(* ========================================================================= *)
(* Basic theory of divisibility, gcd, coprimality and primality (over N).    *)
(* ========================================================================= *)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* HOL88 compatibility (since all this is a port of old HOL88 stuff).        *)
(* ------------------------------------------------------------------------- *)

let MULT_MONO_EQ = 
prove (`!m i n. ((SUC n) * m = (SUC n) * i) <=> (m = i)`,
REWRITE_TAC[EQ_MULT_LCANCEL; NOT_SUC]);;
let LESS_ADD_1 = 
prove (`!m n. n < m ==> (?p. m = n + (p + 1))`,
REWRITE_TAC[LT_EXISTS; ADD1; ADD_ASSOC]);;
let LESS_ADD_SUC = ARITH_RULE `!m n. m < (m + (SUC n))`;;
let LESS_0_CASES = ARITH_RULE `!m. (0 = m) \/ 0 < m`;;
let LESS_MONO_ADD = ARITH_RULE `!m n p. m < n ==> (m + p) < (n + p)`;;
let LESS_EQ_0 = 
prove (`!n. n <= 0 <=> (n = 0)`,
REWRITE_TAC[LE]);;
let LESS_LESS_CASES = ARITH_RULE `!m n. (m = n) \/ m < n \/ n < m`;;
let LESS_ADD_NONZERO = ARITH_RULE `!m n. ~(n = 0) ==> m < (m + n)`;;
let NOT_EXP_0 = 
prove (`!m n. ~((SUC n) EXP m = 0)`,
REWRITE_TAC[EXP_EQ_0; NOT_SUC]);;
let LESS_THM = ARITH_RULE `!m n. m < (SUC n) <=> (m = n) \/ m < n`;;
let NOT_LESS_0 = ARITH_RULE `!n. ~(n < 0)`;;
let ZERO_LESS_EXP = 
prove (`!m n. 0 < ((SUC n) EXP m)`,
REWRITE_TAC[LT_NZ; NOT_EXP_0]);;
(* ------------------------------------------------------------------------- *) (* General arithmetic lemmas. *) (* ------------------------------------------------------------------------- *)
let MULT_FIX = 
prove( `!x y. (x * y = x) <=> (x = 0) \/ (y = 1)`,
REPEAT GEN_TAC THEN STRUCT_CASES_TAC(SPEC `x:num` num_CASES) THEN REWRITE_TAC[MULT_CLAUSES; NOT_SUC] THEN REWRITE_TAC[GSYM(el 4 (CONJUNCTS (SPEC_ALL MULT_CLAUSES)))] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM(el 3 (CONJUNCTS(SPEC_ALL MULT_CLAUSES)))] THEN MATCH_ACCEPT_TAC MULT_MONO_EQ);;
let LESS_EQ_MULT = 
prove( `!m n p q. m <= n /\ p <= q ==> (m * p) <= (n * q)`,
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o REWRITE_RULE[LE_EXISTS]) THEN ASM_REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; GSYM ADD_ASSOC; LE_ADD]);;
let LESS_MULT = 
prove( `!m n p q. m < n /\ p < q ==> (m * p) < (n * q)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ((CHOOSE_THEN SUBST_ALL_TAC) o MATCH_MP LESS_ADD_1)) THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN REWRITE_TAC[GSYM ADD1; MULT_CLAUSES; ADD_CLAUSES; GSYM ADD_ASSOC] THEN ONCE_REWRITE_TAC[GSYM (el 3 (CONJUNCTS ADD_CLAUSES))] THEN MATCH_ACCEPT_TAC LESS_ADD_SUC);;
let MULT_LCANCEL = 
prove( `!a b c. ~(a = 0) /\ (a * b = a * c) ==> (b = c)`,
REPEAT GEN_TAC THEN STRUCT_CASES_TAC(SPEC `a:num` num_CASES) THEN REWRITE_TAC[NOT_SUC; MULT_MONO_EQ]);;
let LT_POW2_REFL = 
prove (`!n. n < 2 EXP n`,
INDUCT_TAC THEN REWRITE_TAC[EXP] THEN TRY(POP_ASSUM MP_TAC) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Properties of the exponential function. *) (* ------------------------------------------------------------------------- *)
let EXP_0 = 
prove (`!n. 0 EXP (SUC n) = 0`,
REWRITE_TAC[EXP; MULT_CLAUSES]);;
let EXP_MONO_LT_SUC = 
prove (`!n x y. (x EXP (SUC n)) < (y EXP (SUC n)) <=> (x < y)`,
REWRITE_TAC[EXP_MONO_LT; NOT_SUC]);;
let EXP_MONO_LE_SUC = 
prove (`!x y n. (x EXP (SUC n)) <= (y EXP (SUC n)) <=> x <= y`,
REWRITE_TAC[EXP_MONO_LE; NOT_SUC]);;
let EXP_MONO_EQ_SUC = 
prove (`!x y n. (x EXP (SUC n) = y EXP (SUC n)) <=> (x = y)`,
REWRITE_TAC[EXP_MONO_EQ; NOT_SUC]);;
let EXP_EXP = 
prove (`!x m n. (x EXP m) EXP n = x EXP (m * n)`,
REWRITE_TAC[EXP_MULT]);;
(* ------------------------------------------------------------------------- *) (* More ad-hoc arithmetic lemmas unlikely to be useful elsewhere. *) (* ------------------------------------------------------------------------- *)
let DIFF_LEMMA = 
prove( `!a b. a < b ==> (a = 0) \/ (a + (b - a)) < (a + b)`,
REPEAT GEN_TAC THEN DISJ_CASES_TAC(SPEC `a:num` LESS_0_CASES) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CHOOSE_THEN SUBST1_TAC o MATCH_MP LESS_ADD_1) THEN DISJ2_TAC THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN GEN_REWRITE_TAC LAND_CONV [GSYM (CONJUNCT1 ADD_CLAUSES)] THEN REWRITE_TAC[ADD_ASSOC] THEN REPEAT(MATCH_MP_TAC LESS_MONO_ADD) THEN POP_ASSUM ACCEPT_TAC);;
let NOT_EVEN_EQ_ODD = 
prove( `!m n. ~(2 * m = SUC(2 * n))`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN REWRITE_TAC[EVEN; EVEN_MULT; ARITH]);;
let CANCEL_TIMES2 = 
prove( `!x y. (2 * x = 2 * y) <=> (x = y)`,
REWRITE_TAC[num_CONV `2`; MULT_MONO_EQ]);;
let EVEN_SQUARE = 
prove( `!n. EVEN(n) ==> ?x. n EXP 2 = 4 * x`,
GEN_TAC THEN REWRITE_TAC[EVEN_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN EXISTS_TAC `m * m` THEN REWRITE_TAC[EXP_2] THEN REWRITE_TAC[SYM(REWRITE_CONV[ARITH] `2 * 2`)] THEN REWRITE_TAC[MULT_AC]);;
let ODD_SQUARE = 
prove( `!n. ODD(n) ==> ?x. n EXP 2 = (4 * x) + 1`,
GEN_TAC THEN REWRITE_TAC[ODD_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES] THEN REWRITE_TAC[GSYM ADD1; SUC_INJ] THEN EXISTS_TAC `(m * m) + m` THEN REWRITE_TAC(map num_CONV [`4`; `3`; `2`; `1`]) THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN REWRITE_TAC[ADD_AC]);;
let DIFF_SQUARE = 
prove( `!x y. (x EXP 2) - (y EXP 2) = (x + y) * (x - y)`,
REPEAT GEN_TAC THEN DISJ_CASES_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THENL [SUBGOAL_THEN `(x * x) <= (y * y)` MP_TAC THENL [MATCH_MP_TAC LESS_EQ_MULT THEN ASM_REWRITE_TAC[]; POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM SUB_EQ_0] THEN REPEAT DISCH_TAC THEN ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES]]; POP_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN REWRITE_TAC[EXP_2; LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN REWRITE_TAC[GSYM ADD_ASSOC; ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [ADD_SYM] THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC MULT_SYM]);;
let ADD_IMP_SUB = 
prove( `!x y z. (x + y = z) ==> (x = z - y)`,
REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[ADD_SUB]);;
let ADD_SUM_DIFF = 
prove( `!v w. v <= w ==> ((w + v) - (w - v) = 2 * v) /\ ((w + v) + (w - v) = 2 * w)`,
REPEAT GEN_TAC THEN REWRITE_TAC[LE_EXISTS] THEN DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB] THEN REWRITE_TAC[MULT_2; GSYM ADD_ASSOC] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] ADD_SUB; GSYM ADD_ASSOC]);;
let EXP_4 = 
prove( `!n. n EXP 4 = (n EXP 2) EXP 2`,
GEN_TAC THEN REWRITE_TAC[EXP_EXP] THEN REWRITE_TAC[ARITH]);;
(* ------------------------------------------------------------------------- *) (* Elementary theory of divisibility *) (* ------------------------------------------------------------------------- *)
let divides = 
prove (`a divides b <=> ?x. b = a * x`,
EQ_TAC THENL [REWRITE_TAC[num_divides; int_divides]; NUMBER_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `x:int`) THEN EXISTS_TAC `num_of_int(abs x)` THEN SIMP_TAC[GSYM INT_OF_NUM_EQ; INT_ARITH `&m:int = &n <=> abs(&m :int) = abs(&n)`] THEN ASM_REWRITE_TAC[GSYM INT_OF_NUM_MUL; INT_ABS_MUL] THEN SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS; INT_ABS_ABS]);;
let DIVIDES_0 = 
prove (`!x. x divides 0`,
NUMBER_TAC);;
let DIVIDES_ZERO = 
prove (`!x. 0 divides x <=> (x = 0)`,
NUMBER_TAC);;
let DIVIDES_1 = 
prove (`!x. 1 divides x`,
NUMBER_TAC);;
let DIVIDES_ONE = 
prove( `!x. (x divides 1) <=> (x = 1)`,
GEN_TAC THEN REWRITE_TAC[divides] THEN CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN REWRITE_TAC[MULT_EQ_1] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN REFL_TAC);;
let DIVIDES_REFL = 
prove (`!x. x divides x`,
NUMBER_TAC);;
let DIVIDES_TRANS = 
prove (`!a b c. a divides b /\ b divides c ==> a divides c`,
NUMBER_TAC);;
let DIVIDES_ANTISYM = 
prove (`!x y. x divides y /\ y divides x <=> (x = y)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (CHOOSE_THEN SUBST1_TAC)) THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN CONV_TAC(LAND_CONV SYM_CONV) THEN REWRITE_TAC[GSYM MULT_ASSOC; MULT_FIX; MULT_EQ_1] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[DIVIDES_REFL]]);;
let DIVIDES_ADD = 
prove (`!d a b. d divides a /\ d divides b ==> d divides (a + b)`,
NUMBER_TAC);;
let DIVIDES_SUB = 
prove (`!d a b. d divides a /\ d divides b ==> d divides (a - b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN (CHOOSE_THEN SUBST1_TAC)) THEN REWRITE_TAC[GSYM LEFT_SUB_DISTRIB] THEN W(EXISTS_TAC o rand o lhs o snd o dest_exists o snd) THEN REFL_TAC);;
let DIVIDES_LMUL = 
prove (`!d a x. d divides a ==> d divides (x * a)`,
NUMBER_TAC);;
let DIVIDES_RMUL = 
prove (`!d a x. d divides a ==> d divides (a * x)`,
NUMBER_TAC);;
let DIVIDES_ADD_REVR = 
prove (`!d a b. d divides a /\ d divides (a + b) ==> d divides b`,
NUMBER_TAC);;
let DIVIDES_ADD_REVL = 
prove (`!d a b. d divides b /\ d divides (a + b) ==> d divides a`,
NUMBER_TAC);;
let DIVIDES_DIV = 
prove (`!n x. 0 < n /\ (x MOD n = 0) ==> n divides x`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x:num` o MATCH_MP DIVISION o MATCH_MP (ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN DISCH_TAC THEN REWRITE_TAC[divides] THEN EXISTS_TAC `x DIV n` THEN ONCE_REWRITE_TAC[MULT_SYM] THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
let DIVIDES_MUL_L = 
prove (`!a b c. a divides b ==> (c * a) divides (c * b)`,
NUMBER_TAC);;
let DIVIDES_MUL_R = 
prove (`!a b c. a divides b ==> (a * c) divides (b * c)`,
NUMBER_TAC);;
let DIVIDES_LMUL2 = 
prove (`!d a x. (x * d) divides a ==> d divides a`,
NUMBER_TAC);;
let DIVIDES_RMUL2 = 
prove (`!d a x. (d * x) divides a ==> d divides a`,
NUMBER_TAC);;
let DIVIDES_CMUL2 = 
prove (`!a b c. (c * a) divides (c * b) /\ ~(c = 0) ==> a divides b`,
NUMBER_TAC);;
let DIVIDES_LMUL2_EQ = 
prove (`!a b c. ~(c = 0) ==> ((c * a) divides (c * b) <=> a divides b)`,
NUMBER_TAC);;
let DIVIDES_RMUL2_EQ = 
prove (`!a b c. ~(c = 0) ==> ((a * c) divides (b * c) <=> a divides b)`,
NUMBER_TAC);;
let DIVIDES_CASES = 
prove (`!m n. n divides m ==> m = 0 \/ m = n \/ 2 * n <= m`,
SIMP_TAC[ARITH_RULE `m = n \/ 2 * n <= m <=> m = n * 1 \/ n * 2 <= m`] THEN SIMP_TAC[divides; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[MULT_EQ_0; EQ_MULT_LCANCEL; LE_MULT_LCANCEL] THEN ARITH_TAC);;
let DIVIDES_LE = 
prove (`!m n. m divides n ==> m <= n \/ (n = 0)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_CASES) THEN ARITH_TAC);;
let DIVIDES_LE_STRONG = 
prove (`!m n. m divides n ==> 1 <= m /\ m <= n \/ n = 0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_ZERO; ARITH] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;
let DIVIDES_DIV_NOT = 
prove( `!n x q r. (x = (q * n) + r) /\ 0 < r /\ r < n ==> ~(n divides x)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPEC `n:num` DIVIDES_REFL) THEN DISCH_THEN(MP_TAC o SPEC `q:num` o MATCH_MP DIVIDES_LMUL) THEN PURE_REWRITE_TAC[TAUT `a ==> ~b <=> a /\ b ==> F`] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_ADD_REVR) THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[DE_MORGAN_THM; NOT_LE; GSYM LESS_EQ_0]);;
let DIVIDES_MUL2 = 
prove (`!a b c d. a divides b /\ c divides d ==> (a * c) divides (b * d)`,
NUMBER_TAC);;
let DIVIDES_EXP = 
prove( `!x y n. x divides y ==> (x EXP n) divides (y EXP n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN EXISTS_TAC `d EXP n` THEN MATCH_ACCEPT_TAC MULT_EXP);;
let DIVIDES_EXP2 = 
prove( `!n x y. ~(n = 0) /\ (x EXP n) divides y ==> x divides y`,
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; EXP] THEN NUMBER_TAC);;
let DIVIDES_EXP_LE = 
prove (`!p m n. 2 <= p ==> ((p EXP m) divides (p EXP n) <=> m <= n)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[LE_EXP; EXP_EQ_0] THEN POP_ASSUM MP_TAC THEN ARITH_TAC; SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; EXP_ADD] THEN NUMBER_TAC]);;
let DIVIDES_TRIVIAL_UPPERBOUND = 
prove (`!p n. ~(n = 0) /\ 2 <= p ==> ~((p EXP n) divides n)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `2 EXP n` THEN REWRITE_TAC[LT_POW2_REFL] THEN UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[EXP_MONO_LE_SUC]);;
let FACTORIZATION_INDEX = 
prove (`!n p. ~(n = 0) /\ 2 <= p ==> ?k. (p EXP k) divides n /\ !l. k < l ==> ~((p EXP l) divides n)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NOT_LE; CONTRAPOS_THM] THEN REWRITE_TAC[GSYM num_MAX] THEN CONJ_TAC THENL [EXISTS_TAC `0` THEN REWRITE_TAC[EXP; DIVIDES_1]; EXISTS_TAC `n:num` THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LE_TRANS) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP l` THEN SIMP_TAC[LT_POW2_REFL; LT_IMP_LE] THEN SPEC_TAC(`l:num`,`l:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ARITH; CONJUNCT1 EXP; EXP_MONO_LE_SUC]]);;
let DIVIDES_FACT = 
prove (`!n p. 1 <= p /\ p <= n ==> p divides (FACT n)`,
INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL [ARITH_TAC; ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REFL]]);;
let DIVIDES_2 = 
prove( `!n. 2 divides n <=> EVEN(n)`,
REWRITE_TAC[divides; EVEN_EXISTS]);;
let DIVIDES_REXP_SUC = 
prove (`!x y n. x divides y ==> x divides (y EXP (SUC n))`,
REWRITE_TAC[EXP; DIVIDES_RMUL]);;
let DIVIDES_REXP = 
prove (`!x y n. x divides y /\ ~(n = 0) ==> x divides (y EXP n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[DIVIDES_REXP_SUC]);;
let DIVIDES_MOD = 
prove (`!m n. ~(m = 0) ==> (m divides n <=> (n MOD m = 0))`,
REWRITE_TAC[divides] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[MOD_MULT]; DISCH_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN MESON_TAC[MULT_AC]);;
let DIVIDES_DIV_MULT = 
prove (`!m n. m divides n <=> ((n DIV m) * m = n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THENL [ASM_REWRITE_TAC[DIVIDES_ZERO; MULT_CLAUSES; EQ_SYM_EQ]; ALL_TAC] THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[DIVIDES_LMUL; DIVIDES_REFL]] THEN DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `n DIV m * m + n MOD m` THEN CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MOD; ADD_CLAUSES]; ASM_MESON_TAC[DIVISION]]);;
let FINITE_DIVISORS = 
prove (`!n. ~(n = 0) ==> FINITE {d | d divides n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{d:num | d <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);;
let FINITE_SPECIAL_DIVISORS = 
prove (`!n. ~(n = 0) ==> FINITE {d | P d /\ d divides n}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{d | d divides n}` THEN ASM_SIMP_TAC[FINITE_DIVISORS] THEN SET_TAC[]);;
let DIVIDES_DIVIDES_DIV = 
prove (`!n d. 1 <= n /\ d divides n ==> (e divides (n DIV d) <=> (d * e) divides n)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [DIVIDES_DIV_MULT] THEN ABBREV_TAC `q = n DIV d` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_CASES_TAC `d = 0` THENL [ASM_SIMP_TAC[MULT_CLAUSES; LE_1]; ASM_MESON_TAC[DIVIDES_LMUL2_EQ; MULT_SYM]]);;
(* ------------------------------------------------------------------------- *) (* The Bezout theorem is a bit ugly for N; it'd be easier for Z *) (* ------------------------------------------------------------------------- *)
let IND_EUCLID = 
prove( `!P. (!a b. P a b <=> P b a) /\ (!a. P a 0) /\ (!a b. P a b ==> P a (a + b)) ==> !a b. P a b`,
REPEAT STRIP_TAC THEN W(fun (asl,w) -> SUBGOAL_THEN `!n a b. (a + b = n) ==> P a b` MATCH_MP_TAC) THENL [ALL_TAC; EXISTS_TAC `a + b` THEN REFL_TAC] THEN MATCH_MP_TAC num_WF THEN REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPECL [`a:num`; `b:num`] LESS_LESS_CASES) THENL [DISCH_THEN SUBST1_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ADD_0] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC; ALL_TAC] THEN DISCH_THEN(fun th -> SUBST1_TAC(SYM(MATCH_MP SUB_ADD (MATCH_MP LT_IMP_LE th))) THEN DISJ_CASES_THEN MP_TAC (MATCH_MP DIFF_LEMMA th)) THENL [DISCH_THEN SUBST1_TAC THEN FIRST_ASSUM (CONV_TAC o REWR_CONV) THEN FIRST_ASSUM MATCH_ACCEPT_TAC; REWRITE_TAC[ASSUME `a + b = n`] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[ADD_SYM] THEN FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `a + b - a < n` THEN DISCH_THEN(ANTE_RES_THEN MATCH_MP_TAC); DISCH_THEN SUBST1_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC; REWRITE_TAC[ONCE_REWRITE_RULE[ADD_SYM] (ASSUME `a + b = n`)] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[ADD_SYM] THEN FIRST_ASSUM (CONV_TAC o REWR_CONV) THEN FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `b + a - b < n` THEN DISCH_THEN(ANTE_RES_THEN MATCH_MP_TAC)] THEN REWRITE_TAC[]);;
let BEZOUT_LEMMA = 
prove( `!a b. (?d x y. (d divides a /\ d divides b) /\ ((a * x = (b * y) + d) \/ (b * x = (a * y) + d))) ==> (?d x y. (d divides a /\ d divides (a + b)) /\ ((a * x = ((a + b) * y) + d) \/ ((a + b) * x = (a * y) + d)))`,
REPEAT STRIP_TAC THEN EXISTS_TAC `d:num` THENL [MAP_EVERY EXISTS_TAC [`x + y`; `y:num`]; MAP_EVERY EXISTS_TAC [`x:num`; `x + y`]] THEN ASM_REWRITE_TAC[] THEN (CONJ_TAC THENL [MATCH_MP_TAC DIVIDES_ADD; ALL_TAC]) THEN ASM_REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN REWRITE_TAC[ADD_ASSOC] THEN DISJ1_TAC THEN REWRITE_TAC[ADD_AC]);;
let BEZOUT_ADD = 
prove( `!a b. ?d x y. (d divides a /\ d divides b) /\ ((a * x = (b * y) + d) \/ (b * x = (a * y) + d))`,
W(fun (asl,w) -> MP_TAC(SPEC (list_mk_abs([`a:num`; `b:num`], snd(strip_forall w))) IND_EUCLID)) THEN BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL [REPEAT GEN_TAC THEN REPEAT (AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN GEN_TAC THEN BETA_TAC) THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [DISJ_SYM] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [CONJ_SYM] THEN REFL_TAC; GEN_TAC THEN MAP_EVERY EXISTS_TAC [`a:num`; `1`; `0`] THEN REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; DIVIDES_0; DIVIDES_REFL]; MATCH_ACCEPT_TAC BEZOUT_LEMMA]);;
let BEZOUT = 
prove( `!a b. ?d x y. (d divides a /\ d divides b) /\ (((a * x) - (b * y) = d) \/ ((b * x) - (a * y) = d))`,
REPEAT GEN_TAC THEN REPEAT_TCL STRIP_THM_THEN ASSUME_TAC (SPECL [`a:num`; `b:num`] BEZOUT_ADD) THEN REPEAT(W(EXISTS_TAC o fst o dest_exists o snd)) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[ADD_SUB]);;
(* ------------------------------------------------------------------------- *) (* We can get a stronger version with a nonzeroness assumption. *) (* ------------------------------------------------------------------------- *)
let BEZOUT_ADD_STRONG = 
prove (`!a b. ~(a = 0) ==> ?d x y. d divides a /\ d divides b /\ (a * x = b * y + d)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD) THEN REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `(b ==> a) ==> a \/ b ==> a`) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` (X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC))) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN ASM_CASES_TAC `b = 0` THENL [ASM_SIMP_TAC[MULT_CLAUSES; ADD_EQ_0; MULT_EQ_0; ADD_CLAUSES] THEN STRIP_TAC THEN UNDISCH_TAC `d divides a` THEN ASM_REWRITE_TAC[DIVIDES_ZERO]; ALL_TAC] THEN MP_TAC(SPECL [`d:num`; `b:num`] DIVIDES_LE) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL [ALL_TAC; DISCH_TAC THEN EXISTS_TAC `b:num` THEN EXISTS_TAC `b:num` THEN EXISTS_TAC `a - 1` THEN UNDISCH_TAC `d divides a` THEN ASM_SIMP_TAC[DIVIDES_REFL] THEN REWRITE_TAC[ARITH_RULE `b * x + b = (x + 1) * b`] THEN ASM_SIMP_TAC[ARITH_RULE `~(a = 0) ==> ((a - 1) + 1 = a)`]] THEN ASM_CASES_TAC `x = 0` THENL [ASM_SIMP_TAC[MULT_CLAUSES; ADD_EQ_0; MULT_EQ_0] THEN STRIP_TAC THEN UNDISCH_TAC `d divides a` THEN ASM_REWRITE_TAC[DIVIDES_ZERO]; ALL_TAC] THEN DISCH_THEN(MP_TAC o AP_TERM `( * ) (b - 1)`) THEN DISCH_THEN(MP_TAC o AP_TERM `(+) (d:num)`) THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [LEFT_ADD_DISTRIB] THEN REWRITE_TAC[ARITH_RULE `d + bay + b1 * d = (1 + b1) * d + bay`] THEN ASM_SIMP_TAC[ARITH_RULE `~(b = 0) ==> (1 + (b - 1) = b)`] THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `(a + b = c + d) ==> a <= d ==> (b = (d - a) + c:num)`)) THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[AC MULT_AC `(b - 1) * b * x = b * (b - 1) * x`] THEN REWRITE_TAC[LE_MULT_LCANCEL] THEN DISJ2_TAC THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `d = d * 1`] THEN MATCH_MP_TAC LE_MULT2 THEN MAP_EVERY UNDISCH_TAC [`d < b:num`; `~(x = 0)`] THEN ARITH_TAC; ALL_TAC] THEN DISCH_THEN(fun th -> MAP_EVERY EXISTS_TAC [`d:num`; `y * (b - 1)`; `(b - 1) * x - d`] THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [LEFT_SUB_DISTRIB] THEN REWRITE_TAC[MULT_AC]);;
(* ------------------------------------------------------------------------- *) (* Greatest common divisor. *) (* ------------------------------------------------------------------------- *)
let GCD = 
prove (`!a b. (gcd(a,b) divides a /\ gcd(a,b) divides b) /\ (!e. e divides a /\ e divides b ==> e divides gcd(a,b))`,
NUMBER_TAC);;
let DIVIDES_GCD = 
prove (`!a b d. d divides gcd(a,b) <=> d divides a /\ d divides b`,
NUMBER_TAC);;
let GCD_UNIQUE = 
prove( `!d a b. (d divides a /\ d divides b) /\ (!e. e divides a /\ e divides b ==> e divides d) <=> (d = gcd(a,b))`,
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[GCD] THEN ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN ASM_REWRITE_TAC[DIVIDES_GCD] THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GCD]);;
let GCD_EQ = 
prove (`(!d. d divides x /\ d divides y <=> d divides u /\ d divides v) ==> gcd(x,y) = gcd(u,v)`,
REWRITE_TAC[DIVIDES_GCD; GSYM DIVIDES_ANTISYM] THEN MESON_TAC[GCD]);;
let GCD_SYM = 
prove (`!a b. gcd(a,b) = gcd(b,a)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GCD_UNIQUE] THEN NUMBER_TAC);;
let GCD_ASSOC = 
prove( `!a b c. gcd(a,gcd(b,c)) = gcd(gcd(a,b),c)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REWRITE_TAC[DIVIDES_GCD; CONJ_ASSOC; GCD] THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `gcd(b,c)` THEN ASM_REWRITE_TAC[GCD]);;
let BEZOUT_GCD = 
prove( `!a b. ?x y. ((a * x) - (b * y) = gcd(a,b)) \/ ((b * x) - (a * y) = gcd(a,b))`,
REPEAT GEN_TAC THEN MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT) THEN DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN [`d:num`; `x:num`; `y:num`]) (CONJUNCTS_THEN ASSUME_TAC)) THEN SUBGOAL_THEN `d divides gcd(a,b)` MP_TAC THENL [MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL GCD))) THEN ASM_REWRITE_TAC[]; DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN ASM_REWRITE_TAC[GSYM RIGHT_SUB_DISTRIB; MULT_ASSOC] THEN FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);;
let BEZOUT_GCD_STRONG = 
prove (`!a b. ~(a = 0) ==> ?x y. a * x = b * y + gcd(a,b)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `b:num` o MATCH_MP BEZOUT_ADD_STRONG) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`d:num`; `x:num`; `y:num`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `d divides gcd(a,b)` MP_TAC THENL [ASM_MESON_TAC[GCD]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN ASM_REWRITE_TAC[GSYM RIGHT_ADD_DISTRIB; MULT_ASSOC]);;
let GCD_LMUL = 
prove( `!a b c. gcd(c * a, c * b) = c * gcd(a,b)`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC DIVIDES_MUL_L) THEN REWRITE_TAC[GCD] THEN REPEAT STRIP_TAC THEN REPEAT_TCL STRIP_THM_THEN (SUBST1_TAC o SYM) (SPECL [`a:num`; `b:num`] BEZOUT_GCD) THEN REWRITE_TAC[LEFT_SUB_DISTRIB; MULT_ASSOC] THEN MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_RMUL THEN ASM_REWRITE_TAC[]);;
let GCD_RMUL = 
prove( `!a b c. gcd(a * c, b * c) = c * gcd(a,b)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN MATCH_ACCEPT_TAC GCD_LMUL);;
let GCD_BEZOUT = 
prove( `!a b d. (?x y. ((a * x) - (b * y) = d) \/ ((b * x) - (a * y) = d)) <=> gcd(a,b) divides d`,
REPEAT GEN_TAC THEN EQ_TAC THENL [STRIP_TAC THEN POP_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_RMUL THEN REWRITE_TAC[GCD]; DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN STRIP_ASSUME_TAC(SPECL [`a:num`; `b:num`] BEZOUT_GCD) THEN MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN ASM_REWRITE_TAC[GSYM RIGHT_SUB_DISTRIB; MULT_ASSOC] THEN FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);;
let GCD_BEZOUT_SUM = 
prove( `!a b d x y. ((a * x) + (b * y) = d) ==> gcd(a,b) divides d`,
REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DIVIDES_ADD THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_RMUL THEN REWRITE_TAC[GCD]);;
let GCD_0 = 
prove( `!a. gcd(0,a) = a`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM GCD_UNIQUE] THEN REWRITE_TAC[DIVIDES_0; DIVIDES_REFL] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let GCD_ZERO = 
prove( `!a b. (gcd(a,b) = 0) <=> (a = 0) /\ (b = 0)`,
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[GCD_0] THEN MP_TAC(SPECL [`a:num`; `b:num`] GCD) THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let GCD_REFL = 
prove( `!a. gcd(a,a) = a`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REWRITE_TAC[DIVIDES_REFL]);;
let GCD_1 = 
prove( `!a. gcd(1,a) = 1`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REWRITE_TAC[DIVIDES_1] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let GCD_MULTIPLE = 
prove( `!a b. gcd(b,a * b) = b`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [GSYM(el 2 (CONJUNCTS(SPEC_ALL MULT_CLAUSES)))] THEN REWRITE_TAC[GCD_RMUL; GCD_1] THEN REWRITE_TAC[MULT_CLAUSES]);;
let GCD_ADD = 
prove (`(!a b. gcd(a + b,b) = gcd(a,b)) /\ (!a b. gcd(b + a,b) = gcd(a,b)) /\ (!a b. gcd(a,a + b) = gcd(a,b)) /\ (!a b. gcd(a,b + a) = gcd(a,b))`,
REWRITE_TAC[GSYM GCD_UNIQUE] THEN NUMBER_TAC);;
let GCD_SUB = 
prove (`(!a b. b <= a ==> gcd(a - b,b) = gcd(a,b)) /\ (!a b. a <= b ==> gcd(a,b - a) = gcd(a,b))`,
MESON_TAC[SUB_ADD; GCD_ADD]);;
(* ------------------------------------------------------------------------- *) (* Coprimality *) (* ------------------------------------------------------------------------- *)
let coprime = 
prove (`coprime(a,b) <=> !d. d divides a /\ d divides b ==> (d = 1)`,
EQ_TAC THENL [REWRITE_TAC[GSYM DIVIDES_ONE]; DISCH_THEN(MP_TAC o SPEC `gcd(a,b)`) THEN REWRITE_TAC[GCD]] THEN NUMBER_TAC);;
let COPRIME = 
prove( `!a b. coprime(a,b) <=> !d. d divides a /\ d divides b <=> (d = 1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[coprime] THEN REPEAT(EQ_TAC ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[DIVIDES_1] THENL [FIRST_ASSUM MATCH_MP_TAC; FIRST_ASSUM(CONV_TAC o REWR_CONV o GSYM) THEN CONJ_TAC] THEN ASM_REWRITE_TAC[]);;
let COPRIME_GCD = 
prove (`!a b. coprime(a,b) <=> (gcd(a,b) = 1)`,
REWRITE_TAC[GSYM DIVIDES_ONE] THEN NUMBER_TAC);;
let COPRIME_SYM = 
prove (`!a b. coprime(a,b) <=> coprime(b,a)`,
NUMBER_TAC);;
let COPRIME_BEZOUT = 
prove( `!a b. coprime(a,b) <=> ?x y. ((a * x) - (b * y) = 1) \/ ((b * x) - (a * y) = 1)`,
let COPRIME_DIVPROD = 
prove (`!d a b. d divides (a * b) /\ coprime(d,a) ==> d divides b`,
NUMBER_TAC);;
let COPRIME_1 = 
prove (`!a. coprime(a,1)`,
NUMBER_TAC);;
let GCD_COPRIME = 
prove (`!a b a' b'. ~(gcd(a,b) = 0) /\ a = a' * gcd(a,b) /\ b = b' * gcd(a,b) ==> coprime(a',b')`,
NUMBER_TAC);;
let GCD_COPRIME_EXISTS = 
prove( `!a b. ~(gcd(a,b) = 0) ==> ?a' b'. (a = a' * gcd(a,b)) /\ (b = b' * gcd(a,b)) /\ coprime(a',b')`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`a:num`; `b:num`] GCD) THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a':num` o GSYM) (X_CHOOSE_TAC `b':num` o GSYM)) THEN MAP_EVERY EXISTS_TAC [`a':num`; `b':num`] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC GCD_COPRIME THEN MAP_EVERY EXISTS_TAC [`a:num`; `b:num`] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_REWRITE_TAC[]);;
let COPRIME_0 = 
prove (`(!d. coprime(d,0) <=> d = 1) /\ (!d. coprime(0,d) <=> d = 1)`,
REWRITE_TAC[GSYM DIVIDES_ONE] THEN NUMBER_TAC);;
let COPRIME_MUL = 
prove (`!d a b. coprime(d,a) /\ coprime(d,b) ==> coprime(d,a * b)`,
NUMBER_TAC);;
let COPRIME_LMUL2 = 
prove (`!d a b. coprime(d,a * b) ==> coprime(d,b)`,
NUMBER_TAC);;
let COPRIME_RMUL2 = 
prove (`!d a b. coprime(d,a * b) ==> coprime(d,a)`,
NUMBER_TAC);;
let COPRIME_LMUL = 
prove (`!d a b. coprime(a * b,d) <=> coprime(a,d) /\ coprime(b,d)`,
NUMBER_TAC);;
let COPRIME_RMUL = 
prove (`!d a b. coprime(d,a * b) <=> coprime(d,a) /\ coprime(d,b)`,
NUMBER_TAC);;
let COPRIME_EXP = 
prove (`!n a d. coprime(d,a) ==> coprime(d,a EXP n)`,
INDUCT_TAC THEN REWRITE_TAC[EXP; COPRIME_1] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC COPRIME_MUL THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
let COPRIME_EXP_IMP = 
prove (`!n a b. coprime(a,b) ==> coprime(a EXP n,b EXP n)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[]);;
let COPRIME_REXP = 
prove (`!m n k. coprime(m,n EXP k) <=> coprime(m,n) \/ k = 0`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 EXP; COPRIME_1] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[COPRIME_EXP; NOT_SUC] THEN REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE);;
let COPRIME_LEXP = 
prove (`!m n k. coprime(m EXP k,n) <=> coprime(m,n) \/ k = 0`,
ONCE_REWRITE_TAC[COPRIME_SYM] THEN REWRITE_TAC[COPRIME_REXP]);;
let COPRIME_EXP2 = 
prove (`!m n k. coprime(m EXP k,n EXP k) <=> coprime(m,n) \/ k = 0`,
let COPRIME_EXP2_SUC = 
prove (`!n a b. coprime(a EXP (SUC n),b EXP (SUC n)) <=> coprime(a,b)`,
REWRITE_TAC[COPRIME_EXP2; NOT_SUC]);;
let COPRIME_REFL = 
prove (`!n. coprime(n,n) <=> (n = 1)`,
REWRITE_TAC[COPRIME_GCD; GCD_REFL]);;
let COPRIME_PLUS1 = 
prove (`!n. coprime(n + 1,n)`,
NUMBER_TAC);;
let COPRIME_MINUS1 = 
prove (`!n. ~(n = 0) ==> coprime(n - 1,n)`,
REPEAT STRIP_TAC THEN SIMP_TAC[coprime] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_SUB) THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - (n - 1) = 1`; DIVIDES_ONE]);;
let BEZOUT_GCD_POW = 
prove( `!n a b. ?x y. (((a EXP n) * x) - ((b EXP n) * y) = gcd(a,b) EXP n) \/ (((b EXP n) * x) - ((a EXP n) * y) = gcd(a,b) EXP n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL [STRUCT_CASES_TAC(SPEC `n:num` num_CASES) THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THENL [MAP_EVERY EXISTS_TAC [`1`; `0`] THEN REWRITE_TAC[SUB_0]; REPEAT(EXISTS_TAC `0`) THEN REWRITE_TAC[MULT_CLAUSES; SUB_0]]; MP_TAC(SPECL [`a:num`; `b:num`] GCD) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `b':num` ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `a':num` ASSUME_TAC) THEN MP_TAC(SPECL [`a:num`; `b:num`; `a':num`; `b':num`] GCD_COPRIME) THEN RULE_ASSUM_TAC GSYM THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[MULT_SYM]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP COPRIME_EXP_IMP) THEN REWRITE_TAC[COPRIME_BEZOUT] THEN DISCH_THEN(X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `y:num` MP_TAC)) THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN DISCH_THEN (MP_TAC o AP_TERM `(*) (gcd(a,b) EXP n)`) THEN REWRITE_TAC[MULT_CLAUSES; LEFT_SUB_DISTRIB] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MAP_EVERY EXISTS_TAC [`x:num`; `y:num`] THEN REWRITE_TAC[MULT_ASSOC; GSYM MULT_EXP] THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[MULT_SYM]) THEN ASM_REWRITE_TAC[]]);; let GCD_EXP = prove( `!n a b. gcd(a EXP n,b EXP n) = gcd(a,b) EXP n`, REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC DIVIDES_EXP THEN REWRITE_TAC[GCD]; MATCH_MP_TAC DIVIDES_EXP THEN REWRITE_TAC[GCD]; X_GEN_TAC `d:num` THEN STRIP_TAC THEN MP_TAC(SPECL [`n:num`; `a:num`; `b:num`] BEZOUT_GCD_POW) THEN DISCH_THEN(REPEAT_TCL CHOOSE_THEN (DISJ_CASES_THEN (SUBST1_TAC o SYM))) THEN MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_RMUL THEN ASM_REWRITE_TAC[]]);; let DIVISION_DECOMP = prove( `!a b c. a divides (b * c) ==> ?b' c'. (a = b' * c') /\ b' divides b /\ c' divides c`, REPEAT GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `gcd(a,b)` THEN REWRITE_TAC[GCD] THEN MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL [ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN RULE_ASSUM_TAC(REWRITE_RULE[GCD_ZERO]) THEN ASM_REWRITE_TAC[MULT_CLAUSES; DIVIDES_1]; ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `a':num` (X_CHOOSE_THEN `b':num` (STRIP_ASSUME_TAC o GSYM o ONCE_REWRITE_RULE[MULT_SYM]))) THEN EXISTS_TAC `a':num` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `a divides (b * c)` THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM th]) THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [GSYM th]) THEN REWRITE_TAC[MULT_ASSOC] THEN DISCH_TAC THEN MATCH_MP_TAC COPRIME_DIVPROD THEN EXISTS_TAC `b':num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_CMUL2 THEN EXISTS_TAC `gcd(a,b)` THEN REWRITE_TAC[MULT_ASSOC] THEN CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC]);; let DIVIDES_EXP2_REV = prove (`!n a b. (a EXP n) divides (b EXP n) /\ ~(n = 0) ==> a divides b`, REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL [ASM_MESON_TAC[GCD_ZERO; DIVIDES_REFL]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GCD_COPRIME_EXISTS) THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[MULT_EXP] THEN ASM_SIMP_TAC[EXP_EQ_0; DIVIDES_RMUL2_EQ] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `a divides b ==> coprime(a,b) ==> a divides 1`)) THEN ASM_SIMP_TAC[COPRIME_EXP2; DIVIDES_ONE; DIVIDES_1; EXP_EQ_1]);; let DIVIDES_EXP2_EQ = prove (`!n a b. ~(n = 0) ==> ((a EXP n) divides (b EXP n) <=> a divides b)`, MESON_TAC[DIVIDES_EXP2_REV; DIVIDES_EXP]);; let DIVIDES_MUL = prove (`!m n r. m divides r /\ n divides r /\ coprime(m,n) ==> (m * n) divides r`, NUMBER_TAC);; (* ------------------------------------------------------------------------- *) (* A binary form of the Chinese Remainder Theorem. *) (* ------------------------------------------------------------------------- *)
let CHINESE_REMAINDER = prove
 (`!a b u v. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0)
             ==> ?x q1 q2. (x = u + q1 * a) /\ (x = v + q2 * b)`,
  let lemma = prove
   (`(?d x y. (d = 1) /\ P x y d) <=> (?x y. P x y 1)`,
    MESON_TAC[]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_ADD_STRONG) THEN
  MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD_STRONG) THEN
  ASM_REWRITE_TAC[CONJ_ASSOC] THEN
  SUBGOAL_THEN `!d. d divides a /\ d divides b <=> (d = 1)`
   (fun th -> REWRITE_TAC[th; ONCE_REWRITE_RULE[CONJ_SYM] th])
  THENL
   [UNDISCH_TAC `coprime(a,b)` THEN
    SIMP_TAC[GSYM DIVIDES_GCD; COPRIME_GCD; DIVIDES_ONE]; ALL_TAC] THEN
  REWRITE_TAC[lemma] THEN
  DISCH_THEN(X_CHOOSE_THEN `x1:num` (X_CHOOSE_TAC `y1:num`)) THEN
  DISCH_THEN(X_CHOOSE_THEN `x2:num` (X_CHOOSE_TAC `y2:num`)) THEN
  EXISTS_TAC `v * a * x1 + u * b * x2:num` THEN
  EXISTS_TAC `v * x1 + u * y2:num` THEN
  EXISTS_TAC `v * y1 + u * x2:num` THEN CONJ_TAC THENL
   [SUBST1_TAC(ASSUME `b * x2 = a * y2 + 1`);
    SUBST1_TAC(ASSUME `a * x1 = b * y1 + 1`)] THEN
  REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
  REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC]);;
(* ------------------------------------------------------------------------- *) (* Primality *) (* ------------------------------------------------------------------------- *)
let prime = new_definition
  `prime(p) <=> ~(p = 1) /\ !x. x divides p ==> (x = 1) \/ (x = p)`;;
(* ------------------------------------------------------------------------- *) (* A few useful theorems about primes *) (* ------------------------------------------------------------------------- *)
let PRIME_0 = 
prove( `~prime(0)`,
REWRITE_TAC[prime] THEN DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN REWRITE_TAC[DIVIDES_0; ARITH]);;
let PRIME_1 = 
prove( `~prime(1)`,
REWRITE_TAC[prime]);;
let PRIME_2 = 
prove( `prime(2)`,
REWRITE_TAC[prime; ARITH] THEN REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN REWRITE_TAC[ARITH] THEN REWRITE_TAC[LE_LT] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; LESS_THM; NOT_LESS_0] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST_ALL_TAC) THEN REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[DIVIDES_ZERO] THEN REWRITE_TAC[ARITH] THEN REWRITE_TAC[]);;
let PRIME_GE_2 = 
prove( `!p. prime(p) ==> 2 <= p`,
GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[NOT_LE] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; LESS_THM; NOT_LESS_0] THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[SYM(num_CONV `1`); PRIME_0; PRIME_1]);;
let PRIME_FACTOR = 
prove( `!n. ~(n = 1) ==> ?p. prime(p) /\ p divides n`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `prime(n)` THENL [EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[DIVIDES_REFL]; UNDISCH_TAC `~prime(n)` THEN DISCH_THEN(MP_TAC o REWRITE_RULE[prime]) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[NOT_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN STRIP_TAC THEN FIRST_ASSUM(DISJ_CASES_THEN MP_TAC o MATCH_MP DIVIDES_LE) THENL [ASM_REWRITE_TAC[LE_LT] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[]; DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `2` THEN REWRITE_TAC[PRIME_2; DIVIDES_0]]]);;
let PRIME_FACTOR_LT = 
prove( `!n m p. prime(p) /\ ~(n = 0) /\ (n = p * m) ==> m < n`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_REWRITE_TAC[LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `q:num` SUBST_ALL_TAC) THEN REWRITE_TAC[num_CONV `2`; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN MATCH_MP_TAC LESS_ADD_NONZERO THEN REWRITE_TAC[ADD_EQ_0] THEN DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN ASM_REWRITE_TAC[MULT_CLAUSES]);;
let PRIME_FACTOR_INDUCT = 
prove (`!P. P 0 /\ P 1 /\ (!p n. prime p /\ ~(n = 0) /\ P n ==> P(p * n)) ==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `n = 1`] THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o GEN_REWRITE_RULE I [divides]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `d:num`]) THEN RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[PRIME_FACTOR_LT; MULT_EQ_0]);;
(* ------------------------------------------------------------------------- *) (* Infinitude of primes. *) (* ------------------------------------------------------------------------- *)
let EUCLID_BOUND = 
prove (`!n. ?p. prime(p) /\ n < p /\ p <= SUC(FACT n)`,
GEN_TAC THEN MP_TAC(SPEC `FACT n + 1` PRIME_FACTOR) THEN SIMP_TAC[ARITH_RULE `0 < n ==> ~(n + 1 = 1)`; ADD1; FACT_LT] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[DIVIDES_ADD_REVR; DIVIDES_ONE; PRIME_1; NOT_LT; PRIME_0; ARITH_RULE `(p = 0) \/ 1 <= p`; DIVIDES_FACT]; ASM_MESON_TAC[DIVIDES_LE; ARITH_RULE `~(x + 1 = 0)`]]);;
let EUCLID = 
prove (`!n. ?p. prime(p) /\ p > n`,
REWRITE_TAC[GT] THEN MESON_TAC[EUCLID_BOUND]);;
let PRIMES_INFINITE = 
prove (`INFINITE {p | prime p}`,
REWRITE_TAC[INFINITE; num_FINITE; IN_ELIM_THM] THEN MESON_TAC[EUCLID; NOT_LE; GT]);;
let COPRIME_PRIME = 
prove( `!p a b. coprime(a,b) ==> ~(prime(p) /\ p divides a /\ p divides b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[coprime] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `p = 1` SUBST_ALL_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `prime 1` THEN REWRITE_TAC[PRIME_1]]);;
let COPRIME_PRIME_EQ = 
prove( `!a b. coprime(a,b) <=> !p. ~(prime(p) /\ p divides a /\ p divides b)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP COPRIME_PRIME th]); CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[coprime] THEN ONCE_REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `d:num` THEN ASM_REWRITE_TAC[]]);;
let PRIME_COPRIME = 
prove( `!n p. prime(p) ==> (n = 1) \/ p divides n \/ coprime(p,n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[prime; COPRIME_GCD] THEN STRIP_ASSUME_TAC(SPECL [`p:num`; `n:num`] GCD) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `gcd(p,n)`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[]);;
let PRIME_COPRIME_STRONG = 
prove (`!n p. prime(p) ==> p divides n \/ coprime(p,n)`,
MESON_TAC[PRIME_COPRIME; COPRIME_1]);;
let PRIME_COPRIME_EQ = 
prove (`!p n. prime p ==> (coprime(p,n) <=> ~(p divides n))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(b \/ a) /\ ~(a /\ b) ==> (a <=> ~b)`) THEN ASM_SIMP_TAC[PRIME_COPRIME_STRONG] THEN ASM_MESON_TAC[COPRIME_REFL; PRIME_1; NUMBER_RULE `coprime(p,n) /\ p divides n ==> coprime(p,p)`]);;
let COPRIME_PRIMEPOW = 
prove (`!p k m. prime p /\ ~(k = 0) ==> (coprime(m,p EXP k) <=> ~(p divides m))`,
SIMP_TAC[COPRIME_REXP] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[PRIME_COPRIME_EQ]);;
let COPRIME_BEZOUT_STRONG = 
prove (`!a b. coprime(a,b) /\ ~(b = 1) ==> ?x y. a * x = b * y + 1`,
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);;
let COPRIME_BEZOUT_ALT = 
prove (`!a b. coprime(a,b) /\ ~(a = 0) ==> ?x y. a * x = b * y + 1`,
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);;
let BEZOUT_PRIME = 
prove (`!a p. prime p /\ ~(p divides a) ==> ?x y. a * x = p * y + 1`,
let PRIME_DIVPROD = 
prove( `!p a b. prime(p) /\ p divides (a * b) ==> p divides a \/ p divides b`,
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME) THEN DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THENL [DISJ2_TAC THEN UNDISCH_TAC `p divides (a * b)` THEN ASM_REWRITE_TAC[MULT_CLAUSES]; DISJ2_TAC THEN MATCH_MP_TAC COPRIME_DIVPROD THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[]]);;
let PRIME_DIVPROD_EQ = 
prove (`!p a b. prime(p) ==> (p divides (a * b) <=> p divides a \/ p divides b)`,
let PRIME_DIVEXP = 
prove( `!n p x. prime(p) /\ p divides (x EXP n) ==> p divides x`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[EXP; DIVIDES_ONE] THENL [DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN REWRITE_TAC[DIVIDES_1]; DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
let PRIME_DIVEXP_N = 
prove( `!n p x. prime(p) /\ p divides (x EXP n) ==> (p EXP n) divides (x EXP n)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_DIVEXP) THEN MATCH_ACCEPT_TAC DIVIDES_EXP);;
let PRIME_DIVEXP_EQ = 
prove (`!n p x. prime p ==> (p divides x EXP n <=> p divides x /\ ~(n = 0))`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_ONE] THEN ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_REXP; PRIME_1]);;
let PARITY_EXP = 
prove( `!n x. EVEN(x EXP (SUC n)) = EVEN(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM DIVIDES_2] THEN EQ_TAC THENL [DISCH_TAC THEN MATCH_MP_TAC PRIME_DIVEXP THEN EXISTS_TAC `SUC n` THEN ASM_REWRITE_TAC[PRIME_2]; REWRITE_TAC[EXP] THEN MATCH_ACCEPT_TAC DIVIDES_RMUL]);;
let COPRIME_SOS = 
prove (`!x y. coprime(x,y) ==> coprime(x * y,(x EXP 2) + (y EXP 2))`,
NUMBER_TAC);;
let PRIME_IMP_NZ = 
prove (`!p. prime(p) ==> ~(p = 0)`,
MESON_TAC[PRIME_0]);;
let DISTINCT_PRIME_COPRIME = 
prove (`!p q. prime p /\ prime q /\ ~(p = q) ==> coprime(p,q)`,
MESON_TAC[prime; coprime; PRIME_1]);;
let PRIME_COPRIME_LT = 
prove (`!x p. prime p /\ 0 < x /\ x < p ==> coprime(x,p)`,
REWRITE_TAC[coprime; prime] THEN MESON_TAC[LT_REFL; DIVIDES_LE; NOT_LT; PRIME_0]);;
let DIVIDES_PRIME_PRIME = 
prove (`!p q. prime p /\ prime q ==> (p divides q <=> p = q)`,
let DIVIDES_PRIME_EXP_LE = 
prove (`!p q m n. prime p /\ prime q ==> ((p EXP m) divides (q EXP n) <=> m = 0 \/ p = q /\ m <= n)`,
GEN_TAC THEN GEN_TAC THEN REPEAT INDUCT_TAC THEN ASM_SIMP_TAC[EXP; DIVIDES_1; DIVIDES_ONE; MULT_EQ_1; NOT_SUC] THENL [MESON_TAC[PRIME_1; ARITH_RULE `~(SUC m <= 0)`]; ALL_TAC] THEN ASM_CASES_TAC `p:num = q` THEN ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2; GSYM(CONJUNCT2 EXP)] THEN ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_PRIME_PRIME; EXP; DIVIDES_RMUL2]);;
let EQ_PRIME_EXP = 
prove (`!p q m n. prime p /\ prime q ==> (p EXP m = q EXP n <=> m = 0 /\ n = 0 \/ p = q /\ m = n)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN ASM_SIMP_TAC[DIVIDES_PRIME_EXP_LE] THEN ARITH_TAC);;
let PRIME_ODD = 
prove (`!p. prime p ==> p = 2 \/ ODD p`,
GEN_TAC THEN REWRITE_TAC[prime; GSYM NOT_EVEN; EVEN_EXISTS] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `2`)) THEN REWRITE_TAC[divides; ARITH] THEN MESON_TAC[]);;
let DIVIDES_FACT_PRIME = 
prove (`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL [ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1]; ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL; ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);;
let EQ_PRIMEPOW = 
prove (`!p m n. prime p ==> (p EXP m = p EXP n <=> m = n)`,
ONCE_REWRITE_TAC[GSYM LE_ANTISYM] THEN SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN MESON_TAC[PRIME_1]);;
let COPRIME_2 = 
prove (`(!n. coprime(2,n) <=> ODD n) /\ (!n. coprime(n,2) <=> ODD n)`,
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [COPRIME_SYM] THEN SIMP_TAC[PRIME_COPRIME_EQ; PRIME_2; DIVIDES_2; NOT_EVEN]);;
let DIVIDES_EXP_PLUS1 = 
prove (`!n k. ODD k ==> (n + 1) divides (n EXP k + 1)`,
GEN_TAC THEN REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN INDUCT_TAC THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[EXP_1; DIVIDES_REFL] THEN REWRITE_TAC[ARITH_RULE `SUC(2 * SUC n) = SUC(2 * n) + 2`] THEN REWRITE_TAC[EXP_ADD; EXP_2] THEN POP_ASSUM MP_TAC THEN NUMBER_TAC);;
let DIVIDES_EXP_MINUS1 = 
prove (`!k n. (n - 1) divides (n EXP k - 1)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [STRUCT_CASES_TAC(SPEC `k:num` num_CASES) THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[DIVIDES_REFL]; REWRITE_TAC[num_divides] THEN ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; EXP_EQ_0; ARITH] THEN POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[GSYM INT_OF_NUM_POW] THEN SPEC_TAC(`k:num`,`k:num`) THEN INDUCT_TAC THEN REWRITE_TAC[INT_POW] THEN REPEAT(POP_ASSUM MP_TAC) THEN INTEGER_TAC]);;
(* ------------------------------------------------------------------------- *) (* One property of coprimality is easier to prove via prime factors. *) (* ------------------------------------------------------------------------- *)
let COPRIME_EXP_DIVPROD = 
prove (`!d n a b. (d EXP n) divides (a * b) /\ coprime(d,a) ==> (d EXP n) divides b`,
let PRIME_COPRIME_CASES = 
prove (`!p a b. prime p /\ coprime(a,b) ==> coprime(p,a) \/ coprime(p,b)`,
let PRIME_DIVPROD_POW = 
prove (`!n p a b. prime(p) /\ coprime(a,b) /\ (p EXP n) divides (a * b) ==> (p EXP n) divides a \/ (p EXP n) divides b`,
let EXP_MULT_EXISTS = 
prove (`!m n p k. ~(m = 0) /\ m EXP k * n = p EXP k ==> ?q. n = q EXP k`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN MP_TAC(SPECL [`k:num`; `m:num`; `p:num`] DIVIDES_EXP2_REV) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[divides; MULT_SYM]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN ASM_REWRITE_TAC[MULT_EXP; GSYM MULT_ASSOC; EQ_MULT_LCANCEL; EXP_EQ_0] THEN MESON_TAC[]);;
let COPRIME_POW = 
prove (`!n a b c. coprime(a,b) /\ a * b = c EXP n ==> ?r s. a = r EXP n /\ b = s EXP n`,
GEN_TAC THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[EXP; MULT_EQ_1] THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[EXP_ZERO; MULT_EQ_0] THEN ASM_MESON_TAC[COPRIME_0; EXP_ZERO; COPRIME_0; EXP_ONE]; SIMP_TAC[EXP_ONE; MULT_EQ_1] THEN MESON_TAC[EXP_ONE]; REWRITE_TAC[MULT_EXP] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `p EXP n divides a \/ p EXP n divides b` MP_TAC THENL [ASM_MESON_TAC[PRIME_DIVPROD_POW; divides]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_SYM]) THEN ASM_SIMP_TAC[COPRIME_RMUL; COPRIME_LMUL; COPRIME_LEXP; COPRIME_REXP] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`b:num`; `d:num`]); FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `a:num`])] THEN ASM_REWRITE_TAC[] THEN (ANTS_TAC THENL [MATCH_MP_TAC(NUM_RING `!p. ~(p = 0) /\ a * p = b * p ==> a = b`) THEN EXISTS_TAC `p EXP n` THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN CONV_TAC NUM_RING; STRIP_TAC THEN ASM_REWRITE_TAC[GSYM MULT_EXP] THEN MESON_TAC[]])]);;
(* ------------------------------------------------------------------------- *) (* More useful lemmas. *) (* ------------------------------------------------------------------------- *)
let PRIME_EXP = 
prove (`!p n. prime(p EXP n) <=> prime(p) /\ (n = 1)`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; PRIME_1; ARITH_EQ] THEN POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`n:num`,`n:num`) THEN ASM_CASES_TAC `p = 0` THENL [ASM_REWRITE_TAC[PRIME_0; EXP; MULT_CLAUSES]; ALL_TAC] THEN INDUCT_TAC THEN REWRITE_TAC[ARITH; EXP_1; EXP; MULT_CLAUSES] THEN REWRITE_TAC[ARITH_RULE `~(SUC(SUC n) = 1)`] THEN REWRITE_TAC[prime; DE_MORGAN_THM] THEN ASM_REWRITE_TAC[MULT_EQ_1; EXP_EQ_1] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [MESON_TAC[EXP; divides]; ALL_TAC] THEN MATCH_MP_TAC(ARITH_RULE `p < pn:num ==> ~(p = pn)`) THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN ASM_REWRITE_TAC[LT_EXP; ARITH_EQ] THEN MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC);;
let PRIME_POWER_MULT = 
prove (`!k x y p. prime p /\ (x * y = p EXP k) ==> ?i j. (x = p EXP i) /\ (y = p EXP j)`,
INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_EQ_1] THENL [MESON_TAC[EXP]; ALL_TAC] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `p divides x \/ p divides y` MP_TAC THENL [ASM_MESON_TAC[PRIME_DIVPROD; divides; MULT_AC]; ALL_TAC] THEN REWRITE_TAC[divides] THEN SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THENL [UNDISCH_TAC `(p * d) * y = p * p EXP k`; UNDISCH_TAC `x * p * d = p * p EXP k` THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [MULT_SYM]] THEN REWRITE_TAC[GSYM MULT_ASSOC] THEN ASM_REWRITE_TAC[EQ_MULT_LCANCEL] THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `y:num`; `p:num`]); FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `x:num`; `p:num`])] THEN ASM_REWRITE_TAC[] THEN MESON_TAC[EXP]);;
let PRIME_POWER_EXP = 
prove (`!n x p k. prime p /\ ~(n = 0) /\ (x EXP n = p EXP k) ==> ?i. x = p EXP i`,
INDUCT_TAC THEN REWRITE_TAC[EXP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[NOT_SUC] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP] THEN ASM_MESON_TAC[PRIME_POWER_MULT]);;
let DIVIDES_PRIMEPOW = 
prove (`!p. prime p ==> !d. d divides (p EXP k) <=> ?i. i <= k /\ d = p EXP i`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:num` THEN DISCH_TAC THEN MP_TAC(SPECL [`k:num`; `d:num`; `e:num`; `p:num`] PRIME_POWER_MULT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN SUBST_ALL_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN REWRITE_TAC[GSYM EXP_ADD] THEN REWRITE_TAC[GSYM LE_ANTISYM; LE_EXP] THEN REWRITE_TAC[LE_ANTISYM] THEN POP_ASSUM MP_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_SIMP_TAC[PRIME_0] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1; LE_ANTISYM] THEN MESON_TAC[LE_ADD]; REWRITE_TAC[LE_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[EXP_ADD] THEN MESON_TAC[DIVIDES_RMUL; DIVIDES_REFL]]);;
let COPRIME_DIVISORS = 
prove (`!a b d e. d divides a /\ e divides b /\ coprime(a,b) ==> coprime(d,e)`,
NUMBER_TAC);;
let PRIMEPOW_FACTOR = 
prove (`!n. 2 <= n ==> ?p k m. prime p /\ 1 <= k /\ coprime(p,m) /\ n = p EXP k * m`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `n:num` PRIME_FACTOR) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN MP_TAC(ISPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[divides; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k + 1`)) THEN ASM_REWRITE_TAC[ARITH_RULE `k < k + 1`; EXP_ADD; GSYM MULT_ASSOC] THEN ASM_SIMP_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; PRIME_IMP_NZ] THEN REWRITE_TAC[EXP_1; GSYM divides] THEN UNDISCH_TAC `(p:num) divides n` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[EXP; MULT_CLAUSES; LE_1] THEN ASM_MESON_TAC[PRIME_COPRIME_STRONG]);;
(* ------------------------------------------------------------------------- *) (* Induction principle for multiplicative functions etc. *) (* ------------------------------------------------------------------------- *)
let INDUCT_COPRIME = 
prove (`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ (!p k. prime p ==> P(p EXP k)) ==> !n. 1 < n ==> P n`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 1)`)) THEN DISCH_THEN(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN MP_TAC(SPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:num`; `m:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_CASES_TAC `m = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 MATCH_MP_TAC MP_TAC) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT `!p. (a /\ b /\ ~p) /\ c /\ (a /\ ~p ==> b ==> d) ==> a /\ b /\ c /\ d`) THEN EXISTS_TAC `m = 0` THEN SUBGOAL_THEN `~(k = 0)` ASSUME_TAC THENL [DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `0 < 1`)) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[EXP; EXP_1; MULT_CLAUSES; divides]; ALL_TAC] THEN CONJ_TAC THENL [UNDISCH_TAC `1 < p EXP k * m` THEN ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN ASM_REWRITE_TAC[EXP_EQ_0; EXP_EQ_1; MULT_EQ_0; MULT_EQ_1] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2 o CONJUNCT1) THEN ASM_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `k < k + 1`)) THEN REWRITE_TAC[EXP_ADD; EXP_1; GSYM MULT_ASSOC; EQ_MULT_LCANCEL] THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ; GSYM divides] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN ASM_MESON_TAC[PRIME_COPRIME; COPRIME_SYM]; DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m = 1 * m`] THEN ASM_REWRITE_TAC[LT_MULT_RCANCEL]]);;
let INDUCT_COPRIME_STRONG = 
prove (`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ (!p k. prime p /\ ~(k = 0) ==> P(p EXP k)) ==> !n. 1 < n ==> P n`,
GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a ==> b`] THEN MATCH_MP_TAC INDUCT_COPRIME THEN CONJ_TAC THENL [ASM_MESON_TAC[]; MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[LT_REFL; EXP] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* A conversion for divisibility. *) (* ------------------------------------------------------------------------- *) let DIVIDES_CONV = let pth_0 = SPEC `b:num` DIVIDES_ZERO and pth_1 = prove (`~(a = 0) ==> (a divides b <=> (b MOD a = 0))`, REWRITE_TAC[DIVIDES_MOD]) and a_tm = `a:num` and b_tm = `b:num` and zero_tm = `0` and dest_divides = dest_binop `(divides)` in fun tm -> let a,b = dest_divides tm in if a = zero_tm then CONV_RULE (RAND_CONV NUM_EQ_CONV) (INST [b,b_tm] pth_0) else let th1 = INST [a,a_tm; b,b_tm] pth_1 in let th2 = MP th1 (EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1))))) in CONV_RULE (RAND_CONV (LAND_CONV NUM_MOD_CONV THENC NUM_EQ_CONV)) th2;; (* ------------------------------------------------------------------------- *) (* A conversion for coprimality. *) (* ------------------------------------------------------------------------- *) let COPRIME_CONV =
let pth_yes_l = 
prove (`(m * x = n * y + 1) ==> (coprime(m,n) <=> T)`,
MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE]) and pth_yes_r = prove (`(m * x = n * y + 1) ==> (coprime(n,m) <=> T)`, MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE]) and pth_no = prove (`(m = x * d) /\ (n = y * d) /\ ~(d = 1) ==> (coprime(m,n) <=> F)`, REWRITE_TAC[coprime; divides] THEN MESON_TAC[MULT_AC]) and pth_oo = prove (`coprime(0,0) <=> F`, MESON_TAC[coprime; DIVIDES_REFL; NUM_REDUCE_CONV `1 = 0`]) and m_tm = `m:num` and n_tm = `n:num` and x_tm = `x:num` and y_tm = `y:num` and d_tm = `d:num` and coprime_tm = `coprime` in let rec bezout (m,n) = if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0) else if m <=/ n then let q = quo_num n m and r = mod_num n m in let (x,y) = bezout(m,r) in (x -/ q */ y,y) else let (x,y) = bezout(n,m) in (y,x) in fun tm -> let pop,ptm = dest_comb tm in if pop <> coprime_tm then failwith "COPRIME_CONV" else let l,r = dest_pair ptm in let m = dest_numeral l and n = dest_numeral r in if m =/ Int 0 & n =/ Int 0 then pth_oo else let (x,y) = bezout(m,n) in let d = x */ m +/ y */ n in let th = if d =/ Int 1 then if x >/ Int 0 then INST [l,m_tm; r,n_tm; mk_numeral x,x_tm; mk_numeral(minus_num y),y_tm] pth_yes_l else INST [r,m_tm; l,n_tm; mk_numeral(minus_num x),y_tm; mk_numeral y,x_tm] pth_yes_r else INST [l,m_tm; r,n_tm; mk_numeral d,d_tm; mk_numeral(m // d),x_tm; mk_numeral(n // d),y_tm] pth_no in MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;
(* ------------------------------------------------------------------------- *) (* More general (slightly less efficiently coded) GCD_CONV. *) (* ------------------------------------------------------------------------- *) let GCD_CONV =
let pth0 = 
prove(`gcd(0,0) = 0`,
REWRITE_TAC[GCD_0]) in
let pth1 = prove
   (`!m n x y d m' n'.
      (m * x = n * y + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`,
    REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
    CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[GSYM GCD_UNIQUE] THEN
    ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL;
                  DIVIDES_ADD_REVR; DIVIDES_REFL]) in
  let pth2 = prove
   (`!m n x y d m' n'.
       (n * y = m * x + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`,
    MESON_TAC[pth1; GCD_SYM]) in
  let gcd_tm = `gcd` in
  let rec bezout (m,n) =
    if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0)
    else if m <=/ n then
      let q = quo_num n m and r = mod_num n m in
      let (x,y) = bezout(m,r) in
      (x -/ q */ y,y)
    else let (x,y) = bezout(n,m) in (y,x) in
  fun tm -> let gt,lr = dest_comb tm in
            if gt <> gcd_tm then failwith "GCD_CONV" else
            let mtm,ntm = dest_pair lr in
            let m = dest_numeral mtm and n = dest_numeral ntm in
            if m =/ Int 0 & n =/ Int 0 then pth0 else
            let x0,y0 = bezout(m,n) in
            let x = abs_num x0 and y = abs_num y0 in
            let xtm = mk_numeral x and ytm = mk_numeral y in
            let d = abs_num(x */ m -/ y */ n) in
            let dtm = mk_numeral d in
            let m' = m // d and n' = n // d in
            let mtm' = mk_numeral m' and ntm' = mk_numeral n' in
            let th = SPECL [mtm;ntm;xtm;ytm;dtm;mtm';
ntm'] (if m */ x =/ n */ y +/ d then pth1 else pth2) in MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;