(* ========================================================================= *)
(* First order logic based on the language of arithmetic. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Syntax of terms. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("++",(20,"right"));;
parse_as_infix("**",(22,"right"));;
;
let term_DISTINCT = distinctness "term";;
let term_INJ = injectivity "term";;
(* ------------------------------------------------------------------------- *)
(* Syntax of formulas. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("===",(18,"right"));;
parse_as_infix("<<",(18,"right"));;
parse_as_infix("<<=",(18,"right"));;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
let form_INDUCT,form_RECURSION = define_type
"form = False
| True
| === term term
| << term term
| <<= term term
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| !! num form
| ?? num form";
;
let form_DISTINCT = distinctness "form";;
let form_INJ = injectivity "form";;
(* ------------------------------------------------------------------------- *)
(* Semantics of terms and formulas in the standard model. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|->",(22,"right"));;
let termval = new_recursive_definition term_RECURSION
`(termval v Z = 0) /\
(termval v (V n) = v(n)) /\
(termval v (Suc t) = SUC (termval v t)) /\
(termval v (s ++ t) = termval v s + termval v t) /\
(termval v (s ** t) = termval v s * termval v t)`;;
let holds = new_recursive_definition form_RECURSION
`(holds v False <=> F) /\
(holds v True <=> T) /\
(holds v (s === t) <=> (termval v s = termval v t)) /\
(holds v (s << t) <=> (termval v s < termval v t)) /\
(holds v (s <<= t) <=> (termval v s <= termval v t)) /\
(holds v (Not p) <=> ~(holds v p)) /\
(holds v (p && q) <=> holds v p /\ holds v q) /\
(holds v (p || q) <=> holds v p \/ holds v q) /\
(holds v (p --> q) <=> holds v p ==> holds v q) /\
(holds v (p <-> q) <=> (holds v p <=> holds v q)) /\
(holds v (!! x p) <=> !a. holds ((x|->a) v) p) /\
(holds v (?? x p) <=> ?a. holds ((x|->a) v) p)`;;
let true_def = new_definition
`true p <=> !v. holds v p`;;
let VALMOD = prove
(`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`,
REWRITE_TAC[valmod]);;
let VALMOD_SWAP = prove
(`!v x y a b.
~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`,
REWRITE_TAC[valmod;
FUN_EQ_THM] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Assignment. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|=>",(22,"right"));;
let ASSIGN = prove
(`!x y a. (x |=> a) y = if y = x then a else V(y)`,
REWRITE_TAC[assign; valmod]);;
(* ------------------------------------------------------------------------- *)
(* Variables in a term and free variables in a formula. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Logical axioms. *)
(* ------------------------------------------------------------------------- *)
let axiom_RULES,axiom_INDUCT,axiom_CASES = new_inductive_definition
`(!p q. axiom(p --> (q --> p))) /\
(!p q r. axiom((p --> q --> r) --> (p --> q) --> (p --> r))) /\
(!p. axiom(((p --> False) --> False) --> p)) /\
(!x p q. axiom((!!x (p --> q)) --> (!!x p) --> (!!x q))) /\
(!x p. ~(x IN FV p) ==> axiom(p --> !!x p)) /\
(!x t. ~(x IN FVT t) ==> axiom(??x (V x === t))) /\
(!t. axiom(t === t)) /\
(!s t. axiom((s === t) --> (Suc s === Suc t))) /\
(!s t u v. axiom(s === t --> u === v --> s ++ u === t ++ v)) /\
(!s t u v. axiom(s === t --> u === v --> s ** u === t ** v)) /\
(!s t u v. axiom(s === t --> u === v --> s === u --> t === v)) /\
(!s t u v. axiom(s === t --> u === v --> s << u --> t << v)) /\
(!s t u v. axiom(s === t --> u === v --> s <<= u --> t <<= v)) /\
(!p q. axiom((p <-> q) --> p --> q)) /\
(!p q. axiom((p <-> q) --> q --> p)) /\
(!p q. axiom((p --> q) --> (q --> p) --> (p <-> q))) /\
axiom(True <-> (False --> False)) /\
(!p. axiom(Not p <-> (p --> False))) /\
(!p q. axiom((p && q) <-> (p --> q --> False) --> False)) /\
(!p q. axiom((p || q) <-> Not(Not p && Not q))) /\
(!x p. axiom((??x p) <-> Not(!!x (Not p))))`;;
(* ------------------------------------------------------------------------- *)
(* Deducibility from additional set of nonlogical axioms. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("|--",(11,"right"));;
let proves_RULES,proves_INDUCT,proves_CASES = new_inductive_definition
`(!p. axiom p \/ p IN A ==> A |-- p) /\
(!p q. A |-- (p --> q) /\ A |-- p ==> A |-- q) /\
(!p x. A |-- p ==> A |-- (!!x p))`;;
(* ------------------------------------------------------------------------- *)
(* Some lemmas. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_VALUATION = prove
(`!p v v'.
(!x. x IN (FV p) ==> (v'(x) = v(x)))
==> (holds v' p <=> holds v p)`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[
FV; holds;
IN_UNION;
IN_DELETE] THEN
SIMP_TAC[
TERMVAL_VALUATION] THEN
REWRITE_TAC[valmod] THEN REPEAT STRIP_TAC THEN
AP_TERM_TAC THEN ABS_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness. *)
(* ------------------------------------------------------------------------- *)
let AXIOMS_TRUE = prove
(`!p. axiom p ==> true p`,
MATCH_MP_TAC
axiom_INDUCT THEN
REWRITE_TAC[
true_def] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[holds] THENL
[CONV_TAC TAUT;
CONV_TAC TAUT;
SIMP_TAC[];
REWRITE_TAC[
RIGHT_IMP_FORALL_THM] THEN REPEAT GEN_TAC THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC
HOLDS_VALUATION THEN
REWRITE_TAC[valmod] THEN GEN_TAC THEN COND_CASES_TAC THEN
ASM_MESON_TAC[];
EXISTS_TAC `termval v t` THEN
REWRITE_TAC[termval; valmod] THEN
MATCH_MP_TAC
TERMVAL_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_MESON_TAC[];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
SIMP_TAC[termval];
CONV_TAC TAUT;
CONV_TAC TAUT;
CONV_TAC TAUT;
MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Variant variables for use in renaming substitution. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Substitution within terms. *)
(* ------------------------------------------------------------------------- *)
let termsubst = new_recursive_definition term_RECURSION
`(termsubst v Z = Z) /\
(!x. termsubst v (V x) = v(x)) /\
(!t. termsubst v (Suc t) = Suc(termsubst v t)) /\
(!s t. termsubst v (s ++ t) = termsubst v s ++ termsubst v t) /\
(!s t. termsubst v (s ** t) = termsubst v s ** termsubst v t)`;;
let TERMVAL_TERMSUBST = prove
(`!v i t. termval v (termsubst i t) = termval (termval v o i) t`,
GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termval; termsubst;
o_THM]);;
let TERMSUBST_TERMSUBST = prove
(`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`,
GEN_TAC THEN GEN_TAC THEN
MATCH_MP_TAC term_INDUCT THEN SIMP_TAC[termval; termsubst;
o_THM]);;
(* ------------------------------------------------------------------------- *)
(* Formula substitution --- somewhat less trivial. *)
(* ------------------------------------------------------------------------- *)
let formsubst = new_recursive_definition form_RECURSION
`(formsubst v False = False) /\
(formsubst v True = True) /\
(formsubst v (s === t) = termsubst v s === termsubst v t) /\
(formsubst v (s << t) = termsubst v s << termsubst v t) /\
(formsubst v (s <<= t) = termsubst v s <<= termsubst v t) /\
(formsubst v (Not p) = Not(formsubst v p)) /\
(formsubst v (p && q) = formsubst v p && formsubst v q) /\
(formsubst v (p || q) = formsubst v p || formsubst v q) /\
(formsubst v (p --> q) = formsubst v p --> formsubst v q) /\
(formsubst v (p <-> q) = formsubst v p <-> formsubst v q) /\
(formsubst v (!!x q) =
let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v(y))
then VARIANT(FV(formsubst ((x |-> V x) v) q)) else x in
!!z (formsubst ((x |-> V(z)) v) q)) /\
(formsubst v (??x q) =
let z = if ?y. y IN FV(??x q) /\ x IN FVT(v(y))
then VARIANT(FV(formsubst ((x |-> V x) v) q)) else x in
??z (formsubst ((x |-> V(z)) v) q))`;;
let FORMSUBST_PROPERTIES = prove
(`!p. (!i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}) /\
(!i v. holds v (formsubst i p) = holds (termval v o i) p)`,
REWRITE_TAC[
EXTENSION;
IN_ELIM_THM] THEN
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[
FV; holds; formsubst;
TERMSUBST_FVT;
IN_ELIM_THM;
NOT_IN_EMPTY;
IN_UNION;
TERMVAL_TERMSUBST] THEN
REPEAT(CONJ_TAC THENL [MESON_TAC[];ALL_TAC]) THEN CONJ_TAC THEN
(MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN STRIP_TAC THEN
REWRITE_TAC[
AND_FORALL_THM] THEN X_GEN_TAC `i:num->term` THEN
LET_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN
SUBGOAL_THEN `~(?y. y
IN (
FV(p)
DELETE x) /\ z
IN FVT(i y))`
ASSUME_TAC THENL
[EXPAND_TAC "z" THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(SPEC `formsubst ((x |-> V x) i) p`
VARIANT_THM) THEN
ASM_REWRITE_TAC[valmod;
IN_DELETE; CONTRAPOS_THM] THEN
MATCH_MP_TAC
MONO_EXISTS THEN SIMP_TAC[];
ALL_TAC] THEN
CONJ_TAC THEN GEN_TAC THEN ASM_REWRITE_TAC[
FV;
IN_DELETE; holds] THENL
[REWRITE_TAC[
LEFT_AND_EXISTS_THM; valmod] THEN AP_TERM_TAC THEN
ABS_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[
FVT;
IN_SING;
IN_DELETE];
AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC
HOLDS_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[valmod;
o_DEF] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[termval] THEN DISCH_TAC THEN
MATCH_MP_TAC
TERMVAL_VALUATION THEN GEN_TAC THEN
REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_MESON_TAC[
IN_DELETE]]));;
let FORMSUBST_EQ = prove
(`!p i j. (!x. x IN FV(p) ==> (i(x) = j(x)))
==> (formsubst i p = formsubst j p)`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[
FV; formsubst;
IN_UNION;
IN_DELETE] THEN
SIMP_TAC[] THEN REWRITE_TAC[
CONJ_ASSOC] THEN
GEN_REWRITE_TAC I [GSYM
CONJ_ASSOC] THEN CONJ_TAC THENL
[MESON_TAC[
TERMSUBST_EQ]; ALL_TAC] THEN
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
(DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`i:num->term`; `j:num->term`] THEN
DISCH_TAC THEN REWRITE_TAC[
LET_DEF;
LET_END_DEF; form_INJ] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN SIMP_TAC[] THEN
CONJ_TAC THENL
[ALL_TAC;
DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valmod] THEN ASM_SIMP_TAC[]] THEN
AP_THM_TAC THEN BINOP_TAC THENL
[ASM_MESON_TAC[];
AP_TERM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]));;
(* ------------------------------------------------------------------------- *)
(* Quasi-substitution. *)
(* ------------------------------------------------------------------------- *)
let HOLDS_QSUBST = prove
(`!v t p v. ~(x IN FVT(t))
==> (holds v (qsubst (x,t) p) <=>
holds ((x |-> termval v t) v) p)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `!v z. termval ((x |-> z) v) t = termval v t` ASSUME_TAC THENL
[REWRITE_TAC[valmod] THEN ASM_MESON_TAC[
TERMVAL_VALUATION];
ASM_REWRITE_TAC[holds; qsubst; termval;
VALMOD_BASIC;
UNWIND_THM2]]);;
(* ------------------------------------------------------------------------- *)
(* The numeral mapping. *)
(* ------------------------------------------------------------------------- *)
let TERMVAL_NUMERAL = prove
(`!v n. termval v (numeral n) = n`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[termval;numeral]);;
(* ------------------------------------------------------------------------- *)
(* Closed-ness. *)
(* ------------------------------------------------------------------------- *)