n m =/ num_0 then m else if m */ m >/ n then n else findfactor (m +/ num_1) n in let rec stupidfactor n = let p = findfactor num_2 n in if p =/ n then [n] else p::(stupidfactor(quo_num n p)) in let rec multilist l = if l = [] then [] else let (x,n) = hd l in replicate x (Num.int_of_num n) @ multilist (tl l) in fun n -> try if n </ PARI_THRESHOLD then failwith "" else multilist (factor n) with Failure _ -> sort (</) (stupidfactor n);; (* ------------------------------------------------------------------------- *) (* Recursive creation of Pratt primality certificates. *) (* ------------------------------------------------------------------------- *) type certificate = Prime_2 | Primroot_and_factors of ((num * num list) * num * (num * certificate) list);; let find_primitive_root = let rec find_primitive_root a m ms n = if gcd_num a n =/ num_1 & powermod a m n =/ num_1 & forall (fun k -> powermod a k n <>/ num_1) ms then a else find_primitive_root (a +/ num_1) m ms n in let find_primitive_root_from_2 = find_primitive_root num_2 in fun m ms n -> if n </ num_2 then failwith "find_primitive_root: input too small" else find_primitive_root_from_2 m ms n;; let uniq_num = let rec uniq x l = match l with [] -> raise Unchanged | (h::t) -> if x =/ h then try uniq x t with Unchanged -> l else x::(uniq h t) in fun l -> if l = [] then [] else uniq (hd l) (tl l);; let setify_num s = let s' = sort (<=/) s in try uniq_num s' with Unchanged -> s';; let certify_prime = let rec cert_prime n = if n <=/ num_2 then if n =/ num_2 then Prime_2 else failwith "certify_prime: not a prime!" else let m = n -/ num_1 in let pfact = multifactor m in let primes = setify_num pfact in let ms = map (fun d -> div_num m d) primes in let a = find_primitive_root m ms n in Primroot_and_factors((n,pfact),a,map (fun n -> n,cert_prime n) primes) in fun n -> if length(multifactor n) = 1 then cert_prime n else failwith "certify_prime: input is not a prime";; (* ------------------------------------------------------------------------- *) (* Relatively efficient evaluation of "(a EXP k) MOD n". *) (* ------------------------------------------------------------------------- *) let EXP_MOD_CONV =
let pth = 
prove (`~(n = 0) ==> ((a EXP 0) MOD n = 1 MOD n) /\ ((a EXP (NUMERAL (BIT0 m))) MOD n = let b = (a EXP (NUMERAL m)) MOD n in (b * b) MOD n) /\ ((a EXP (NUMERAL (BIT1 m))) MOD n = let b = (a EXP (NUMERAL m)) MOD n in (a * ((b * b) MOD n)) MOD n)`,
DISCH_TAC THEN REWRITE_TAC[EXP] THEN REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN REWRITE_TAC[EXP; EXP_ADD] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN REWRITE_TAC[MULT_ASSOC] THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[MULT_ASSOC] THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD]) and pth_cong = SPEC_ALL CONG and n_tm = `n:num` in fun tm -> let ntm = rand tm in let th1 = INST [ntm,n_tm] pth in let th2 = EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1)))) in let th_base,th_steps = CONJ_PAIR(MP th1 th2) in let conv_base = GEN_REWRITE_CONV I [th_base] and conv_step = GEN_REWRITE_CONV I [th_steps] in let rec conv tm = try conv_base tm with Failure _ -> (conv_step THENC RAND_CONV conv THENC let_CONV THENC NUM_REDUCE_CONV) tm in conv tm;;
(* ------------------------------------------------------------------------- *) (* HOL checking of primality certificate, using Pocklington shortcut. *) (* ------------------------------------------------------------------------- *) let prime_theorem_cache = ref [];; let rec lookup_under_num n l = if l = [] then failwith "lookup_under_num" else let h = hd l in if fst h =/ n then snd h else lookup_under_num n (tl l);; let rec split_factors q qs ps n = if q */ q >=/ n then rev qs,ps else split_factors (q */ hd ps) (hd ps :: qs) (tl ps) n;; let check_certificate = let n_tm = `n:num` and a_tm = `a:num` and q_tm = `q:num` and r_tm = `r:num` and b_tm = `b:num` and ps_tm = `ps:num list` and conv_itlist = GEN_REWRITE_CONV TOP_DEPTH_CONV [ITLIST] THENC NUM_REDUCE_CONV and conv_all = GEN_REWRITE_CONV TOP_DEPTH_CONV [ALL; BETA_THM; TAUT `a /\ T <=> a`] THENC GEN_REWRITE_CONV DEPTH_CONV [TAUT `(a /\ a /\ b <=> a /\ b) /\ (a /\ a <=> a)`] and subarith_conv = let gconv_net = itlist (uncurry net_of_conv) [`a - b`,NUM_SUB_CONV; `a DIV b`,NUM_DIV_CONV; `(a EXP b) MOD c`,EXP_MOD_CONV; `coprime(a,b)`,COPRIME_CONV; `p /\ T`,REWR_CONV(TAUT `p /\ T <=> p`); `T /\ p`,REWR_CONV(TAUT `T /\ p <=> p`)] empty_net in DEPTH_CONV(REWRITES_CONV gconv_net) in let rec check_certificate cert = match cert with Prime_2 -> PRIME_2 | Primroot_and_factors((n,ps),a,ncerts) -> try lookup_under_num n (!prime_theorem_cache) with Failure _ -> let qs,rs = split_factors num_1 [] (rev ps) n in let q = itlist ( */ ) qs num_1 and r = itlist ( */ ) rs num_1 in let th1 = INST [mk_numeral n,n_tm; mk_flist (map mk_numeral qs),ps_tm; mk_numeral q,q_tm; mk_numeral r,r_tm; mk_numeral a,a_tm] POCKLINGTON_PRIMEFACT in let th2 = MP th1 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th1)))) in let tha = EXP_MOD_CONV(lhand(lhand(concl th2))) in let thb = MP (INST [rand(concl tha),b_tm] th2) tha in let th3 = MP thb (EQT_ELIM(conv_itlist (lhand(concl thb)))) in let th4 = MP th3 (EXP_MOD_CONV (lhand(lhand(concl th3)))) in let th5 = conv_all(lhand(concl th4)) in let th6 = TRANS th5 (subarith_conv(rand(concl th5))) in let th7 = IMP_TRANS (snd(EQ_IMP_RULE th6)) th4 in let ants = conjuncts(lhand(concl th7)) in let certs = map (fun t -> lookup_under_num (dest_numeral(rand t)) ncerts) ants in let ths = map check_certificate certs in let fth = MP th7 (end_itlist CONJ ths) in prime_theorem_cache := (n,fth)::(!prime_theorem_cache); fth in check_certificate;; (* ------------------------------------------------------------------------- *) (* Hence a primality-proving rule. *) (* ------------------------------------------------------------------------- *) let PROVE_PRIME = check_certificate o certify_prime;; (* ------------------------------------------------------------------------- *) (* Rule to generate prime factorization theorems. *) (* ------------------------------------------------------------------------- *) let PROVE_PRIMEFACT = let pth = SPEC_ALL PRIMEFACT_VARIANT and start_CONV = PURE_REWRITE_CONV[ITLIST; ALL] THENC NUM_REDUCE_CONV and ps_tm = `ps:num list` and n_tm = `n:num` in fun n -> let pfact = multifactor n in let th1 = INST [mk_flist(map mk_numeral pfact),ps_tm; mk_numeral n,n_tm] pth in let th2 = TRANS th1 (start_CONV(rand(concl th1))) in let ths = map PROVE_PRIME pfact in EQ_MP (SYM th2) (end_itlist CONJ ths);; (* ------------------------------------------------------------------------- *) (* Conversion for truth or falsity of primality assertion. *) (* ------------------------------------------------------------------------- *) let PRIME_TEST =
let NOT_PRIME_THM = 
prove (`((m = 1) <=> F) ==> ((m = p) <=> F) ==> (m * n = p) ==> (prime(p) <=> F)`,
MESON_TAC[prime; divides]) and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in fun tm -> let p = dest_numeral tm in if p =/ num_0 then EQF_INTRO PRIME_0 else if p =/ num_1 then EQF_INTRO PRIME_1 else let pfact = multifactor p in if length pfact = 1 then (remark ("proving that " ^ string_of_num p ^ " is prime"); EQT_INTRO(PROVE_PRIME p)) else (remark ("proving that " ^ string_of_num p ^ " is composite"); let m = hd pfact and n = end_itlist ( */ ) (tl pfact) in let th0 = INST [mk_numeral m,m_tm; mk_numeral n,n_tm; mk_numeral p,p_tm] NOT_PRIME_THM in let th1 = MP th0 (NUM_EQ_CONV (lhand(lhand(concl th0)))) in let th2 = MP th1 (NUM_EQ_CONV (lhand(lhand(concl th1)))) in MP th2 (NUM_MULT_CONV(lhand(lhand(concl th2)))));;
let PRIME_CONV = let prime_tm = `prime` in fun tm0 -> let ptm,tm = dest_comb tm0 in if ptm <> prime_tm then failwith "expected term of form prime(n)" else PRIME_TEST tm;; (* ------------------------------------------------------------------------- *) (* Another lemma. *) (* ------------------------------------------------------------------------- *)
let PRIME_POWER_EXISTS = 
prove (`!q. prime q ==> ((?i. n = q EXP i) <=> (!p. prime p /\ p divides n ==> p = q))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[IMP_CONJ; PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME] THEN ASM_CASES_TAC `n = 0` THENL [FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `2` th) THEN MP_TAC(SPEC `3` th)) THEN ASM_REWRITE_TAC[PRIME_2; PRIME_CONV `prime 3`; DIVIDES_0] THEN ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `n = 1` THENL [EXISTS_TAC `0` THEN ASM_REWRITE_TAC[EXP]; ALL_TAC] THEN MP_TAC(ISPEC `n:num` PRIMEPOW_FACTOR) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN ASM_CASES_TAC `p:num = q` THENL [FIRST_X_ASSUM(SUBST_ALL_TAC o SYM); ASM_MESON_TAC[DIVIDES_REXP; LE_1; DIVIDES_RMUL; DIVIDES_REFL]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `i:num` THEN DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN MATCH_MP_TAC(NUM_RING `m = 1 ==> x * m = x`) THEN MATCH_MP_TAC(ARITH_RULE `~(m = 0) /\ ~(2 <= m) ==> m = 1`) THEN CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_0; PRIME_1]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP PRIMEPOW_FACTOR) THEN DISCH_THEN(X_CHOOSE_THEN `r:num` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `r:num`) THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REXP; LE_1; DIVIDES_REFL]; DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_RMUL]) THEN ASM_SIMP_TAC[COPRIME_REXP; LE_1; COPRIME_REFL] THEN ASM_MESON_TAC[PRIME_1]]);;
(* ------------------------------------------------------------------------- *) (* Example. *) (* ------------------------------------------------------------------------- *) map (time PRIME_TEST o mk_small_numeral) (0--50);; time PRIME_TEST `65535`;; time PRIME_TEST `65536`;; time PRIME_TEST `65537`;; time PROVE_PRIMEFACT (Int 222);; time PROVE_PRIMEFACT (Int 151);; (* ------------------------------------------------------------------------- *) (* The "Landau trick" in Erdos's proof of Chebyshev-Bertrand theorem. *) (* ------------------------------------------------------------------------- *) map (time PRIME_TEST o mk_small_numeral) [3; 5; 7; 13; 23; 43; 83; 163; 317; 631; 1259; 2503; 4001];;