(* ========================================================================= *)
(* Elementary real analysis, with some supporting HOL88 compatibility stuff. *)
(* ========================================================================= *)

let dest_neg_imp tm =
  try dest_imp tm with Failure _ ->
  try (dest_neg tm,mk_const("F",[]))
  with Failure _ -> failwith "dest_neg_imp";;

(* ------------------------------------------------------------------------- *)
(* The quantifier movement conversions.                                      *)
(* ------------------------------------------------------------------------- *)

let (CONV_OF_RCONV: conv -> conv) =
  let rec get_bv tm =
    if is_abs tm then bndvar tm
    else if is_comb tm then try get_bv (rand tm)
            with Failure _ -> get_bv (rator tm)
    else failwith "" in
  fun conv tm ->
  let v = get_bv tm in
  let th1 = conv tm in
  let th2 = ONCE_DEPTH_CONV (GEN_ALPHA_CONV v) (rhs(concl th1)) in
  TRANS th1 th2;;

let (CONV_OF_THM: thm -> conv) =
  CONV_OF_RCONV o REWR_CONV;;

let (X_FUN_EQ_CONV:term->conv) =
  fun v -> (REWR_CONV FUN_EQ_THM) THENC GEN_ALPHA_CONV v;;

let (FUN_EQ_CONV:conv) =
  fun tm ->
    let vars = frees tm in
    let op,[ty1;ty2] = dest_type(type_of (lhs tm)) in
    if op = "fun"
       then let varnm =
                if (is_vartype ty1) then "x" else
                   hd(explode(fst(dest_type ty1))) in
            let x = variant vars (mk_var(varnm,ty1)) in
            X_FUN_EQ_CONV x tm
       else failwith "FUN_EQ_CONV";;

let (SINGLE_DEPTH_CONV:conv->conv) =
  let rec SINGLE_DEPTH_CONV conv tm =
    try conv tm with Failure _ ->
    (SUB_CONV (SINGLE_DEPTH_CONV conv) THENC (TRY_CONV conv)) tm in
  SINGLE_DEPTH_CONV;;

let (OLD_SKOLEM_CONV:conv) =
  SINGLE_DEPTH_CONV (REWR_CONV SKOLEM_THM);;

let (X_SKOLEM_CONV:term->conv) =
  fun v -> OLD_SKOLEM_CONV THENC GEN_ALPHA_CONV v;;

let EXISTS_UNIQUE_CONV tm =
  let v = bndvar(rand tm) in
  let th1 = REWR_CONV EXISTS_UNIQUE_THM tm in
  let tm1 = rhs(concl th1) in
  let vars = frees tm1 in
  let v = variant vars v in
  let v' = variant (v::vars) v in
  let th2 =
   (LAND_CONV(GEN_ALPHA_CONV v) THENC
    RAND_CONV(BINDER_CONV(GEN_ALPHA_CONV v') THENC
              GEN_ALPHA_CONV v)) tm1 in
  TRANS th1 th2;;

let NOT_FORALL_CONV = CONV_OF_THM NOT_FORALL_THM;;

let NOT_EXISTS_CONV = CONV_OF_THM NOT_EXISTS_THM;;

let RIGHT_IMP_EXISTS_CONV = CONV_OF_THM RIGHT_IMP_EXISTS_THM;;

let FORALL_IMP_CONV = CONV_OF_RCONV
  (REWR_CONV TRIV_FORALL_IMP_THM ORELSEC
   REWR_CONV RIGHT_FORALL_IMP_THM ORELSEC
   REWR_CONV LEFT_FORALL_IMP_THM);;

let EXISTS_AND_CONV = CONV_OF_RCONV
  (REWR_CONV TRIV_EXISTS_AND_THM ORELSEC
   REWR_CONV LEFT_EXISTS_AND_THM ORELSEC
   REWR_CONV RIGHT_EXISTS_AND_THM);;

let LEFT_IMP_EXISTS_CONV = CONV_OF_THM LEFT_IMP_EXISTS_THM;;

let LEFT_AND_EXISTS_CONV tm =
  let v = bndvar(rand(rand(rator tm))) in
  (REWR_CONV LEFT_AND_EXISTS_THM THENC TRY_CONV (GEN_ALPHA_CONV v)) tm;;

let RIGHT_AND_EXISTS_CONV =
  CONV_OF_THM RIGHT_AND_EXISTS_THM;;

let AND_FORALL_CONV = CONV_OF_THM AND_FORALL_THM;;

(* ------------------------------------------------------------------------- *)
(* The slew of named tautologies.                                            *)
(* ------------------------------------------------------------------------- *)

let F_IMP = TAUT `!t. ~t ==> t ==> F`;;

let LEFT_AND_OVER_OR = TAUT
  `!t1 t2 t3. t1 /\ (t2 \/ t3) <=> t1 /\ t2 \/ t1 /\ t3`;;

let RIGHT_AND_OVER_OR = TAUT
  `!t1 t2 t3. (t2 \/ t3) /\ t1 <=> t2 /\ t1 \/ t3 /\ t1`;;

(* ------------------------------------------------------------------------- *)
(* Something trivial and useless.                                            *)
(* ------------------------------------------------------------------------- *)

let INST_TY_TERM(substl,insttyl) th = INST substl (INST_TYPE insttyl th);;

(* ------------------------------------------------------------------------- *)
(* Derived rules.                                                            *)
(* ------------------------------------------------------------------------- *)

let NOT_MP thi th =
  try MP thi th with Failure _ ->
  try let t = dest_neg (concl thi) in
      MP(MP (SPEC t F_IMP) thi) th
  with Failure _ -> failwith "NOT_MP";;

(* ------------------------------------------------------------------------- *)
(* Creating half abstractions.                                               *)
(* ------------------------------------------------------------------------- *)

let MK_ABS qth =
  try let ov = bndvar(rand(concl qth)) in
      let bv,rth = SPEC_VAR qth in
      let sth = ABS bv rth in
      let cnv = ALPHA_CONV ov in
      CONV_RULE(BINOP_CONV cnv) sth
  with Failure _ -> failwith "MK_ABS";;

let HALF_MK_ABS th =
  try let th1 = MK_ABS th in
      CONV_RULE(LAND_CONV ETA_CONV) th1
  with Failure _ -> failwith "HALF_MK_ABS";;

(* ------------------------------------------------------------------------- *)
(* Old substitution primitive, now a (not very efficient) derived rule.      *)
(* ------------------------------------------------------------------------- *)

let SUBST thl pat th =
  let eqs,vs = unzip thl in
  let gvs = map (genvar o type_of) vs in
  let gpat = subst (zip gvs vs) pat in
  let ls,rs = unzip (map (dest_eq o concl) eqs) in
  let ths = map (ASSUME o mk_eq) (zip gvs rs) in
  let th1 = ASSUME gpat in
  let th2 = SUBS ths th1 in
  let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in
  let th4 = INST (zip ls gvs) th3 in
  MP (rev_itlist (C MP) eqs th4) th;;

(* ------------------------------------------------------------------------- *)
(* Various theorems have different names.                                    *)
(* ------------------------------------------------------------------------- *)

prioritize_num();;

let LESS_EQUAL_ANTISYM = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_ANTISYM)));;
let NOT_LESS_0 = GEN_ALL(EQF_ELIM(SPEC_ALL(CONJUNCT1 LT)));;
let LESS_LEMMA1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL(CONJUNCT2 LT))));;
let LESS_SUC_REFL = ARITH_RULE `!n. n < SUC n`;;
let LESS_EQ_SUC_REFL = ARITH_RULE `!n. n <= SUC n`;;
let LESS_EQUAL_ADD = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_EXISTS)));; let LESS_EQ_IMP_LESS_SUC = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_SUC_LE)));; let LESS_MONO_ADD = GEN_ALL(snd(EQ_IMP_RULE(SPEC_ALL LT_ADD_RCANCEL)));;
let LESS_SUC = ARITH_RULE `!m n. m < n ==> m < (SUC n)`;;
let LESS_ADD_1 = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL (REWRITE_RULE[ADD1] LT_EXISTS))));;
let SUC_SUB1 = ARITH_RULE `!m. SUC m - 1 = m`;;
let LESS_ADD_SUC = ARITH_RULE `!m n. m < m + SUC n`;;
let OR_LESS = GEN_ALL(fst(EQ_IMP_RULE(SPEC_ALL LE_SUC_LT)));;
let NOT_SUC_LESS_EQ = ARITH_RULE `!n m. ~(SUC n <= m) <=> m <= n`;;
let LESS_LESS_CASES = ARITH_RULE `!m n. (m = n) \/ m < n \/ n < m`;;
let SUB_SUB = 
prove (`!b c. c <= b ==> (!a. a - (b - c) = (a + c) - b)`,
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN ARITH_TAC);;
let LESS_CASES_IMP = ARITH_RULE `!m n. ~(m < n) /\ ~(m = n) ==> n < m`;;
let SUB_LESS_EQ = ARITH_RULE `!n m. (n - m) <= n`;;
let SUB_EQ_EQ_0 = ARITH_RULE `!m n. (m - n = m) <=> (m = 0) \/ (n = 0)`;;
let SUB_LEFT_LESS_EQ =
  ARITH_RULE `!m n p. m <= (n - p) <=> (m + p) <= n \/ m <= 0`;;
let SUB_LEFT_GREATER_EQ = ARITH_RULE `!m n p. m >= (n - p) <=> (m + p) >= n`;;
let LESS_0_CASES = ARITH_RULE `!m. (0 = m) \/ 0 < m`;;
let LESS_OR = ARITH_RULE `!m n. m < n ==> (SUC m) <= n`;;
let SUB_OLD = 
prove(`(!m. 0 - m = 0) /\ (!m n. (SUC m) - n = (if m < n then 0 else SUC(m - n)))`,
REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN TRY (POP_ASSUM MP_TAC) THEN ARITH_TAC);;
(*============================================================================*) (* Various useful tactics, conversions etc. *) (*============================================================================*) (*----------------------------------------------------------------------------*) (* SYM_CANON_CONV - Canonicalizes single application of symmetric operator *) (* Rewrites `so as to make fn true`, e.g. fn = $<< or fn = curry$= `1` o fst *) (*----------------------------------------------------------------------------*) let SYM_CANON_CONV sym fn = REWR_CONV sym o check (not o fn o ((snd o dest_comb) F_F I) o dest_comb);; (*----------------------------------------------------------------------------*) (* IMP_SUBST_TAC - Implicational substitution for deepest matchable term *) (*----------------------------------------------------------------------------*) let (IMP_SUBST_TAC:thm_tactic) = fun th (asl,w) -> let tms = find_terms (can (PART_MATCH (lhs o snd o dest_imp) th)) w in let tm1 = hd (sort free_in tms) in let th1 = PART_MATCH (lhs o snd o dest_imp) th tm1 in let (a,(l,r)) = (I F_F dest_eq) (dest_imp (concl th1)) in let gv = genvar (type_of l) in let pat = subst[gv,l] w in null_meta, [(asl,a); (asl,subst[(r,gv)] pat)], fun i [t1;t2] -> SUBST[(SYM(MP th1 t1),gv)] pat t2;; (*---------------------------------------------------------------*) (* EXT_CONV `!x. f x = g x` = |- (!x. f x = g x) = (f = g) *) (*---------------------------------------------------------------*) let EXT_CONV = SYM o uncurry X_FUN_EQ_CONV o (I F_F (mk_eq o (rator F_F rator) o dest_eq)) o dest_forall;; (*----------------------------------------------------------------------------*) (* EQUAL_TAC - Strip down to unequal core (usually too enthusiastic) *) (*----------------------------------------------------------------------------*) let EQUAL_TAC = REPEAT(FIRST [AP_TERM_TAC; AP_THM_TAC; ABS_TAC]);; (*----------------------------------------------------------------------------*) (* X_BETA_CONV `v` `tm[v]` = |- tm[v] = (\v. tm[v]) v *) (*----------------------------------------------------------------------------*) let X_BETA_CONV v tm = SYM(BETA_CONV(mk_comb(mk_abs(v,tm),v)));; (*----------------------------------------------------------------------------*) (* EXACT_CONV - Rewrite with theorem matching exactly one in a list *) (*----------------------------------------------------------------------------*) let EXACT_CONV = ONCE_DEPTH_CONV o FIRST_CONV o map (fun t -> K t o check((=)(lhs(concl t))));; (*----------------------------------------------------------------------------*) (* Rather ad-hoc higher-order fiddling conversion *) (* |- (\x. f t1[x] ... tn[x]) = (\x. f ((\x. t1[x]) x) ... ((\x. tn[x]) x)) *) (*----------------------------------------------------------------------------*) let HABS_CONV tm = let v,bod = dest_abs tm in let hop,pl = strip_comb bod in let eql = rev(map (X_BETA_CONV v) pl) in ABS v (itlist (C(curry MK_COMB)) eql (REFL hop));; (*----------------------------------------------------------------------------*) (* Expand an abbreviation *) (*----------------------------------------------------------------------------*) let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;; (* ------------------------------------------------------------------------- *) (* Set up the reals. *) (* ------------------------------------------------------------------------- *) prioritize_real();;
let real_le = 
prove (`!x y. x <= y <=> ~(y < x)`,
REWRITE_TAC[REAL_NOT_LT]);;
(* ------------------------------------------------------------------------- *) (* Link a few theorems. *) (* ------------------------------------------------------------------------- *) let REAL_10 = REAL_ARITH `~(&1 = &0)`;; let REAL_LDISTRIB = REAL_ADD_LDISTRIB;; let REAL_LT_IADD = REAL_ARITH `!x y z. y < z ==> x + y < x + z`;; (*----------------------------------------------------------------------------*) (* Prove lots of boring field theorems *) (*----------------------------------------------------------------------------*)
let REAL_MUL_RID = 
prove( `!x. x * &1 = x`,
GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_MUL_LID);;
let REAL_MUL_RINV = 
prove( `!x. ~(x = &0) ==> (x * (inv x) = &1)`,
GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_MUL_LINV);;
let REAL_RDISTRIB = 
prove( `!x y z. (x + y) * z = (x * z) + (y * z)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LDISTRIB);;
let REAL_EQ_LADD = 
prove( `!x y z. (x + y = x + z) <=> (y = z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o AP_TERM `(+) (-- x)`) THEN REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]; DISCH_THEN SUBST1_TAC THEN REFL_TAC]);;
let REAL_EQ_RADD = 
prove( `!x y z. (x + z = y + z) <=> (x = y)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_EQ_LADD);;
let REAL_ADD_LID_UNIQ = 
prove( `!x y. (x + y = y) <=> (x = &0)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_ADD_LID] THEN MATCH_ACCEPT_TAC REAL_EQ_RADD);;
let REAL_ADD_RID_UNIQ = 
prove( `!x y. (x + y = x) <=> (y = &0)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_ADD_LID_UNIQ);;
let REAL_LNEG_UNIQ = 
prove( `!x y. (x + y = &0) <=> (x = --y)`,
REPEAT GEN_TAC THEN SUBST1_TAC (SYM(SPEC `y:real` REAL_ADD_LINV)) THEN MATCH_ACCEPT_TAC REAL_EQ_RADD);;
let REAL_RNEG_UNIQ = 
prove( `!x y. (x + y = &0) <=> (y = --x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_LNEG_UNIQ);;
let REAL_NEG_ADD = 
prove( `!x y. --(x + y) = (--x) + (--y)`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM REAL_LNEG_UNIQ] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (a + c) + (b + d)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_MUL_LZERO = 
prove( `!x. &0 * x = &0`,
GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`&0 * x`; `&0 * x`] REAL_ADD_LID_UNIQ)) THEN REWRITE_TAC[GSYM REAL_RDISTRIB; REAL_ADD_LID]);;
let REAL_MUL_RZERO = 
prove( `!x. x * &0 = &0`,
GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_MUL_LZERO);;
let REAL_NEG_LMUL = 
prove( `!x y. --(x * y) = (--x) * y`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM REAL_LNEG_UNIQ; GSYM REAL_RDISTRIB; REAL_ADD_LINV; REAL_MUL_LZERO]);;
let REAL_NEG_RMUL = 
prove( `!x y. --(x * y) = x * (--y)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_NEG_LMUL);;
let REAL_NEGNEG = 
prove( `!x. --(--x) = x`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM REAL_LNEG_UNIQ; REAL_ADD_RINV]);;
let REAL_NEG_MUL2 = 
prove( `!x y. (--x) * (--y) = x * y`,
REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL; REAL_NEGNEG]);;
let REAL_LT_LADD = 
prove( `!x y z. (x + y) < (x + z) <=> y < z`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `--x` o MATCH_MP REAL_LT_IADD) THEN REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]; MATCH_ACCEPT_TAC REAL_LT_IADD]);;
let REAL_LT_RADD = 
prove( `!x y z. (x + z) < (y + z) <=> x < y`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_LT_LADD);;
let REAL_NOT_LT = 
prove( `!x y. ~(x < y) <=> y <= x`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_le]);;
let REAL_LT_ANTISYM = 
prove( `!x y. ~(x < y /\ y < x)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_TRANS) THEN REWRITE_TAC[REAL_LT_REFL]);;
let REAL_LT_GT = 
prove( `!x y. x < y ==> ~(y < x)`,
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THEN REWRITE_TAC[REAL_LT_ANTISYM]);;
let REAL_NOT_LE = 
prove( `!x y. ~(x <= y) <=> y < x`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_le]);;
let REAL_LE_TOTAL = 
prove( `!x y. x <= y \/ y <= x`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_le; GSYM DE_MORGAN_THM; REAL_LT_ANTISYM]);;
let REAL_LE_REFL = 
prove( `!x. x <= x`,
GEN_TAC THEN REWRITE_TAC[real_le; REAL_LT_REFL]);;
let REAL_LE_LT = 
prove( `!x y. x <= y <=> x < y \/ (x = y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_le] THEN EQ_TAC THENL [REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPECL [`x:real`; `y:real`] REAL_LT_TOTAL) THEN ASM_REWRITE_TAC[]; DISCH_THEN(DISJ_CASES_THEN2 ((then_) (MATCH_MP_TAC REAL_LT_GT) o ACCEPT_TAC) SUBST1_TAC) THEN MATCH_ACCEPT_TAC REAL_LT_REFL]);;
let REAL_LT_LE = 
prove( `!x y. x < y <=> x <= y /\ ~(x = y)`,
let lemma = TAUT `~(a /\ ~a)` in REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT; RIGHT_AND_OVER_OR; lemma] THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_LT_REFL]);;
let REAL_LT_IMP_LE = 
prove( `!x y. x < y ==> x <= y`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[REAL_LE_LT]);;
let REAL_LTE_TRANS = 
prove( `!x y z. x < y /\ y <= z ==> x < z`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT; LEFT_AND_OVER_OR] THEN DISCH_THEN(DISJ_CASES_THEN2 (ACCEPT_TAC o MATCH_MP REAL_LT_TRANS) (CONJUNCTS_THEN2 MP_TAC SUBST1_TAC)) THEN REWRITE_TAC[]);;
let REAL_LE_TRANS = 
prove( `!x y z. x <= y /\ y <= z ==> x <= z`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_LE_LT] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (DISJ_CASES_THEN2 ASSUME_TAC SUBST1_TAC)) THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o C CONJ (ASSUME `y < z`)) THEN DISCH_THEN(ACCEPT_TAC o MATCH_MP REAL_LT_IMP_LE o MATCH_MP REAL_LET_TRANS));;
let REAL_NEG_LT0 = 
prove( `!x. (--x) < &0 <=> &0 < x`,
GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`--x`; `&0`; `x:real`] REAL_LT_RADD)) THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_NEG_GT0 = 
prove( `!x. &0 < (--x) <=> x < &0`,
GEN_TAC THEN REWRITE_TAC[GSYM REAL_NEG_LT0; REAL_NEGNEG]);;
let REAL_NEG_LE0 = 
prove( `!x. (--x) <= &0 <=> &0 <= x`,
GEN_TAC THEN REWRITE_TAC[real_le] THEN REWRITE_TAC[REAL_NEG_GT0]);;
let REAL_NEG_GE0 = 
prove( `!x. &0 <= (--x) <=> x <= &0`,
GEN_TAC THEN REWRITE_TAC[real_le] THEN REWRITE_TAC[REAL_NEG_LT0]);;
let REAL_LT_NEGTOTAL = 
prove( `!x. (x = &0) \/ (&0 < x) \/ (&0 < --x)`,
GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPECL [`x:real`; `&0`] REAL_LT_TOTAL) THEN ASM_REWRITE_TAC[SYM(REWRITE_RULE[REAL_NEGNEG] (SPEC `--x` REAL_NEG_LT0))]);;
let REAL_LE_NEGTOTAL = 
prove( `!x. &0 <= x \/ &0 <= --x`,
GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` REAL_LT_NEGTOTAL) THEN ASM_REWRITE_TAC[]);;
let REAL_LE_MUL = 
prove( `!x y. &0 <= x /\ &0 <= y ==> &0 <= (x * y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN MAP_EVERY ASM_CASES_TAC [`&0 = x`; `&0 = y`] THEN ASM_REWRITE_TAC[] THEN TRY(FIRST_ASSUM(SUBST1_TAC o SYM)) THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN DISCH_TAC THEN DISJ1_TAC THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[]);;
let REAL_LE_SQUARE = 
prove( `!x. &0 <= x * x`,
GEN_TAC THEN DISJ_CASES_TAC (SPEC `x:real` REAL_LE_NEGTOTAL) THEN POP_ASSUM(MP_TAC o MATCH_MP REAL_LE_MUL o W CONJ) THEN REWRITE_TAC[GSYM REAL_NEG_RMUL; GSYM REAL_NEG_LMUL; REAL_NEGNEG]);;
let REAL_LT_01 = 
prove( `&0 < &1`,
REWRITE_TAC[REAL_LT_LE; REAL_LE_01] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN REWRITE_TAC[REAL_10]);;
let REAL_LE_LADD = 
prove( `!x y z. (x + y) <= (x + z) <=> y <= z`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_le] THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_LT_LADD);;
let REAL_LE_RADD = 
prove( `!x y z. (x + z) <= (y + z) <=> x <= y`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_le] THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_LT_RADD);;
let REAL_LT_ADD2 = 
prove( `!w x y z. w < x /\ y < z ==> (w + y) < (x + z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `w + z` THEN ASM_REWRITE_TAC[REAL_LT_LADD; REAL_LT_RADD]);;
let REAL_LT_ADD = 
prove( `!x y. &0 < x /\ &0 < y ==> &0 < (x + y)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_ADD2) THEN REWRITE_TAC[REAL_ADD_LID]);;
let REAL_LT_ADDNEG = 
prove( `!x y z. y < (x + (--z)) <=> (y + z) < x`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`y:real`; `x + (--z)`; `z:real`] REAL_LT_RADD)) THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_RID]);;
let REAL_LT_ADDNEG2 = 
prove( `!x y z. (x + (--y)) < z <=> x < (z + y)`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`x + (-- y)`; `z:real`; `y:real`] REAL_LT_RADD)) THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_RID]);;
let REAL_LT_ADD1 = 
prove( `!x y. x <= y ==> x < (y + &1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN DISCH_THEN DISJ_CASES_TAC THENL [POP_ASSUM(MP_TAC o MATCH_MP REAL_LT_ADD2 o C CONJ REAL_LT_01) THEN REWRITE_TAC[REAL_ADD_RID]; POP_ASSUM SUBST1_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN REWRITE_TAC[REAL_LT_LADD; REAL_LT_01]]);;
let REAL_SUB_ADD = 
prove( `!x y. (x - y) + y = x`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; GSYM REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_RID]);;
let REAL_SUB_ADD2 = 
prove( `!x y. y + (x - y) = x`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_SUB_ADD);;
let REAL_SUB_REFL = 
prove( `!x. x - x = &0`,
GEN_TAC THEN REWRITE_TAC[real_sub; REAL_ADD_RINV]);;
let REAL_SUB_0 = 
prove( `!x y. (x - y = &0) <=> (x = y)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o C AP_THM `y:real` o AP_TERM `(+)`) THEN REWRITE_TAC[REAL_SUB_ADD; REAL_ADD_LID]; DISCH_THEN SUBST1_TAC THEN MATCH_ACCEPT_TAC REAL_SUB_REFL]);;
let REAL_LE_DOUBLE = 
prove( `!x. &0 <= x + x <=> &0 <= x`,
GEN_TAC THEN EQ_TAC THENL [CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_ADD2 o W CONJ); DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_ADD2 o W CONJ)] THEN REWRITE_TAC[REAL_ADD_LID]);;
let REAL_LE_NEGL = 
prove( `!x. (--x <= x) <=> (&0 <= x)`,
GEN_TAC THEN SUBST1_TAC (SYM(SPECL [`x:real`; `--x`; `x:real`] REAL_LE_LADD)) THEN REWRITE_TAC[REAL_ADD_RINV; REAL_LE_DOUBLE]);;
let REAL_LE_NEGR = 
prove( `!x. (x <= --x) <=> (x <= &0)`,
GEN_TAC THEN SUBST1_TAC(SYM(SPEC `x:real` REAL_NEGNEG)) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_NEGNEG] THEN REWRITE_TAC[REAL_LE_NEGL] THEN REWRITE_TAC[REAL_NEG_GE0] THEN REWRITE_TAC[REAL_NEGNEG]);;
let REAL_NEG_EQ0 = 
prove( `!x. (--x = &0) <=> (x = &0)`,
GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o AP_TERM `(+) x`); DISCH_THEN(MP_TAC o AP_TERM `(+) (--x)`)] THEN REWRITE_TAC[REAL_ADD_RINV; REAL_ADD_LINV; REAL_ADD_RID] THEN DISCH_THEN SUBST1_TAC THEN REFL_TAC);;
let REAL_NEG_0 = 
prove( `--(&0) = &0`,
REWRITE_TAC[REAL_NEG_EQ0]);;
let REAL_NEG_SUB = 
prove( `!x y. --(x - y) = y - x`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_NEG_ADD; REAL_NEGNEG] THEN MATCH_ACCEPT_TAC REAL_ADD_SYM);;
let REAL_SUB_LT = 
prove( `!x y. &0 < x - y <=> y < x`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`&0`; `x - y`; `y:real`] REAL_LT_RADD)) THEN REWRITE_TAC[REAL_SUB_ADD; REAL_ADD_LID]);;
let REAL_SUB_LE = 
prove( `!x y. &0 <= (x - y) <=> y <= x`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`&0`; `x - y`; `y:real`] REAL_LE_RADD)) THEN REWRITE_TAC[REAL_SUB_ADD; REAL_ADD_LID]);;
let REAL_EQ_LMUL = 
prove( `!x y z. (x * y = x * z) <=> (x = &0) \/ (y = z)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o AP_TERM `(*) (inv x)`) THEN ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(fun th -> REWRITE_TAC [REAL_MUL_ASSOC; MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_MUL_LID]; DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[REAL_MUL_LZERO]]);; let REAL_EQ_RMUL = prove( `!x y z. (x * z = y * z) <=> (z = &0) \/ (x = y)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_EQ_LMUL);; let REAL_SUB_LDISTRIB = prove( `!x y z. x * (y - z) = (x * y) - (x * z)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_LDISTRIB; REAL_NEG_RMUL]);; let REAL_SUB_RDISTRIB = prove( `!x y z. (x - y) * z = (x * z) - (y * z)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_SUB_LDISTRIB);; let REAL_NEG_EQ = prove( `!x y. (--x = y) <=> (x = --y)`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(SUBST1_TAC o SYM); DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[REAL_NEGNEG]);; let REAL_NEG_MINUS1 = prove( `!x. --x = (--(&1)) * x`, GEN_TAC THEN REWRITE_TAC[GSYM REAL_NEG_LMUL] THEN REWRITE_TAC[REAL_MUL_LID]);; let REAL_INV_NZ = prove( `!x. ~(x = &0) ==> ~(inv x = &0)`, GEN_TAC THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o C AP_THM `x:real` o AP_TERM `(*)`) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_10]);;
let REAL_INVINV = 
prove( `!x. ~(x = &0) ==> (inv (inv x) = x)`,
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_MUL_RINV) THEN ASM_CASES_TAC `inv x = &0` THEN ASM_REWRITE_TAC[REAL_MUL_RZERO; GSYM REAL_10] THEN MP_TAC(SPECL [`inv(inv x)`; `x:real`; `inv x`] REAL_EQ_RMUL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN FIRST_ASSUM ACCEPT_TAC);;
let REAL_LT_IMP_NE = 
prove( `!x y. x < y ==> ~(x = y)`,
REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_LT_REFL]);;
let REAL_INV_POS = 
prove( `!x. &0 < x ==> &0 < inv x`,
GEN_TAC THEN DISCH_TAC THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPECL [`inv x`; `&0`] REAL_LT_TOTAL) THENL [POP_ASSUM(ASSUME_TAC o MATCH_MP REAL_INV_NZ o GSYM o MATCH_MP REAL_LT_IMP_NE) THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[GSYM REAL_NEG_GT0] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_MUL o C CONJ (ASSUME `&0 < x`)) THEN REWRITE_TAC[GSYM REAL_NEG_LMUL] THEN POP_ASSUM(fun th -> REWRITE_TAC [MATCH_MP REAL_MUL_LINV (GSYM (MATCH_MP REAL_LT_IMP_NE th))]) THEN REWRITE_TAC[REAL_NEG_GT0] THEN DISCH_THEN(MP_TAC o CONJ REAL_LT_01) THEN REWRITE_TAC[REAL_LT_ANTISYM]; REWRITE_TAC[]]);;
let REAL_LT_LMUL_0 = 
prove( `!x y. &0 < x ==> (&0 < (x * y) <=> &0 < y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THENL [FIRST_ASSUM(fun th -> DISCH_THEN(MP_TAC o CONJ (MATCH_MP REAL_INV_POS th))) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_MUL) THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC [MATCH_MP REAL_MUL_LINV (GSYM (MATCH_MP REAL_LT_IMP_NE th))]) THEN REWRITE_TAC[REAL_MUL_LID]; DISCH_TAC THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[]]);;
let REAL_LT_RMUL_0 = 
prove( `!x y. &0 < y ==> (&0 < (x * y) <=> &0 < x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LT_LMUL_0);;
let REAL_LT_LMUL_EQ = 
prove( `!x y z. &0 < x ==> ((x * y) < (x * z) <=> y < z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN POP_ASSUM MP_TAC THEN MATCH_ACCEPT_TAC REAL_LT_LMUL_0);;
let REAL_LT_RMUL_EQ = 
prove( `!x y z. &0 < z ==> ((x * z) < (y * z) <=> x < y)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LT_LMUL_EQ);;
let REAL_LT_RMUL_IMP = 
prove( `!x y z. x < y /\ &0 < z ==> (x * z) < (y * z)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN POP_ASSUM(fun th -> REWRITE_TAC[GEN_ALL(MATCH_MP REAL_LT_RMUL_EQ th)]));;
let REAL_LT_LMUL_IMP = 
prove( `!x y z. y < z /\ &0 < x ==> (x * y) < (x * z)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN POP_ASSUM(fun th -> REWRITE_TAC[GEN_ALL(MATCH_MP REAL_LT_LMUL_EQ th)]));;
let REAL_LINV_UNIQ = 
prove( `!x y. (x * y = &1) ==> (x = inv y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; GSYM REAL_10] THEN DISCH_THEN(MP_TAC o AP_TERM `(*) (inv x)`) THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RID] THEN DISCH_THEN SUBST1_TAC THEN CONV_TAC SYM_CONV THEN POP_ASSUM MP_TAC THEN MATCH_ACCEPT_TAC REAL_INVINV);; let REAL_RINV_UNIQ = prove( `!x y. (x * y = &1) ==> (y = inv x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LINV_UNIQ);; let REAL_NEG_INV = prove( `!x. ~(x = &0) ==> (--(inv x) = inv(--x))`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LINV_UNIQ THEN REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL] THEN POP_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_NEGNEG]);; let REAL_INV_1OVER = prove( `!x. inv x = &1 / x`, GEN_TAC THEN REWRITE_TAC[real_div; REAL_MUL_LID]);; (*----------------------------------------------------------------------------*) (* Prove homomorphisms for the inclusion map *) (*----------------------------------------------------------------------------*)
let REAL = prove(
  `!n. &(SUC n) = &n + &1`,
  REWRITE_TAC[ADD1; REAL_OF_NUM_ADD]);;
let REAL_POS = 
prove( `!n. &0 <= &n`,
INDUCT_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&n` THEN ASM_REWRITE_TAC[REAL] THEN REWRITE_TAC[REAL_LE_ADDR; REAL_LE_01]);;
let REAL_LE = 
prove( `!m n. &m <= &n <=> m <= n`,
REPEAT INDUCT_TAC THEN ASM_REWRITE_TAC [REAL; REAL_LE_RADD; LE_0; LE_SUC; REAL_LE_REFL] THEN REWRITE_TAC[GSYM NOT_LT; LT_0] THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&n` THEN ASM_REWRITE_TAC[LE_0; REAL_LE_ADDR; REAL_LE_01]; DISCH_THEN(MP_TAC o C CONJ (SPEC `m:num` REAL_POS)) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_TRANS) THEN REWRITE_TAC[REAL_NOT_LE; REAL_LT_ADDR; REAL_LT_01]]);;
let REAL_LT = 
prove( `!m n. &m < &n <=> m < n`,
REPEAT GEN_TAC THEN MATCH_ACCEPT_TAC ((REWRITE_RULE[] o AP_TERM `(~)` o REWRITE_RULE[GSYM NOT_LT; GSYM REAL_NOT_LT]) (SPEC_ALL REAL_LE)));;
let REAL_INJ = 
prove( `!m n. (&m = &n) <=> (m = n)`,
let th = prove(`(m = n) <=> m:num <= n /\ n <= m`,
                 EQ_TAC THENL
                  [DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[LE_REFL];
                   MATCH_ACCEPT_TAC LESS_EQUAL_ANTISYM]) in
  REPEAT GEN_TAC THEN REWRITE_TAC[th; GSYM REAL_LE_ANTISYM; REAL_LE]);;
let REAL_ADD = 
prove( `!m n. &m + &n = &(m + n)`,
INDUCT_TAC THEN REWRITE_TAC[REAL; ADD; REAL_ADD_LID] THEN RULE_ASSUM_TAC GSYM THEN GEN_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ADD_AC]);;
let REAL_MUL = 
prove( `!m n. &m * &n = &(m * n)`,
INDUCT_TAC THEN REWRITE_TAC[REAL_MUL_LZERO; MULT_CLAUSES; REAL; GSYM REAL_ADD; REAL_RDISTRIB] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM th]) THEN REWRITE_TAC[REAL_MUL_LID]);;
(*----------------------------------------------------------------------------*) (* Now more theorems *) (*----------------------------------------------------------------------------*)
let REAL_INV1 = 
prove( `inv(&1) = &1`,
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_LINV_UNIQ THEN REWRITE_TAC[REAL_MUL_LID]);;
let REAL_DIV_LZERO = 
prove( `!x. &0 / x = &0`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_div; REAL_MUL_LZERO]);;
let REAL_LT_NZ = 
prove( `!n. ~(&n = &0) <=> (&0 < &n)`,
GEN_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN CONV_TAC(RAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN ASM_CASES_TAC `&n = &0` THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_POS]);;
let REAL_NZ_IMP_LT = 
prove( `!n. ~(n = 0) ==> &0 < &n`,
GEN_TAC THEN REWRITE_TAC[GSYM REAL_INJ; REAL_LT_NZ]);;
let REAL_LT_RDIV_0 = 
prove( `!y z. &0 < z ==> (&0 < (y / z) <=> &0 < y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LT_RMUL_0 THEN MATCH_MP_TAC REAL_INV_POS THEN POP_ASSUM ACCEPT_TAC);;
let REAL_LT_RDIV = 
prove( `!x y z. &0 < z ==> ((x / z) < (y / z) <=> x < y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LT_RMUL_EQ THEN MATCH_MP_TAC REAL_INV_POS THEN POP_ASSUM ACCEPT_TAC);;
let REAL_LT_FRACTION_0 = 
prove( `!n d. ~(n = 0) ==> (&0 < (d / &n) <=> &0 < d)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LT_RDIV_0 THEN ASM_REWRITE_TAC[GSYM REAL_LT_NZ; REAL_INJ]);;
let REAL_LT_MULTIPLE = 
prove( `!n d. 1 < n ==> (d < (&n * d) <=> &0 < d)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN INDUCT_TAC THENL [REWRITE_TAC[num_CONV `1`; NOT_LESS_0]; POP_ASSUM MP_TAC THEN ASM_CASES_TAC `1 < n` THEN ASM_REWRITE_TAC[] THENL [DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[REAL; REAL_LDISTRIB; REAL_MUL_RID; REAL_LT_ADDL] THEN MATCH_MP_TAC REAL_LT_RMUL_0 THEN REWRITE_TAC[REAL_LT] THEN MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `1` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[num_CONV `1`; LT_0]; GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LESS_LEMMA1) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL; REAL_LDISTRIB; REAL_MUL_RID] THEN REWRITE_TAC[REAL_LT_ADDL]]]);;
let REAL_LT_FRACTION = 
prove( `!n d. (1 < n) ==> ((d / &n) < d <=> &0 < d)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[NOT_LESS_0] THEN DISCH_TAC THEN UNDISCH_TAC `1 < n` THEN FIRST_ASSUM(fun th -> let th1 = REWRITE_RULE[GSYM REAL_INJ] th in MAP_EVERY ASSUME_TAC [th1; REWRITE_RULE[REAL_LT_NZ] th1]) THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM(MATCH_MP REAL_LT_RMUL_EQ th)]) THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_MUL_RID] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LT_MULTIPLE);;
let REAL_LT_HALF1 = 
prove( `!d. &0 < (d / &2) <=> &0 < d`,
GEN_TAC THEN MATCH_MP_TAC REAL_LT_FRACTION_0 THEN REWRITE_TAC[num_CONV `2`; NOT_SUC]);;
let REAL_LT_HALF2 = 
prove( `!d. (d / &2) < d <=> &0 < d`,
GEN_TAC THEN MATCH_MP_TAC REAL_LT_FRACTION THEN CONV_TAC(RAND_CONV num_CONV) THEN REWRITE_TAC[LESS_SUC_REFL]);;
let REAL_DOUBLE = 
prove( `!x. x + x = &2 * x`,
GEN_TAC THEN REWRITE_TAC[num_CONV `2`; REAL] THEN REWRITE_TAC[REAL_RDISTRIB; REAL_MUL_LID]);;
let REAL_HALF_DOUBLE = 
prove( `!x. (x / &2) + (x / &2) = x`,
GEN_TAC THEN REWRITE_TAC[REAL_DOUBLE] THEN MATCH_MP_TAC REAL_DIV_LMUL THEN REWRITE_TAC[REAL_INJ] THEN REWRITE_TAC[num_CONV `2`; NOT_SUC]);;
let REAL_SUB_SUB = 
prove( `!x y. (x - y) - x = --y`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + c = (c + a) + b`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_LT_ADD_SUB = 
prove( `!x y z. (x + y) < z <=> x < (z - y)`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`x:real`; `z - y`; `y:real`] REAL_LT_RADD)) THEN REWRITE_TAC[REAL_SUB_ADD]);;
let REAL_LT_SUB_RADD = 
prove( `!x y z. (x - y) < z <=> x < z + y`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`x - y`; `z:real`; `y:real`] REAL_LT_RADD)) THEN REWRITE_TAC[REAL_SUB_ADD]);;
let REAL_LT_SUB_LADD = 
prove( `!x y z. x < (y - z) <=> (x + z) < y`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`x + z`; `y:real`; `--z`] REAL_LT_RADD)) THEN REWRITE_TAC[real_sub; GSYM REAL_ADD_ASSOC; REAL_ADD_RINV; REAL_ADD_RID]);;
let REAL_LE_SUB_LADD = 
prove( `!x y z. x <= (y - z) <=> (x + z) <= y`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT; REAL_LT_SUB_RADD]);;
let REAL_LE_SUB_RADD = 
prove( `!x y z. (x - y) <= z <=> x <= z + y`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT; REAL_LT_SUB_LADD]);;
let REAL_LT_NEG = 
prove( `!x y. --x < --y <=> y < x`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL[`--x`; `--y`; `x + y`] REAL_LT_RADD)) THEN REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_RINV; REAL_ADD_LID]);;
let REAL_LE_NEG = 
prove( `!x y. --x <= --y <=> y <= x`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN REWRITE_TAC[REAL_LT_NEG]);;
let REAL_SUB_LZERO = 
prove( `!x. &0 - x = --x`,
GEN_TAC THEN REWRITE_TAC[real_sub; REAL_ADD_LID]);;
let REAL_SUB_RZERO = 
prove( `!x. x - &0 = x`,
GEN_TAC THEN REWRITE_TAC[real_sub; REAL_NEG_0; REAL_ADD_RID]);;
let REAL_LTE_ADD2 = 
prove( `!w x y z. w < x /\ y <= z ==> (w + y) < (x + z)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_LET_ADD2);;
let REAL_LTE_ADD = 
prove( `!x y. &0 < x /\ &0 <= y ==> &0 < (x + y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SUBST1_TAC(SYM(SPEC `&0` REAL_ADD_LID)) THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[]);;
let REAL_LT_MUL2_ALT = 
prove( `!x1 x2 y1 y2. &0 <= x1 /\ &0 <= y1 /\ x1 < x2 /\ y1 < y2 ==> (x1 * y1) < (x2 * y2)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN REWRITE_TAC[REAL_SUB_RZERO] THEN SUBGOAL_THEN `!a b c d. (a * b) - (c * d) = ((a * b) - (a * d)) + ((a * d) - (c * d))` MP_TAC THENL [REPEAT GEN_TAC THEN REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (b + c) + (a + d)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]; DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_SUB_RDISTRIB] THEN DISCH_THEN STRIP_ASSUME_TAC THEN MATCH_MP_TAC REAL_LTE_ADD THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `x1:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]]);;
let REAL_SUB_LNEG = 
prove( `!x y. (--x) - y = --(x + y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_NEG_ADD]);;
let REAL_SUB_RNEG = 
prove( `!x y. x - (--y) = x + y`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_NEGNEG]);;
let REAL_SUB_NEG2 = 
prove( `!x y. (--x) - (--y) = y - x`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SUB_LNEG] THEN REWRITE_TAC[real_sub; REAL_NEG_ADD; REAL_NEGNEG] THEN MATCH_ACCEPT_TAC REAL_ADD_SYM);;
let REAL_SUB_TRIANGLE = 
prove( `!a b c. (a - b) + (b - c) = a - c`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (b + c) + (a + d)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let REAL_INV_MUL_WEAK = 
prove( `!x y. ~(x = &0) /\ ~(y = &0) ==> (inv(x * y) = inv(x) * inv(y))`,
REWRITE_TAC[REAL_INV_MUL]);;
let REAL_LE_LMUL_LOCAL = 
prove( `!x y z. &0 < x ==> ((x * y) <= (x * z) <=> y <= z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN AP_TERM_TAC THEN MATCH_MP_TAC REAL_LT_LMUL_EQ THEN ASM_REWRITE_TAC[]);;
let REAL_LE_RMUL_EQ = 
prove( `!x y z. &0 < z ==> ((x * z) <= (y * z) <=> x <= y)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LE_LMUL_LOCAL);;
let REAL_SUB_INV2 = 
prove( `!x y. ~(x = &0) /\ ~(y = &0) ==> (inv(x) - inv(y) = (y - x) / (x * y))`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN REWRITE_TAC[real_div; REAL_SUB_RDISTRIB] THEN SUBGOAL_THEN `inv(x * y) = inv(x) * inv(y)` SUBST1_TAC THENL [MATCH_MP_TAC REAL_INV_MUL_WEAK THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_RINV th]) THEN REWRITE_TAC[REAL_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_MUL_LID]);;
let REAL_SUB_SUB2 = 
prove( `!x y. x - (x - y) = y`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_NEGNEG] THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_NEG_SUB; REAL_SUB_SUB]);;
let REAL_MEAN = 
prove( `!x y. x < y ==> ?z. x < z /\ z < y`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_DOWN o ONCE_REWRITE_RULE[GSYM REAL_SUB_LT]) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `x + d` THEN ASM_REWRITE_TAC[REAL_LT_ADDR] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[GSYM REAL_LT_SUB_LADD]);;
let REAL_EQ_LMUL2 = 
prove( `!x y z. ~(x = &0) ==> ((y = z) <=> (x * y = x * z))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`x:real`; `y:real`; `z:real`] REAL_EQ_LMUL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN REFL_TAC);;
let REAL_LE_MUL2V = 
prove( `!x1 x2 y1 y2. (& 0) <= x1 /\ (& 0) <= y1 /\ x1 <= x2 /\ y1 <= y2 ==> (x1 * y1) <= (x2 * y2)`,
REPEAT GEN_TAC THEN SUBST1_TAC(SPECL [`x1:real`; `x2:real`] REAL_LE_LT) THEN ASM_CASES_TAC `x1:real = x2` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [UNDISCH_TAC `&0 <= x2` THEN DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[REAL_LE_LT]) THENL [FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP REAL_LE_LMUL_LOCAL th]); SUBST1_TAC(SYM(ASSUME `&0 = x2`)) THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_LE_REFL]]; ALL_TAC] THEN UNDISCH_TAC `y1 <= y2` THEN DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[REAL_LE_LT]) THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN MATCH_MP_TAC REAL_LT_MUL2_ALT THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]] THEN UNDISCH_TAC `&0 <= y1` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[REAL_LE_LT]) THENL [FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP REAL_LE_RMUL_EQ th]) THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; SUBST1_TAC(SYM(ASSUME `&0 = y2`)) THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_LE_REFL]]);;
let REAL_LE_LDIV = 
prove( `!x y z. &0 < x /\ y <= (z * x) ==> (y / x) <= z`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN SUBGOAL_THEN `y = (y / x) * x` MP_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_RMUL THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN POP_ASSUM ACCEPT_TAC; DISCH_THEN(fun t -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [t]) THEN MATCH_MP_TAC REAL_LE_RMUL_EQ THEN POP_ASSUM ACCEPT_TAC]);;
let REAL_LE_RDIV = 
prove( `!x y z. &0 < x /\ (y * x) <= z ==> y <= (z / x)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC EQ_IMP THEN SUBGOAL_THEN `z = (z / x) * x` MP_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_RMUL THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN POP_ASSUM ACCEPT_TAC; DISCH_THEN(fun t -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [t]) THEN MATCH_MP_TAC REAL_LE_RMUL_EQ THEN POP_ASSUM ACCEPT_TAC]);;
let REAL_LT_1 = 
prove( `!x y. &0 <= x /\ x < y ==> (x / y) < &1`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `(x / y) < &1 <=> ((x / y) * y) < (&1 * y)` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_LT_RMUL_EQ THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; SUBGOAL_THEN `(x / y) * y = x` SUBST1_TAC THENL [MATCH_MP_TAC REAL_DIV_RMUL THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[REAL_MUL_LID]]]);;
let REAL_LE_LMUL_IMP = 
prove( `!x y z. &0 <= x /\ y <= z ==> (x * y) <= (x * z)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(DISJ_CASES_TAC o REWRITE_RULE[REAL_LE_LT]) THENL [FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP REAL_LE_LMUL_LOCAL th]); FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL_MUL_LZERO] THEN MATCH_ACCEPT_TAC REAL_LE_REFL]);;
let REAL_LE_RMUL_IMP = 
prove( `!x y z. &0 <= x /\ y <= z ==> (y * x) <= (z * x)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_LE_LMUL_IMP);;
let REAL_INV_LT1 = 
prove( `!x. &0 < x /\ x < &1 ==> &1 < inv(x)`,
GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_INV_POS) THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN PURE_REWRITE_TAC[REAL_NOT_LT] THEN REWRITE_TAC[REAL_LE_LT] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [DISCH_TAC THEN MP_TAC(SPECL [`inv(x)`; `&1`; `x:real`; `&1`] REAL_LT_MUL2_ALT) THEN ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_NE) THEN REWRITE_TAC[REAL_MUL_LID] THEN MATCH_MP_TAC REAL_MUL_LINV THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&0 < &0` THEN REWRITE_TAC[REAL_LT_REFL]]; DISCH_THEN(MP_TAC o AP_TERM `inv`) THEN REWRITE_TAC[REAL_INV1] THEN SUBGOAL_THEN `inv(inv x) = x` SUBST1_TAC THENL [MATCH_MP_TAC REAL_INVINV THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN FIRST_ASSUM ACCEPT_TAC; DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&1 < &1` THEN REWRITE_TAC[REAL_LT_REFL]]]);;
let REAL_POS_NZ = 
prove( `!x. &0 < x ==> ~(x = &0)`,
GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP REAL_LT_IMP_NE) THEN CONV_TAC(RAND_CONV SYM_CONV) THEN POP_ASSUM ACCEPT_TAC);;
let REAL_EQ_RMUL_IMP = 
prove( `!x y z. ~(z = &0) /\ (x * z = y * z) ==> (x = y)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[REAL_EQ_RMUL]);;
let REAL_EQ_LMUL_IMP = 
prove( `!x y z. ~(x = &0) /\ (x * y = x * z) ==> (y = z)`,
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC REAL_EQ_RMUL_IMP);;
let REAL_FACT_NZ = 
prove( `!n. ~(&(FACT n) = &0)`,
GEN_TAC THEN MATCH_MP_TAC REAL_POS_NZ THEN REWRITE_TAC[REAL_LT; FACT_LT]);;
let REAL_POSSQ = 
prove( `!x. &0 < (x * x) <=> ~(x = &0)`,
GEN_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LE] THEN AP_TERM_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o C CONJ (SPEC `x:real` REAL_LE_SQUARE)) THEN REWRITE_TAC[REAL_LE_ANTISYM; REAL_ENTIRE]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_LE_REFL]]);;
let REAL_SUMSQ = 
prove( `!x y. ((x * x) + (y * y) = &0) <=> (x = &0) /\ (y = &0)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM] THEN DISCH_THEN DISJ_CASES_TAC THEN MATCH_MP_TAC REAL_POS_NZ THENL [MATCH_MP_TAC REAL_LTE_ADD; MATCH_MP_TAC REAL_LET_ADD] THEN ASM_REWRITE_TAC[REAL_POSSQ; REAL_LE_SQUARE]; DISCH_TAC THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID]]);;
let REAL_EQ_NEG = 
prove( `!x y. (--x = --y) <=> (x = y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM; REAL_LE_NEG] THEN MATCH_ACCEPT_TAC CONJ_SYM);;
let REAL_DIV_MUL2 = 
prove( `!x z. ~(x = &0) /\ ~(z = &0) ==> !y. y / z = (x * y) / (x * z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN REWRITE_TAC[real_div] THEN IMP_SUBST_TAC REAL_INV_MUL_WEAK THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (c * a) * (b * d)`] THEN IMP_SUBST_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_MUL_LID]);;
let REAL_MIDDLE1 = 
prove( `!a b. a <= b ==> a <= (a + b) / &2`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_RDIV THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_DOUBLE] THEN ASM_REWRITE_TAC[GSYM REAL_DOUBLE; REAL_LE_LADD] THEN REWRITE_TAC[num_CONV `2`; REAL_LT; LT_0]);;
let REAL_MIDDLE2 = 
prove( `!a b. a <= b ==> ((a + b) / &2) <= b`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_LDIV THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_DOUBLE] THEN ASM_REWRITE_TAC[GSYM REAL_DOUBLE; REAL_LE_RADD] THEN REWRITE_TAC[num_CONV `2`; REAL_LT; LT_0]);;
(*----------------------------------------------------------------------------*) (* Define usual norm (absolute distance) on the real line *) (*----------------------------------------------------------------------------*)
let ABS_ZERO = 
prove( `!x. (abs(x) = &0) <=> (x = &0)`,
GEN_TAC THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_NEG_EQ0]);;
let ABS_0 = 
prove( `abs(&0) = &0`,
REWRITE_TAC[ABS_ZERO]);;
let ABS_1 = 
prove( `abs(&1) = &1`,
REWRITE_TAC[real_abs; REAL_LE; LE_0]);;
let ABS_NEG = 
prove( `!x. abs(--x) = abs(x)`,
GEN_TAC THEN REWRITE_TAC[real_abs; REAL_NEGNEG; REAL_NEG_GE0] THEN REPEAT COND_CASES_TAC THEN REWRITE_TAC[] THENL [MP_TAC(CONJ (ASSUME `&0 <= x`) (ASSUME `x <= &0`)) THEN REWRITE_TAC[REAL_LE_ANTISYM] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL_NEG_0]; RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LE]) THEN W(MP_TAC o end_itlist CONJ o map snd o fst) THEN REWRITE_TAC[REAL_LT_ANTISYM]]);;
let ABS_TRIANGLE = 
prove( `!x y. abs(x + y) <= abs(x) + abs(y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN REPEAT COND_CASES_TAC THEN REWRITE_TAC[REAL_NEG_ADD; REAL_LE_REFL; REAL_LE_LADD; REAL_LE_RADD] THEN ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_LE_NEGL; REAL_LE_NEGR] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LE]) THEN TRY(MATCH_MP_TAC REAL_LT_IMP_LE) THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN TRY(UNDISCH_TAC `(x + y) < &0`) THEN SUBST1_TAC(SYM(SPEC `&0` REAL_ADD_LID)) THEN REWRITE_TAC[REAL_NOT_LT] THEN MAP_FIRST MATCH_MP_TAC [REAL_LT_ADD2; REAL_LE_ADD2] THEN ASM_REWRITE_TAC[]);;
let ABS_POS = 
prove( `!x. &0 <= abs(x)`,
GEN_TAC THEN ASM_CASES_TAC `&0 <= x` THENL [ALL_TAC; MP_TAC(SPEC `x:real` REAL_LE_NEGTOTAL) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC] THEN ASM_REWRITE_TAC[real_abs]);;
let ABS_MUL = 
prove( `!x y. abs(x * y) = abs(x) * abs(y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `&0 <= x` THENL [ALL_TAC; MP_TAC(SPEC `x:real` REAL_LE_NEGTOTAL) THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ABS_NEG] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM ABS_NEG] THEN REWRITE_TAC[REAL_NEG_LMUL]] THEN (ASM_CASES_TAC `&0 <= y` THENL [ALL_TAC; MP_TAC(SPEC `y:real` REAL_LE_NEGTOTAL) THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ABS_NEG] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM ABS_NEG] THEN REWRITE_TAC[REAL_NEG_RMUL]]) THEN ASSUM_LIST(ASSUME_TAC o MATCH_MP REAL_LE_MUL o end_itlist CONJ o rev) THEN ASM_REWRITE_TAC[real_abs]);;
let ABS_LT_MUL2 = 
prove( `!w x y z. abs(w) < y /\ abs(x) < z ==> abs(w * x) < (y * z)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[ABS_MUL] THEN MATCH_MP_TAC REAL_LT_MUL2_ALT THEN ASM_REWRITE_TAC[ABS_POS]);;
let ABS_SUB = 
prove( `!x y. abs(x - y) = abs(y - x)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_NEG_SUB] THEN REWRITE_TAC[ABS_NEG]);;
let ABS_NZ = 
prove( `!x. ~(x = &0) <=> &0 < abs(x)`,
GEN_TAC THEN EQ_TAC THENL [ONCE_REWRITE_TAC[GSYM ABS_ZERO] THEN REWRITE_TAC[TAUT `~a ==> b <=> b \/ a`] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN REWRITE_TAC[GSYM REAL_LE_LT; ABS_POS]; CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[real_abs; REAL_LT_REFL; REAL_LE_REFL]]);;
let ABS_INV = 
prove( `!x. ~(x = &0) ==> (abs(inv x) = inv(abs(x)))`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LINV_UNIQ THEN REWRITE_TAC[GSYM ABS_MUL] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[real_abs; REAL_LE] THEN REWRITE_TAC[num_CONV `1`; GSYM NOT_LT; NOT_LESS_0]);;
let ABS_ABS = 
prove( `!x. abs(abs(x)) = abs(x)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [real_abs] THEN REWRITE_TAC[ABS_POS]);;
let ABS_LE = 
prove( `!x. x <= abs(x)`,
GEN_TAC THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN REWRITE_TAC[REAL_LE_NEGR] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[REAL_NOT_LE]);;
let ABS_REFL = 
prove( `!x. (abs(x) = x) <=> &0 <= x`,
GEN_TAC THEN REWRITE_TAC[real_abs] THEN ASM_CASES_TAC `&0 <= x` THEN ASM_REWRITE_TAC[] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN ONCE_REWRITE_TAC[GSYM REAL_RNEG_UNIQ] THEN REWRITE_TAC[REAL_DOUBLE; REAL_ENTIRE; REAL_INJ] THEN REWRITE_TAC[num_CONV `2`; NOT_SUC] THEN DISCH_THEN SUBST_ALL_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[REAL_LE_REFL]);;
let ABS_N = 
prove( `!n. abs(&n) = &n`,
GEN_TAC THEN REWRITE_TAC[ABS_REFL; REAL_LE; LE_0]);;
let ABS_BETWEEN = 
prove( `!x y d. &0 < d /\ ((x - d) < y) /\ (y < (x + d)) <=> abs(y - x) < d`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN REWRITE_TAC[REAL_SUB_LE] THEN REWRITE_TAC[REAL_NEG_SUB] THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LT_SUB_RADD] THEN GEN_REWRITE_TAC (funpow 2 RAND_CONV) [REAL_ADD_SYM] THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THENL [SUBGOAL_THEN `x < (x + d)` MP_TAC THENL [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REAL_LT_ADDR] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN ASM_REWRITE_TAC[REAL_LT_ADDR]; RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LE]) THEN SUBGOAL_THEN `y < (y + d)` MP_TAC THENL [MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REAL_LT_ADDR] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LT_ADDR]]);;
let ABS_BOUND = 
prove( `!x y d. abs(x - y) < d ==> y < (x + d)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ABS_SUB] THEN ONCE_REWRITE_TAC[GSYM ABS_BETWEEN] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
let ABS_STILLNZ = 
prove( `!x y. abs(x - y) < abs(y) ==> ~(x = &0)`,
REPEAT GEN_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_SUB_LZERO; ABS_NEG; REAL_LT_REFL]);;
let ABS_CASES = 
prove( `!x. (x = &0) \/ &0 < abs(x)`,
GEN_TAC THEN REWRITE_TAC[GSYM ABS_NZ] THEN BOOL_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[]);;
let ABS_BETWEEN1 = 
prove( `!x y z. x < z /\ (abs(y - x)) < (z - x) ==> y < z`,
REPEAT GEN_TAC THEN DISJ_CASES_TAC (SPECL [`x:real`; `y:real`] REAL_LET_TOTAL) THENL [ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN REWRITE_TAC[real_sub; REAL_LT_RADD] THEN DISCH_THEN(ACCEPT_TAC o CONJUNCT2); DISCH_TAC THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]]);;
let ABS_SIGN = 
prove( `!x y. abs(x - y) < y ==> &0 < x`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ABS_BOUND) THEN REWRITE_TAC[REAL_LT_ADDL]);;
let ABS_SIGN2 = 
prove( `!x y. abs(x - y) < --y ==> x < &0`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`--x`; `--y`] ABS_SIGN) THEN REWRITE_TAC[REAL_SUB_NEG2] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN REWRITE_TAC[GSYM REAL_NEG_LT0; REAL_NEGNEG]);;
let ABS_DIV = 
prove( `!y. ~(y = &0) ==> !x. abs(x / y) = abs(x) / abs(y)`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[ABS_MUL] THEN POP_ASSUM(fun th -> REWRITE_TAC[MATCH_MP ABS_INV th]));;
let ABS_CIRCLE = 
prove( `!x y h. abs(h) < (abs(y) - abs(x)) ==> abs(x + h) < abs(y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x) + abs(h)` THEN REWRITE_TAC[ABS_TRIANGLE] THEN POP_ASSUM(MP_TAC o CONJ (SPEC `abs(x)` REAL_LE_REFL)) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LET_ADD2) THEN REWRITE_TAC[REAL_SUB_ADD2]);;
let REAL_SUB_ABS = 
prove( `!x y. (abs(x) - abs(y)) <= abs(x - y)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(abs(x - y) + abs(y)) - abs(y)` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[real_sub] THEN REWRITE_TAC[REAL_LE_RADD] THEN SUBST1_TAC(SYM(SPECL [`x:real`; `y:real`] REAL_SUB_ADD)) THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_SUB_ADD] THEN MATCH_ACCEPT_TAC ABS_TRIANGLE; ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_ADD_SUB; REAL_LE_REFL]]);;
let ABS_SUB_ABS = 
prove( `!x y. abs(abs(x) - abs(y)) <= abs(x - y)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [real_abs] THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_SUB_ABS] THEN REWRITE_TAC[REAL_NEG_SUB] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN REWRITE_TAC[REAL_SUB_ABS]);;
let ABS_BETWEEN2 = 
prove( `!x0 x y0 y. x0 < y0 /\ abs(x - x0) < (y0 - x0) / &2 /\ abs(y - y0) < (y0 - x0) / &2 ==> x < y`,
REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `x < y0 /\ x0 < y` STRIP_ASSUME_TAC THENL [CONJ_TAC THENL [MP_TAC(SPECL [`x0:real`; `x:real`; `y0 - x0`] ABS_BOUND) THEN REWRITE_TAC[REAL_SUB_ADD2] THEN DISCH_THEN MATCH_MP_TAC THEN ONCE_REWRITE_TAC[ABS_SUB] THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `(y0 - x0) / &2` THEN ASM_REWRITE_TAC[REAL_LT_HALF2] THEN ASM_REWRITE_TAC[REAL_SUB_LT]; GEN_REWRITE_TAC I [TAUT `a = ~ ~a`] THEN PURE_REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC THEN MP_TAC(AC REAL_ADD_AC `(y0 + --x0) + (x0 + --y) = (--x0 + x0) + (y0 + --y)`) THEN REWRITE_TAC[GSYM real_sub; REAL_ADD_LINV; REAL_ADD_LID] THEN DISCH_TAC THEN MP_TAC(SPECL [`y0 - x0`; `x0 - y`] REAL_LE_ADDR) THEN ASM_REWRITE_TAC[REAL_SUB_LE] THEN DISCH_TAC THEN SUBGOAL_THEN `~(y0 <= y)` ASSUME_TAC THENL [REWRITE_TAC[REAL_NOT_LE] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `y0 - x0` THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[REAL_SUB_LT]; ALL_TAC] THEN UNDISCH_TAC `abs(y - y0) < (y0 - x0) / &2` THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN REWRITE_TAC[REAL_NEG_SUB] THEN DISCH_TAC THEN SUBGOAL_THEN `(y0 - x0) < (y0 - x0) / &2` MP_TAC THENL [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y0 - y` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REAL_NOT_LT] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN REWRITE_TAC[REAL_LT_HALF2] THEN ASM_REWRITE_TAC[REAL_SUB_LT]]; ALL_TAC] THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN PURE_REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC THEN SUBGOAL_THEN `abs(x0 - y) < (y0 - x0) / &2` ASSUME_TAC THENL [REWRITE_TAC[real_abs; REAL_SUB_LE] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT] THEN REWRITE_TAC[REAL_NEG_SUB] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `x - x0` THEN REWRITE_TAC[real_sub; REAL_LE_RADD] THEN ASM_REWRITE_TAC[GSYM real_sub] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x - x0)` THEN ASM_REWRITE_TAC[ABS_LE]; ALL_TAC] THEN SUBGOAL_THEN `abs(y0 - x0) < ((y0 - x0) / &2) + ((y0 - x0) / &2)` MP_TAC THENL [ALL_TAC; REWRITE_TAC[REAL_HALF_DOUBLE; REAL_NOT_LT; ABS_LE]] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(y0 - y) + abs(y - x0)` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC REAL_LT_ADD2 THEN ONCE_REWRITE_TAC[ABS_SUB] THEN ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `y0 - x0 = (y0 - y) + (y - x0)` SUBST1_TAC THEN REWRITE_TAC[ABS_TRIANGLE] THEN REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (b + c) + (a + d)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]);;
let ABS_BOUNDS = 
prove( `!x k. abs(x) <= k <=> --k <= x /\ x <= k`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM REAL_LE_NEG] THEN REWRITE_TAC[REAL_NEGNEG] THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THENL [REWRITE_TAC[TAUT `(a <=> b /\ a) <=> a ==> b`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LE_NEGL]; REWRITE_TAC[TAUT `(a <=> a /\ b) <=> a ==> b`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--x` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LE_NEGR] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE]]);;
(*----------------------------------------------------------------------------*) (* Define integer powers *) (*----------------------------------------------------------------------------*) let pow = real_pow;;
let POW_0 = 
prove( `!n. &0 pow (SUC n) = &0`,
INDUCT_TAC THEN REWRITE_TAC[pow; REAL_MUL_LZERO]);;
let POW_NZ = 
prove( `!c n. ~(c = &0) ==> ~(c pow n = &0)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[pow; REAL_10; REAL_ENTIRE]);;
let POW_INV = 
prove( `!c n. ~(c = &0) ==> (inv(c pow n) = (inv c) pow n)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[pow; REAL_INV1] THEN MP_TAC(SPECL [`c:real`; `c pow n`] REAL_INV_MUL_WEAK) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `~(c pow n = &0)` ASSUME_TAC THENL [MATCH_MP_TAC POW_NZ THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[]);;
let POW_ABS = 
prove( `!c n. abs(c) pow n = abs(c pow n)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[pow; ABS_1; ABS_MUL]);;
let POW_PLUS1 = 
prove( `!e n. &0 < e ==> (&1 + (&n * e)) <= (&1 + e) pow n`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[pow; REAL_MUL_LZERO; REAL_ADD_RID; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + e) * (&1 + (&n * e))` THEN CONJ_TAC THENL [REWRITE_TAC[REAL_RDISTRIB; REAL; REAL_MUL_LID] THEN REWRITE_TAC[REAL_LDISTRIB;REAL_MUL_RID; REAL_ADD_ASSOC; REAL_LE_ADDR] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_LE_SQUARE; REAL_LE; LE_0]; SUBGOAL_THEN `&0 < (&1 + e)` (fun th -> ASM_REWRITE_TAC[MATCH_MP REAL_LE_LMUL_LOCAL th]) THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_LID] THEN MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LT] THEN REWRITE_TAC[num_CONV `1`; LT_0]]);;
let POW_ADD = 
prove( `!c m n. c pow (m + n) = (c pow m) * (c pow n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[pow; ADD_CLAUSES; REAL_MUL_RID] THEN REWRITE_TAC[REAL_MUL_AC]);;
let POW_1 = 
prove( `!x. x pow 1 = x`,
GEN_TAC THEN REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[pow; REAL_MUL_RID]);;
let POW_2 = 
prove( `!x. x pow 2 = x * x`,
GEN_TAC THEN REWRITE_TAC[num_CONV `2`] THEN REWRITE_TAC[pow; POW_1]);;
let POW_POS = 
prove( `!x n. &0 <= x ==> &0 <= (x pow n)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[pow; REAL_LE_01] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]);;
let POW_LE = 
prove( `!n x y. &0 <= x /\ x <= y ==> (x pow n) <= (y pow n)`,
INDUCT_TAC THEN REWRITE_TAC[pow; REAL_LE_REFL] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_MUL2V THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[POW_POS]);;
let POW_M1 = 
prove( `!n. abs((--(&1)) pow n) = &1`,
INDUCT_TAC THEN REWRITE_TAC[pow; ABS_NEG; ABS_1] THEN ASM_REWRITE_TAC[ABS_MUL; ABS_NEG; ABS_1; REAL_MUL_LID]);;
let POW_MUL = 
prove( `!n x y. (x * y) pow n = (x pow n) * (y pow n)`,
INDUCT_TAC THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN REPEAT GEN_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_MUL_AC]);;
let REAL_LE_SQUARE_POW = 
prove( `!x. &0 <= x pow 2`,
GEN_TAC THEN REWRITE_TAC[POW_2; REAL_LE_SQUARE]);;
let ABS_POW2 = 
prove( `!x. abs(x pow 2) = x pow 2`,
GEN_TAC THEN REWRITE_TAC[ABS_REFL; REAL_LE_SQUARE_POW]);;
let REAL_LE1_POW2 = 
prove( `!x. &1 <= x ==> &1 <= (x pow 2)`,
GEN_TAC THEN REWRITE_TAC[POW_2] THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_MUL2V THEN ASM_REWRITE_TAC[REAL_LE_01]);;
let REAL_LT1_POW2 = 
prove( `!x. &1 < x ==> &1 < (x pow 2)`,
GEN_TAC THEN REWRITE_TAC[POW_2] THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LT_MUL2_ALT THEN ASM_REWRITE_TAC[REAL_LE_01]);;
let POW_POS_LT = 
prove( `!x n. &0 < x ==> &0 < (x pow (SUC n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN DISCH_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC POW_POS THEN ASM_REWRITE_TAC[]; CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC POW_NZ THEN CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[]]);;
let POW_2_LE1 = 
prove( `!n. &1 <= &2 pow n`,
INDUCT_TAC THEN REWRITE_TAC[pow; REAL_LE_REFL] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_MUL2V THEN ASM_REWRITE_TAC[REAL_LE] THEN REWRITE_TAC[LE_0; num_CONV `2`; LESS_EQ_SUC_REFL]);;
let POW_2_LT = 
prove( `!n. &n < &2 pow n`,
INDUCT_TAC THEN REWRITE_TAC[pow; REAL_LT_01] THEN REWRITE_TAC[ADD1; GSYM REAL_ADD; GSYM REAL_DOUBLE] THEN MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[POW_2_LE1]);;
let POW_MINUS1 = 
prove( `!n. (--(&1)) pow (2 * n) = &1`,
INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; pow] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; ADD_CLAUSES] THEN REWRITE_TAC[pow] THEN REWRITE_TAC[SYM(num_CONV `2`); SYM(num_CONV `1`)] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL] THEN REWRITE_TAC[REAL_MUL_LID; REAL_NEGNEG]);;
(*----------------------------------------------------------------------------*) (* Derive the supremum property for an arbitrary bounded nonempty set *) (*----------------------------------------------------------------------------*)
let REAL_SUP_EXISTS = 
prove( `!P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (?s. !y. (?x. P x /\ y < x) <=> y < s)`,
GEN_TAC THEN MP_TAC(SPEC `P:real->bool` REAL_COMPLETE) THEN MESON_TAC[REAL_LT_IMP_LE; REAL_LTE_TRANS; REAL_NOT_LT]);;
let sup_def = new_definition
 `sup s = @a. (!x. x IN s ==> x <= a) /\
              (!b. (!x. x IN s ==> x <= b) ==> a <= b)`;;
let sup = 
prove (`sup P = @s. !y. (?x. P x /\ y < x) <=> y < s`,
REWRITE_TAC[sup_def; IN] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[REAL_LTE_TRANS; REAL_NOT_LT; REAL_LE_REFL]);;
let REAL_SUP = 
prove( `!P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (!y. (?x. P x /\ y < x) <=> y < sup P)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o SELECT_RULE o MATCH_MP REAL_SUP_EXISTS) THEN REWRITE_TAC[GSYM sup]);;
let REAL_SUP_UBOUND = 
prove( `!P. (?x. P x) /\ (?z. !x. P x ==> x < z) ==> (!y. P y ==> y <= sup P)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `sup P` o MATCH_MP REAL_SUP) THEN REWRITE_TAC[REAL_LT_REFL] THEN DISCH_THEN(ASSUME_TAC o CONV_RULE NOT_EXISTS_CONV) THEN X_GEN_TAC `x:real` THEN RULE_ASSUM_TAC(SPEC `x:real`) THEN DISCH_THEN (SUBST_ALL_TAC o EQT_INTRO) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[REAL_NOT_LT]);;
let SETOK_LE_LT = 
prove( `!P. (?x. P x) /\ (?z. !x. P x ==> x <= z) <=> (?x. P x) /\ (?z. !x. P x ==> x < z)`,
GEN_TAC THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `z:real`) THENL (map EXISTS_TAC [`z + &1`; `z:real`]) THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN REWRITE_TAC[REAL_LT_ADD1; REAL_LT_IMP_LE]);;
let REAL_SUP_LE = 
prove( `!P. (?x. P x) /\ (?z. !x. P x ==> x <= z) ==> (!y. (?x. P x /\ y < x) <=> y < sup P)`,
GEN_TAC THEN REWRITE_TAC[SETOK_LE_LT; REAL_SUP]);;
let REAL_SUP_UBOUND_LE = 
prove( `!P. (?x. P x) /\ (?z. !x. P x ==> x <= z) ==> (!y. P y ==> y <= sup P)`,
GEN_TAC THEN REWRITE_TAC[SETOK_LE_LT; REAL_SUP_UBOUND]);;
(*----------------------------------------------------------------------------*) (* Prove the Archimedean property *) (*----------------------------------------------------------------------------*)
let REAL_ARCH_SIMPLE = 
prove (`!x. ?n. x <= &n`,
let lemma = prove(`(!x. (?n. x = &n) ==> P x) <=> !n. P(&n)`,MESON_TAC[]) in
  MP_TAC(SPEC `\y. ?n. y = &n` REAL_COMPLETE) THEN REWRITE_TAC[lemma] THEN
  MESON_TAC[REAL_LE_SUB_LADD; REAL_OF_NUM_ADD; REAL_LE_TOTAL;
            REAL_ARITH `~(M <= M - &1)`]);;
let REAL_ARCH = 
prove( `!x. &0 < x ==> !y. ?n. y < &n * x`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a <=> ~(~a)`] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC THEN MP_TAC(SPEC `\z. ?n. z = &n * x` REAL_SUP_LE) THEN BETA_TAC THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 (fst o dest_imp) o snd) THENL [CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`&n * x`; `n:num`] THEN REFL_TAC; EXISTS_TAC `y:real` THEN GEN_TAC THEN DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `sup(\z. ?n. z = &n * x) - x`) THEN REWRITE_TAC[REAL_LT_SUB_RADD; REAL_LT_ADDR] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `n:num`) MP_TAC) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (funpow 3 RAND_CONV) [GSYM REAL_MUL_LID] THEN REWRITE_TAC[GSYM REAL_RDISTRIB] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `sup(\z. ?n. z = &n * x)`) THEN REWRITE_TAC[REAL_LT_REFL] THEN EXISTS_TAC `(&n + &1) * x` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `n + 1` THEN REWRITE_TAC[REAL_ADD]);;
let REAL_ARCH_LEAST = 
prove( `!y. &0 < y ==> !x. &0 <= x ==> ?n. (&n * y) <= x /\ x < (&(SUC n) * y)`,
GEN_TAC THEN DISCH_THEN(ASSUME_TAC o MATCH_MP REAL_ARCH) THEN GEN_TAC THEN POP_ASSUM(ASSUME_TAC o SPEC `x:real`) THEN POP_ASSUM(X_CHOOSE_THEN `n:num` MP_TAC o ONCE_REWRITE_RULE[num_WOP]) THEN REWRITE_TAC[REAL_NOT_LT] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o SPEC `PRE n`)) THEN DISCH_TAC THEN EXISTS_TAC `PRE n` THEN SUBGOAL_THEN `SUC(PRE n) = n` ASSUME_TAC THENL [DISJ_CASES_THEN2 SUBST_ALL_TAC (CHOOSE_THEN SUBST_ALL_TAC) (SPEC `n:num` num_CASES) THENL [UNDISCH_TAC `x < &0 * y` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; GSYM REAL_NOT_LE]; REWRITE_TAC[PRE]]; ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[PRE; LESS_SUC_REFL]]);;
let REAL_POW_LBOUND = 
prove (`!x n. &0 <= x ==> &1 + &n * x <= (&1 + x) pow n`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_ADD_RID; REAL_LE_REFL] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + x) * (&1 + &n * x)` THEN ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ARITH `&0 <= x ==> &0 <= &1 + x`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_ARITH `&1 + (n + &1) * x <= (&1 + x) * (&1 + n * x) <=> &0 <= n * x * x`]);;
let REAL_ARCH_POW = 
prove (`!x y. &1 < x ==> ?n. y < x pow n`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `x - &1` REAL_ARCH) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(MP_TAC o SPEC `y:real`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1 + &n * (x - &1)` THEN ASM_SIMP_TAC[REAL_ARITH `x < y ==> x < &1 + y`] THEN ASM_MESON_TAC[REAL_POW_LBOUND; REAL_SUB_ADD2; REAL_ARITH `&1 < x ==> &0 <= x - &1`]);;
let REAL_ARCH_POW2 = 
prove (`!x. ?n. x < &2 pow n`,
SIMP_TAC[REAL_ARCH_POW; REAL_OF_NUM_LT; ARITH]);;
(* ========================================================================= *) (* Finite sums. NB: sum(m,n) f = f(m) + f(m+1) + ... + f(m+n-1) *) (* ========================================================================= *) prioritize_real();; make_overloadable "sum" `:A->(B->real)->real`;; overload_interface("sum",`sum:(A->bool)->(A->real)->real`);; overload_interface("sum",`psum:(num#num)->(num->real)->real`);;
let sum_EXISTS = 
prove (`?sum. (!f n. sum(n,0) f = &0) /\ (!f m n. sum(n,SUC m) f = sum(n,m) f + f(n + m))`,
(CHOOSE_TAC o prove_recursive_functions_exist num_RECURSION) `(!f n. sm n 0 f = &0) /\ (!f m n. sm n (SUC m) f = sm n m f + f(n + m))` THEN EXISTS_TAC `\(n,m) f. (sm:num->num->(num->real)->real) n m f` THEN CONV_TAC(DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[]);;
let sum_DEF = new_specification ["psum"] sum_EXISTS;;
let sum = 
prove (`(sum(n,0) f = &0) /\ (sum(n,SUC m) f = sum(n,m) f + f(n + m))`,
REWRITE_TAC[sum_DEF]);;
(* ------------------------------------------------------------------------- *) (* Relation to the standard notion. *) (* ------------------------------------------------------------------------- *)
let PSUM_SUM = 
prove (`!f m n. sum(m,n) f = sum {i | m <= i /\ i < m + n} f`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum] THENL [SUBGOAL_THEN `{i | m <= i /\ i < m + 0} = {}` (fun th -> SIMP_TAC[th; SUM_CLAUSES]) THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `FINITE {i | m <= i /\ i < m + n} /\ {i | m <= i /\ i < m + SUC n} = (m + n) INSERT {i | m <= i /\ i < m + n}` (fun th -> ASM_SIMP_TAC[th; SUM_CLAUSES; IN_ELIM_THM; LT_REFL; REAL_ADD_AC]) THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `m..m+n` THEN REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_ELIM_THM]; REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT]] THEN ARITH_TAC);;
let PSUM_SUM_NUMSEG = 
prove (`!f m n. ~(m = 0 /\ n = 0) ==> sum(m,n) f = sum(m..(m+n)-1) f`,
REPEAT STRIP_TAC THEN REWRITE_TAC[PSUM_SUM] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_NUMSEG; IN_ELIM_THM] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Stuff about sums. *) (* ------------------------------------------------------------------------- *)
let SUM_TWO = 
prove (`!f n p. sum(0,n) f + sum(n,p) f = sum(0,n + p) f`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_ADD_RID; ADD_CLAUSES] THEN ASM_REWRITE_TAC[REAL_ADD_ASSOC]);;
let SUM_DIFF = 
prove (`!f m n. sum(m,n) f = sum(0,m + n) f - sum(0,m) f`,
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_EQ_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN MATCH_ACCEPT_TAC SUM_TWO);;
let ABS_SUM = 
prove (`!f m n. abs(sum(m,n) f) <= sum(m,n) (\n. abs(f n))`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_ABS_0; REAL_LE_REFL] THEN BETA_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(sum(m,n) f) + abs(f(m + n))` THEN ASM_REWRITE_TAC[REAL_ABS_TRIANGLE; REAL_LE_RADD]);;
let SUM_LE = 
prove (`!f g m n. (!r. m <= r /\ r < n + m ==> f(r) <= g(r)) ==> (sum(m,n) f <= sum(m,n) g)`,
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_LE_REFL] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `(n:num) + m`; GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ADD_SYM]] THEN ASM_REWRITE_TAC[ADD_CLAUSES; LE_ADD; LT]);;
let SUM_EQ = 
prove (`!f g m n. (!r. m <= r /\ r < (n + m) ==> (f(r) = g(r))) ==> (sum(m,n) f = sum(m,n) g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THEN MATCH_MP_TAC SUM_LE THEN GEN_TAC THEN DISCH_THEN(fun th -> MATCH_MP_TAC REAL_EQ_IMP_LE THEN FIRST_ASSUM(SUBST1_TAC o C MATCH_MP th)) THEN REFL_TAC);;
let SUM_POS = 
prove (`!f. (!n. &0 <= f(n)) ==> !m n. &0 <= sum(m,n) f`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_ADD THEN ASM_REWRITE_TAC[]);;
let SUM_POS_GEN = 
prove (`!f m n. (!n. m <= n ==> &0 <= f(n)) ==> &0 <= sum(m,n) f`,
REPEAT STRIP_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_ADD THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_ACCEPT_TAC LE_ADD);;
let SUM_ABS = 
prove (`!f m n. abs(sum(m,n) (\m. abs(f m))) = sum(m,n) (\m. abs(f m))`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[REAL_ABS_REFL] THEN SPEC_TAC(`m:num`,`m:num`) THEN MATCH_MP_TAC SUM_POS THEN BETA_TAC THEN REWRITE_TAC[REAL_ABS_POS]);;
let SUM_ABS_LE = 
prove (`!f m n. abs(sum(m,n) f) <= sum(m,n)(\n. abs(f n))`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_ABS_0; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(sum(m,n) f) + abs(f(m + n))` THEN REWRITE_TAC[REAL_ABS_TRIANGLE] THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_LE_RADD]);;
let SUM_ZERO = 
prove (`!f N. (!n. n >= N ==> (f(n) = &0)) ==> (!m n. m >= N ==> (sum(m,n) f = &0))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN REWRITE_TAC[GE] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN ASM_REWRITE_TAC[REAL_ADD_LID] THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GE; GSYM ADD_ASSOC; LE_ADD]);;
let SUM_ADD = 
prove (`!f g m n. sum(m,n) (\n. f(n) + g(n)) = sum(m,n) f + sum(m,n) g`,
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[sum; REAL_ADD_LID; REAL_ADD_AC]);;
let SUM_CMUL = 
prove (`!f c m n. sum(m,n) (\n. c * f(n)) = c * sum(m,n) f`,
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[sum; REAL_MUL_RZERO] THEN BETA_TAC THEN REWRITE_TAC[REAL_ADD_LDISTRIB]);;
let SUM_NEG = 
prove (`!f n d. sum(n,d) (\n. --(f n)) = --(sum(n,d) f)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[sum; REAL_NEG_0] THEN BETA_TAC THEN REWRITE_TAC[REAL_NEG_ADD]);;
let SUM_SUB = 
prove (`!f g m n. sum(m,n)(\n. (f n) - (g n)) = sum(m,n) f - sum(m,n) g`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; GSYM SUM_NEG; GSYM SUM_ADD]);;
let SUM_SUBST = 
prove (`!f g m n. (!p. m <= p /\ p < (m + n) ==> (f p = g p)) ==> (sum(m,n) f = sum(m,n) g)`,
EVERY (replicate GEN_TAC 3) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN BINOP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; LT_SUC_LE] THEN MATCH_MP_TAC LT_IMP_LE THEN ASM_REWRITE_TAC[]; REWRITE_TAC[LE_ADD] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[LT_SUC_LE; LE_REFL; ADD_CLAUSES]]);;
let SUM_NSUB = 
prove (`!n f c. sum(0,n) f - (&n * c) = sum(0,n)(\p. f(p) - c)`,
INDUCT_TAC THEN REWRITE_TAC[sum; REAL_MUL_LZERO; REAL_SUB_REFL] THEN REWRITE_TAC[ADD_CLAUSES; GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB] THEN REPEAT GEN_TAC THEN POP_ASSUM(fun th -> REWRITE_TAC[GSYM th]) THEN REWRITE_TAC[real_sub; REAL_NEG_ADD; REAL_MUL_LID; REAL_ADD_AC]);;
let SUM_BOUND = 
prove (`!f K m n. (!p. m <= p /\ p < (m + n) ==> (f(p) <= K)) ==> (sum(m,n) f <= (&n * K))`,
EVERY (replicate GEN_TAC 3) THEN INDUCT_TAC THEN REWRITE_TAC[sum; REAL_MUL_LZERO; REAL_LE_REFL] THEN DISCH_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_ADD_RDISTRIB] THEN MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ADD_CLAUSES; LT_SUC_LE; LE_REFL] THEN MATCH_MP_TAC LT_IMP_LE THEN ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_MUL_LID] THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[ADD_CLAUSES; LE_ADD; LT_SUC_LE; LE_REFL]]);;
let SUM_GROUP = 
prove (`!n k f. sum(0,n)(\m. sum(m * k,k) f) = sum(0,n * k) f`,
INDUCT_TAC THEN REWRITE_TAC[sum; MULT_CLAUSES] THEN REPEAT GEN_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ADD_CLAUSES; SUM_TWO]);;
let SUM_1 = 
prove (`!f n. sum(n,1) f = f(n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[num_CONV `1`; sum; ADD_CLAUSES; REAL_ADD_LID]);;
let SUM_2 = 
prove (`!f n. sum(n,2) f = f(n) + f(n + 1)`,
REPEAT GEN_TAC THEN CONV_TAC(REDEPTH_CONV num_CONV) THEN REWRITE_TAC[sum; ADD_CLAUSES; REAL_ADD_LID]);;
let SUM_OFFSET = 
prove (`!f n k. sum(0,n)(\m. f(m + k)) = sum(0,n + k) f - sum(0,k) f`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ADD_SYM] THEN REWRITE_TAC[GSYM SUM_TWO; REAL_ADD_SUB] THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN BETA_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC ADD_SYM);;
let SUM_REINDEX = 
prove (`!f m k n. sum(m + k,n) f = sum(m,n)(\r. f(r + k))`,
EVERY(replicate GEN_TAC 3) THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN ASM_REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN REWRITE_TAC[ADD_AC]);;
let SUM_0 = 
prove (`!m n. sum(m,n)(\r. &0) = &0`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum] THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_ADD_LID]);;
let SUM_CANCEL = 
prove (`!f n d. sum(n,d) (\n. f(SUC n) - f(n)) = f(n + d) - f(n)`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[sum; ADD_CLAUSES; REAL_SUB_REFL] THEN BETA_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[real_sub; REAL_NEG_ADD; REAL_ADD_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_RID]);;
let SUM_HORNER = 
prove (`!f n x. sum(0,SUC n)(\i. f(i) * x pow i) = f(0) + x * sum(0,n)(\i. f(SUC i) * x pow i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUM_CMUL] THEN ONCE_REWRITE_TAC[REAL_ARITH `a * b * c = b * (a * c)`] THEN REWRITE_TAC[GSYM real_pow] THEN MP_TAC(GEN `f:num->real` (SPECL [`f:num->real`; `n:num`; `1`] SUM_OFFSET)) THEN REWRITE_TAC[GSYM ADD1] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[SUM_1] THEN REWRITE_TAC[real_pow; REAL_MUL_RID] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD]);;
let SUM_CONST = 
prove (`!c n. sum(0,n) (\m. c) = &n * c`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[sum; GSYM REAL_OF_NUM_SUC; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_ADD_RDISTRIB; REAL_MUL_LID]);;
let SUM_SPLIT = 
prove (`!f n p. sum(m,n) f + sum(m + n,p) f = sum(m,n + p) f`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SUM_DIFF] THEN GEN_REWRITE_TAC RAND_CONV [SUM_DIFF] THEN REWRITE_TAC[ADD_ASSOC] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM SUM_TWO] THEN REAL_ARITH_TAC);;
let SUM_SWAP = 
prove (`!f m1 n1 m2 n2. sum(m1,n1) (\a. sum(m2,n2) (\b. f a b)) = sum(m2,n2) (\b. sum(m1,n1) (\a. f a b))`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[sum; SUM_0] THEN ASM_REWRITE_TAC[SUM_ADD]);;
let SUM_EQ_0 = 
prove (`(!r. m <= r /\ r < m + n ==> (f(r) = &0)) ==> (sum(m,n) f = &0)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum(m,n) (\r. &0)` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUM_0]] THEN MATCH_MP_TAC SUM_EQ THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[]);;
let SUM_MORETERMS_EQ = 
prove (`!m n p. n <= p /\ (!r. m + n <= r /\ r < m + p ==> (f(r) = &0)) ==> (sum(m,p) f = sum(m,n) f)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o GSYM o MATCH_MP SUB_ADD) THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM SUM_SPLIT] THEN SUBGOAL_THEN `sum (m + n,p - n) f = &0` (fun th -> REWRITE_TAC[REAL_ADD_RID; th]) THEN MATCH_MP_TAC SUM_EQ_0 THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `(m + n) + p - n:num` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM ADD_ASSOC; LE_ADD_LCANCEL] THEN MATCH_MP_TAC EQ_IMP_LE THEN ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_SIMP_TAC[SUB_ADD]);;
let SUM_DIFFERENCES_EQ = 
prove (`!m n p. n <= p /\ (!r. m + n <= r /\ r < m + p ==> (f(r) = g(r))) ==> (sum(m,p) f - sum(m,n) f = sum(m,p) g - sum(m,n) g)`,
ONCE_REWRITE_TAC[REAL_ARITH `(a - b = c - d) <=> (a - c = b - d)`] THEN SIMP_TAC[GSYM SUM_SUB; SUM_MORETERMS_EQ; REAL_SUB_0]);;
(* ------------------------------------------------------------------------- *) (* A conversion to evaluate summations (not clear it belongs here...) *) (* ------------------------------------------------------------------------- *) let REAL_SUM_CONV = let sum_tm = `sum` in
let pth = 
prove (`sum(0,1) f = f 0`,
REWRITE_TAC[num_CONV `1`; sum; REAL_ADD_LID; ADD_CLAUSES]) in let conv0 = GEN_REWRITE_CONV I [CONJUNCT1 sum; pth] and conv1 = REWR_CONV(CONJUNCT2 sum) in let rec sum_conv tm = try conv0 tm with Failure _ -> (LAND_CONV(RAND_CONV num_CONV) THENC conv1 THENC LAND_CONV sum_conv) tm in fun tm -> let sn,bod = dest_comb tm in let s,ntm = dest_comb sn in let _,htm = dest_pair ntm in if s = sum_tm & is_numeral htm then sum_conv tm else failwith "REAL_SUM_CONV";
; let REAL_HORNER_SUM_CONV = let sum_tm = `sum` in
let pth = 
prove (`sum(0,1) f = f 0`,
REWRITE_TAC[num_CONV `1`; sum; REAL_ADD_LID; ADD_CLAUSES]) in let conv0 = GEN_REWRITE_CONV I [CONJUNCT1 sum; pth] and conv1 = REWR_CONV SUM_HORNER in let rec sum_conv tm = try conv0 tm with Failure _ -> (LAND_CONV(RAND_CONV num_CONV) THENC conv1 THENC RAND_CONV (RAND_CONV sum_conv)) tm in fun tm -> let sn,bod = dest_comb tm in let s,ntm = dest_comb sn in let _,htm = dest_pair ntm in if s = sum_tm & is_numeral htm then sum_conv tm else failwith "REAL_HORNER_SUM_CONV";
; (*============================================================================*) (* Topologies and metric spaces, including metric on real line *) (*============================================================================*) parse_as_infix("re_union",(15,"right"));; parse_as_infix("re_intersect",(17,"right"));; parse_as_infix("re_subset",(12,"right"));; (*----------------------------------------------------------------------------*) (* Minimal amount of set notation is convenient *) (*----------------------------------------------------------------------------*)
let re_Union = new_definition(
  `re_Union S = \x:A. ?s. S s /\ s x`);;
let re_union = new_definition(
  `P re_union Q = \x:A. P x \/ Q x`);;
let re_intersect = new_definition
  `P re_intersect Q = \x:A. P x /\ Q x`;;
let re_null = new_definition(
  `re_null = \x:A. F`);;
let re_universe = new_definition(
  `re_universe = \x:A. T`);;
let re_subset = new_definition(
  `P re_subset Q <=> !x:A. P x ==> Q x`);;
let re_compl = new_definition(
  `re_compl S = \x:A. ~(S x)`);;
let SUBSETA_REFL = 
prove( `!S:A->bool. S re_subset S`,
GEN_TAC THEN REWRITE_TAC[re_subset]);;
let COMPL_MEM = 
prove( `!S:A->bool. !x. S x <=> ~(re_compl S x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[re_compl] THEN BETA_TAC THEN REWRITE_TAC[]);;
let SUBSETA_ANTISYM = 
prove( `!P:A->bool. !Q. P re_subset Q /\ Q re_subset P <=> (P = Q)`,
REPEAT GEN_TAC THEN REWRITE_TAC[re_subset] THEN CONV_TAC(ONCE_DEPTH_CONV AND_FORALL_CONV) THEN REWRITE_TAC[TAUT `(a ==> b) /\ (b ==> a) <=> (a <=> b)`] THEN CONV_TAC(RAND_CONV FUN_EQ_CONV) THEN REFL_TAC);;
let SUBSETA_TRANS = 
prove( `!P:A->bool. !Q R. P re_subset Q /\ Q re_subset R ==> P re_subset R`,
REPEAT GEN_TAC THEN REWRITE_TAC[re_subset] THEN CONV_TAC(ONCE_DEPTH_CONV AND_FORALL_CONV) THEN DISCH_THEN(MATCH_ACCEPT_TAC o GEN `x:A` o end_itlist IMP_TRANS o CONJUNCTS o SPEC `x:A`));;
(*----------------------------------------------------------------------------*) (* Characterize an (A)topology *) (*----------------------------------------------------------------------------*)
let istopology = new_definition(
  `!L:(A->bool)->bool. istopology L <=>
            L re_null /\
            L re_universe /\
     (!a b. L a /\ L b ==> L (a re_intersect b)) /\
       (!P. P re_subset L ==> L (re_Union P))`);;
let topology_tybij = new_type_definition "topology" ("topology","open") (prove(`?t:(A->bool)->bool. istopology t`, EXISTS_TAC `re_universe:(A->bool)->bool` THEN REWRITE_TAC[istopology; re_universe]));;
let TOPOLOGY = 
prove( `!L:(A)topology. open(L) re_null /\ open(L) re_universe /\ (!x y. open(L) x /\ open(L) y ==> open(L) (x re_intersect y)) /\ (!P. P re_subset (open L) ==> open(L) (re_Union P))`,
GEN_TAC THEN REWRITE_TAC[GSYM istopology] THEN REWRITE_TAC[topology_tybij]);;
let TOPOLOGY_UNION = 
prove( `!L:(A)topology. !P. P re_subset (open L) ==> open(L) (re_Union P)`,
REWRITE_TAC[TOPOLOGY]);;
(*----------------------------------------------------------------------------*) (* Characterize a neighbourhood of a point relative to a topology *) (*----------------------------------------------------------------------------*)
let neigh = new_definition(
  `neigh(top)(N,(x:A)) = ?P. open(top) P /\ P re_subset N /\ P x`);;
(*----------------------------------------------------------------------------*) (* Prove various properties / characterizations of open sets *) (*----------------------------------------------------------------------------*)
let OPEN_OWN_NEIGH = 
prove( `!S top. !x:A. open(top) S /\ S x ==> neigh(top)(S,x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[neigh] THEN EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[SUBSETA_REFL]);;
let OPEN_UNOPEN = 
prove( `!S top. open(top) S <=> (re_Union (\P:A->bool. open(top) P /\ P re_subset S) = S)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM SUBSETA_ANTISYM] THEN REWRITE_TAC[re_Union; re_subset] THEN BETA_TAC THEN CONJ_TAC THEN GEN_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; DISCH_TAC THEN EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[]]; DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC TOPOLOGY_UNION THEN REWRITE_TAC[re_subset] THEN BETA_TAC THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]);;
let OPEN_SUBOPEN = 
prove( `!S top. open(top) S <=> !x:A. S x ==> ?P. P x /\ open(top) P /\ P re_subset S`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[SUBSETA_REFL]; DISCH_TAC THEN C SUBGOAL_THEN SUBST1_TAC `S = re_Union (\P:A->bool. open(top) P /\ P re_subset S)` THENL [ONCE_REWRITE_TAC[GSYM SUBSETA_ANTISYM] THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[re_subset] THEN REWRITE_TAC [re_Union] THEN BETA_TAC THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN(X_CHOOSE_TAC `P:A->bool`) THEN EXISTS_TAC `P:A->bool` THEN ASM_REWRITE_TAC[]; REWRITE_TAC[re_subset; re_Union] THEN BETA_TAC THEN GEN_TAC THEN DISCH_THEN(CHOOSE_THEN STRIP_ASSUME_TAC) THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]; MATCH_MP_TAC TOPOLOGY_UNION THEN ONCE_REWRITE_TAC[re_subset] THEN GEN_TAC THEN BETA_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);;
let OPEN_NEIGH = 
prove( `!S top. open(top) S = !x:A. S x ==> ?N. neigh(top)(N,x) /\ N re_subset S`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `S:A->bool` THEN REWRITE_TAC[SUBSETA_REFL; neigh] THEN EXISTS_TAC `S:A->bool` THEN ASM_REWRITE_TAC[SUBSETA_REFL]; DISCH_TAC THEN ONCE_REWRITE_TAC[OPEN_SUBOPEN] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN(X_CHOOSE_THEN `N:A->bool` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN REWRITE_TAC[neigh] THEN DISCH_THEN(X_CHOOSE_THEN `P:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `P:A->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSETA_TRANS THEN EXISTS_TAC `N:A->bool` THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*) (* Characterize closed sets in a topological space *) (*----------------------------------------------------------------------------*)
let closed = new_definition(
  `closed(L:(A)topology) S = open(L)(re_compl S)`);;
(*----------------------------------------------------------------------------*) (* Define limit point in topological space *) (*----------------------------------------------------------------------------*)
let limpt = new_definition(
  `limpt(top) x S <=>
      !N:A->bool. neigh(top)(N,x) ==> ?y. ~(x = y) /\ S y /\ N y`);;
(*----------------------------------------------------------------------------*) (* Prove that a set is closed iff it contains all its limit points *) (*----------------------------------------------------------------------------*)
let CLOSED_LIMPT = 
prove( `!top S. closed(top) S <=> (!x:A. limpt(top) x S ==> S x)`,
REPEAT GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV CONTRAPOS_CONV) THEN REWRITE_TAC[closed; limpt] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN FREEZE_THEN (fun th -> ONCE_REWRITE_TAC[th]) (SPEC `S:A->bool` COMPL_MEM) THEN REWRITE_TAC[] THEN SPEC_TAC(`re_compl(S:A->bool)`,`S:A->bool`) THEN GEN_TAC THEN REWRITE_TAC[NOT_IMP] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN REWRITE_TAC[DE_MORGAN_THM] THEN REWRITE_TAC[OPEN_NEIGH; re_subset] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `(S:A->bool) x` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[TAUT `a \/ b \/ ~c <=> c ==> a \/ b`] THEN EQUAL_TAC THEN REWRITE_TAC[TAUT `(a <=> b \/ a) <=> b ==> a`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN POP_ASSUM ACCEPT_TAC);;
(*----------------------------------------------------------------------------*) (* Characterize an (A)metric *) (*----------------------------------------------------------------------------*)
let ismet = new_definition(
  `ismet (m:A#A->real) <=> (!x y. (m(x,y) = &0) <=> (x = y)) /\
                           (!x y z. m(y,z) <= m(x,y) + m(x,z))`);;
let metric_tybij = new_type_definition "metric" ("metric","mdist") (prove(`?m:(A#A->real). ismet m`, EXISTS_TAC `\((x:A),(y:A)). if x = y then &0 else &1` THEN REWRITE_TAC[ismet] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN CONJ_TAC THEN REPEAT GEN_TAC THENL [BOOL_CASES_TAC `x:A = y` THEN REWRITE_TAC[REAL_10]; REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_ADD_LID; REAL_ADD_RID; REAL_LE_REFL; REAL_LE_01] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_LID] THEN TRY(MATCH_MP_TAC REAL_LE_ADD2) THEN REWRITE_TAC[REAL_LE_01; REAL_LE_REFL] THEN FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN EVERY_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[]]));; (*----------------------------------------------------------------------------*) (* Derive the metric properties *) (*----------------------------------------------------------------------------*)
let METRIC_ISMET = 
prove( `!m:(A)metric. ismet (mdist m)`,
GEN_TAC THEN REWRITE_TAC[metric_tybij]);;
let METRIC_ZERO = 
prove( `!m:(A)metric. !x y. ((mdist m)(x,y) = &0) <=> (x = y)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric` METRIC_ISMET) THEN RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN ASM_REWRITE_TAC[]);;
let METRIC_SAME = 
prove( `!m:(A)metric. !x. (mdist m)(x,x) = &0`,
REPEAT GEN_TAC THEN REWRITE_TAC[METRIC_ZERO]);;
let METRIC_POS = 
prove( `!m:(A)metric. !x y. &0 <= (mdist m)(x,y)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric` METRIC_ISMET) THEN RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN FIRST_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`; `y:A`] o CONJUNCT2) THEN REWRITE_TAC[REWRITE_RULE[] (SPECL [`m:(A)metric`; `y:A`; `y:A`] METRIC_ZERO)] THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_ADD2 o W CONJ) THEN REWRITE_TAC[REAL_ADD_LID]);;
let METRIC_SYM = 
prove( `!m:(A)metric. !x y. (mdist m)(x,y) = (mdist m)(y,x)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric` METRIC_ISMET) THEN RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN FIRST_ASSUM (MP_TAC o GENL [`y:A`; `z:A`] o SPECL [`z:A`; `y:A`; `z:A`] o CONJUNCT2) THEN REWRITE_TAC[METRIC_SAME; REAL_ADD_RID] THEN DISCH_TAC THEN ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM]);;
let METRIC_TRIANGLE = 
prove( `!m:(A)metric. !x y z. (mdist m)(x,z) <= (mdist m)(x,y) + (mdist m)(y,z)`,
REPEAT GEN_TAC THEN ASSUME_TAC(SPEC `m:(A)metric` METRIC_ISMET) THEN RULE_ASSUM_TAC(REWRITE_RULE[ismet]) THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [METRIC_SYM] THEN ASM_REWRITE_TAC[]);;
let METRIC_NZ = 
prove( `!m:(A)metric. !x y. ~(x = y) ==> &0 < (mdist m)(x,y)`,
REPEAT GEN_TAC THEN SUBST1_TAC(SYM(SPECL [`m:(A)metric`; `x:A`; `y:A`] METRIC_ZERO)) THEN ONCE_REWRITE_TAC[TAUT `~a ==> b <=> b \/ a`] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN REWRITE_TAC[GSYM REAL_LE_LT; METRIC_POS]);;
(*----------------------------------------------------------------------------*) (* Now define metric topology and prove equivalent definition of `open` *) (*----------------------------------------------------------------------------*)
let mtop = new_definition(
  `!m:(A)metric. mtop m =
    topology(\S. !x. S x ==> ?e. &0 < e /\ (!y. (mdist m)(x,y) < e ==> S y))`);;
let mtop_istopology = 
prove( `!m:(A)metric. istopology (\S. !x. S x ==> ?e. &0 < e /\ (!y. (mdist m)(x,y) < e ==> S y))`,
GEN_TAC THEN REWRITE_TAC[istopology; re_null; re_universe; re_Union; re_intersect; re_subset] THEN CONV_TAC(REDEPTH_CONV BETA_CONV) THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [EXISTS_TAC `&1` THEN MATCH_ACCEPT_TAC REAL_LT_01; REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(fun th -> POP_ASSUM(CONJUNCTS_THEN(MP_TAC o SPEC `x:A`)) THEN REWRITE_TAC[th]) THEN DISCH_THEN(X_CHOOSE_TAC `e1:real`) THEN DISCH_THEN(X_CHOOSE_TAC `e2:real`) THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPECL [`e1:real`; `e2:real`] REAL_LT_TOTAL) THENL [DISCH_THEN SUBST_ALL_TAC THEN EXISTS_TAC `e2:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> EVERY_ASSUM(ASSUME_TAC o C MATCH_MP th o CONJUNCT2)) THEN ASM_REWRITE_TAC[]; DISCH_THEN((then_) (EXISTS_TAC `e1:real`) o MP_TAC); DISCH_THEN((then_) (EXISTS_TAC `e2:real`) o MP_TAC)] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th2 -> GEN_TAC THEN DISCH_THEN(fun th1 -> ASSUME_TAC th1 THEN ASSUME_TAC (MATCH_MP REAL_LT_TRANS (CONJ th1 th2)))) THEN CONJ_TAC THEN FIRST_ASSUM (MATCH_MP_TAC o CONJUNCT2) THEN FIRST_ASSUM ACCEPT_TAC; GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `y:A->bool` (fun th -> POP_ASSUM(X_CHOOSE_TAC `e:real` o C MATCH_MP (CONJUNCT2 th) o C MATCH_MP (CONJUNCT1 th)) THEN ASSUME_TAC th)) THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:A` THEN DISCH_THEN (fun th -> FIRST_ASSUM(ASSUME_TAC o C MATCH_MP th o CONJUNCT2)) THEN EXISTS_TAC `y:A->bool` THEN ASM_REWRITE_TAC[]]);;
let MTOP_OPEN = 
prove( `!m:(A)metric. open(mtop m) S <=> (!x. S x ==> ?e. &0 < e /\ (!y. (mdist m(x,y)) < e ==> S y))`,
GEN_TAC THEN REWRITE_TAC[mtop] THEN REWRITE_TAC[REWRITE_RULE[topology_tybij] mtop_istopology] THEN BETA_TAC THEN REFL_TAC);;
(*----------------------------------------------------------------------------*) (* Define open ball in metric space + prove basic properties *) (*----------------------------------------------------------------------------*)
let ball = new_definition(
  `!m:(A)metric. !x e. ball(m)(x,e) = \y. (mdist m)(x,y) < e`);;
let BALL_OPEN = 
prove( `!m:(A)metric. !x e. &0 < e ==> open(mtop(m))(ball(m)(x,e))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[MTOP_OPEN] THEN X_GEN_TAC `z:A` THEN REWRITE_TAC[ball] THEN BETA_TAC THEN DISCH_THEN(ASSUME_TAC o ONCE_REWRITE_RULE[GSYM REAL_SUB_LT]) THEN EXISTS_TAC `e - mdist(m:(A)metric)(x,z)` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:A` THEN REWRITE_TAC[REAL_LT_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `mdist(m)((x:A),z) + mdist(m)(z,y)` THEN ASM_REWRITE_TAC[METRIC_TRIANGLE]);;
let BALL_NEIGH = 
prove( `!m:(A)metric. !x e. &0 < e ==> neigh(mtop(m))(ball(m)(x,e),x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[neigh] THEN EXISTS_TAC `ball(m)((x:A),e)` THEN REWRITE_TAC[SUBSETA_REFL] THEN CONJ_TAC THENL [MATCH_MP_TAC BALL_OPEN; REWRITE_TAC[ball] THEN BETA_TAC THEN REWRITE_TAC[METRIC_SAME]] THEN POP_ASSUM ACCEPT_TAC);;
(*----------------------------------------------------------------------------*) (* Characterize limit point in a metric topology *) (*----------------------------------------------------------------------------*)
let MTOP_LIMPT = 
prove( `!m:(A)metric. !x S. limpt(mtop m) x S <=> !e. &0 < e ==> ?y. ~(x = y) /\ S y /\ (mdist m)(x,y) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[limpt] THEN EQ_TAC THENL [DISCH_THEN((then_) (GEN_TAC THEN DISCH_TAC) o MP_TAC o SPEC `ball(m)((x:A),e)`) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP BALL_NEIGH th]) THEN REWRITE_TAC[ball] THEN BETA_TAC THEN DISCH_THEN ACCEPT_TAC; DISCH_TAC THEN GEN_TAC THEN REWRITE_TAC[neigh] THEN DISCH_THEN(X_CHOOSE_THEN `P:A->bool` (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN REWRITE_TAC[MTOP_OPEN] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `y:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN EXISTS_TAC `y:A` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(P:A->bool) re_subset N` THEN REWRITE_TAC[re_subset] THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*) (* Define the usual metric on the real line *) (*----------------------------------------------------------------------------*)
let ISMET_R1 = 
prove( `ismet (\(x,y). abs(y - x))`,
REWRITE_TAC[ismet] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN CONJ_TAC THEN REPEAT GEN_TAC THENL [REWRITE_TAC[ABS_ZERO; REAL_SUB_0] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN REFL_TAC; SUBST1_TAC(SYM(SPECL [`x:real`; `y:real`] REAL_NEG_SUB)) THEN REWRITE_TAC[ABS_NEG] THEN SUBGOAL_THEN `z - y = (x - y) + (z - x)` (fun th -> SUBST1_TAC th THEN MATCH_ACCEPT_TAC ABS_TRIANGLE) THEN REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (d + a) + (c + b)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]]);;
let mr1 = new_definition(
  `mr1 = metric(\(x,y). abs(y - x))`);;
let MR1_DEF = 
prove( `!x y. (mdist mr1)(x,y) = abs(y - x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[mr1; REWRITE_RULE[metric_tybij] ISMET_R1] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REFL_TAC);;
let MR1_ADD = 
prove( `!x d. (mdist mr1)(x,x+d) = abs(d)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MR1_DEF; REAL_ADD_SUB]);;
let MR1_SUB = 
prove( `!x d. (mdist mr1)(x,x-d) = abs(d)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MR1_DEF; REAL_SUB_SUB; ABS_NEG]);;
let MR1_ADD_LE = 
prove( `!x d. &0 <= d ==> ((mdist mr1)(x,x+d) = d)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[MR1_ADD; real_abs]);;
let MR1_SUB_LE = 
prove( `!x d. &0 <= d ==> ((mdist mr1)(x,x-d) = d)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[MR1_SUB; real_abs]);;
let MR1_ADD_LT = 
prove( `!x d. &0 < d ==> ((mdist mr1)(x,x+d) = d)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN MATCH_ACCEPT_TAC MR1_ADD_LE);;
let MR1_SUB_LT = 
prove( `!x d. &0 < d ==> ((mdist mr1)(x,x-d) = d)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN MATCH_ACCEPT_TAC MR1_SUB_LE);;
let MR1_BETWEEN1 = 
prove( `!x y z. x < z /\ (mdist mr1)(x,y) < (z - x) ==> y < z`,
REPEAT GEN_TAC THEN REWRITE_TAC[MR1_DEF; ABS_BETWEEN1]);;
(*----------------------------------------------------------------------------*) (* Every real is a limit point of the real line *) (*----------------------------------------------------------------------------*)
let MR1_LIMPT = 
prove( `!x. limpt(mtop mr1) x re_universe`,
GEN_TAC THEN REWRITE_TAC[MTOP_LIMPT; re_universe] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `x + (e / &2)` THEN REWRITE_TAC[MR1_ADD] THEN SUBGOAL_THEN `&0 <= (e / &2)` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[REAL_LT_HALF1]; ALL_TAC] THEN ASM_REWRITE_TAC[real_abs; REAL_LT_HALF2] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN REWRITE_TAC[REAL_ADD_RID_UNIQ] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[REAL_LT_HALF1]);;
(*============================================================================*) (* Theory of Moore-Smith covergence nets, and special cases like sequences *) (*============================================================================*) parse_as_infix ("tends",(12,"right"));; (*----------------------------------------------------------------------------*) (* Basic definitions: directed set, net, bounded net, pointwise limit *) (*----------------------------------------------------------------------------*)
let dorder = new_definition(
  `dorder (g:A->A->bool) <=>
     !x y. g x x /\ g y y ==> ?z. g z z /\ (!w. g w z ==> g w x /\ g w y)`);;
let tends = new_definition
  `(s tends l)(top,g) <=>
      !N:A->bool. neigh(top)(N,l) ==>
            ?n:B. g n n /\ !m:B. g m n ==> N(s m)`;;
let bounded = new_definition(
  `bounded((m:(A)metric),(g:B->B->bool)) f <=>
      ?k x N. g N N /\ (!n. g n N ==> (mdist m)(f(n),x) < k)`);;
let tendsto = new_definition(
  `tendsto((m:(A)metric),x) y z <=>
      &0 < (mdist m)(x,y) /\ (mdist m)(x,y) <= (mdist m)(x,z)`);;
parse_as_infix("-->",(12,"right"));; override_interface ("-->",`(tends)`);;
let DORDER_LEMMA = 
prove( `!g:A->A->bool. dorder g ==> !P Q. (?n. g n n /\ (!m. g m n ==> P m)) /\ (?n. g n n /\ (!m. g m n ==> Q m)) ==> (?n. g n n /\ (!m. g m n ==> P m /\ Q m))`,
GEN_TAC THEN REWRITE_TAC[dorder] THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `N1:A` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `N2:A` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(MP_TAC o SPECL [`N1:A`; `N2:A`]) THEN REWRITE_TAC[ASSUME `(g:A->A->bool) N1 N1`;ASSUME `(g:A->A->bool) N2 N2`] THEN DISCH_THEN(X_CHOOSE_THEN `n:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `n:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `m:A` THEN DISCH_TAC THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check(is_conj o snd o dest_imp o snd o dest_forall) o concl) THEN DISCH_THEN(MP_TAC o SPEC `m:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Following tactic is useful in the following proofs *) (*----------------------------------------------------------------------------*) let DORDER_THEN tac th = let [t1;t2] = map (rand o rand o body o rand) (conjuncts(concl th)) in let dog = (rator o rator o rand o rator o body) t1 in let thl = map ((uncurry X_BETA_CONV) o (I F_F rand) o dest_abs) [t1;t2] in let th1 = CONV_RULE(EXACT_CONV thl) th in let th2 = MATCH_MP DORDER_LEMMA (ASSUME (list_mk_icomb "dorder" [dog])) in let th3 = MATCH_MP th2 th1 in let th4 = CONV_RULE(EXACT_CONV(map SYM thl)) th3 in tac th4;; (*----------------------------------------------------------------------------*) (* Show that sequences and pointwise limits in a metric space are directed *) (*----------------------------------------------------------------------------*)
let DORDER_NGE = 
prove( `dorder ((>=) :num->num->bool)`,
REWRITE_TAC[dorder; GE; LE_REFL] THEN REPEAT GEN_TAC THEN DISJ_CASES_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THENL [EXISTS_TAC `y:num`; EXISTS_TAC `x:num`] THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LE_TRANS THENL [EXISTS_TAC `y:num`; EXISTS_TAC `x:num`] THEN ASM_REWRITE_TAC[]);;
let DORDER_TENDSTO = 
prove( `!m:(A)metric. !x. dorder(tendsto(m,x))`,
REPEAT GEN_TAC THEN REWRITE_TAC[dorder; tendsto] THEN MAP_EVERY X_GEN_TAC [`u:A`; `v:A`] THEN REWRITE_TAC[REAL_LE_REFL] THEN DISCH_THEN STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC[] THEN DISJ_CASES_TAC(SPECL [`(mdist m)((x:A),v)`; `(mdist m)((x:A),u)`] REAL_LE_TOTAL) THENL [EXISTS_TAC `v:A`; EXISTS_TAC `u:A`] THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN FIRST_ASSUM (fun th -> (EXISTS_TAC o rand o concl) th THEN ASM_REWRITE_TAC[] THEN NO_TAC));;
(*----------------------------------------------------------------------------*) (* Simpler characterization of limit in a metric topology *) (*----------------------------------------------------------------------------*)
let MTOP_TENDS = 
prove( `!d g. !x:B->A. !x0. (x --> x0)(mtop(d),g) <=> !e. &0 < e ==> ?n. g n n /\ !m. g m n ==> mdist(d)(x(m),x0) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends] THEN EQ_TAC THEN DISCH_TAC THENL [GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `ball(d)((x0:A),e)`) THEN W(C SUBGOAL_THEN MP_TAC o funpow 2 (rand o rator) o snd) THENL [MATCH_MP_TAC BALL_NEIGH THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[ball] THEN BETA_TAC THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [METRIC_SYM] THEN REWRITE_TAC[]; GEN_TAC THEN REWRITE_TAC[neigh] THEN DISCH_THEN(X_CHOOSE_THEN `P:A->bool` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `open(mtop(d)) (P:A->bool)` THEN REWRITE_TAC[MTOP_OPEN] THEN DISCH_THEN(MP_TAC o SPEC `x0:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o SPEC `d:real`) THEN REWRITE_TAC[ASSUME `&0 < d`] THEN DISCH_THEN(X_CHOOSE_THEN `n:B` STRIP_ASSUME_TAC) THEN EXISTS_TAC `n:B` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN UNDISCH_TAC `(P:A->bool) re_subset N` THEN REWRITE_TAC[re_subset] THEN DISCH_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC) THEN ONCE_REWRITE_TAC[METRIC_SYM] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*) (* Prove that a net in a metric topology cannot converge to different limits *) (*----------------------------------------------------------------------------*)
let MTOP_TENDS_UNIQ = 
prove( `!g d. dorder (g:B->B->bool) ==> (x --> x0)(mtop(d),g) /\ (x --> x1)(mtop(d),g) ==> (x0:A = x1)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[MTOP_TENDS] THEN CONV_TAC(ONCE_DEPTH_CONV AND_FORALL_CONV) THEN REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_TAC THEN CONV_TAC NOT_FORALL_CONV THEN EXISTS_TAC `mdist(d:(A)metric)(x0,x1) / &2` THEN W(C SUBGOAL_THEN ASSUME_TAC o rand o rator o rand o snd) THENL [REWRITE_TAC[REAL_LT_HALF1] THEN MATCH_MP_TAC METRIC_NZ THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `N:B` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `N:B`) THEN ASM_REWRITE_TAC[] THEN BETA_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_ADD2) THEN REWRITE_TAC[REAL_HALF_DOUBLE; REAL_NOT_LT] THEN GEN_REWRITE_TAC(RAND_CONV o LAND_CONV) [METRIC_SYM] THEN MATCH_ACCEPT_TAC METRIC_TRIANGLE);;
(*----------------------------------------------------------------------------*) (* Simpler characterization of limit of a sequence in a metric topology *) (*----------------------------------------------------------------------------*)
let SEQ_TENDS = 
prove( `!d:(A)metric. !x x0. (x --> x0)(mtop(d), (>=) :num->num->bool) <=> !e. &0 < e ==> ?N. !n. n >= N ==> mdist(d)(x(n),x0) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; GE; LE_REFL]);;
(*----------------------------------------------------------------------------*) (* And of limit of function between metric spaces *) (*----------------------------------------------------------------------------*)
let LIM_TENDS = 
prove( `!m1:(A)metric. !m2:(B)metric. !f x0 y0. limpt(mtop m1) x0 re_universe ==> ((f --> y0)(mtop(m2),tendsto(m1,x0)) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < (mdist m1)(x,x0) /\ (mdist m1)(x,x0) <= d ==> (mdist m2)(f(x),y0) < e)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[MTOP_TENDS; tendsto] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LE_REFL] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(mdist m1)((x0:A),z)` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SUBST1_TAC(ISPECL [`m1:(A)metric`; `x0:A`; `x:A`] METRIC_SYM) THEN ASM_REWRITE_TAC[]; DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `limpt(mtop m1) (x0:A) re_universe` THEN REWRITE_TAC[MTOP_LIMPT] THEN DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[re_universe] THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `y:A` THEN CONJ_TAC THENL [MATCH_MP_TAC METRIC_NZ THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[METRIC_SYM] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(mdist m1)((x0:A),y)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*) (* Similar, more conventional version, is also true at a limit point *) (*----------------------------------------------------------------------------*)
let LIM_TENDS2 = 
prove( `!m1:(A)metric. !m2:(B)metric. !f x0 y0. limpt(mtop m1) x0 re_universe ==> ((f --> y0)(mtop(m2),tendsto(m1,x0)) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < (mdist m1)(x,x0) /\ (mdist m1)(x,x0) < d ==> (mdist m2)(f(x),y0) < e)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LIM_TENDS th]) THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THENL [EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[REAL_LT_HALF2]]);;
(*----------------------------------------------------------------------------*) (* Simpler characterization of boundedness for the real line *) (*----------------------------------------------------------------------------*)
let MR1_BOUNDED = 
prove( `!(g:A->A->bool) f. bounded(mr1,g) f <=> ?k N. g N N /\ (!n. g n N ==> abs(f n) < k)`,
REPEAT GEN_TAC THEN REWRITE_TAC[bounded; MR1_DEF] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ABS_CONV) [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN CONV_TAC(REDEPTH_CONV EXISTS_AND_CONV) THEN AP_TERM_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THENL [DISCH_THEN(X_CHOOSE_TAC `x:real`) THEN EXISTS_TAC `abs(x) + k` THEN GEN_TAC THEN DISCH_TAC THEN SUBST1_TAC(SYM(SPECL [`(f:A->real) n`; `x:real`] REAL_SUB_ADD)) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs((f:A->real) n - x) + abs(x)` THEN REWRITE_TAC[ABS_TRIANGLE] THEN GEN_REWRITE_TAC RAND_CONV [REAL_ADD_SYM] THEN REWRITE_TAC[REAL_LT_RADD] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`k:real`; `&0`] THEN ASM_REWRITE_TAC[REAL_SUB_LZERO; ABS_NEG]]);;
(*----------------------------------------------------------------------------*) (* Firstly, prove useful forms of null and bounded nets *) (*----------------------------------------------------------------------------*)
let NET_NULL = 
prove( `!g:A->A->bool. !x x0. (x --> x0)(mtop(mr1),g) <=> ((\n. x(n) - x0) --> &0)(mtop(mr1),g)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS] THEN BETA_TAC THEN REWRITE_TAC[MR1_DEF; REAL_SUB_LZERO] THEN EQUAL_TAC THEN REWRITE_TAC[REAL_NEG_SUB]);;
let NET_CONV_BOUNDED = 
prove( `!g:A->A->bool. !x x0. (x --> x0)(mtop(mr1),g) ==> bounded(mr1,g) x`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; bounded] THEN DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT; num_CONV `1`; LT_0] THEN REWRITE_TAC[GSYM(num_CONV `1`)] THEN DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`&1`; `x0:real`; `N:A`] THEN ASM_REWRITE_TAC[]);;
let NET_CONV_NZ = 
prove( `!g:A->A->bool. !x x0. (x --> x0)(mtop(mr1),g) /\ ~(x0 = &0) ==> ?N. g N N /\ (!n. g n N ==> ~(x n = &0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; bounded] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `abs(x0)`) ASSUME_TAC) THEN ASM_REWRITE_TAC[GSYM ABS_NZ] THEN DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_TAC THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[MR1_DEF; REAL_SUB_RZERO; REAL_LT_REFL]);;
let NET_CONV_IBOUNDED = 
prove( `!g:A->A->bool. !x x0. (x --> x0)(mtop(mr1),g) /\ ~(x0 = &0) ==> bounded(mr1,g) (\n. inv(x n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; MR1_BOUNDED; MR1_DEF] THEN BETA_TAC THEN REWRITE_TAC[ABS_NZ] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `abs(x0) / &2`) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`&2 / abs(x0)`; `N:A`] THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:A` THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN SUBGOAL_THEN `(abs(x0) / & 2) < abs(x(n:A))` ASSUME_TAC THENL [SUBST1_TAC(SYM(SPECL [`abs(x0) / &2`; `abs(x0) / &2`; `abs(x(n:A))`] REAL_LT_LADD)) THEN REWRITE_TAC[REAL_HALF_DOUBLE] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x0 - x(n:A)) + abs(x(n))` THEN ASM_REWRITE_TAC[REAL_LT_RADD] THEN SUBST1_TAC(SYM(AP_TERM `abs` (SPECL [`x0:real`; `x(n:A):real`] REAL_SUB_ADD))) THEN MATCH_ACCEPT_TAC ABS_TRIANGLE; ALL_TAC] THEN SUBGOAL_THEN `&0 < abs(x(n:A))` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `abs(x0) / &2` THEN ASM_REWRITE_TAC[REAL_LT_HALF1]; ALL_TAC] THEN SUBGOAL_THEN `&2 / abs(x0) = inv(abs(x0) / &2)` SUBST1_TAC THENL [MATCH_MP_TAC REAL_RINV_UNIQ THEN REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (d * a) * (b * c)`] THEN SUBGOAL_THEN `~(abs(x0) = &0) /\ ~(&2 = &0)` (fun th -> CONJUNCTS_THEN(SUBST1_TAC o MATCH_MP REAL_MUL_LINV) th THEN REWRITE_TAC[REAL_MUL_LID]) THEN CONJ_TAC THENL [ASM_REWRITE_TAC[ABS_NZ; ABS_ABS]; REWRITE_TAC[REAL_INJ; num_CONV `2`; NOT_SUC]]; ALL_TAC] THEN SUBGOAL_THEN `~(x(n:A) = &0)` (SUBST1_TAC o MATCH_MP ABS_INV) THENL [ASM_REWRITE_TAC[ABS_NZ]; ALL_TAC] THEN MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_HALF1]);;
(*----------------------------------------------------------------------------*) (* Now combining theorems for null nets *) (*----------------------------------------------------------------------------*)
let NET_NULL_ADD = 
prove( `!g:A->A->bool. dorder g ==> !x y. (x --> &0)(mtop(mr1),g) /\ (y --> &0)(mtop(mr1),g) ==> ((\n. x(n) + y(n)) --> &0)(mtop(mr1),g)`,
GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; MR1_DEF; REAL_SUB_LZERO; ABS_NEG] THEN DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC o end_itlist CONJ o map (SPEC `e / &2`) o CONJUNCTS) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(DORDER_THEN (X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN BETA_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x(m:A)) + abs(y(m:A))` THEN REWRITE_TAC[ABS_TRIANGLE] THEN RULE_ASSUM_TAC BETA_RULE THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_HALF_DOUBLE] THEN MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_REWRITE_TAC[]);;
let NET_NULL_MUL = 
prove( `!g:A->A->bool. dorder g ==> !x y. bounded(mr1,g) x /\ (y --> &0)(mtop(mr1),g) ==> ((\n. x(n) * y(n)) --> &0)(mtop(mr1),g)`,
GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[MR1_BOUNDED] THEN REWRITE_TAC[MTOP_TENDS; MR1_DEF; REAL_SUB_LZERO; ABS_NEG] THEN DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN CONV_TAC(LAND_CONV LEFT_AND_EXISTS_CONV) THEN DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THEN DISCH_THEN(ASSUME_TAC o uncurry CONJ o (I F_F SPEC `e / k`) o CONJ_PAIR) THEN SUBGOAL_THEN `&0 < k` ASSUME_TAC THENL [FIRST_ASSUM(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) o CONJUNCT1) THEN DISCH_THEN(MP_TAC o SPEC `N:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(x(N:A))` THEN ASM_REWRITE_TAC[ABS_POS]; ALL_TAC] THEN FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN SUBGOAL_THEN `&0 < e / k` ASSUME_TAC THENL [FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_LT_RDIV_0 th] THEN ASM_REWRITE_TAC[] THEN NO_TAC); ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DORDER_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN (ASSUME_TAC o BETA_RULE)) THEN SUBGOAL_THEN `e = k * (e / k)` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_LMUL THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `&0 < &0` THEN REWRITE_TAC[REAL_LT_REFL]; ALL_TAC] THEN BETA_TAC THEN REWRITE_TAC[ABS_MUL] THEN MATCH_MP_TAC REAL_LT_MUL2_ALT THEN ASM_REWRITE_TAC[ABS_POS]);;
let NET_NULL_CMUL = 
prove( `!g:A->A->bool. !k x. (x --> &0)(mtop(mr1),g) ==> ((\n. k * x(n)) --> &0)(mtop(mr1),g)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; MR1_DEF] THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_LZERO; ABS_NEG] THEN DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN ASM_CASES_TAC `k = &0` THENL [DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT; num_CONV `1`; LESS_SUC_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; real_abs; REAL_LE_REFL]; DISCH_THEN(MP_TAC o SPEC `e / abs(k)`) THEN SUBGOAL_THEN `&0 < e / abs(k)` ASSUME_TAC THENL [REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INV_POS THEN ASM_REWRITE_TAC[GSYM ABS_NZ]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN SUBGOAL_THEN `e = abs(k) * (e / abs(k))` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_LMUL THEN ASM_REWRITE_TAC[ABS_ZERO]; ALL_TAC] THEN REWRITE_TAC[ABS_MUL] THEN SUBGOAL_THEN `&0 < abs k` (fun th -> REWRITE_TAC[MATCH_MP REAL_LT_LMUL_EQ th]) THEN ASM_REWRITE_TAC[GSYM ABS_NZ]]);;
(*----------------------------------------------------------------------------*) (* Now real arithmetic theorems for convergent nets *) (*----------------------------------------------------------------------------*)
let NET_ADD = 
prove( `!g:A->A->bool x x0 y y0. dorder g ==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g) ==> ((\n. x(n) + y(n)) --> (x0 + y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[NET_NULL] THEN DISCH_THEN(fun th -> FIRST_ASSUM (MP_TAC o C MATCH_MP th o MATCH_MP NET_NULL_ADD)) THEN MATCH_MP_TAC EQ_IMP THEN EQUAL_TAC THEN BETA_TAC THEN REWRITE_TAC[real_sub; REAL_NEG_ADD] THEN REWRITE_TAC[REAL_ADD_AC]);;
let NET_NEG = 
prove( `!g:A->A->bool x x0. dorder g ==> ((x --> x0)(mtop(mr1),g) <=> ((\n. --(x n)) --> --x0)(mtop(mr1),g))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS; MR1_DEF] THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_NEG2] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ABS_SUB] THEN REFL_TAC);;
let NET_SUB = 
prove( `!g:A->A->bool x x0 y y0. dorder g ==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g) ==> ((\n. x(n) - y(n)) --> (x0 - y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_sub] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `--(y(n:A))`]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP NET_ADD) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP NET_NEG th)]) THEN ASM_REWRITE_TAC[]);;
let NET_MUL = 
prove( `!g:A->A->bool x y x0 y0. dorder g ==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g) ==> ((\n. x(n) * y(n)) --> (x0 * y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[NET_NULL] THEN DISCH_TAC THEN BETA_TAC THEN SUBGOAL_THEN `!a b c d. (a * b) - (c * d) = (a * (b - d)) + ((a - c) * d)` (fun th -> ONCE_REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_LDISTRIB; REAL_RDISTRIB; GSYM REAL_ADD_ASSOC] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL] THEN REWRITE_TAC[REAL_ADD_ASSOC; REAL_ADD_LINV; REAL_ADD_LID]; ALL_TAC] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `x(n:A) * (y(n) - y0)`]) THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `(x(n:A) - x0) * y0`]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP NET_NULL_ADD) THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN (CONV_TAC o EXACT_CONV o map (X_BETA_CONV `n:A`)) [`y(n:A) - y0`; `x(n:A) - x0`] THEN CONJ_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP NET_NULL_MUL) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NET_CONV_BOUNDED THEN EXISTS_TAC `x0:real` THEN ONCE_REWRITE_TAC[NET_NULL] THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC NET_NULL_CMUL THEN ASM_REWRITE_TAC[]]);;
let NET_INV = 
prove( `!g:A->A->bool x x0. dorder g ==> (x --> x0)(mtop(mr1),g) /\ ~(x0 = &0) ==> ((\n. inv(x(n))) --> inv x0)(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC(CONJ (MATCH_MP NET_CONV_IBOUNDED th) (MATCH_MP NET_CONV_NZ th))) THEN REWRITE_TAC[MR1_BOUNDED] THEN CONV_TAC(ONCE_DEPTH_CONV LEFT_AND_EXISTS_CONV) THEN DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN BETA_TAC THEN DISCH_THEN(MP_TAC o C CONJ (ASSUME `(x --> x0)(mtop mr1,(g:A->A->bool))`)) THEN ONCE_REWRITE_TAC[NET_NULL] THEN REWRITE_TAC[MTOP_TENDS; MR1_DEF; REAL_SUB_LZERO; ABS_NEG] THEN BETA_TAC THEN DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN ONCE_REWRITE_TAC[RIGHT_AND_FORALL_THM] THEN DISCH_THEN(ASSUME_TAC o SPEC `e * abs(x0) * (inv k)`) THEN SUBGOAL_THEN `&0 < k` ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `N:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(inv(x(N:A)))` THEN ASM_REWRITE_TAC[ABS_POS]; ALL_TAC] THEN SUBGOAL_THEN `&0 < e * abs(x0) * inv k` ASSUME_TAC THENL [REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC) THEN ASM_REWRITE_TAC[GSYM ABS_NZ] THEN MATCH_MP_TAC REAL_INV_POS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN ASSUME_TAC)) THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:A` THEN DISCH_THEN(ANTE_RES_THEN STRIP_ASSUME_TAC) THEN RULE_ASSUM_TAC BETA_RULE THEN POP_ASSUM_LIST(MAP_EVERY STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `inv(x n) - inv x0 = inv(x n) * inv x0 * (x0 - x(n:A))` SUBST1_TAC THENL [REWRITE_TAC[REAL_SUB_LDISTRIB] THEN REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x0 = &0)`)] THEN REWRITE_TAC[REAL_MUL_RID] THEN REPEAT AP_TERM_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[MATCH_MP REAL_MUL_RINV (ASSUME `~(x(n:A) = &0)`)] THEN REWRITE_TAC[REAL_MUL_RID]; ALL_TAC] THEN REWRITE_TAC[ABS_MUL] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN SUBGOAL_THEN `e = e * (abs(inv x0) * abs(x0)) * (inv k * k)` SUBST1_TAC THENL [REWRITE_TAC[GSYM ABS_MUL] THEN REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x0 = &0)`)] THEN REWRITE_TAC[MATCH_MP REAL_MUL_LINV (GSYM(MATCH_MP REAL_LT_IMP_NE (ASSUME `&0 < k`)))] THEN REWRITE_TAC[REAL_MUL_RID] THEN REWRITE_TAC[real_abs; REAL_LE; LE_LT; num_CONV `1`; LESS_SUC_REFL] THEN REWRITE_TAC[SYM(num_CONV `1`); REAL_MUL_RID]; ALL_TAC] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * (b * c) * (d * e) = e * b * (a * c * d)`] THEN REWRITE_TAC[GSYM ABS_MUL] THEN MATCH_MP_TAC ABS_LT_MUL2 THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ABS_MUL] THEN SUBGOAL_THEN `&0 < abs(inv x0)` (fun th -> ASM_REWRITE_TAC[MATCH_MP REAL_LT_LMUL_EQ th]) THEN REWRITE_TAC[GSYM ABS_NZ] THEN MATCH_MP_TAC REAL_INV_NZ THEN ASM_REWRITE_TAC[]);;
let NET_DIV = 
prove( `!g:A->A->bool x x0 y y0. dorder g ==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g) /\ ~(y0 = &0) ==> ((\n. x(n) / y(n)) --> (x0 / y0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_div] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `n:A` `inv(y(n:A))`]) THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP NET_MUL) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP NET_INV) THEN ASM_REWRITE_TAC[]);;
let NET_ABS = 
prove( `!x x0. (x --> x0)(mtop(mr1),g) ==> ((\n:A. abs(x n)) --> abs(x0))(mtop(mr1),g)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MTOP_TENDS] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_THEN(fun th -> POP_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN(X_CHOOSE_THEN `N:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `N:A` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:A` THEN DISCH_TAC THEN BETA_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `mdist(mr1)(x(n:A),x0)` THEN CONJ_TAC THENL [REWRITE_TAC[MR1_DEF; ABS_SUB_ABS]; FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
let NET_SUM = 
prove (`!g. dorder g /\ ((\x. &0) --> &0)(mtop(mr1),g) ==> !m n. (!r. m <= r /\ r < m + n ==> (f r --> l r)(mtop(mr1),g)) ==> ((\x. sum(m,n) (\r. f r x)) --> sum(m,n) l) (mtop(mr1),g)`,
GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN INDUCT_TAC THEN ASM_SIMP_TAC[sum] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP NET_ADD) THEN CONJ_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `r:num` THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[ARITH_RULE `a < b + c ==> a < b + SUC c`]; CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSUM MATCH_MP_TAC THEN ARITH_TAC]);;
(*----------------------------------------------------------------------------*) (* Comparison between limits *) (*----------------------------------------------------------------------------*)
let NET_LE = 
prove( `!g:A->A->bool x x0 y y0. dorder g ==> (x --> x0)(mtop(mr1),g) /\ (y --> y0)(mtop(mr1),g) /\ (?N. g N N /\ !n. g n N ==> x(n) <= y(n)) ==> x0 <= y0`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN PURE_ONCE_REWRITE_TAC[REAL_NOT_LE] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[MTOP_TENDS] THEN DISCH_THEN(MP_TAC o end_itlist CONJ o map (SPEC `(x0 - y0) / &2`) o CONJUNCTS) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN FIRST_ASSUM(UNDISCH_TAC o check is_exists o concl) THEN DISCH_THEN(fun th1 -> DISCH_THEN (fun th2 -> MP_TAC(CONJ th1 th2))) THEN DISCH_THEN(DORDER_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `N:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN BETA_TAC THEN DISCH_THEN(MP_TAC o SPEC `N:A`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[MR1_DEF] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[REAL_NOT_LE] THEN MATCH_MP_TAC ABS_BETWEEN2 THEN MAP_EVERY EXISTS_TAC [`y0:real`; `x0:real`] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN FIRST_ASSUM ACCEPT_TAC);;
(*============================================================================*) (* Theory of sequences and series of real numbers *) (*============================================================================*) parse_as_infix ("tends_num_real",(12,"right"));; parse_as_infix ("sums",(12,"right"));; (*----------------------------------------------------------------------------*) (* Specialize net theorems to sequences:num->real *) (*----------------------------------------------------------------------------*)
let tends_num_real = new_definition(
  `x tends_num_real x0 <=> (x tends x0)(mtop(mr1), (>=) :num->num->bool)`);;
override_interface ("-->",`(tends_num_real)`);;
let SEQ = 
prove( `!x x0. (x --> x0) <=> !e. &0 < e ==> ?N. !n. n >= N ==> abs(x(n) - x0) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real; SEQ_TENDS; MR1_DEF] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ABS_SUB] THEN REFL_TAC);;
let SEQ_CONST = 
prove( `!k. (\x. k) --> k`,
REPEAT GEN_TAC THEN REWRITE_TAC[SEQ; REAL_SUB_REFL; ABS_0] THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
let SEQ_ADD = 
prove( `!x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. x(n) + y(n)) --> (x0 + y0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC NET_ADD THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_MUL = 
prove( `!x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. x(n) * y(n)) --> (x0 * y0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC NET_MUL THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_NEG = 
prove( `!x x0. x --> x0 <=> (\n. --(x n)) --> --x0`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC NET_NEG THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_INV = 
prove( `!x x0. x --> x0 /\ ~(x0 = &0) ==> (\n. inv(x n)) --> inv x0`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC NET_INV THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_SUB = 
prove( `!x x0 y y0. x --> x0 /\ y --> y0 ==> (\n. x(n) - y(n)) --> (x0 - y0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC NET_SUB THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_DIV = 
prove( `!x x0 y y0. x --> x0 /\ y --> y0 /\ ~(y0 = &0) ==> (\n. x(n) / y(n)) --> (x0 / y0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC NET_DIV THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_UNIQ = 
prove( `!x x1 x2. x --> x1 /\ x --> x2 ==> (x1 = x2)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC MTOP_TENDS_UNIQ THEN MATCH_ACCEPT_TAC DORDER_NGE);;
let SEQ_NULL = 
prove( `!s l. s --> l <=> (\n. s(n) - l) --> &0`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_ACCEPT_TAC NET_NULL);;
let SEQ_SUM = 
prove (`!f l m n. (!r. m <= r /\ r < m + n ==> f r --> l r) ==> (\k. sum(m,n) (\r. f r k)) --> sum(m,n) l`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM] NET_SUM) THEN REWRITE_TAC[SEQ_CONST; DORDER_NGE; GSYM tends_num_real]);;
let SEQ_TRANSFORM = 
prove (`!s t l N. (!n. N <= n ==> (s n = t n)) /\ s --> l ==> t --> l`,
REWRITE_TAC[SEQ; GE] THEN MESON_TAC[ARITH_RULE `M + N <= n:num ==> M <= n /\ N <= n`]);;
(*----------------------------------------------------------------------------*) (* Define convergence and Cauchy-ness *) (*----------------------------------------------------------------------------*)
let convergent = new_definition(
  `convergent f <=> ?l. f --> l`);;
let cauchy = new_definition(
  `cauchy f <=> !e. &0 < e ==>
        ?N:num. !m n. m >= N /\ n >= N ==> abs(f(m) - f(n)) < e`);;
let lim = new_definition(
  `lim f = @l. f --> l`);;
let SEQ_LIM = 
prove( `!f. convergent f <=> (f --> lim f)`,
GEN_TAC THEN REWRITE_TAC[convergent] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SELECT_RULE) THEN REWRITE_TAC[lim]; DISCH_TAC THEN EXISTS_TAC `lim f` THEN POP_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*) (* Define a subsequence *) (*----------------------------------------------------------------------------*)
let subseq = new_definition(
  `subseq (f:num->num) <=> !m n. m < n ==> (f m) < (f n)`);;
let SUBSEQ_SUC = 
prove( `!f. subseq f <=> !n. f(n) < f(SUC n)`,
GEN_TAC THEN REWRITE_TAC[subseq] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `n:num` THEN POP_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LESS_SUC_REFL]; REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LESS_ADD_1) THEN REWRITE_TAC[GSYM ADD1] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THENL [ALL_TAC; MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `f(m + (SUC p)):num`] THEN ASM_REWRITE_TAC[ADD_CLAUSES]]);;
(*----------------------------------------------------------------------------*) (* Define monotonicity *) (*----------------------------------------------------------------------------*)
let mono = new_definition(
  `mono (f:num->real) <=>
            (!m n. m <= n ==> f(m) <= f(n)) \/
            (!m n. m <= n ==> f(m) >= f(n))`);;
let MONO_SUC = 
prove( `!f. mono f <=> (!n. f(SUC n) >= f(n)) \/ (!n. f(SUC n) <= f(n))`,
GEN_TAC THEN REWRITE_TAC[mono; real_ge] THEN MATCH_MP_TAC(TAUT `(a <=> c) /\ (b <=> d) ==> (a \/ b <=> c \/ d)`) THEN CONJ_TAC THEN (EQ_TAC THENL [DISCH_THEN(MP_TAC o GEN `n:num` o SPECL [`n:num`; `SUC n`]) THEN REWRITE_TAC[LESS_EQ_SUC_REFL]; DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f(m + p:num):real` THEN ASM_REWRITE_TAC[]]));;
(*----------------------------------------------------------------------------*) (* Simpler characterization of bounded sequence *) (*----------------------------------------------------------------------------*)
let MAX_LEMMA = 
prove( `!s N. ?k. !n:num. n < N ==> abs(s n) < k`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[NOT_LESS_0] THEN POP_ASSUM(X_CHOOSE_TAC `k:real`) THEN DISJ_CASES_TAC (SPECL [`k:real`; `abs(s(N:num))`] REAL_LET_TOTAL) THENL [EXISTS_TAC `abs(s(N:num)) + &1`; EXISTS_TAC `k:real`] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[CONJUNCT2 LT] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN TRY(MATCH_MP_TAC REAL_LT_ADD1) THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN MATCH_MP_TAC REAL_LT_ADD1 THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `k:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]);;
let SEQ_BOUNDED = 
prove( `!s. bounded(mr1, (>=)) s <=> ?k. !n:num. abs(s n) < k`,
GEN_TAC THEN REWRITE_TAC[MR1_BOUNDED] THEN REWRITE_TAC[GE; LE_REFL] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `k:real` (X_CHOOSE_TAC `N:num`)) THEN MP_TAC(SPECL [`s:num->real`; `N:num`] MAX_LEMMA) THEN DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN DISJ_CASES_TAC (SPECL [`k:real`; `l:real`] REAL_LE_TOTAL) THENL [EXISTS_TAC `l:real`; EXISTS_TAC `k:real`] THEN X_GEN_TAC `n:num` THEN MP_TAC(SPECL [`n:num`; `N:num`] LTE_CASES) THEN DISCH_THEN(DISJ_CASES_THEN(ANTE_RES_THEN ASSUME_TAC)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN FIRST_ASSUM(fun th -> EXISTS_TAC(rand(concl th)) THEN ASM_REWRITE_TAC[] THEN NO_TAC); DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN MAP_EVERY EXISTS_TAC [`k:real`; `0`] THEN GEN_TAC THEN ASM_REWRITE_TAC[]]);;
let SEQ_BOUNDED_2 = 
prove( `!f k K. (!n:num. k <= f(n) /\ f(n) <= K) ==> bounded(mr1, (>=)) f`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SEQ_BOUNDED] THEN EXISTS_TAC `(abs(k) + abs(K)) + &1` THEN GEN_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(k) + abs(K)` THEN REWRITE_TAC[REAL_LT_ADDR; REAL_LT_01] THEN GEN_REWRITE_TAC LAND_CONV [real_abs] THEN COND_CASES_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(K)` THEN REWRITE_TAC[REAL_LE_ADDL; ABS_POS] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `K:real` THEN ASM_REWRITE_TAC[ABS_LE]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(k)` THEN REWRITE_TAC[REAL_LE_ADDR; ABS_POS] THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_NEG] THEN SUBGOAL_THEN `&0 <= f(n:num)` MP_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `k:real` THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*) (* Show that every Cauchy sequence is bounded *) (*----------------------------------------------------------------------------*)
let SEQ_CBOUNDED = 
prove( `!f. cauchy f ==> bounded(mr1, (>=)) f`,
GEN_TAC THEN REWRITE_TAC[bounded; cauchy] THEN DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN MAP_EVERY EXISTS_TAC [`&1`; `(f:num->real) N`; `N:num`] THEN REWRITE_TAC[GE; LE_REFL] THEN POP_ASSUM(MP_TAC o SPEC `N:num`) THEN REWRITE_TAC[GE; LE_REFL; MR1_DEF]);;
(*----------------------------------------------------------------------------*) (* Show that a bounded and monotonic sequence converges *) (*----------------------------------------------------------------------------*)
let SEQ_ICONV = 
prove( `!f. bounded(mr1, (>=)) f /\ (!m n. m >= n ==> f(m) >= f(n)) ==> convergent f`,
GEN_TAC THEN DISCH_TAC THEN MP_TAC (SPEC `\x:real. ?n:num. x = f(n)` REAL_SUP) THEN BETA_TAC THEN W(C SUBGOAL_THEN MP_TAC o funpow 2 (fst o dest_imp) o snd) THENL [CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`f(0):real`; `0`] THEN REFL_TAC; POP_ASSUM(MP_TAC o REWRITE_RULE[SEQ_BOUNDED] o CONJUNCT1) THEN DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN EXISTS_TAC `k:real` THEN GEN_TAC THEN DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(f(n:num))` THEN ASM_REWRITE_TAC[ABS_LE]]; ALL_TAC] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN DISCH_TAC THEN REWRITE_TAC[convergent] THEN EXISTS_TAC `sup(\x. ?n:num. x = f(n))` THEN REWRITE_TAC[SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o check(is_forall o concl)) THEN DISCH_THEN(MP_TAC o SPEC `sup(\x. ?n:num. x = f(n)) - e`) THEN REWRITE_TAC[REAL_LT_SUB_RADD; REAL_LT_ADDR] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_THEN `n:num` SUBST1_TAC)) THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[GSYM REAL_LT_SUB_RADD] THEN DISCH_TAC THEN SUBGOAL_THEN `!n. f(n) <= sup(\x. ?n:num. x = f(n))` ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o SPEC `sup(\x. ?n:num. x = f(n))`) THEN REWRITE_TAC[REAL_LT_REFL] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN REWRITE_TAC[REAL_NOT_LT] THEN CONV_TAC(ONCE_DEPTH_CONV LEFT_IMP_EXISTS_CONV) THEN DISCH_THEN(MP_TAC o GEN `n:num` o SPECL [`(f:num->real) n`; `n:num`]) THEN REWRITE_TAC[]; ALL_TAC] THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_LT_SUB_RADD]) THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[REAL_ADD_SYM]) THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_LT_SUB_RADD]) THEN REWRITE_TAC[real_ge] THEN DISCH_TAC THEN SUBGOAL_THEN `(sup(\x. ?m:num. x = f(m)) - e) < f(m)` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `(f:num->real) n` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_NEG_SUB] THENL [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_sub] THEN (SUBST1_TAC o REWRITE_RULE[REAL_ADD_RINV] o C SPECL REAL_LE_RADD) [`(f:num->real) m`; `(sup(\x. ?n:num. x = f(n)))`; `--(sup(\x. ?n:num. x = f(n)))`] THEN ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_LT_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[GSYM REAL_LT_SUB_RADD] THEN ASM_REWRITE_TAC[]]);;
let SEQ_NEG_CONV = 
prove( `!f. convergent f <=> convergent (\n. --(f n))`,
GEN_TAC THEN REWRITE_TAC[convergent] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN EXISTS_TAC `--l` THEN POP_ASSUM MP_TAC THEN SUBST1_TAC(SYM(SPEC `l:real` REAL_NEGNEG)) THEN REWRITE_TAC[GSYM SEQ_NEG] THEN REWRITE_TAC[REAL_NEGNEG]);;
let SEQ_NEG_BOUNDED = 
prove( `!f. bounded(mr1, (>=))(\n:num. --(f n)) <=> bounded(mr1, (>=)) f`,
GEN_TAC THEN REWRITE_TAC[SEQ_BOUNDED] THEN BETA_TAC THEN REWRITE_TAC[ABS_NEG]);;
let SEQ_BCONV = 
prove( `!f. bounded(mr1, (>=)) f /\ mono f ==> convergent f`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[mono] THEN DISCH_THEN DISJ_CASES_TAC THENL [MATCH_MP_TAC SEQ_ICONV THEN ASM_REWRITE_TAC[GE; real_ge]; ONCE_REWRITE_TAC[SEQ_NEG_CONV] THEN MATCH_MP_TAC SEQ_ICONV THEN ASM_REWRITE_TAC[SEQ_NEG_BOUNDED] THEN BETA_TAC THEN REWRITE_TAC[GE; real_ge; REAL_LE_NEG] THEN ONCE_REWRITE_TAC[GSYM real_ge] THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*) (* Show that every sequence contains a monotonic subsequence *) (*----------------------------------------------------------------------------*)
let SEQ_MONOSUB = 
prove( `!s:num->real. ?f. subseq f /\ mono(\n.s(f n))`,
GEN_TAC THEN ASM_CASES_TAC `!n:num. ?p. p > n /\ !m. m >= p ==> s(m) <= s(p)` THENL [(X_CHOOSE_THEN `f:num->num` MP_TAC o EXISTENCE o C ISPECL num_Axiom) [`@p. p > 0 /\ (!m. m >= p ==> (s m) <= (s p))`; `\x. \n:num. @p:num. p > x /\ (!m. m >= p ==> (s m) <= (s p))`] THEN BETA_TAC THEN RULE_ASSUM_TAC(GEN `n:num` o SELECT_RULE o SPEC `n:num`) THEN POP_ASSUM(fun th -> DISCH_THEN(ASSUME_TAC o GSYM) THEN MP_TAC(SPEC `0` th) THEN MP_TAC(GEN `n:num` (SPEC `(f:num->num) n` th))) THEN ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:num->num` THEN ASM_REWRITE_TAC[SUBSEQ_SUC; GSYM GT] THEN SUBGOAL_THEN `!p q. p:num >= (f q) ==> s(p) <= s(f(q:num))` MP_TAC THENL [REPEAT GEN_TAC THEN STRUCT_CASES_TAC(SPEC `q:num` num_CASES) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o GEN `q:num` o SPECL [`f(SUC q):num`; `q:num`]) THEN SUBGOAL_THEN `!q. f(SUC q):num >= f(q)` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN REWRITE_TAC[GE] THEN MATCH_MP_TAC LT_IMP_LE THEN ASM_REWRITE_TAC[GSYM GT]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[MONO_SUC] THEN DISJ2_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[]; POP_ASSUM(X_CHOOSE_TAC `N:num` o CONV_RULE NOT_FORALL_CONV) THEN POP_ASSUM(MP_TAC o CONV_RULE NOT_EXISTS_CONV) THEN REWRITE_TAC[TAUT `~(a /\ b) <=> a ==> ~b`] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_FORALL_CONV) THEN REWRITE_TAC[NOT_IMP; REAL_NOT_LE] THEN DISCH_TAC THEN SUBGOAL_THEN `!p. p >= SUC N ==> (?m. m > p /\ s(p) < s(m))` MP_TAC THENL [GEN_TAC THEN REWRITE_TAC[GE; LE_SUC_LT] THEN REWRITE_TAC[GSYM GT] THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[GE; LE_LT; RIGHT_AND_OVER_OR; GT] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` DISJ_CASES_TAC) THENL [EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[]; FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[REAL_LT_REFL]]; ALL_TAC] THEN POP_ASSUM(K ALL_TAC) THEN DISCH_TAC THEN (X_CHOOSE_THEN `f:num->num` MP_TAC o EXISTENCE o C ISPECL num_Axiom) [`@m. m > (SUC N) /\ s(SUC N) < s(m)`; `\x. \n:num. @m:num. m > x /\ s(x) < s(m)`] THEN BETA_TAC THEN DISCH_THEN ASSUME_TAC THEN SUBGOAL_THEN `!n. f(n) >= (SUC N) /\ f(SUC n) > f(n) /\ s(f n) < s(f(SUC n):num)` MP_TAC THENL [INDUCT_TAC THENL [SUBGOAL_THEN `f(0) >= (SUC N)` MP_TAC THENL [FIRST_ASSUM(MP_TAC o SPEC `SUC N`) THEN REWRITE_TAC[GE; LE_REFL] THEN DISCH_THEN(MP_TAC o SELECT_RULE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN MATCH_MP_TAC LT_IMP_LE THEN ASM_REWRITE_TAC[GSYM GT]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN REWRITE_TAC[th]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[CONJUNCT2 th]) THEN CONV_TAC SELECT_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; FIRST_ASSUM(UNDISCH_TAC o check((=)3 o length o conjuncts) o concl) THEN DISCH_THEN STRIP_ASSUME_TAC THEN CONJ_TAC THENL [REWRITE_TAC[GE] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(f:num->num) n` THEN REWRITE_TAC[GSYM GE] THEN CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN REWRITE_TAC[GE] THEN MATCH_MP_TAC LT_IMP_LE THEN REWRITE_TAC[GSYM GT] THEN FIRST_ASSUM ACCEPT_TAC; FIRST_ASSUM(SUBST1_TAC o SPEC `SUC n` o CONJUNCT2) THEN CONV_TAC SELECT_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GE] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(f:num->num) n` THEN REWRITE_TAC[GSYM GE] THEN CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN REWRITE_TAC[GE] THEN MATCH_MP_TAC LT_IMP_LE THEN REWRITE_TAC[GSYM GT] THEN FIRST_ASSUM ACCEPT_TAC]]; ALL_TAC] THEN POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_TAC THEN EXISTS_TAC `f:num->num` THEN REWRITE_TAC[SUBSEQ_SUC; MONO_SUC] THEN ASM_REWRITE_TAC[GSYM GT] THEN DISJ1_TAC THEN BETA_TAC THEN GEN_TAC THEN REWRITE_TAC[real_ge] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*) (* Show that a subsequence of a bounded sequence is bounded *) (*----------------------------------------------------------------------------*)
let SEQ_SBOUNDED = 
prove( `!s (f:num->num). bounded(mr1, (>=)) s ==> bounded(mr1, (>=)) (\n. s(f n))`,
REPEAT GEN_TAC THEN REWRITE_TAC[SEQ_BOUNDED] THEN DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN EXISTS_TAC `k:real` THEN GEN_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Show we can take subsequential terms arbitrarily far up a sequence *) (*----------------------------------------------------------------------------*)
let SEQ_SUBLE = 
prove( `!f n. subseq f ==> n <= f(n)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN INDUCT_TAC THENL [REWRITE_TAC[GSYM NOT_LT; NOT_LESS_0]; MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `SUC(f(n:num))` THEN ASM_REWRITE_TAC[LE_SUC] THEN REWRITE_TAC[LE_SUC_LT] THEN UNDISCH_TAC `subseq f` THEN REWRITE_TAC[SUBSEQ_SUC] THEN DISCH_THEN MATCH_ACCEPT_TAC]);;
let SEQ_DIRECT = 
prove( `!f. subseq f ==> !N1 N2. ?n. n >= N1 /\ f(n) >= N2`,
GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISJ_CASES_TAC (SPECL [`N1:num`; `N2:num`] LE_CASES) THENL [EXISTS_TAC `N2:num` THEN ASM_REWRITE_TAC[GE] THEN MATCH_MP_TAC SEQ_SUBLE THEN FIRST_ASSUM ACCEPT_TAC; EXISTS_TAC `N1:num` THEN REWRITE_TAC[GE; LE_REFL] THEN REWRITE_TAC[GE] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `N1:num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SEQ_SUBLE THEN FIRST_ASSUM ACCEPT_TAC]);;
(*----------------------------------------------------------------------------*) (* Now show that every Cauchy sequence converges *) (*----------------------------------------------------------------------------*)
let SEQ_CAUCHY = 
prove( `!f. cauchy f <=> convergent f`,
GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SEQ_CBOUNDED) THEN MP_TAC(SPEC `f:num->real` SEQ_MONOSUB) THEN DISCH_THEN(X_CHOOSE_THEN `g:num->num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `bounded(mr1, (>=) :num->num->bool)(\n. f(g(n):num))` ASSUME_TAC THENL [MATCH_MP_TAC SEQ_SBOUNDED THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `convergent (\n. f(g(n):num))` MP_TAC THENL [MATCH_MP_TAC SEQ_BCONV THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[convergent] THEN DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN EXISTS_TAC `l:real` THEN REWRITE_TAC[SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN UNDISCH_TAC `(\n. f(g(n):num)) --> l` THEN REWRITE_TAC[SEQ] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN BETA_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N1:num`) THEN UNDISCH_TAC `cauchy f` THEN REWRITE_TAC[cauchy] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(X_CHOOSE_THEN `N2:num` ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP SEQ_DIRECT) THEN DISCH_THEN(MP_TAC o SPECL [`N1:num`; `N2:num`]) THEN DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `N2:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN UNDISCH_TAC `!n:num. n >= N1 ==> abs(f(g n:num) - l) < (e / &2)` THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPECL [`g(n:num):num`; `m:num`]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN SUBGOAL_THEN `f(m:num) - l = (f(m) - f(g(n:num))) + (f(g n) - l)` SUBST1_TAC THENL [REWRITE_TAC[REAL_SUB_TRIANGLE]; ALL_TAC] THEN EXISTS_TAC `abs(f(m:num) - f(g(n:num))) + abs(f(g n) - l)` THEN REWRITE_TAC[ABS_TRIANGLE] THEN SUBST1_TAC(SYM(SPEC `e:real` REAL_HALF_DOUBLE)) THEN MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN ASM_REWRITE_TAC[]; REWRITE_TAC[convergent] THEN DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN REWRITE_TAC[SEQ; cauchy] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN ASSUME_TAC)) THEN MATCH_MP_TAC REAL_LET_TRANS THEN SUBGOAL_THEN `f(m:num) - f(n) = (f(m) - l) + (l - f(n))` SUBST1_TAC THENL [REWRITE_TAC[REAL_SUB_TRIANGLE]; ALL_TAC] THEN EXISTS_TAC `abs(f(m:num) - l) + abs(l - f(n))` THEN REWRITE_TAC[ABS_TRIANGLE] THEN SUBST1_TAC(SYM(SPEC `e:real` REAL_HALF_DOUBLE)) THEN MATCH_MP_TAC REAL_LT_ADD2 THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ABS_SUB] THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*) (* The limit comparison property for sequences *) (*----------------------------------------------------------------------------*)
let SEQ_LE = 
prove( `!f g l m. f --> l /\ g --> m /\ (?N. !n. n >= N ==> f(n) <= g(n)) ==> l <= m`,
REPEAT GEN_TAC THEN MP_TAC(ISPEC `(>=) :num->num->bool` NET_LE) THEN REWRITE_TAC[DORDER_NGE; tends_num_real; GE; LE_REFL] THEN DISCH_THEN MATCH_ACCEPT_TAC);;
(* ------------------------------------------------------------------------- *) (* When a sequence tends to zero. *) (* ------------------------------------------------------------------------- *)
let SEQ_LE_0 = 
prove (`!f g. f --> &0 /\ (?N. !n. n >= N ==> abs(g n) <= abs(f n)) ==> g --> &0`,
REWRITE_TAC[SEQ; REAL_SUB_RZERO; GE] THEN MESON_TAC[LE_CASES; LE_TRANS; REAL_LET_TRANS]);;
(*----------------------------------------------------------------------------*) (* We can displace a convergent series by 1 *) (*----------------------------------------------------------------------------*)
let SEQ_SUC = 
prove( `!f l. f --> l <=> (\n. f(SUC n)) --> l`,
REPEAT GEN_TAC THEN REWRITE_TAC[SEQ; GE] THEN EQ_TAC THEN DISCH_THEN(fun th -> X_GEN_TAC `e:real` THEN DISCH_THEN(MP_TAC o MATCH_MP th)) THEN BETA_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THENL [EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `SUC N` THEN ASM_REWRITE_TAC[LE_SUC; LESS_EQ_SUC_REFL]; EXISTS_TAC `SUC N` THEN X_GEN_TAC `n:num` THEN STRUCT_CASES_TAC (SPEC `n:num` num_CASES) THENL [REWRITE_TAC[GSYM NOT_LT; LT_0]; REWRITE_TAC[LE_SUC] THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*) (* Prove a sequence tends to zero iff its abs does *) (*----------------------------------------------------------------------------*)
let SEQ_ABS = 
prove( `!f. (\n. abs(f n)) --> &0 <=> f --> &0`,
GEN_TAC THEN REWRITE_TAC[SEQ] THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_RZERO; ABS_ABS]);;
(*----------------------------------------------------------------------------*) (* Half this is true for a general limit *) (*----------------------------------------------------------------------------*)
let SEQ_ABS_IMP = 
prove( `!f l. f --> l ==> (\n. abs(f n)) --> abs(l)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_num_real] THEN MATCH_ACCEPT_TAC NET_ABS);;
(*----------------------------------------------------------------------------*) (* Prove that an unbounded sequence's inverse tends to 0 *) (*----------------------------------------------------------------------------*)
let SEQ_INV0 = 
prove( `!f. (!y. ?N. !n. n >= N ==> f(n) > y) ==> (\n. inv(f n)) --> &0`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SEQ; REAL_SUB_RZERO] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_TAC `N:num` o SPEC `inv e`) THEN EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC th) THEN REWRITE_TAC[real_gt] THEN BETA_TAC THEN IMP_RES_THEN ASSUME_TAC REAL_INV_POS THEN SUBGOAL_THEN `&0 < f(n:num)` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `inv e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM real_gt] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `&0 < inv(f(n:num))` ASSUME_TAC THENL [MATCH_MP_TAC REAL_INV_POS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(f(n:num) = &0)` ASSUME_TAC THENL [CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_TAC THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP ABS_INV th]) THEN SUBGOAL_THEN `e = inv(inv e)` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INVINV THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `(f:num->real) n` THEN ASM_REWRITE_TAC[ABS_LE]);;
(*----------------------------------------------------------------------------*) (* Important limit of c^n for |c| < 1 *) (*----------------------------------------------------------------------------*)
let SEQ_POWER_ABS = 
prove( `!c. abs(c) < &1 ==> (\n. abs(c) pow n) --> &0`,
GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC `c:real` ABS_POS) THEN REWRITE_TAC[REAL_LE_LT] THEN DISCH_THEN DISJ_CASES_TAC THENL [SUBGOAL_THEN `!n. abs(c) pow n = inv(inv(abs(c) pow n))` (fun th -> ONCE_REWRITE_TAC[th]) THENL [GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INVINV THEN MATCH_MP_TAC POW_NZ THEN ASM_REWRITE_TAC[ABS_NZ; ABS_ABS]; ALL_TAC] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `n:num` `inv(abs(c) pow n)`]) THEN MATCH_MP_TAC SEQ_INV0 THEN BETA_TAC THEN X_GEN_TAC `y:real` THEN SUBGOAL_THEN `~(abs(c) = &0)` (fun th -> REWRITE_TAC[MATCH_MP POW_INV th]) THENL [CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[real_gt] THEN SUBGOAL_THEN `&0 < inv(abs c) - &1` ASSUME_TAC THENL [REWRITE_TAC[REAL_LT_SUB_LADD] THEN REWRITE_TAC[REAL_ADD_LID] THEN ONCE_REWRITE_TAC[GSYM REAL_INV1] THEN MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MP_TAC(SPEC `inv(abs c) - &1` REAL_ARCH) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `N:num` o SPEC `y:real`) THEN EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GE] THEN DISCH_TAC THEN SUBGOAL_THEN `y < (&n * (inv(abs c) - &1))` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&N * (inv(abs c) - &1)` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [MATCH_MP REAL_LE_RMUL_EQ th]) THEN ASM_REWRITE_TAC[REAL_LE]; ALL_TAC] THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `&n * (inv(abs c) - &1)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&1 + (&n * (inv(abs c) - &1))` THEN REWRITE_TAC[REAL_LT_ADDL; REAL_LT_01] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 + (inv(abs c) - &1)) pow n` THEN CONJ_TAC THENL [MATCH_MP_TAC POW_PLUS1 THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD] THEN REWRITE_TAC[REAL_LE_REFL]]; FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[SEQ] THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `1` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GE] THEN BETA_TAC THEN STRUCT_CASES_TAC(SPEC `n:num` num_CASES) THENL [REWRITE_TAC[GSYM NOT_LT; num_CONV `1`; LT_0]; REWRITE_TAC[POW_0; REAL_SUB_RZERO; ABS_0] THEN REWRITE_TAC[ASSUME `&0 < e`]]]);;
(*----------------------------------------------------------------------------*) (* Similar version without the abs *) (*----------------------------------------------------------------------------*)
let SEQ_POWER = 
prove( `!c. abs(c) < &1 ==> (\n. c pow n) --> &0`,
GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM SEQ_ABS] THEN BETA_TAC THEN REWRITE_TAC[GSYM POW_ABS] THEN POP_ASSUM(ACCEPT_TAC o MATCH_MP SEQ_POWER_ABS));;
(* ------------------------------------------------------------------------- *) (* Convergence to 0 of harmonic sequence (not series of course). *) (* ------------------------------------------------------------------------- *)
let SEQ_HARMONIC = 
prove (`!a. (\n. a / &n) --> &0`,
GEN_TAC THEN REWRITE_TAC[SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `abs a` o MATCH_MP REAL_ARCH) THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `N + 1` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GE] THEN DISCH_TAC THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_ABS_DIV; REAL_ABS_NUM] THEN SUBGOAL_THEN `&0 < &n` (fun th -> SIMP_TAC[REAL_LT_LDIV_EQ; th]) THENL [REWRITE_TAC[REAL_OF_NUM_LT] THEN UNDISCH_TAC `N + 1 <= n` THEN ARITH_TAC; MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&N * e`] THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_OF_NUM_LE] THEN UNDISCH_TAC `N + 1 <= n` THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Other basic lemmas about sequences. *) (* ------------------------------------------------------------------------- *)
let SEQ_SUBSEQ = 
prove (`!f l. f --> l ==> !a b. ~(a = 0) ==> (\n. f(a * n + b)) --> l`,
REWRITE_TAC[RIGHT_IMP_FORALL_THM; SEQ; GE] THEN REPEAT GEN_TAC THEN SUBGOAL_THEN `!a b n. ~(a = 0) ==> n <= a * n + b` (fun th -> MESON_TAC[th; LE_TRANS]) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ARITH_RULE `1 * n <= a * n ==> n <= a * n + b`) THEN REWRITE_TAC[LE_MULT_RCANCEL] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;
let SEQ_POW = 
prove (`!f l. (f --> l) ==> !n. (\i. f(i) pow n) --> l pow n`,
REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[real_pow; SEQ_CONST] THEN MATCH_MP_TAC SEQ_MUL THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Useful lemmas about nested intervals and proof by bisection *) (*----------------------------------------------------------------------------*)
let NEST_LEMMA = 
prove( `!f g. (!n. f(SUC n) >= f(n)) /\ (!n. g(SUC n) <= g(n)) /\ (!n. f(n) <= g(n)) ==> ?l m. l <= m /\ ((!n. f(n) <= l) /\ f --> l) /\ ((!n. m <= g(n)) /\ g --> m)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `f:num->real` MONO_SUC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(SPEC `g:num->real` MONO_SUC) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `bounded((mr1), (>=) :num->num->bool) f` ASSUME_TAC THENL [MATCH_MP_TAC SEQ_BOUNDED_2 THEN MAP_EVERY EXISTS_TAC [`(f:num->real) 0`; `(g:num->real) 0`] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(f:num->real) n` THEN RULE_ASSUM_TAC(REWRITE_RULE[real_ge]) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `g(SUC n):real` THEN ASM_REWRITE_TAC[] THEN SPEC_TAC(`SUC n`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `g(m:num):real` THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `bounded((mr1), (>=) :num->num->bool) g` ASSUME_TAC THENL [MATCH_MP_TAC SEQ_BOUNDED_2 THEN MAP_EVERY EXISTS_TAC [`(f:num->real) 0`; `(g:num->real) 0`] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(f:num->real) (SUC n)` THEN ASM_REWRITE_TAC[] THEN SPEC_TAC(`SUC n`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(f:num->real) m` THEN RULE_ASSUM_TAC(REWRITE_RULE[real_ge]) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(g:num->real) n` THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN MP_TAC(SPEC `f:num->real` SEQ_BCONV) THEN ASM_REWRITE_TAC[SEQ_LIM] THEN DISCH_TAC THEN MP_TAC(SPEC `g:num->real` SEQ_BCONV) THEN ASM_REWRITE_TAC[SEQ_LIM] THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`lim f`; `lim g`] THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC SEQ_LE THEN MAP_EVERY EXISTS_TAC [`f:num->real`; `g:num->real`] THEN ASM_REWRITE_TAC[]; X_GEN_TAC `m:num` THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN PURE_REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN UNDISCH_TAC `f --> lim f` THEN REWRITE_TAC[SEQ] THEN DISCH_THEN(MP_TAC o SPEC `f(m) - lim f`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `p + m:num`) THEN REWRITE_TAC[GE; LE_ADD] THEN REWRITE_TAC[real_abs] THEN SUBGOAL_THEN `!p. lim f <= f(p + m:num)` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f(p + m:num):real` THEN RULE_ASSUM_TAC(REWRITE_RULE[real_ge]) THEN ASM_REWRITE_TAC[]]; ASM_REWRITE_TAC[REAL_SUB_LE] THEN REWRITE_TAC[REAL_NOT_LT; real_sub; REAL_LE_RADD] THEN SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THEN REWRITE_TAC[REAL_LE_REFL; ADD_CLAUSES] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f(p + m:num):real` THEN RULE_ASSUM_TAC(REWRITE_RULE[real_ge]) THEN ASM_REWRITE_TAC[]]; X_GEN_TAC `m:num` THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN PURE_REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN UNDISCH_TAC `g --> lim g` THEN REWRITE_TAC[SEQ] THEN DISCH_THEN(MP_TAC o SPEC `lim g - g(m)`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `p + m:num`) THEN REWRITE_TAC[GE; LE_ADD] THEN REWRITE_TAC[real_abs] THEN SUBGOAL_THEN `!p. g(p + m:num) < lim g` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `g(p + m:num):real` THEN ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_SUB_LE] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT] THEN REWRITE_TAC[REAL_NOT_LT; REAL_NEG_SUB] THEN REWRITE_TAC[real_sub; REAL_LE_LADD; REAL_LE_NEG] THEN SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THEN REWRITE_TAC[REAL_LE_REFL; ADD_CLAUSES] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `g(p + m:num):real` THEN ASM_REWRITE_TAC[]]]);;
let NEST_LEMMA_UNIQ = 
prove( `!f g. (!n. f(SUC n) >= f(n)) /\ (!n. g(SUC n) <= g(n)) /\ (!n. f(n) <= g(n)) /\ (\n. f(n) - g(n)) --> &0 ==> ?l. ((!n. f(n) <= l) /\ f --> l) /\ ((!n. l <= g(n)) /\ g --> l)`,
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN DISCH_THEN(MP_TAC o MATCH_MP NEST_LEMMA) THEN DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `m:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `l:real` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `l:real = m` (fun th -> ASM_REWRITE_TAC[th]) THEN MP_TAC(SPECL [`f:num->real`; `l:real`; `g:num->real`; `m:real`] SEQ_SUB) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o CONJ(ASSUME `(\n. f(n) - g(n)) --> &0`)) THEN DISCH_THEN(MP_TAC o MATCH_MP SEQ_UNIQ) THEN CONV_TAC(LAND_CONV SYM_CONV) THEN REWRITE_TAC[REAL_SUB_0]);;
let BOLZANO_LEMMA = 
prove( `!P. (!a b c. a <= b /\ b <= c /\ P(a,b) /\ P(b,c) ==> P(a,c)) /\ (!x. ?d. &0 < d /\ !a b. a <= x /\ x <= b /\ (b - a) < d ==> P(a,b)) ==> !a b. a <= b ==> P(a,b)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN DISCH_TAC THEN (X_CHOOSE_THEN `f:num->real#real` STRIP_ASSUME_TAC o EXISTENCE o BETA_RULE o C ISPECL num_Axiom) [`(a:real,(b:real))`; `\fn (n:num). if P(FST fn,(FST fn + SND fn)/ &2) then ((FST fn + SND fn)/ &2,SND fn) else (FST fn,(FST fn + SND fn)/ &2)`] THEN MP_TAC(SPECL [`\n:num. FST(f(n) :real#real)`; `\n:num. SND(f(n) :real#real)`] NEST_LEMMA_UNIQ) THEN BETA_TAC THEN SUBGOAL_THEN `!n:num. FST(f n) <= SND(f n)` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[] THENL [MATCH_MP_TAC REAL_MIDDLE2; MATCH_MP_TAC REAL_MIDDLE1] THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN REWRITE_TAC[real_ge] THEN SUBGOAL_THEN `!n. FST(f n :real#real) <= FST(f(SUC n))` ASSUME_TAC THENL [REWRITE_TAC[real_ge] THEN INDUCT_TAC THEN FIRST_ASSUM (fun th -> GEN_REWRITE_TAC (funpow 2 RAND_CONV) [th]) THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_MIDDLE1 THEN FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `!n. ~P(FST((f:num->real#real) n),SND(f n))` ASSUME_TAC THENL [INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN UNDISCH_TAC `~P(FST((f:num->real#real) n),SND(f n))` THEN PURE_REWRITE_TAC[IMP_CLAUSES; NOT_CLAUSES] THEN FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `(FST(f(n:num)) + SND(f(n))) / &2` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_MIDDLE1; MATCH_MP_TAC REAL_MIDDLE2] THEN FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `!n. SND(f(SUC n) :real#real) <= SND(f n)` ASSUME_TAC THENL [BETA_TAC THEN INDUCT_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [th]) THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_MIDDLE2 THEN FIRST_ASSUM MATCH_ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `!n. SND(f n) - FST(f n) = (b - a) / (&2 pow n)` ASSUME_TAC THENL [INDUCT_TAC THENL [ASM_REWRITE_TAC[pow; real_div; REAL_INV1; REAL_MUL_RID]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_EQ_LMUL_IMP THEN EXISTS_TAC `&2` THEN REWRITE_TAC[REAL_SUB_LDISTRIB] THEN (SUBGOAL_THEN `~(&2 = &0)` (fun th -> REWRITE_TAC[th] THEN REWRITE_TAC[MATCH_MP REAL_DIV_LMUL th]) THENL [REWRITE_TAC[REAL_INJ; num_CONV `2`; NOT_SUC]; ALL_TAC]) THEN REWRITE_TAC[GSYM REAL_DOUBLE] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_ADD_SYM] THEN (SUBGOAL_THEN `!x y z. (x + y) - (x + z) = y - z` (fun th -> REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN REWRITE_TAC[real_sub; REAL_NEG_ADD] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_ADD_RID] THEN SUBST1_TAC(SYM(SPEC `x:real` REAL_ADD_LINV)) THEN REWRITE_TAC[REAL_ADD_AC]; ALL_TAC]) THEN ASM_REWRITE_TAC[REAL_DOUBLE] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN REWRITE_TAC[pow] THEN (SUBGOAL_THEN `~(&2 = &0) /\ ~(&2 pow n = &0)` (fun th -> REWRITE_TAC[MATCH_MP REAL_INV_MUL_WEAK th]) THENL [CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC POW_NZ] THEN REWRITE_TAC[REAL_INJ] THEN REWRITE_TAC[num_CONV `2`; NOT_SUC]; ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV THEN REWRITE_TAC[REAL_INJ] THEN REWRITE_TAC[num_CONV `2`; NOT_SUC]]); ALL_TAC] THEN FIRST_ASSUM(UNDISCH_TAC o check (can (find_term is_cond)) o concl) THEN DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o fst o dest_imp o rand o snd) THENL [ONCE_REWRITE_TAC[SEQ_NEG] THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_NEG_SUB; REAL_NEG_0] THEN REWRITE_TAC[real_div] THEN SUBGOAL_THEN `~(&2 = &0)` ASSUME_TAC THENL [REWRITE_TAC[REAL_INJ; num_CONV `2`; NOT_SUC]; ALL_TAC] THEN (MP_TAC o C SPECL SEQ_MUL) [`\n:num. b - a`; `b - a`; `\n. (inv (&2 pow n))`; `&0`] THEN REWRITE_TAC[SEQ_CONST; REAL_MUL_RZERO] THEN BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP POW_INV th]) THEN ONCE_REWRITE_TAC[GSYM SEQ_ABS] THEN BETA_TAC THEN REWRITE_TAC[GSYM POW_ABS] THEN MATCH_MP_TAC SEQ_POWER_ABS THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP ABS_INV th]) THEN REWRITE_TAC[ABS_N] THEN SUBGOAL_THEN `&0 < &2` (fun th -> ONCE_REWRITE_TAC [GSYM (MATCH_MP REAL_LT_RMUL_EQ th)]) THENL [REWRITE_TAC[REAL_LT; num_CONV `2`; LT_0]; ALL_TAC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th]) THEN REWRITE_TAC[REAL_MUL_LID] THEN REWRITE_TAC[REAL_LT] THEN REWRITE_TAC[num_CONV `2`; LESS_SUC_REFL]; DISCH_THEN(X_CHOOSE_THEN `l:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(X_CHOOSE_THEN `d:real` MP_TAC o SPEC `l:real`) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN UNDISCH_TAC `(\n:num. SND(f n :real#real)) --> l` THEN UNDISCH_TAC `(\n:num. FST(f n :real#real)) --> l` THEN REWRITE_TAC[SEQ] THEN DISCH_THEN(MP_TAC o SPEC `d / &2`) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` (ASSUME_TAC o BETA_RULE)) THEN DISCH_THEN(MP_TAC o SPEC `d / &2`) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN DISCH_THEN(X_CHOOSE_THEN `N2:num` (ASSUME_TAC o BETA_RULE)) THEN DISCH_THEN(MP_TAC o SPECL [`FST((f:num->real#real) (N1 + N2))`; `SND((f:num->real#real) (N1 + N2))`]) THEN UNDISCH_TAC `!n. (SND(f n)) - (FST(f n)) = (b - a) / ((& 2) pow n)` THEN DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(FST(f(N1 + N2:num)) - l) + abs(SND(f(N1 + N2:num)) - l)` THEN GEN_REWRITE_TAC (funpow 2 RAND_CONV) [GSYM REAL_HALF_DOUBLE] THEN CONJ_TAC THENL [GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [ABS_SUB] THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN REWRITE_TAC[real_sub; GSYM REAL_ADD_ASSOC] THEN REWRITE_TAC[AC REAL_ADD_AC `a + b + c + d = (d + a) + (c + b)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID; REAL_LE_REFL]; MATCH_MP_TAC REAL_LT_ADD2 THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GE; LE_ADD] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[LE_ADD]]]);;
(* ------------------------------------------------------------------------- *) (* This one is better for higher-order matching. *) (* ------------------------------------------------------------------------- *)
let BOLZANO_LEMMA_ALT = 
prove (`!P. (!a b c. a <= b /\ b <= c /\ P a b /\ P b c ==> P a c) /\ (!x. ?d. &0 < d /\ (!a b. a <= x /\ x <= b /\ b - a < d ==> P a b)) ==> !a b. a <= b ==> P a b`,
GEN_TAC THEN MP_TAC(SPEC `\(x:real,y:real). P x y :bool` BOLZANO_LEMMA) THEN REWRITE_TAC[] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Define infinite sums *) (*----------------------------------------------------------------------------*)
let sums = new_definition
  `f sums s <=> (\n. sum(0,n) f) --> s`;;
let summable = new_definition(
  `summable f <=> ?s. f sums s`);;
let suminf = new_definition(
  `suminf f = @s. f sums s`);;
(*----------------------------------------------------------------------------*) (* If summable then it sums to the sum (!) *) (*----------------------------------------------------------------------------*)
let SUM_SUMMABLE = 
prove( `!f l. f sums l ==> summable f`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[summable] THEN EXISTS_TAC `l:real` THEN POP_ASSUM ACCEPT_TAC);;
let SUMMABLE_SUM = 
prove( `!f. summable f ==> f sums (suminf f)`,
GEN_TAC THEN REWRITE_TAC[summable; suminf] THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN MATCH_ACCEPT_TAC SELECT_AX);;
(*----------------------------------------------------------------------------*) (* And the sum is unique *) (*----------------------------------------------------------------------------*)
let SUM_UNIQ = 
prove( `!f x. f sums x ==> (x = suminf f)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `summable f` MP_TAC THENL [REWRITE_TAC[summable] THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; DISCH_THEN(ASSUME_TAC o MATCH_MP SUMMABLE_SUM) THEN MATCH_MP_TAC SEQ_UNIQ THEN EXISTS_TAC `\n. sum(0,n) f` THEN ASM_REWRITE_TAC[GSYM sums]]);;
let SER_UNIQ = 
prove (`!f x y. f sums x /\ f sums y ==> (x = y)`,
MESON_TAC[SUM_UNIQ]);;
(*----------------------------------------------------------------------------*) (* Series which is zero beyond a certain point *) (*----------------------------------------------------------------------------*)
let SER_0 = 
prove( `!f n. (!m. n <= m ==> (f(m) = &0)) ==> f sums (sum(0,n) f)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[sums; SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[GE] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN W(C SUBGOAL_THEN SUBST1_TAC o C (curry mk_eq) `&0` o rand o rator o snd) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ABS_ZERO; REAL_SUB_0] THEN BETA_TAC THEN REWRITE_TAC[GSYM SUM_TWO; REAL_ADD_RID_UNIQ] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[GE] SUM_ZERO)) THEN MATCH_ACCEPT_TAC LE_REFL);;
(*----------------------------------------------------------------------------*) (* summable series of positive terms has limit >(=) any partial sum *) (*----------------------------------------------------------------------------*)
let SER_POS_LE = 
prove( `!f n. summable f /\ (!m. n <= m ==> &0 <= f(m)) ==> sum(0,n) f <= suminf f`,
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN REWRITE_TAC[sums] THEN MP_TAC(SPEC `sum(0,n) f` SEQ_CONST) THEN GEN_REWRITE_TAC I [IMP_IMP] THEN MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] SEQ_LE) THEN BETA_TAC THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[GE] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN REWRITE_TAC[GSYM SUM_TWO; REAL_LE_ADDR] THEN MATCH_MP_TAC SUM_POS_GEN THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
let SER_POS_LT = 
prove( `!f n. summable f /\ (!m. n <= m ==> &0 < f(m)) ==> sum(0,n) f < suminf f`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `sum(0,n + 1) f` THEN CONJ_TAC THENL [REWRITE_TAC[GSYM SUM_TWO; REAL_LT_ADDR] THEN REWRITE_TAC[num_CONV `1`; sum; REAL_ADD_LID; ADD_CLAUSES] THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_ACCEPT_TAC LE_REFL; MATCH_MP_TAC SER_POS_LE THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `SUC n` THEN REWRITE_TAC[LESS_EQ_SUC_REFL] THEN ASM_REWRITE_TAC[ADD1]]);;
(*----------------------------------------------------------------------------*) (* Theorems about grouping and offsetting, *not* permuting, terms *) (*----------------------------------------------------------------------------*)
let SER_GROUP = 
prove( `!f k. summable f /\ 0 < k ==> (\n. sum(n * k,k) f) sums (suminf f)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN REWRITE_TAC[sums; SEQ] THEN BETA_TAC THEN DISCH_THEN(fun t -> X_GEN_TAC `e:real` THEN DISCH_THEN(MP_TAC o MATCH_MP t)) THEN REWRITE_TAC[GE] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN REWRITE_TAC[SUM_GROUP] THEN EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `0 < k` THEN STRUCT_CASES_TAC(SPEC `k:num` num_CASES) THEN REWRITE_TAC[MULT_CLAUSES; LE_ADD; CONJUNCT1 LE] THEN REWRITE_TAC[LT_REFL]);;
let SER_PAIR = 
prove( `!f. summable f ==> (\n. sum(2 * n,2) f) sums (suminf f)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o C CONJ (SPEC `1:num` LT_0)) THEN REWRITE_TAC[SYM(num_CONV `2`)] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN MATCH_ACCEPT_TAC SER_GROUP);;
let SER_OFFSET = 
prove( `!f. summable f ==> !k. (\n. f(n + k)) sums (suminf f - sum(0,k) f)`,
GEN_TAC THEN DISCH_THEN((then_) GEN_TAC o MP_TAC o MATCH_MP SUMMABLE_SUM) THEN REWRITE_TAC[sums; SEQ] THEN DISCH_THEN(fun th -> GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP th)) THEN BETA_TAC THEN REWRITE_TAC[GE] THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN REWRITE_TAC[SUM_OFFSET] THEN REWRITE_TAC[real_sub; REAL_NEG_ADD; REAL_NEGNEG] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (b + d) + (a + c)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID] THEN REWRITE_TAC[GSYM real_sub] THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[LE_ADD]);;
let SER_OFFSET_REV = 
prove (`!f k. summable(\n. f(n + k)) ==> f sums (sum(0,k) f) + suminf (\n. f(n + k))`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN REWRITE_TAC[sums; SEQ] THEN REWRITE_TAC[SUM_OFFSET] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(a ==> b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN DISCH_TAC THEN REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[ADD_SYM] SUM_DIFF)] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `N + k:num` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GE; LE_EXISTS] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN ONCE_REWRITE_TAC[ARITH_RULE `(N + k) + d = k + N + d:num`] THEN REWRITE_TAC[REAL_ARITH `a - (b + c) = a - b - c`] THEN REWRITE_TAC[GSYM SUM_DIFF] THEN FIRST_ASSUM MATCH_MP_TAC THEN ARITH_TAC);;
(*----------------------------------------------------------------------------*) (* Similar version for pairing up terms *) (*----------------------------------------------------------------------------*)
let SER_POS_LT_PAIR = 
prove( `!f n. summable f /\ (!d. &0 < (f(n + (2 * d))) + f(n + ((2 * d) + 1))) ==> sum(0,n) f < suminf f`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN REWRITE_TAC[sums; SEQ] THEN BETA_TAC THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPEC `f(n) + f(n + 1)`) THEN FIRST_ASSUM(MP_TAC o SPEC `0`) THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN SUBGOAL_THEN `sum(0,n + 2) f <= sum(0,(2 * (SUC N)) + n) f` ASSUME_TAC THENL [SPEC_TAC(`N:num`,`N:num`) THEN INDUCT_TAC THENL [REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ADD_SYM] THEN MATCH_ACCEPT_TAC REAL_LE_REFL; ABBREV_TAC `M = SUC N` THEN REWRITE_TAC[MULT_CLAUSES] THEN REWRITE_TAC[num_CONV `2`; ADD_CLAUSES] THEN REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[ADD_SYM] ADD1)] THEN REWRITE_TAC[SYM(num_CONV `2`)] THEN REWRITE_TAC[ADD_CLAUSES] THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [ADD1] THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN REWRITE_TAC[GSYM ADD1; SYM(num_CONV `2`)] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(0,(2 * M) + n) f` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[sum] THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_LE_ADDR] THEN REWRITE_TAC[ADD_CLAUSES] THEN REWRITE_TAC[ADD1] THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN ONCE_REWRITE_TAC[SPEC `1` ADD_SYM] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]; DISCH_THEN(MP_TAC o SPEC `(2 * (SUC N)) + n`) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2(fst o dest_imp) o snd) THENL [REWRITE_TAC[num_CONV `2`; MULT_CLAUSES] THEN ONCE_REWRITE_TAC[AC ADD_AC `(a + (b + c)) + d:num = b + (a + (c + d))`] THEN REWRITE_TAC[GE; LE_ADD]; ALL_TAC] THEN SUBGOAL_THEN `(suminf f + (f(n) + f(n + 1))) <= sum(0,(2 * (SUC N)) + n) f` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(0,n + 2) f` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(0,n) f + (f(n) + f(n + 1))` THEN ASM_REWRITE_TAC[REAL_LE_RADD] THEN MATCH_MP_TAC REAL_EQ_IMP_LE THEN CONV_TAC(REDEPTH_CONV num_CONV) THEN REWRITE_TAC[ADD_CLAUSES; sum; REAL_ADD_ASSOC]; ALL_TAC] THEN SUBGOAL_THEN `suminf f <= sum(0,(2 * (SUC N)) + n) f` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `suminf f + (f(n) + f(n + 1))` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_LE_ADDR] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN REWRITE_TAC[REAL_LT_SUB_RADD] THEN GEN_REWRITE_TAC (funpow 2 RAND_CONV) [REAL_ADD_SYM] THEN ASM_REWRITE_TAC[REAL_NOT_LT]]);;
(*----------------------------------------------------------------------------*) (* Prove a few composition formulas for series *) (*----------------------------------------------------------------------------*)
let SER_ADD = 
prove( `!x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. x(n) + y(n)) sums (x0 + y0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums; SUM_ADD] THEN CONV_TAC((RAND_CONV o EXACT_CONV)[X_BETA_CONV `n:num` `sum(0,n) x`]) THEN CONV_TAC((RAND_CONV o EXACT_CONV)[X_BETA_CONV `n:num` `sum(0,n) y`]) THEN MATCH_ACCEPT_TAC SEQ_ADD);;
let SER_CMUL = 
prove( `!x x0 c. x sums x0 ==> (\n. c * x(n)) sums (c * x0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[sums; SUM_CMUL] THEN DISCH_TAC THEN SUBGOAL_THEN `(\n. (\n. c) n * (\n. sum(0,n) x) n) --> c * x0` MP_TAC THENL [MATCH_MP_TAC SEQ_MUL THEN ASM_REWRITE_TAC[SEQ_CONST]; REWRITE_TAC[BETA_THM]]);;
let SER_NEG = 
prove( `!x x0. x sums x0 ==> (\n. --(x n)) sums --x0`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN MATCH_ACCEPT_TAC SER_CMUL);;
let SER_SUB = 
prove( `!x x0 y y0. x sums x0 /\ y sums y0 ==> (\n. x(n) - y(n)) sums (x0 - y0)`,
REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC (MATCH_MP SER_ADD (CONJ (CONJUNCT1 th) (MATCH_MP SER_NEG (CONJUNCT2 th))))) THEN BETA_TAC THEN REWRITE_TAC[real_sub]);;
let SER_CDIV = 
prove( `!x x0 c. x sums x0 ==> (\n. x(n) / c) sums (x0 / c)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_ACCEPT_TAC SER_CMUL);;
(*----------------------------------------------------------------------------*) (* Prove Cauchy-type criterion for convergence of series *) (*----------------------------------------------------------------------------*)
let SER_CAUCHY = 
prove( `!f. summable f <=> !e. &0 < e ==> ?N. !m n. m >= N ==> abs(sum(m,n) f) < e`,
GEN_TAC THEN REWRITE_TAC[summable; sums] THEN REWRITE_TAC[GSYM convergent] THEN REWRITE_TAC[GSYM SEQ_CAUCHY] THEN REWRITE_TAC[cauchy] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[GE] THEN BETA_TAC THEN REWRITE_TAC[TAUT `((a ==> b) <=> (a ==> c)) <=> a ==> (b <=> c)`] THEN DISCH_TAC THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN DISCH_TAC THENL [ONCE_REWRITE_TAC[SUM_DIFF] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[LE_ADD]; DISJ_CASES_THEN MP_TAC (SPECL [`m:num`; `n:num`] LE_CASES) THEN DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THENL [ONCE_REWRITE_TAC[ABS_SUB]; ALL_TAC] THEN REWRITE_TAC[GSYM SUM_DIFF] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*) (* Show that if a series converges, the terms tend to 0 *) (*----------------------------------------------------------------------------*)
let SER_ZERO = 
prove( `!f. summable f ==> f --> &0`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SEQ] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN UNDISCH_TAC `summable f` THEN REWRITE_TAC[SER_CAUCHY] THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC) THEN DISCH_THEN((then_) (EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN DISCH_TAC) o MP_TAC) THEN DISCH_THEN(MP_TAC o SPECL [`n:num`; `SUC 0`]) THEN ASM_REWRITE_TAC[sum; REAL_SUB_RZERO; REAL_ADD_LID; ADD_CLAUSES]);;
(*----------------------------------------------------------------------------*) (* Now prove the comparison test *) (*----------------------------------------------------------------------------*)
let SER_COMPAR = 
prove( `!f g. (?N. !n. n >= N ==> abs(f(n)) <= g(n)) /\ summable g ==> summable f`,
REPEAT GEN_TAC THEN REWRITE_TAC[SER_CAUCHY; GE] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `N1:num`) MP_TAC) THEN REWRITE_TAC[SER_CAUCHY; GE] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(m,n)(\k. abs(f k))` THEN REWRITE_TAC[ABS_SUM] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(m,n) g` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE THEN BETA_TAC THEN X_GEN_TAC `p:num` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `N1 + N2:num` THEN ASM_REWRITE_TAC[LE_ADD]; ALL_TAC] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(sum(m,n) g)` THEN REWRITE_TAC[ABS_LE] THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `N1 + N2:num` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[LE_ADD]);;
(*----------------------------------------------------------------------------*) (* And a similar version for absolute convergence *) (*----------------------------------------------------------------------------*)
let SER_COMPARA = 
prove( `!f g. (?N. !n. n >= N ==> abs(f(n)) <= g(n)) /\ summable g ==> summable (\k. abs(f k))`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `!n. abs(f(n)) = abs((\k:num. abs(f k)) n)` (fun th -> GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [th]) THENL [GEN_TAC THEN BETA_TAC THEN REWRITE_TAC[ABS_ABS]; MATCH_ACCEPT_TAC SER_COMPAR]);;
(*----------------------------------------------------------------------------*) (* Limit comparison property for series *) (*----------------------------------------------------------------------------*)
let SER_LE = 
prove( `!f g. (!n. f(n) <= g(n)) /\ summable f /\ summable g ==> suminf f <= suminf g`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN (fun th -> ASSUME_TAC th THEN ASSUME_TAC (REWRITE_RULE[sums] (MATCH_MP SUMMABLE_SUM th)))) THEN MATCH_MP_TAC SEQ_LE THEN REWRITE_TAC[CONJ_ASSOC] THEN MAP_EVERY EXISTS_TAC [`\n. sum(0,n) f`; `\n. sum(0,n) g`] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM sums] THEN CONJ_TAC THEN MATCH_MP_TAC SUMMABLE_SUM THEN FIRST_ASSUM ACCEPT_TAC; EXISTS_TAC `0` THEN REWRITE_TAC[GE; LE_0] THEN GEN_TAC THEN BETA_TAC THEN MATCH_MP_TAC SUM_LE THEN GEN_TAC THEN ASM_REWRITE_TAC[LE_0]]);;
let SER_LE2 = 
prove( `!f g. (!n. abs(f n) <= g(n)) /\ summable g ==> summable f /\ suminf f <= suminf g`,
REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `summable f` ASSUME_TAC THENL [MATCH_MP_TAC SER_COMPAR THEN EXISTS_TAC `g:num->real` THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC SER_LE THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(f(n:num))` THEN ASM_REWRITE_TAC[ABS_LE]);;
(*----------------------------------------------------------------------------*) (* Show that absolute convergence implies normal convergence *) (*----------------------------------------------------------------------------*)
let SER_ACONV = 
prove( `!f. summable (\n. abs(f n)) ==> summable f`,
GEN_TAC THEN REWRITE_TAC[SER_CAUCHY] THEN REWRITE_TAC[SUM_ABS] THEN DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN DISCH_THEN(IMP_RES_THEN (X_CHOOSE_TAC `N:num`)) THEN EXISTS_TAC `N:num` THEN REPEAT GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(m,n)(\m. abs(f m))` THEN ASM_REWRITE_TAC[ABS_SUM]);;
(*----------------------------------------------------------------------------*) (* Absolute value of series *) (*----------------------------------------------------------------------------*)
let SER_ABS = 
prove( `!f. summable(\n. abs(f n)) ==> abs(suminf f) <= suminf(\n. abs(f n))`,
GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUMMABLE_SUM o MATCH_MP SER_ACONV) THEN POP_ASSUM(MP_TAC o MATCH_MP SUMMABLE_SUM) THEN REWRITE_TAC[sums] THEN DISCH_TAC THEN DISCH_THEN(ASSUME_TAC o BETA_RULE o MATCH_MP SEQ_ABS_IMP) THEN MATCH_MP_TAC SEQ_LE THEN MAP_EVERY EXISTS_TAC [`\n. abs(sum(0,n)f)`; `\n. sum(0,n)(\n. abs(f n))`] THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN BETA_TAC THEN MATCH_ACCEPT_TAC SUM_ABS_LE);;
(*----------------------------------------------------------------------------*) (* Prove sum of geometric progression (useful for comparison) *) (*----------------------------------------------------------------------------*)
let GP_FINITE = 
prove( `!x. ~(x = &1) ==> !n. (sum(0,n) (\n. x pow n) = ((x pow n) - &1) / (x - &1))`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THENL [REWRITE_TAC[sum; pow; REAL_SUB_REFL; REAL_DIV_LZERO]; REWRITE_TAC[sum; pow] THEN BETA_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN SUBGOAL_THEN `~(x - &1 = &0)` ASSUME_TAC THEN ASM_REWRITE_TAC[REAL_SUB_0] THEN MP_TAC(GENL [`p:real`; `q:real`] (SPECL [`p:real`; `q:real`; `x - &1`] REAL_EQ_RMUL)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN REWRITE_TAC[REAL_RDISTRIB] THEN SUBGOAL_THEN `!p. (p / (x - &1)) * (x - &1) = p` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_DIV_RMUL THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REAL_SUB_LDISTRIB] THEN REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (c + b) + (d + a)`] THEN REWRITE_TAC[REAL_MUL_RID; REAL_ADD_LINV; REAL_ADD_RID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_ACCEPT_TAC REAL_MUL_SYM]);;
let GP = 
prove( `!x. abs(x) < &1 ==> (\n. x pow n) sums inv(&1 - x)`,
GEN_TAC THEN ASM_CASES_TAC `x = &1` THEN ASM_REWRITE_TAC[ABS_1; REAL_LT_REFL] THEN DISCH_TAC THEN REWRITE_TAC[sums] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP GP_FINITE th]) THEN REWRITE_TAC[REAL_INV_1OVER] THEN REWRITE_TAC[real_div] THEN GEN_REWRITE_TAC (LAND_CONV o ABS_CONV) [GSYM REAL_NEG_MUL2] THEN SUBGOAL_THEN `~(x - &1 = &0)` (fun t -> REWRITE_TAC[MATCH_MP REAL_NEG_INV t]) THENL [ASM_REWRITE_TAC[REAL_SUB_0]; ALL_TAC] THEN REWRITE_TAC[REAL_NEG_SUB; GSYM real_div] THEN SUBGOAL_THEN `(\n. (\n. &1 - x pow n) n / (\n. &1 - x) n) --> &1 / (&1 - x)` MP_TAC THENL [ALL_TAC; REWRITE_TAC[BETA_THM]] THEN MATCH_MP_TAC SEQ_DIV THEN BETA_TAC THEN REWRITE_TAC[SEQ_CONST] THEN REWRITE_TAC[REAL_SUB_0] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_SUB_RZERO] THEN SUBGOAL_THEN `(\n. (\n. &1) n - (\n. x pow n) n) --> &1 - &0` MP_TAC THENL [ALL_TAC; REWRITE_TAC[BETA_THM]] THEN MATCH_MP_TAC SEQ_SUB THEN BETA_TAC THEN REWRITE_TAC[SEQ_CONST] THEN MATCH_MP_TAC SEQ_POWER THEN FIRST_ASSUM ACCEPT_TAC);;
(*----------------------------------------------------------------------------*) (* Now prove the ratio test *) (*----------------------------------------------------------------------------*)
let ABS_NEG_LEMMA = 
prove( `!c x y. c <= &0 ==> abs(x) <= c * abs(y) ==> (x = &0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_NEG_GE0] THEN DISCH_TAC THEN MP_TAC(SPECL [`--c`; `abs(y)`] REAL_LE_MUL) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ABS_POS; GSYM REAL_NEG_LMUL; REAL_NEG_GE0] THEN DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o C CONJ th)) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_TRANS) THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[ABS_NZ; REAL_NOT_LE]);;
let SER_RATIO = 
prove( `!f c N. c < &1 /\ (!n. n >= N ==> abs(f(SUC n)) <= c * abs(f(n))) ==> summable f`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN DISJ_CASES_TAC (SPECL [`c:real`; `&0`] REAL_LET_TOTAL) THENL [REWRITE_TAC[SER_CAUCHY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN SUBGOAL_THEN `!n. n >= N ==> (f(SUC n) = &0)` ASSUME_TAC THENL [GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN MATCH_MP_TAC ABS_NEG_LEMMA THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `!n. n >= (SUC N) ==> (f(n) = &0)` ASSUME_TAC THENL [GEN_TAC THEN STRUCT_CASES_TAC(SPEC `n:num` num_CASES) THENL [REWRITE_TAC[GE] THEN DISCH_THEN(MP_TAC o MATCH_MP OR_LESS) THEN REWRITE_TAC[NOT_LESS_0]; REWRITE_TAC[GE; LE_SUC] THEN ASM_REWRITE_TAC[GSYM GE]]; ALL_TAC] THEN EXISTS_TAC `SUC N` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUM_ZERO) THEN REPEAT GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN (fun th -> REWRITE_TAC[th])) THEN ASM_REWRITE_TAC[ABS_0]; MATCH_MP_TAC SER_COMPAR THEN EXISTS_TAC `\n. (abs(f N) / c pow N) * (c pow n)` THEN CONJ_TAC THENL [EXISTS_TAC `N:num` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GE] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC o MATCH_MP LESS_EQUAL_ADD) THEN BETA_TAC THEN REWRITE_TAC[POW_ADD] THEN REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (a * d) * (b * c)`] THEN SUBGOAL_THEN `~(c pow N = &0)` (fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_LINV th; REAL_MUL_RID]) THENL [MATCH_MP_TAC POW_NZ THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SPEC_TAC(`d:num`,`d:num`) THEN INDUCT_TAC THEN REWRITE_TAC[pow; ADD_CLAUSES; REAL_MUL_RID; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c * abs(f(N + d:num))` THEN CONJ_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GE; LE_ADD]; ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * (b * c) = b * (a * c)`] THEN FIRST_ASSUM(fun th -> ASM_REWRITE_TAC[MATCH_MP REAL_LE_LMUL_LOCAL th])]; REWRITE_TAC[summable] THEN EXISTS_TAC `(abs(f(N:num)) / (c pow N)) * inv(&1 - c)` THEN MATCH_MP_TAC SER_CMUL THEN MATCH_MP_TAC GP THEN ASSUME_TAC(MATCH_MP REAL_LT_IMP_LE (ASSUME `&0 < c`)) THEN ASM_REWRITE_TAC[real_abs]]]);;
(* ------------------------------------------------------------------------- *) (* The error in truncating a convergent series is bounded by partial sums. *) (* ------------------------------------------------------------------------- *)
let SEQ_TRUNCATION = 
prove (`!f l n b. f sums l /\ (!m. abs(sum(n,m) f) <= b) ==> abs(l - sum(0,n) f) <= b`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUM_SUMMABLE) THEN DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP SER_OFFSET) THEN REWRITE_TAC[sums] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP SUM_UNIQ) THEN DISCH_THEN(ASSUME_TAC o MATCH_MP SEQ_ABS_IMP) THEN MATCH_MP_TAC SEQ_LE THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN FIRST_ASSUM(fun th -> EXISTS_TAC (lhand(concl th)) THEN CONJ_TAC THENL [ACCEPT_TAC th; ALL_TAC]) THEN EXISTS_TAC `\r:num. b:real` THEN REWRITE_TAC[SEQ_CONST] THEN ASM_REWRITE_TAC[GSYM SUM_REINDEX; ADD_CLAUSES]);;
(*============================================================================*) (* Theory of limits, continuity and differentiation of real->real functions *) (*============================================================================*) parse_as_infix ("tends_real_real",(12,"right"));; parse_as_infix ("diffl",(12,"right"));; parse_as_infix ("contl",(12,"right"));; parse_as_infix ("differentiable",(12,"right"));; (*----------------------------------------------------------------------------*) (* Specialize nets theorems to the pointwise limit of real->real functions *) (*----------------------------------------------------------------------------*)
let tends_real_real = new_definition
  `(f tends_real_real l)(x0) <=>
        (f tends l)(mtop(mr1),tendsto(mr1,x0))`;;
override_interface ("-->",`(tends_real_real)`);;
let LIM = 
prove( `!f y0 x0. (f --> y0)(x0) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < abs(x - x0) /\ abs(x - x0) < d ==> abs(f(x) - y0) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real; MATCH_MP LIM_TENDS2 (SPEC `x0:real` MR1_LIMPT)] THEN REWRITE_TAC[MR1_DEF] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ABS_SUB] THEN REFL_TAC);;
let LIM_CONST = 
prove( `!k x. ((\x. k) --> k)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real; MTOP_TENDS] THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[METRIC_SAME] THEN REWRITE_TAC[tendsto; REAL_LE_REFL] THEN MP_TAC(REWRITE_RULE[MTOP_LIMPT] (SPEC `x:real` MR1_LIMPT)) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` (ASSUME_TAC o CONJUNCT1)) THEN EXISTS_TAC `z:real` THEN REWRITE_TAC[MR1_DEF; GSYM ABS_NZ] THEN REWRITE_TAC[REAL_SUB_0] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[]);;
let LIM_ADD = 
prove( `!f g l m. (f --> l)(x) /\ (g --> m)(x) ==> ((\x. f(x) + g(x)) --> (l + m))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC NET_ADD THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
let LIM_MUL = 
prove( `!f g l m. (f --> l)(x) /\ (g --> m)(x) ==> ((\x. f(x) * g(x)) --> (l * m))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC NET_MUL THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
let LIM_NEG = 
prove( `!f l. (f --> l)(x) <=> ((\x. --(f(x))) --> --l)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC NET_NEG THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
let LIM_INV = 
prove( `!f l. (f --> l)(x) /\ ~(l = &0) ==> ((\x. inv(f(x))) --> inv l)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC NET_INV THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
let LIM_SUB = 
prove( `!f g l m. (f --> l)(x) /\ (g --> m)(x) ==> ((\x. f(x) - g(x)) --> (l - m))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC NET_SUB THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
let LIM_DIV = 
prove( `!f g l m. (f --> l)(x) /\ (g --> m)(x) /\ ~(m = &0) ==> ((\x. f(x) / g(x)) --> (l / m))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC NET_DIV THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
let LIM_NULL = 
prove( `!f l x. (f --> l)(x) <=> ((\x. f(x) - l) --> &0)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_ACCEPT_TAC NET_NULL);;
let LIM_SUM = 
prove (`!f l m n x. (!r. m <= r /\ r < m + n ==> (f r --> l r)(x)) ==> ((\x. sum(m,n) (\r. f r x)) --> sum(m,n) l)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM] NET_SUM) THEN REWRITE_TAC[LIM_CONST; DORDER_TENDSTO; GSYM tends_real_real]);;
(*----------------------------------------------------------------------------*) (* One extra theorem is handy *) (*----------------------------------------------------------------------------*)
let LIM_X = 
prove( `!x0. ((\x. x) --> x0)(x0)`,
GEN_TAC THEN REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN BETA_TAC THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Uniqueness of limit *) (*----------------------------------------------------------------------------*)
let LIM_UNIQ = 
prove( `!f l m x. (f --> l)(x) /\ (f --> m)(x) ==> (l = m)`,
REPEAT GEN_TAC THEN REWRITE_TAC[tends_real_real] THEN MATCH_MP_TAC MTOP_TENDS_UNIQ THEN MATCH_ACCEPT_TAC DORDER_TENDSTO);;
(*----------------------------------------------------------------------------*) (* Show that limits are equal when functions are equal except at limit point *) (*----------------------------------------------------------------------------*)
let LIM_EQUAL = 
prove( `!f g l x0. (!x. ~(x = x0) ==> (f x = g x)) ==> ((f --> l)(x0) <=> (g --> l)(x0))`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN DISCH_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN ONCE_REWRITE_TAC[TAUT `(a ==> b <=> a ==> c) <=> a ==> (b <=> c)`] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN ASM_REWRITE_TAC[ABS_NZ]);;
(*----------------------------------------------------------------------------*) (* A more general theorem about rearranging the body of a limit *) (*----------------------------------------------------------------------------*)
let LIM_TRANSFORM = 
prove( `!f g x0 l. ((\x. f(x) - g(x)) --> &0)(x0) /\ (g --> l)(x0) ==> (f --> l)(x0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[LIM] THEN DISCH_THEN((then_) (X_GEN_TAC `e:real` THEN DISCH_TAC) o MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2`)) THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_RZERO] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`c:real`; `d:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN DISCH_THEN STRIP_ASSUME_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `(e / &2) + (e / &2)` THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_HALF_DOUBLE] THEN REWRITE_TAC[REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(f(x:real) - g(x)) + abs(g(x) - l)` THEN SUBST1_TAC(SYM(SPECL [`(f:real->real) x`; `(g:real->real) x`; `l:real`] REAL_SUB_TRIANGLE)) THEN REWRITE_TAC[ABS_TRIANGLE] THEN MATCH_MP_TAC REAL_LT_ADD2 THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Define differentiation and continuity *) (*----------------------------------------------------------------------------*)
let diffl = new_definition
  `(f diffl l)(x) <=> ((\h. (f(x+h) - f(x)) / h) --> l)(&0)`;;
let contl = new_definition
  `f contl x <=> ((\h. f(x + h)) --> f(x))(&0)`;;
let differentiable = new_definition
  `f differentiable x <=> ?l. (f diffl l)(x)`;;
(*----------------------------------------------------------------------------*) (* Derivative is unique *) (*----------------------------------------------------------------------------*)
let DIFF_UNIQ = 
prove( `!f l m x. (f diffl l)(x) /\ (f diffl m)(x) ==> (l = m)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN MATCH_ACCEPT_TAC LIM_UNIQ);;
(*----------------------------------------------------------------------------*) (* Differentiability implies continuity *) (*----------------------------------------------------------------------------*)
let DIFF_CONT = 
prove( `!f l x. (f diffl l)(x) ==> f contl x`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl; contl] THEN DISCH_TAC THEN REWRITE_TAC[tends_real_real] THEN ONCE_REWRITE_TAC[NET_NULL] THEN REWRITE_TAC[GSYM tends_real_real] THEN BETA_TAC THEN SUBGOAL_THEN `((\h. f(x + h) - f(x)) --> &0)(&0) <=> ((\h. ((f(x + h) - f(x)) / h) * h) --> &0)(&0)` SUBST1_TAC THENL [MATCH_MP_TAC LIM_EQUAL THEN X_GEN_TAC `z:real` THEN BETA_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP REAL_DIV_RMUL th]); ALL_TAC] THEN GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o ABS_CONV o RAND_CONV) [SYM(BETA_CONV `(\h:real. h) h`)] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `(f(x + h) - f(x)) / h`]) THEN SUBST1_TAC(SYM(SPEC `l:real` REAL_MUL_RZERO)) THEN MATCH_MP_TAC LIM_MUL THEN BETA_TAC THEN REWRITE_TAC[REAL_MUL_RZERO] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LIM] THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_RZERO] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Alternative definition of continuity *) (*----------------------------------------------------------------------------*)
let CONTL_LIM = 
prove( `!f x. f contl x <=> (f --> f(x))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[contl; LIM] THEN AP_TERM_TAC THEN ABS_TAC THEN ONCE_REWRITE_TAC[TAUT `(a ==> b <=> a ==> c) <=> a ==> (b <=> c)`] THEN DISCH_TAC THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_RZERO] THEN EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:real` THENL [DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[REAL_SUB_ADD2]; DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_ADD_SUB]]);;
(*----------------------------------------------------------------------------*) (* Simple combining theorems for continuity *) (*----------------------------------------------------------------------------*)
let CONT_X = 
prove (`!x. (\x. x) contl x`,
REWRITE_TAC[CONTL_LIM; LIM_X]);;
let CONT_CONST = 
prove( `!x. (\x. k) contl x`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN MATCH_ACCEPT_TAC LIM_CONST);;
let CONT_ADD = 
prove( `!x. f contl x /\ g contl x ==> (\x. f(x) + g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN MATCH_ACCEPT_TAC LIM_ADD);;
let CONT_MUL = 
prove( `!x. f contl x /\ g contl x ==> (\x. f(x) * g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN MATCH_ACCEPT_TAC LIM_MUL);;
let CONT_NEG = 
prove( `!x. f contl x ==> (\x. --(f(x))) contl x`,
GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN REWRITE_TAC[GSYM LIM_NEG]);;
let CONT_INV = 
prove( `!x. f contl x /\ ~(f x = &0) ==> (\x. inv(f(x))) contl x`,
GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN MATCH_ACCEPT_TAC LIM_INV);;
let CONT_SUB = 
prove( `!x. f contl x /\ g contl x ==> (\x. f(x) - g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN MATCH_ACCEPT_TAC LIM_SUB);;
let CONT_DIV = 
prove( `!x. f contl x /\ g contl x /\ ~(g x = &0) ==> (\x. f(x) / g(x)) contl x`,
GEN_TAC THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN MATCH_ACCEPT_TAC LIM_DIV);;
let CONT_ABS = 
prove (`!f x. f contl x ==> (\x. abs(f x)) contl x`,
REWRITE_TAC[CONTL_LIM; LIM] THEN MESON_TAC[REAL_ARITH `abs(a - b) < e ==> abs(abs a - abs b) < e`]);;
(* ------------------------------------------------------------------------- *) (* Composition of continuous functions is continuous. *) (* ------------------------------------------------------------------------- *)
let CONT_COMPOSE = 
prove( `!f g x. f contl x /\ g contl (f x) ==> (\x. g(f x)) contl x`,
REPEAT GEN_TAC THEN REWRITE_TAC[contl; LIM; REAL_SUB_RZERO] THEN BETA_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl) THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `h:real` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ASM_CASES_TAC `&0 < abs(f(x + h) - f(x))` THENL [UNDISCH_TAC `&0 < abs(f(x + h) - f(x))` THEN DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[REAL_SUB_ADD2]; UNDISCH_TAC `~(&0 < abs(f(x + h) - f(x)))` THEN REWRITE_TAC[GSYM ABS_NZ; REAL_SUB_0] THEN DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0]]);;
(*----------------------------------------------------------------------------*) (* Intermediate Value Theorem (we prove contrapositive by bisection) *) (*----------------------------------------------------------------------------*)
let IVT = 
prove( `!f a b y. a <= b /\ (f(a) <= y /\ y <= f(b)) /\ (!x. a <= x /\ x <= b ==> f contl x) ==> (?x. a <= x /\ x <= b /\ (f(x) = y))`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC)) THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(ASSUME_TAC o CONV_RULE NOT_EXISTS_CONV) THEN (MP_TAC o C SPEC BOLZANO_LEMMA) `\(u,v). a <= u /\ u <= v /\ v <= b ==> ~(f(u) <= y /\ y <= f(v))` THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN ASM_REWRITE_TAC[REAL_LE_REFL]] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`u:real`; `v:real`; `w:real`] THEN CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[DE_MORGAN_THM; NOT_IMP] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY ASM_CASES_TAC [`u <= v`; `v <= w`] THEN ASM_REWRITE_TAC[] THEN DISJ_CASES_TAC(SPECL [`y:real`; `(f:real->real) v`] REAL_LE_TOTAL) THEN ASM_REWRITE_TAC[] THENL [DISJ1_TAC; DISJ2_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `w:real`; EXISTS_TAC `u:real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN X_GEN_TAC `x:real` THEN ASM_CASES_TAC `a <= x /\ x <= b` THENL [ALL_TAC; EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `~(a <= x /\ x <= b)` THEN REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `u:real`; EXISTS_TAC `v:real`] THEN ASM_REWRITE_TAC[]] THEN UNDISCH_TAC `!x. ~(a <= x /\ x <= b /\ (f(x) = (y:real)))` THEN DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN UNDISCH_TAC `!x. a <= x /\ x <= b ==> f contl x` THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN REWRITE_TAC[contl; LIM] THEN DISCH_THEN(MP_TAC o SPEC `abs(y - f(x:real))`) THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM ABS_NZ] THEN REWRITE_TAC[REAL_SUB_0; REAL_SUB_RZERO] THEN BETA_TAC THEN ASSUM_LIST(fun thl -> REWRITE_TAC(map GSYM thl)) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`(f:real->real) x`; `y:real`] REAL_LT_TOTAL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THENL [DISCH_THEN(MP_TAC o SPEC `v - x`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[real_abs; REAL_SUB_LE; REAL_SUB_LT] THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `f(v:real) < y` THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE]; ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `v - u` THEN ASM_REWRITE_TAC[real_sub; REAL_LE_LADD; REAL_LE_NEG; REAL_LE_RADD]; ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD] THEN REWRITE_TAC[REAL_NOT_LT; real_abs; REAL_SUB_LE] THEN SUBGOAL_THEN `f(x:real) <= y` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `f(x:real) <= f(v)` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `y:real`; ALL_TAC] THEN ASM_REWRITE_TAC[real_sub; REAL_LE_RADD]]; DISCH_THEN(MP_TAC o SPEC `u - x`) THEN REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [ONCE_REWRITE_TAC[ABS_SUB] THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE; REAL_SUB_LT] THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `y < f(x:real)` THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE]; ONCE_REWRITE_TAC[ABS_SUB] THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `v - u` THEN ASM_REWRITE_TAC[real_sub; REAL_LE_LADD; REAL_LE_NEG; REAL_LE_RADD]; ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD] THEN REWRITE_TAC[REAL_NOT_LT; real_abs; REAL_SUB_LE] THEN SUBGOAL_THEN `f(u:real) < f(x)` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `y:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT] THEN ASM_REWRITE_TAC[REAL_NOT_LT; REAL_LE_NEG; real_sub; REAL_LE_RADD]]]);;
(*----------------------------------------------------------------------------*) (* Intermediate value theorem where value at the left end is bigger *) (*----------------------------------------------------------------------------*)
let IVT2 = 
prove( `!f a b y. (a <= b) /\ (f(b) <= y /\ y <= f(a)) /\ (!x. a <= x /\ x <= b ==> f contl x) ==> ?x. a <= x /\ x <= b /\ (f(x) = y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(SPECL [`\x:real. --(f x)`; `a:real`; `b:real`; `--y`] IVT) THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_LE_NEG; REAL_NEG_EQ; REAL_NEGNEG] THEN DISCH_THEN MATCH_MP_TAC THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONT_NEG THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Prove the simple combining theorems for differentiation *) (*----------------------------------------------------------------------------*)
let DIFF_CONST = 
prove( `!k x. ((\x. k) diffl &0)(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN REWRITE_TAC[REAL_SUB_REFL; real_div; REAL_MUL_LZERO] THEN MATCH_ACCEPT_TAC LIM_CONST);;
let DIFF_ADD = 
prove( `!f g l m x. (f diffl l)(x) /\ (g diffl m)(x) ==> ((\x. f(x) + g(x)) diffl (l + m))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN DISCH_TAC THEN BETA_TAC THEN REWRITE_TAC[REAL_ADD2_SUB2] THEN REWRITE_TAC[real_div; REAL_RDISTRIB] THEN REWRITE_TAC[GSYM real_div] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `(f(x + h) - f(x)) / h`]) THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `(g(x + h) - g(x)) / h`]) THEN MATCH_MP_TAC LIM_ADD THEN ASM_REWRITE_TAC[]);;
let DIFF_MUL = 
prove( `!f g l m x. (f diffl l)(x) /\ (g diffl m)(x) ==> ((\x. f(x) * g(x)) diffl ((l * g(x)) + (m * f(x))))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[diffl] THEN DISCH_TAC THEN BETA_TAC THEN SUBGOAL_THEN `!a b c d. (a * b) - (c * d) = ((a * b) - (a * d)) + ((a * d) - (c * d))` (fun th -> ONCE_REWRITE_TAC[GEN_ALL th]) THENL [REWRITE_TAC[real_sub] THEN ONCE_REWRITE_TAC[AC REAL_ADD_AC `(a + b) + (c + d) = (b + c) + (a + d)`] THEN REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_LID]; ALL_TAC] THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_SUB_RDISTRIB] THEN SUBGOAL_THEN `!a b c d e. ((a * b) + (c * d)) / e = ((b / e) * a) + ((c / e) * d)` (fun th -> ONCE_REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[REAL_RDISTRIB] THEN BINOP_TAC THEN REWRITE_TAC[REAL_MUL_AC]; ALL_TAC] THEN GEN_REWRITE_TAC LAND_CONV [REAL_ADD_SYM] THEN CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`) [`((g(x + h) - g(x)) / h) * f(x + h)`; `((f(x + h) - f(x)) / h) * g(x)`])) THEN MATCH_MP_TAC LIM_ADD THEN CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`) [`(g(x + h) - g(x)) / h`; `f(x + h):real`; `(f(x + h) - f(x)) / h`; `g(x:real):real`])) THEN CONJ_TAC THEN MATCH_MP_TAC LIM_MUL THEN BETA_TAC THEN ASM_REWRITE_TAC[LIM_CONST] THEN REWRITE_TAC[GSYM contl] THEN MATCH_MP_TAC DIFF_CONT THEN EXISTS_TAC `l:real` THEN ASM_REWRITE_TAC[diffl]);;
let DIFF_CMUL = 
prove( `!f c l x. (f diffl l)(x) ==> ((\x. c * f(x)) diffl (c * l))(x)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o CONJ (SPECL [`c:real`; `x:real`] DIFF_CONST)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_MUL) THEN BETA_TAC THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN MATCH_MP_TAC(TAUT(`(a <=> b) ==> a ==> b`)) THEN AP_THM_TAC THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN REWRITE_TAC[]);;
let DIFF_NEG = 
prove( `!f l x. (f diffl l)(x) ==> ((\x. --(f x)) diffl --l)(x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_NEG_MINUS1] THEN MATCH_ACCEPT_TAC DIFF_CMUL);;
let DIFF_SUB = 
prove( `!f g l m x. (f diffl l)(x) /\ (g diffl m)(x) ==> ((\x. f(x) - g(x)) diffl (l - m))(x)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD o (uncurry CONJ) o (I F_F MATCH_MP DIFF_NEG) o CONJ_PAIR) THEN BETA_TAC THEN REWRITE_TAC[real_sub]);;
(* ------------------------------------------------------------------------- *) (* Carathe'odory definition makes the chain rule proof much easier. *) (* ------------------------------------------------------------------------- *)
let DIFF_CARAT = 
prove( `!f l x. (f diffl l)(x) <=> ?g. (!z. f(z) - f(x) = g(z) * (z - x)) /\ g contl x /\ (g(x) = l)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [EXISTS_TAC `\z. if z = x then l else (f(z) - f(x)) / (z - x)` THEN BETA_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL [X_GEN_TAC `z:real` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_RMUL THEN ASM_REWRITE_TAC[REAL_SUB_0]; POP_ASSUM MP_TAC THEN MATCH_MP_TAC EQ_IMP THEN REWRITE_TAC[diffl; contl] THEN BETA_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC LIM_EQUAL THEN GEN_TAC THEN DISCH_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_ADD_RID_UNIQ; REAL_ADD_SUB]]; POP_ASSUM(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN UNDISCH_TAC `g contl x` THEN ASM_REWRITE_TAC[contl; diffl; REAL_ADD_SUB] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC LIM_EQUAL THEN GEN_TAC THEN DISCH_TAC THEN BETA_TAC THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_RINV th]) THEN REWRITE_TAC[REAL_MUL_RID]]);;
(*----------------------------------------------------------------------------*) (* Now the chain rule *) (*----------------------------------------------------------------------------*)
let DIFF_CHAIN = 
prove( `!f g l m x. (f diffl l)(g x) /\ (g diffl m)(x) ==> ((\x. f(g x)) diffl (l * m))(x)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP DIFF_CONT th)) THEN REWRITE_TAC[DIFF_CARAT] THEN DISCH_THEN(X_CHOOSE_THEN `g':real->real` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `f':real->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\z. if z = x then l * m else (f(g(z):real) - f(g(x))) / (z - x)` THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_RMUL THEN ASM_REWRITE_TAC[REAL_SUB_0]; MP_TAC(CONJ (ASSUME `g contl x`) (ASSUME `f' contl (g(x:real))`)) THEN DISCH_THEN(MP_TAC o MATCH_MP CONT_COMPOSE) THEN DISCH_THEN(MP_TAC o C CONJ (ASSUME `g' contl x`)) THEN DISCH_THEN(MP_TAC o MATCH_MP CONT_MUL) THEN BETA_TAC THEN ASM_REWRITE_TAC[contl] THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC LIM_EQUAL THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_ADD_RID_UNIQ] THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_ADD_SUB] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_RINV th]) THEN REWRITE_TAC[REAL_MUL_RID]]);;
(*----------------------------------------------------------------------------*) (* Differentiation of natural number powers *) (*----------------------------------------------------------------------------*)
let DIFF_X = 
prove( `!x. ((\x. x) diffl &1)(x)`,
GEN_TAC THEN REWRITE_TAC[diffl] THEN BETA_TAC THEN REWRITE_TAC[REAL_ADD_SUB] THEN REWRITE_TAC[LIM; REAL_SUB_RZERO] THEN BETA_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[GSYM ABS_NZ] THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP REAL_DIV_REFL th]) THEN ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0]);;
let DIFF_POW = 
prove( `!n x. ((\x. x pow n) diffl (&n * (x pow (n - 1))))(x)`,
INDUCT_TAC THEN REWRITE_TAC[pow; DIFF_CONST; REAL_MUL_LZERO] THEN X_GEN_TAC `x:real` THEN POP_ASSUM(MP_TAC o CONJ(SPEC `x:real` DIFF_X) o SPEC `x:real`) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_MUL) THEN BETA_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_MUL_LID] THEN REWRITE_TAC[REAL; REAL_RDISTRIB; REAL_MUL_LID] THEN GEN_REWRITE_TAC RAND_CONV [REAL_ADD_SYM] THEN BINOP_TAC THENL [REWRITE_TAC[ADD1; ADD_SUB]; STRUCT_CASES_TAC (SPEC `n:num` num_CASES) THEN REWRITE_TAC[REAL_MUL_LZERO] THEN REWRITE_TAC[ADD1; ADD_SUB; POW_ADD] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN REWRITE_TAC[num_CONV `1`; pow] THEN REWRITE_TAC[SYM(num_CONV `1`); REAL_MUL_RID]]);;
(*----------------------------------------------------------------------------*) (* Now power of -1 (then differentiation of inverses follows from chain rule) *) (*----------------------------------------------------------------------------*)
let DIFF_XM1 = 
prove( `!x. ~(x = &0) ==> ((\x. inv(x)) diffl (--(inv(x) pow 2)))(x)`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[diffl] THEN BETA_TAC THEN MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\h. --(inv(x + h) * inv(x))` THEN BETA_TAC THEN CONJ_TAC THENL [REWRITE_TAC[LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `abs(x)` THEN EVERY_ASSUM(fun th -> REWRITE_TAC[REWRITE_RULE[ABS_NZ] th]) THEN X_GEN_TAC `h:real` THEN REWRITE_TAC[REAL_SUB_RZERO] THEN DISCH_THEN STRIP_ASSUME_TAC THEN BETA_TAC THEN W(C SUBGOAL_THEN SUBST1_TAC o C (curry mk_eq) `&0` o rand o rator o snd) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ABS_ZERO; REAL_SUB_0] THEN SUBGOAL_THEN `~(x + h = &0)` ASSUME_TAC THENL [REWRITE_TAC[REAL_LNEG_UNIQ] THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `abs(h) < abs(--h)` THEN REWRITE_TAC[ABS_NEG; REAL_LT_REFL]; ALL_TAC] THEN W(fun (asl,w) -> MP_TAC (SPECL [`x * (x + h)`; lhs w; rhs w] REAL_EQ_LMUL)) THEN ASM_REWRITE_TAC[REAL_ENTIRE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL] THEN REWRITE_TAC[real_div; REAL_SUB_LDISTRIB; REAL_SUB_RDISTRIB] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (c * b) * (d * a)`] THEN REWRITE_TAC(map (MATCH_MP REAL_MUL_LINV o ASSUME) [`~(x = &0)`; `~(x + h = &0)`]) THEN REWRITE_TAC[REAL_MUL_LID] THEN ONCE_REWRITE_TAC[AC REAL_MUL_AC `(a * b) * (c * d) = (a * d) * (c * b)`] THEN REWRITE_TAC[MATCH_MP REAL_MUL_LINV (ASSUME `~(x = &0)`)] THEN REWRITE_TAC[REAL_MUL_LID; GSYM REAL_SUB_LDISTRIB] THEN REWRITE_TAC[REWRITE_RULE[REAL_NEG_SUB] (AP_TERM `(--)` (SPEC_ALL REAL_ADD_SUB))] THEN REWRITE_TAC[GSYM REAL_NEG_RMUL] THEN AP_TERM_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[ABS_NZ]; REWRITE_TAC[POW_2] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `inv(x + h) * inv(x)`]) THEN REWRITE_TAC[GSYM LIM_NEG] THEN CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`) [`inv(x + h)`; `inv(x)`])) THEN MATCH_MP_TAC LIM_MUL THEN BETA_TAC THEN REWRITE_TAC[LIM_CONST] THEN CONV_TAC(EXACT_CONV[X_BETA_CONV `h:real` `x + h`]) THEN MATCH_MP_TAC LIM_INV THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ADD_RID] THEN CONV_TAC(EXACT_CONV(map (X_BETA_CONV `h:real`) [`x:real`; `h:real`])) THEN MATCH_MP_TAC LIM_ADD THEN BETA_TAC THEN REWRITE_TAC[LIM_CONST] THEN MATCH_ACCEPT_TAC LIM_X]);;
(*----------------------------------------------------------------------------*) (* Now differentiation of inverse and quotient *) (*----------------------------------------------------------------------------*)
let DIFF_INV = 
prove( `!f l x. (f diffl l)(x) /\ ~(f(x) = &0) ==> ((\x. inv(f x)) diffl --(l / (f(x) pow 2)))(x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_div; REAL_NEG_RMUL] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN DISCH_TAC THEN MATCH_MP_TAC DIFF_CHAIN THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP POW_INV (CONJUNCT2 th)]) THEN MATCH_MP_TAC(CONV_RULE(ONCE_DEPTH_CONV ETA_CONV) DIFF_XM1) THEN ASM_REWRITE_TAC[]);;
let DIFF_DIV = 
prove( `!f g l m. (f diffl l)(x) /\ (g diffl m)(x) /\ ~(g(x) = &0) ==> ((\x. f(x) / g(x)) diffl (((l * g(x)) - (m * f(x))) / (g(x) pow 2)))(x)`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN REWRITE_TAC[real_div] THEN MP_TAC(SPECL [`g:real->real`; `m:real`; `x:real`] DIFF_INV) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o CONJ(ASSUME `(f diffl l)(x)`)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_MUL) THEN BETA_TAC THEN W(C SUBGOAL_THEN SUBST1_TAC o mk_eq o ((rand o rator) F_F (rand o rator)) o dest_imp o snd) THEN REWRITE_TAC[] THEN REWRITE_TAC[real_sub] THEN REWRITE_TAC[REAL_LDISTRIB; REAL_RDISTRIB] THEN BINOP_TAC THENL [REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN REWRITE_TAC[POW_2] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_INV_MUL_WEAK (W CONJ th)]) THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_MUL_RINV th]) THEN REWRITE_TAC[REAL_MUL_LID]; REWRITE_TAC[real_div; GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL] THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_MUL_AC]]);;
(*----------------------------------------------------------------------------*) (* Differentiation of finite sum *) (*----------------------------------------------------------------------------*)
let DIFF_SUM = 
prove( `!f f' m n x. (!r. m <= r /\ r < (m + n) ==> ((\x. f r x) diffl (f' r x))(x)) ==> ((\x. sum(m,n)(\n. f n x)) diffl (sum(m,n) (\r. f' r x)))(x)`,
REPEAT GEN_TAC THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[sum; DIFF_CONST] THEN DISCH_TAC THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC DIFF_ADD THEN BETA_TAC THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `m + n:num` THEN ASM_REWRITE_TAC[ADD_CLAUSES; LESS_SUC_REFL]; REWRITE_TAC[LE_ADD; ADD_CLAUSES; LESS_SUC_REFL]]);;
(*----------------------------------------------------------------------------*) (* By bisection, function continuous on closed interval is bounded above *) (*----------------------------------------------------------------------------*)
let CONT_BOUNDED = 
prove( `!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x) ==> ?M. !x. a <= x /\ x <= b ==> f(x) <= M`,
REPEAT STRIP_TAC THEN (MP_TAC o C SPEC BOLZANO_LEMMA) `\(u,v). a <= u /\ u <= v /\ v <= b ==> ?M. !x. u <= x /\ x <= v ==> f x <= M` THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2(fst o dest_imp) o snd) THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN ASM_REWRITE_TAC[REAL_LE_REFL]] THEN CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`u:real`; `v:real`; `w:real`] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN DISCH_TAC THEN REPEAT(FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl)) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `v <= b` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `w:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `a <= v` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `u:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `M1:real`) THEN DISCH_THEN(X_CHOOSE_TAC `M2:real`) THEN DISJ_CASES_TAC(SPECL [`M1:real`; `M2:real`] REAL_LE_TOTAL) THENL [EXISTS_TAC `M2:real` THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN DISJ_CASES_TAC(SPECL [`x:real`; `v:real`] REAL_LE_TOTAL) THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `M1:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; EXISTS_TAC `M1:real` THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN DISJ_CASES_TAC(SPECL [`x:real`; `v:real`] REAL_LE_TOTAL) THENL [ALL_TAC; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `M2:real` THEN ASM_REWRITE_TAC[]] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN X_GEN_TAC `x:real` THEN ASM_CASES_TAC `a <= x /\ x <= b` THENL [ALL_TAC; EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `~(a <= x /\ x <= b)` THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `u:real`; EXISTS_TAC `v:real`] THEN ASM_REWRITE_TAC[]] THEN UNDISCH_TAC `!x. a <= x /\ x <= b ==> f contl x` THEN DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[contl; LIM] THEN DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01] THEN ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN BETA_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `abs(f(x:real)) + &1` THEN X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPEC `z - x`) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD] THEN DISCH_TAC THEN MP_TAC(SPECL [`f(z:real) - f(x)`; `(f:real->real) x`] ABS_TRIANGLE) THEN REWRITE_TAC[REAL_SUB_ADD] THEN DISCH_THEN(ASSUME_TAC o ONCE_REWRITE_RULE[REAL_ADD_SYM]) THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(f(z:real))` THEN REWRITE_TAC[ABS_LE] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(f(x:real)) + (abs(f(z) - f(x)))` THEN ASM_REWRITE_TAC[REAL_LE_LADD] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_CASES_TAC `z:real = x` THENL [ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0; REAL_LT_01]; FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GSYM ABS_NZ] THEN ASM_REWRITE_TAC[REAL_SUB_0; real_abs; REAL_SUB_LE] THEN REWRITE_TAC[REAL_NEG_SUB] THEN COND_CASES_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `v - u` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `v - x`; EXISTS_TAC `v - z`] THEN ASM_REWRITE_TAC[real_sub; REAL_LE_RADD; REAL_LE_LADD; REAL_LE_NEG]]);;
let CONT_BOUNDED_ABS = 
prove (`!f a b. (!x. a <= x /\ x <= b ==> f contl x) ==> ?M. !x. a <= x /\ x <= b ==> abs(f(x)) <= M`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `a <= b` THENL [ALL_TAC; ASM_SIMP_TAC[REAL_ARITH `~(a <= b) ==> ~(a <= x /\ x <= b)`]] THEN MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`] CONT_BOUNDED) THEN MP_TAC(SPECL [`\x:real. --(f x)`; `a:real`; `b:real`] CONT_BOUNDED) THEN ASM_SIMP_TAC[CONT_NEG] THEN DISCH_THEN(X_CHOOSE_TAC `M1:real`) THEN DISCH_THEN(X_CHOOSE_TAC `M2:real`) THEN EXISTS_TAC `abs(M1) + abs(M2)` THEN ASM_SIMP_TAC[REAL_ARITH `x <= m1 /\ --x <= m2 ==> abs(x) <= abs(m2) + abs(m1)`]);;
(*----------------------------------------------------------------------------*) (* Refine the above to existence of least upper bound *) (*----------------------------------------------------------------------------*)
let CONT_HASSUP = 
prove( `!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x) ==> ?M. (!x. a <= x /\ x <= b ==> f(x) <= M) /\ (!N. N < M ==> ?x. a <= x /\ x <= b /\ N < f(x))`,
let tm = `\y:real. ?x. a <= x /\ x <= b /\ (y = f(x))` in REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC tm REAL_SUP_LE) THEN BETA_TAC THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL [CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`(f:real->real) a`; `a:real`] THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_LE_LT]; POP_ASSUM(X_CHOOSE_TAC `M:real` o MATCH_MP CONT_BOUNDED) THEN EXISTS_TAC `M:real` THEN X_GEN_TAC `y:real` THEN DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC SUBST1_TAC) THEN POP_ASSUM MATCH_ACCEPT_TAC]; DISCH_TAC THEN EXISTS_TAC (mk_comb(`sup`,tm)) THEN CONJ_TAC THENL [X_GEN_TAC `x:real` THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o SPEC (mk_comb(`sup`,tm))) THEN REWRITE_TAC[REAL_LT_REFL] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN DISCH_THEN(MP_TAC o SPEC `(f:real->real) x`) THEN REWRITE_TAC[DE_MORGAN_THM; REAL_NOT_LT] THEN CONV_TAC(ONCE_DEPTH_CONV NOT_EXISTS_CONV) THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[]; GEN_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o SPEC `N:real`) THEN DISCH_THEN(X_CHOOSE_THEN `y:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC SUBST_ALL_TAC) THEN DISCH_TAC THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*) (* Now show that it attains its upper bound *) (*----------------------------------------------------------------------------*)
let CONT_ATTAINS = 
prove( `!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x) ==> ?M. (!x. a <= x /\ x <= b ==> f(x) <= M) /\ (?x. a <= x /\ x <= b /\ (f(x) = M))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `M:real` STRIP_ASSUME_TAC o MATCH_MP CONT_HASSUP) THEN EXISTS_TAC `M:real` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [TAUT `a <=> ~ ~a`] THEN CONV_TAC(RAND_CONV NOT_EXISTS_CONV) THEN REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN DISCH_TAC THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> f(x) < M` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[REAL_LT_LE] THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN PURE_ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN DISCH_TAC THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (\x. inv(M - f(x))) contl x` ASSUME_TAC THENL [GEN_TAC THEN DISCH_TAC THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC CONT_INV THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_0] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC REAL_LT_IMP_NE THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC CONT_SUB THEN BETA_TAC THEN REWRITE_TAC[CONT_CONST] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?k. !x. a <= x /\ x <= b ==> (\x. inv(M - (f x))) x <= k` MP_TAC THENL [MATCH_MP_TAC CONT_BOUNDED THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN BETA_TAC THEN DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> &0 < inv(M - f(x))` ASSUME_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_INV_POS THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (\x. inv(M - (f x))) x < (k + &1)` ASSUME_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `k:real` THEN REWRITE_TAC[REAL_LT_ADDR; REAL_LT_01] THEN BETA_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> inv(k + &1) < inv((\x. inv(M - (f x))) x)` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LT_INV2 THEN CONJ_TAC THENL [BETA_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN BETA_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> inv(k + &1) < (M - (f x))` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `~(M - f(x:real) = &0)` (SUBST1_TAC o SYM o MATCH_MP REAL_INVINV) THENL [CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN REWRITE_TAC[REAL_LT_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ONCE_REWRITE_TAC[GSYM REAL_LT_SUB_LADD] THEN DISCH_TAC THEN UNDISCH_TAC `!N. N < M ==> (?x. a <= x /\ x <= b /\ N < (f x))` THEN DISCH_THEN(MP_TAC o SPEC `M - inv(k + &1)`) THEN REWRITE_TAC[REAL_LT_SUB_RADD; REAL_LT_ADDR] THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_INV_POS THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `k:real` THEN REWRITE_TAC[REAL_LT_ADDR; REAL_LT_01] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `inv(M - f(a:real))` THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL]; DISCH_THEN(X_CHOOSE_THEN `x:real` MP_TAC) THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[REAL_NOT_LT] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ONCE_REWRITE_TAC[GSYM REAL_LT_SUB_LADD] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);;
(*----------------------------------------------------------------------------*) (* Same theorem for lower bound *) (*----------------------------------------------------------------------------*)
let CONT_ATTAINS2 = 
prove( `!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x) ==> ?M. (!x. a <= x /\ x <= b ==> M <= f(x)) /\ (?x. a <= x /\ x <= b /\ (f(x) = M))`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (\x. --(f x)) contl x` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONT_NEG THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o CONJ (ASSUME `a <= b`)) THEN DISCH_THEN(X_CHOOSE_THEN `M:real` MP_TAC o MATCH_MP CONT_ATTAINS) THEN BETA_TAC THEN DISCH_TAC THEN EXISTS_TAC `--M` THEN CONJ_TAC THENL [GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_LE_NEG] THEN ASM_REWRITE_TAC[REAL_NEGNEG]; ASM_REWRITE_TAC[GSYM REAL_NEG_EQ]]);;
(* ------------------------------------------------------------------------- *) (* Another version. *) (* ------------------------------------------------------------------------- *)
let CONT_ATTAINS_ALL = 
prove( `!f a b. (a <= b /\ !x. a <= x /\ x <= b ==> f contl x) ==> ?L M. (!x. a <= x /\ x <= b ==> L <= f(x) /\ f(x) <= M) /\ !y. L <= y /\ y <= M ==> ?x. a <= x /\ x <= b /\ (f(x) = y)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `L:real` MP_TAC o MATCH_MP CONT_ATTAINS2) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `x1:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(X_CHOOSE_THEN `M:real` MP_TAC o MATCH_MP CONT_ATTAINS) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `x2:real` STRIP_ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`L:real`; `M:real`] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISJ_CASES_TAC(SPECL [`x1:real`; `x2:real`] REAL_LE_TOTAL) THEN REPEAT STRIP_TAC THENL [MP_TAC(SPECL [`f:real->real`; `x1:real`; `x2:real`; `y:real`] IVT) THEN ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2); DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]] THEN (CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `x1:real`; EXISTS_TAC `x2:real`] THEN ASM_REWRITE_TAC[]); MP_TAC(SPECL [`f:real->real`; `x2:real`; `x1:real`; `y:real`] IVT2) THEN ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2); DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]] THEN (CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [EXISTS_TAC `x2:real`; EXISTS_TAC `x1:real`] THEN ASM_REWRITE_TAC[])]);;
(*----------------------------------------------------------------------------*) (* If f'(x) > 0 then x is locally strictly increasing at the right *) (*----------------------------------------------------------------------------*)
let DIFF_LINC = 
prove( `!f x l. (f diffl l)(x) /\ &0 < l ==> ?d. &0 < d /\ !h. &0 < h /\ h < d ==> f(x) < f(x + h)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[diffl; LIM; REAL_SUB_RZERO] THEN DISCH_THEN(MP_TAC o SPEC `l:real`) THEN ASM_REWRITE_TAC[] THEN BETA_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_INV_POS o CONJUNCT1) THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP REAL_LT_RMUL_EQ th)]) THEN REWRITE_TAC[REAL_MUL_LZERO] THEN REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC ABS_SIGN THEN EXISTS_TAC `l:real` THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE o CONJUNCT1) THEN ASM_REWRITE_TAC[real_abs]);;
(*----------------------------------------------------------------------------*) (* If f'(x) < 0 then x is locally strictly increasing at the left *) (*----------------------------------------------------------------------------*)
let DIFF_LDEC = 
prove( `!f x l. (f diffl l)(x) /\ l < &0 ==> ?d. &0 < d /\ !h. &0 < h /\ h < d ==> f(x) < f(x - h)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[diffl; LIM; REAL_SUB_RZERO] THEN DISCH_THEN(MP_TAC o SPEC `--l`) THEN ONCE_REWRITE_TAC[GSYM REAL_NEG_LT0] THEN ASM_REWRITE_TAC[REAL_NEGNEG] THEN REWRITE_TAC[REAL_NEG_LT0] THEN BETA_TAC THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LT] THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_INV_POS o CONJUNCT1) THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM(MATCH_MP REAL_LT_RMUL_EQ th)]) THEN REWRITE_TAC[REAL_MUL_LZERO] THEN REWRITE_TAC[GSYM REAL_NEG_LT0; REAL_NEG_RMUL] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_NEG_INV (GSYM (MATCH_MP REAL_LT_IMP_NE (CONJUNCT1 th)))]) THEN MATCH_MP_TAC ABS_SIGN2 THEN EXISTS_TAC `l:real` THEN REWRITE_TAC[GSYM real_div] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o funpow 3 LAND_CONV o RAND_CONV) [real_sub] THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE o CONJUNCT1) THEN REWRITE_TAC[real_abs; GSYM REAL_NEG_LE0; REAL_NEGNEG] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT]);;
(*----------------------------------------------------------------------------*) (* If f is differentiable at a local maximum x, f'(x) = 0 *) (*----------------------------------------------------------------------------*)
let DIFF_LMAX = 
prove( `!f x l. (f diffl l)(x) /\ (?d. &0 < d /\ (!y. abs(x - y) < d ==> f(y) <= f(x))) ==> (l = &0)`,
REPEAT GEN_TAC THEN DISCH_THEN (CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC)) THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPECL [`l:real`; `&0`] REAL_LT_TOTAL) THEN ASM_REWRITE_TAC[] THENL [DISCH_THEN(MP_TAC o C CONJ(ASSUME `l < &0`)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_LDEC) THEN DISCH_THEN(X_CHOOSE_THEN `e:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(SPECL [`k:real`; `e:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPEC `x - d`) THEN REWRITE_TAC[REAL_SUB_SUB2] THEN SUBGOAL_THEN `&0 <= d` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[real_abs] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT]; DISCH_THEN(MP_TAC o C CONJ(ASSUME `&0 < l`)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_LINC) THEN DISCH_THEN(X_CHOOSE_THEN `e:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(SPECL [`k:real`; `e:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN DISCH_THEN(MP_TAC o SPEC `x + d`) THEN REWRITE_TAC[REAL_ADD_SUB2] THEN SUBGOAL_THEN `&0 <= d` ASSUME_TAC THENL [MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[ABS_NEG] THEN ASM_REWRITE_TAC[real_abs] THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LT]]);;
(*----------------------------------------------------------------------------*) (* Similar theorem for a local minimum *) (*----------------------------------------------------------------------------*)
let DIFF_LMIN = 
prove( `!f x l. (f diffl l)(x) /\ (?d. &0 < d /\ (!y. abs(x - y) < d ==> f(x) <= f(y))) ==> (l = &0)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`\x:real. --(f x)`; `x:real`; `--l`] DIFF_LMAX) THEN BETA_TAC THEN REWRITE_TAC[REAL_LE_NEG; REAL_NEG_EQ0] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIFF_NEG THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* In particular if a function is locally flat *) (*----------------------------------------------------------------------------*)
let DIFF_LCONST = 
prove( `!f x l. (f diffl l)(x) /\ (?d. &0 < d /\ (!y. abs(x - y) < d ==> (f(y) = f(x)))) ==> (l = &0)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC DIFF_LMAX THEN MAP_EVERY EXISTS_TAC [`f:real->real`; `x:real`] THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(SUBST1_TAC o C MATCH_MP th)) THEN MATCH_ACCEPT_TAC REAL_LE_REFL);;
(*----------------------------------------------------------------------------*) (* Lemma about introducing open ball in open interval *) (*----------------------------------------------------------------------------*)
let INTERVAL_LEMMA_LT = 
prove( `!a b x. a < x /\ x < b ==> ?d. &0 < d /\ !y. abs(x - y) < d ==> a < y /\ y < b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM ABS_BETWEEN] THEN DISJ_CASES_TAC(SPECL [`x - a`; `b - x`] REAL_LE_TOTAL) THENL [EXISTS_TAC `x - a`; EXISTS_TAC `b - x`] THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN GEN_TAC THEN REWRITE_TAC[REAL_LT_SUB_LADD; REAL_LT_SUB_RADD] THEN REWRITE_TAC[real_sub; REAL_ADD_ASSOC] THEN REWRITE_TAC[GSYM real_sub; REAL_LT_SUB_LADD; REAL_LT_SUB_RADD] THEN FREEZE_THEN(fun th -> ONCE_REWRITE_TAC[th]) (SPEC `x:real` REAL_ADD_SYM) THEN REWRITE_TAC[REAL_LT_RADD] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN (MATCH_MP_TAC o GEN_ALL o fst o EQ_IMP_RULE o SPEC_ALL) REAL_LT_RADD THENL [EXISTS_TAC `a:real` THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `x + x` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(x - a) <= (b - x)`; EXISTS_TAC `b:real` THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `x + x` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(b - x) <= (x - a)`] THEN REWRITE_TAC[REAL_LE_SUB_LADD; GSYM REAL_LE_SUB_RADD] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[real_sub] THEN REWRITE_TAC[REAL_ADD_AC]);;
let INTERVAL_LEMMA = 
prove( `!a b x. a < x /\ x < b ==> ?d. &0 < d /\ !y. abs(x - y) < d ==> a <= y /\ y <= b`,
REPEAT GEN_TAC THEN DISCH_THEN(X_CHOOSE_TAC `d:real` o MATCH_MP INTERVAL_LEMMA_LT) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th o CONJUNCT2)) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]);;
(*----------------------------------------------------------------------------*) (* Now Rolle's theorem *) (*----------------------------------------------------------------------------*)
let ROLLE = 
prove( `!f a b. a < b /\ (f(a) = f(b)) /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> f differentiable x) ==> ?z. a < z /\ z < b /\ (f diffl &0)(z)`,
REPEAT GEN_TAC THEN DISCH_THEN STRIP_ASSUME_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) THEN MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`] CONT_ATTAINS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `M:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `x1:real`)) THEN MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`] CONT_ATTAINS2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `m:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `x2:real`)) THEN ASM_CASES_TAC `a < x1 /\ x1 < b` THENL [FIRST_ASSUM(X_CHOOSE_THEN `d:real` MP_TAC o MATCH_MP INTERVAL_LEMMA) THEN DISCH_THEN STRIP_ASSUME_TAC THEN EXISTS_TAC `x1:real` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `?l. (f diffl l)(x1) /\ ?d. &0 < d /\ (!y. abs(x1 - y) < d ==> f(y) <= f(x1))` MP_TAC THENL [CONV_TAC EXISTS_AND_CONV THEN CONJ_TAC THENL [REWRITE_TAC[GSYM differentiable] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN DISCH_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC) THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN SUBST_ALL_TAC(MATCH_MP DIFF_LMAX th)) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `a < x2 /\ x2 < b` THENL [FIRST_ASSUM(X_CHOOSE_THEN `d:real` MP_TAC o MATCH_MP INTERVAL_LEMMA) THEN DISCH_THEN STRIP_ASSUME_TAC THEN EXISTS_TAC `x2:real` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `?l. (f diffl l)(x2) /\ ?d. &0 < d /\ (!y. abs(x2 - y) < d ==> f(x2) <= f(y))` MP_TAC THENL [CONV_TAC EXISTS_AND_CONV THEN CONJ_TAC THENL [REWRITE_TAC[GSYM differentiable] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN DISCH_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC) THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN SUBST_ALL_TAC(MATCH_MP DIFF_LMIN th)) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x. a <= x /\ x <= b ==> (f(x):real = f(b))` MP_TAC THENL [REPEAT(FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl)) THEN ASM_REWRITE_TAC[REAL_LT_LE] THEN REWRITE_TAC[DE_MORGAN_THM] THEN REPEAT (DISCH_THEN(DISJ_CASES_THEN2 (MP_TAC o SYM) MP_TAC) THEN DISCH_THEN(SUBST_ALL_TAC o AP_TERM `f:real->real`)) THEN UNDISCH_TAC `(f:real->real) a = f b` THEN DISCH_THEN(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN (CONJ_TAC THENL [SUBGOAL_THEN `(f:real->real) b = M` SUBST1_TAC THENL [FIRST_ASSUM(ACCEPT_TAC o el 2 o CONJUNCTS); FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; SUBGOAL_THEN `(f:real->real) b = m` SUBST1_TAC THENL [FIRST_ASSUM(ACCEPT_TAC o el 2 o CONJUNCTS); FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]]); X_CHOOSE_TAC `x:real` (MATCH_MP REAL_MEAN (ASSUME `a < b`)) THEN DISCH_TAC THEN EXISTS_TAC `x:real` THEN REWRITE_TAC[ASSUME `a < x /\ x < b`] THEN FIRST_ASSUM(MP_TAC o MATCH_MP INTERVAL_LEMMA) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?l. (f diffl l)(x) /\ (?d. &0 < d /\ (!y. abs(x - y) < d ==> (f(y) = f(x))))` MP_TAC THENL [CONV_TAC(ONCE_DEPTH_CONV EXISTS_AND_CONV) THEN CONJ_TAC THENL [REWRITE_TAC[GSYM differentiable] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN SUBST1_TAC THEN CONV_TAC SYM_CONV THEN FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `l:real` (fun th -> ASSUME_TAC th THEN SUBST_ALL_TAC(MATCH_MP DIFF_LCONST th))) THEN ASM_REWRITE_TAC[]]]);;
(*----------------------------------------------------------------------------*) (* Mean value theorem *) (*----------------------------------------------------------------------------*)
let MVT_LEMMA = 
prove( `!(f:real->real) a b. (\x. f(x) - (((f(b) - f(a)) / (b - a)) * x))(a) = (\x. f(x) - (((f(b) - f(a)) / (b - a)) * x))(b)`,
REPEAT GEN_TAC THEN BETA_TAC THEN ASM_CASES_TAC `b:real = a` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM REAL_SUB_0]) THEN MP_TAC(GENL [`x:real`; `y:real`] (SPECL [`x:real`; `y:real`; `b - a`] REAL_EQ_RMUL)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP REAL_DIV_RMUL th]) THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN REWRITE_TAC[real_sub; REAL_LDISTRIB; REAL_RDISTRIB] THEN REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEG_RMUL; REAL_NEG_ADD; REAL_NEGNEG] THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN REWRITE_TAC[AC REAL_ADD_AC `w + x + y + z = (y + w) + (x + z)`; REAL_ADD_LINV; REAL_ADD_LID] THEN REWRITE_TAC[REAL_ADD_RID]);;
let MVT = 
prove( `!f a b. a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> f differentiable x) ==> ?l z. a < z /\ z < b /\ (f diffl l)(z) /\ (f(b) - f(a) = (b - a) * l)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(SPECL [`\x. f(x) - (((f(b) - f(a)) / (b - a)) * x)`; `a:real`; `b:real`] ROLLE) THEN W(C SUBGOAL_THEN (fun t ->REWRITE_TAC[t]) o funpow 2 (fst o dest_imp) o snd) THENL [ASM_REWRITE_TAC[MVT_LEMMA] THEN BETA_TAC THEN CONJ_TAC THEN X_GEN_TAC `x:real` THENL [DISCH_TAC THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC CONT_SUB THEN CONJ_TAC THENL [CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC CONT_MUL THEN REWRITE_TAC[CONT_CONST] THEN MATCH_MP_TAC DIFF_CONT THEN EXISTS_TAC `&1` THEN MATCH_ACCEPT_TAC DIFF_X]; DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN REWRITE_TAC[differentiable] THEN DISCH_THEN(X_CHOOSE_TAC `l:real`) THEN EXISTS_TAC `l - ((f(b) - f(a)) / (b - a))` THEN CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH_MP_TAC DIFF_SUB THEN CONJ_TAC THENL [CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSUM ACCEPT_TAC; CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC DIFF_CMUL THEN MATCH_ACCEPT_TAC DIFF_X]]; ALL_TAC] THEN REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN((then_) (MAP_EVERY EXISTS_TAC [`((f(b) - f(a)) / (b - a))`; `z:real`]) o MP_TAC) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN((then_) CONJ_TAC o MP_TAC) THENL [ALL_TAC; DISCH_THEN(K ALL_TAC) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_LMUL THEN REWRITE_TAC[REAL_SUB_0] THEN DISCH_THEN SUBST_ALL_TAC THEN UNDISCH_TAC `a < a` THEN REWRITE_TAC[REAL_LT_REFL]] THEN SUBGOAL_THEN `((\x. ((f(b) - f(a)) / (b - a)) * x ) diffl ((f(b) - f(a)) / (b - a)))(z)` (fun th -> DISCH_THEN(MP_TAC o C CONJ th)) THENL [CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC DIFF_CMUL THEN REWRITE_TAC[DIFF_X]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_ADD] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[REAL_ADD_LID]);;
(* ------------------------------------------------------------------------- *) (* Simple version with pure differentiability assumption. *) (* ------------------------------------------------------------------------- *)
let MVT_ALT = 
prove (`!f f' a b. a < b /\ (!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) ==> ?z. a < z /\ z < b /\ (f b - f a = (b - a) * f'(z))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `?l z. a < z /\ z < b /\ (f diffl l) z /\ (f b - f a = (b - a) * l)` MP_TAC THENL [MATCH_MP_TAC MVT THEN REWRITE_TAC[differentiable] THEN ASM_MESON_TAC[DIFF_CONT; REAL_LT_IMP_LE]; ASM_MESON_TAC[DIFF_UNIQ; REAL_LT_IMP_LE]]);;
(*----------------------------------------------------------------------------*) (* Theorem that function is constant if its derivative is 0 over an interval. *) (* *) (* We could have proved this directly by bisection; consider instantiating *) (* BOLZANO_LEMMA with *) (* *) (* \(x,y). f(y) - f(x) <= C * (y - x) *) (* *) (* However the Rolle and Mean Value theorems are useful to have anyway *) (*----------------------------------------------------------------------------*)
let DIFF_ISCONST_END = 
prove( `!f a b. a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> (f diffl &0)(x)) ==> (f b = f a)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`] MVT) THEN ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN MP_TAC o funpow 2 (fst o dest_imp) o snd) THENL [GEN_TAC THEN REWRITE_TAC[differentiable] THEN DISCH_THEN((then_) (EXISTS_TAC `&0`) o MP_TAC) THEN ASM_REWRITE_TAC[]; DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN DISCH_THEN(X_CHOOSE_THEN `l:real` (X_CHOOSE_THEN `x:real` MP_TAC)) THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> (a /\ b) /\ (c /\ d)`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN(MP_TAC o CONJ (ASSUME `(f diffl l)(x)`)) THEN DISCH_THEN(SUBST_ALL_TAC o MATCH_MP DIFF_UNIQ) THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_MUL_RZERO; REAL_SUB_0]) THEN FIRST_ASSUM ACCEPT_TAC);;
let DIFF_ISCONST = 
prove( `!f a b. a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\ (!x. a < x /\ x < b ==> (f diffl &0)(x)) ==> !x. a <= x /\ x <= b ==> (f x = f a)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN STRIP_TAC THEN MP_TAC(SPECL [`f:real->real`; `a:real`; `x:real`] DIFF_ISCONST_END) THEN DISJ_CASES_THEN MP_TAC (REWRITE_RULE[REAL_LE_LT] (ASSUME `a <= x`)) THENL [DISCH_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THEN X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x:real`; MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `x:real`] THEN ASM_REWRITE_TAC[]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]]);;
let DIFF_ISCONST_END_SIMPLE = 
prove (`!f a b. a < b /\ (!x. a <= x /\ x <= b ==> (f diffl &0)(x)) ==> (f b = f a)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC DIFF_ISCONST_END THEN ASM_MESON_TAC[DIFF_CONT; REAL_LT_IMP_LE]);;
let DIFF_ISCONST_ALL = 
prove( `!f x y. (!x. (f diffl &0)(x)) ==> (f(x) = f(y))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `!x. f contl x` ASSUME_TAC THENL [GEN_TAC THEN MATCH_MP_TAC DIFF_CONT THEN EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REPEAT GEN_TAC THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC (SPECL [`x:real`; `y:real`] REAL_LT_TOTAL) THENL [DISCH_THEN SUBST1_TAC THEN REFL_TAC; CONV_TAC(RAND_CONV SYM_CONV); ALL_TAC] THEN DISCH_TAC THEN MATCH_MP_TAC DIFF_ISCONST_END THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------ *) (* Boring lemma about distances *) (* ------------------------------------------------------------------------ *) let INTERVAL_ABS = REAL_ARITH `!x z d. (x - d) <= z /\ z <= (x + d) <=> abs(z - x) <= d`;; (* ------------------------------------------------------------------------ *) (* Dull lemma that an continuous injection on an interval must have a strict*) (* maximum at an end point, not in the middle. *) (* ------------------------------------------------------------------------ *)
let CONT_INJ_LEMMA = 
prove( `!f g x d. &0 < d /\ (!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\ (!z. abs(z - x) <= d ==> f contl z) ==> ~(!z. abs(z - x) <= d ==> f(z) <= f(x))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN IMP_RES_THEN ASSUME_TAC REAL_LT_IMP_LE THEN DISCH_THEN(fun th -> MAP_EVERY (MP_TAC o C SPEC th) [`x - d`; `x + d`]) THEN REWRITE_TAC[REAL_ADD_SUB; REAL_SUB_SUB; ABS_NEG] THEN ASM_REWRITE_TAC[real_abs; REAL_LE_REFL] THEN DISCH_TAC THEN DISCH_TAC THEN DISJ_CASES_TAC (SPECL [`f(x - d):real`; `f(x + d):real`] REAL_LE_TOTAL) THENL [MP_TAC(SPECL [`f:real->real`; `x - d`; `x:real`; `f(x + d):real`] IVT) THEN ASM_REWRITE_TAC[REAL_LE_SUB_RADD; REAL_LE_ADDR] THEN W(C SUBGOAL_THEN MP_TAC o fst o dest_imp o dest_neg o snd) THENL [X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[GSYM ABS_NEG] THEN REWRITE_TAC[real_abs; REAL_SUB_LE] THEN ASM_REWRITE_TAC[REAL_NEG_SUB; REAL_SUB_LE; REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[]; DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o AP_TERM `g:real->real`) THEN SUBGOAL_THEN `g((f:real->real) z) = z` SUBST1_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[GSYM ABS_NEG] THEN REWRITE_TAC[real_abs; REAL_SUB_LE] THEN ASM_REWRITE_TAC[REAL_NEG_SUB; REAL_SUB_LE; REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `g(f(x + d):real) = x + d` SUBST1_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[REAL_ADD_SUB] THEN ASM_REWRITE_TAC[real_abs; REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LT_ADDR]]; MP_TAC(SPECL [`f:real->real`; `x:real`; `x + d`; `f(x - d):real`] IVT2) THEN ASM_REWRITE_TAC[REAL_LE_SUB_RADD; REAL_LE_ADDR] THEN W(C SUBGOAL_THEN MP_TAC o fst o dest_imp o dest_neg o snd) THENL [X_GEN_TAC `z:real` THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE; REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[]; DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o AP_TERM `g:real->real`) THEN SUBGOAL_THEN `g((f:real->real) z) = z` SUBST1_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE; REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `g(f(x - d):real) = x - d` SUBST1_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[REAL_SUB_SUB; ABS_NEG] THEN ASM_REWRITE_TAC[real_abs; REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[] THEN CONV_TAC(RAND_CONV SYM_CONV) THEN MATCH_MP_TAC REAL_LT_IMP_NE THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[REAL_LT_SUB_RADD; REAL_LT_ADDR]]]);;
(* ------------------------------------------------------------------------ *) (* Similar version for lower bound *) (* ------------------------------------------------------------------------ *)
let CONT_INJ_LEMMA2 = 
prove( `!f g x d. &0 < d /\ (!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\ (!z. abs(z - x) <= d ==> f contl z) ==> ~(!z. abs(z - x) <= d ==> f(x) <= f(z))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(SPECL [`\x:real. --(f x)`; `\y. (g(--y):real)`; `x:real`; `d:real`] CONT_INJ_LEMMA) THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_NEGNEG; REAL_LE_NEG] THEN DISCH_THEN MATCH_MP_TAC THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONT_NEG THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_ASSUM ACCEPT_TAC);;
(* ------------------------------------------------------------------------ *) (* Show there's an interval surrounding f(x) in f[[x - d, x + d]] *) (* ------------------------------------------------------------------------ *)
let CONT_INJ_RANGE = 
prove( `!f g x d. &0 < d /\ (!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\ (!z. abs(z - x) <= d ==> f contl z) ==> ?e. &0 < e /\ (!y. abs(y - f(x)) <= e ==> ?z. abs(z - x) <= d /\ (f z = y))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN IMP_RES_THEN ASSUME_TAC REAL_LT_IMP_LE THEN MP_TAC(SPECL [`f:real->real`; `x - d`; `x + d`] CONT_ATTAINS_ALL) THEN ASM_REWRITE_TAC[INTERVAL_ABS; REAL_LE_SUB_RADD] THEN ASM_REWRITE_TAC[GSYM REAL_ADD_ASSOC; REAL_LE_ADDR; REAL_LE_DOUBLE] THEN DISCH_THEN(X_CHOOSE_THEN `L:real` (X_CHOOSE_THEN `M:real` MP_TAC)) THEN STRIP_TAC THEN SUBGOAL_THEN `L <= f(x:real) /\ f(x) <= M` STRIP_ASSUME_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0]; ALL_TAC] THEN SUBGOAL_THEN `L < f(x:real) /\ f(x:real) < M` STRIP_ASSUME_TAC THENL [CONJ_TAC THEN ASM_REWRITE_TAC[REAL_LT_LE] THENL [DISCH_THEN SUBST_ALL_TAC THEN (MP_TAC o C SPECL CONT_INJ_LEMMA2) [`f:real->real`; `g:real->real`; `x:real`; `d:real`]; DISCH_THEN(SUBST_ALL_TAC o SYM) THEN (MP_TAC o C SPECL CONT_INJ_LEMMA) [`f:real->real`; `g:real->real`; `x:real`; `d:real`]] THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun t -> FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP th t] THEN NO_TAC)); MP_TAC(SPECL [`f(x:real) - L`; `M - f(x:real)`] REAL_DOWN2) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM INTERVAL_ABS] THEN REWRITE_TAC[REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[GSYM CONJ_ASSOC] THEN FIRST_ASSUM MATCH_MP_TAC THEN UNDISCH_TAC `abs(y - f(x:real)) <= e` THEN REWRITE_TAC[GSYM INTERVAL_ABS] THEN STRIP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f(x:real) - e` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_LE_SUB_LADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[GSYM REAL_LE_SUB_LADD]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f(x:real) + (M - f(x))` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f(x:real) + e` THEN ASM_REWRITE_TAC[REAL_LE_LADD]; REWRITE_TAC[REAL_SUB_ADD2; REAL_LE_REFL]]] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------ *) (* Continuity of inverse function *) (* ------------------------------------------------------------------------ *)
let CONT_INVERSE = 
prove( `!f g x d. &0 < d /\ (!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\ (!z. abs(z - x) <= d ==> f contl z) ==> g contl (f x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[contl; LIM] THEN X_GEN_TAC `a:real` THEN DISCH_TAC THEN MP_TAC(SPECL [`a:real`; `d:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN IMP_RES_THEN ASSUME_TAC REAL_LT_IMP_LE THEN SUBGOAL_THEN `!z. abs(z - x) <= e ==> (g(f z :real) = z)` ASSUME_TAC THENL [X_GEN_TAC `z:real` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!z. abs(z - x) <= e ==> (f contl z)` ASSUME_TAC THENL [X_GEN_TAC `z:real` THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN UNDISCH_TAC `!z. abs(z - x) <= d ==> (g(f z :real) = z)` THEN UNDISCH_TAC `!z. abs(z - x) <= d ==> (f contl z)` THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(K ALL_TAC) THEN (MP_TAC o C SPECL CONT_INJ_RANGE) [`f:real->real`; `g:real->real`; `x:real`; `e:real`] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `k:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `h:real` THEN BETA_TAC THEN REWRITE_TAC[REAL_SUB_RZERO] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE)) THEN REWRITE_TAC[GSYM ABS_NZ] THEN DISCH_TAC THEN FIRST_ASSUM(fun th -> MP_TAC(SPEC `f(x:real) + h` th) THEN REWRITE_TAC[REAL_ADD_SUB; ASSUME `abs(h) <= k`] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC)) THEN FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `e:real` THEN SUBGOAL_THEN `(g((f:real->real)(z)) = z) /\ (g(f(x)) = x)` (fun t -> ASM_REWRITE_TAC[t]) THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_SUB_REFL; ABS_0]);;
(* ------------------------------------------------------------------------ *) (* Differentiability of inverse function *) (* ------------------------------------------------------------------------ *)
let DIFF_INVERSE = 
prove( `!f g l x d. &0 < d /\ (!z. abs(z - x) <= d ==> (g(f(z)) = z)) /\ (!z. abs(z - x) <= d ==> f contl z) /\ (f diffl l)(x) /\ ~(l = &0) ==> (g diffl (inv l))(f x)`,
REPEAT STRIP_TAC THEN UNDISCH_TAC `(f diffl l)(x)` THEN DISCH_THEN(fun th -> ASSUME_TAC(MATCH_MP DIFF_CONT th) THEN MP_TAC th) THEN REWRITE_TAC[DIFF_CARAT] THEN DISCH_THEN(X_CHOOSE_THEN `h:real->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\y. if y = f(x) then inv(h(g y)) else (g(y) - g(f(x:real))) / (y - f(x))` THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `z:real` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_DIV_RMUL THEN ASM_REWRITE_TAC[REAL_SUB_0]; ALL_TAC; FIRST_ASSUM(SUBST1_TAC o SYM) THEN REPEAT AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[REAL_SUB_REFL; ABS_0] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN ASM_REWRITE_TAC[]] THEN REWRITE_TAC[CONTL_LIM] THEN BETA_TAC THEN REWRITE_TAC[] THEN SUBGOAL_THEN `g((f:real->real)(x)) = x` ASSUME_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[REAL_SUB_REFL; ABS_0] THEN MATCH_MP_TAC REAL_LT_IMP_LE; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\y:real. inv(h(g(y):real))` THEN BETA_TAC THEN CONJ_TAC THENL [ALL_TAC; (SUBST1_TAC o SYM o ONCE_DEPTH_CONV BETA_CONV) `\y. inv((\y:real. h(g(y):real)) y)` THEN MATCH_MP_TAC LIM_INV THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(\y:real. h(g(y):real)) contl (f(x:real))` MP_TAC THENL [MATCH_MP_TAC CONT_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONT_INVERSE THEN EXISTS_TAC `d:real`; REWRITE_TAC[CONTL_LIM] THEN BETA_TAC] THEN ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `?e. &0 < e /\ !y. &0 < abs(y - f(x:real)) /\ abs(y - f(x:real)) < e ==> (f(g(y)) = y) /\ ~(h(g(y)) = &0)` STRIP_ASSUME_TAC THENL [ALL_TAC; REWRITE_TAC[LIM] THEN X_GEN_TAC `k:real` THEN DISCH_TAC THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN DISCH_THEN(fun th -> FIRST_ASSUM(STRIP_ASSUME_TAC o C MATCH_MP th) THEN ASSUME_TAC(REWRITE_RULE[GSYM ABS_NZ; REAL_SUB_0] (CONJUNCT1 th))) THEN BETA_TAC THEN ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN SUBGOAL_THEN `y - f(x) = h(g(y)) * (g(y) - x)` SUBST1_TAC THENL [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN REWRITE_TAC[ASSUME `f((g:real->real)(y)) = y`]; UNDISCH_TAC `&0 < k` THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[ABS_ZERO; REAL_SUB_0]] THEN SUBGOAL_THEN `~(g(y:real) - x = &0)` ASSUME_TAC THENL [REWRITE_TAC[REAL_SUB_0] THEN DISCH_THEN(MP_TAC o AP_TERM `f:real->real`) THEN ASM_REWRITE_TAC[]; REWRITE_TAC[real_div]] THEN SUBGOAL_THEN `inv((h(g(y))) * (g(y:real) - x)) = inv(h(g(y))) * inv(g(y) - x)` SUBST1_TAC THENL [MATCH_MP_TAC REAL_INV_MUL_WEAK THEN ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC REAL_MUL_LINV THEN ASM_REWRITE_TAC[]]] THEN SUBGOAL_THEN `?e. &0 < e /\ !y. &0 < abs(y - f(x:real)) /\ abs(y - f(x)) < e ==> (f(g(y)) = y)` (X_CHOOSE_THEN `c:real` STRIP_ASSUME_TAC) THENL [MP_TAC(SPECL [`f:real->real`; `g:real->real`; `x:real`; `d:real`] CONT_INJ_RANGE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `(f:real->real)(z) = y` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?e. &0 < e /\ !y. &0 < abs(y - f(x:real)) /\ abs(y - f(x)) < e ==> ~((h:real->real)(g(y)) = &0)` (X_CHOOSE_THEN `b:real` STRIP_ASSUME_TAC) THENL [ALL_TAC; MP_TAC(SPECL [`b:real`; `c:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN CONJ_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `(\y. h(g(y:real):real)) contl (f(x:real))` MP_TAC THENL [MATCH_MP_TAC CONT_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONT_INVERSE THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[CONTL_LIM; LIM] THEN DISCH_THEN(MP_TAC o SPEC `abs(l)`) THEN ASM_REWRITE_TAC[GSYM ABS_NZ] THEN BETA_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[ABS_NZ] THEN X_GEN_TAC `y:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[ABS_NZ]) THEN DISCH_THEN(fun th -> FIRST_ASSUM(MP_TAC o C MATCH_MP th)) THEN REWRITE_TAC[GSYM ABS_NZ] THEN CONV_TAC CONTRAPOS_CONV THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_SUB_LZERO; ABS_NEG; REAL_LT_REFL]);;
let DIFF_INVERSE_LT = 
prove( `!f g l x d. &0 < d /\ (!z. abs(z - x) < d ==> (g(f(z)) = z)) /\ (!z. abs(z - x) < d ==> f contl z) /\ (f diffl l)(x) /\ ~(l = &0) ==> (g diffl (inv l))(f x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC DIFF_INVERSE THEN EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[REAL_LT_HALF1] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d / &2` THEN ASM_REWRITE_TAC[REAL_LT_HALF2]);;
(* ------------------------------------------------------------------------- *) (* Every derivative is Darboux continuous. *) (* ------------------------------------------------------------------------- *)
let IVT_DERIVATIVE_0 = 
prove (`!f f' a b. a <= b /\ (!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) /\ f'(a) > &0 /\ f'(b) < &0 ==> ?z. a < z /\ z < b /\ (f'(z) = &0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[real_gt] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [REAL_LE_LT] THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LT_ANTISYM]] THEN SUBGOAL_THEN `?w. (!x. a <= x /\ x <= b ==> f x <= w) /\ (?x. a <= x /\ x <= b /\ (f x = w))` MP_TAC THENL [MATCH_MP_TAC CONT_ATTAINS THEN ASM_MESON_TAC[REAL_LT_IMP_LE; DIFF_CONT]; ALL_TAC] THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `z:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `z:real` THEN ASM_CASES_TAC `z:real = a` THENL [UNDISCH_THEN `z:real = a` SUBST_ALL_TAC THEN MP_TAC(SPECL[`f:real->real`; `a:real`; `(f':real->real) a`] DIFF_LINC) THEN ASM_SIMP_TAC[REAL_LE_REFL; REAL_LT_IMP_LE] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d:real`; `b - a`] REAL_DOWN2) THEN ASM_REWRITE_TAC[REAL_LT_SUB_LADD; REAL_ADD_LID] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `!h. &0 < h /\ h < d ==> w < f (a + h)` THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[REAL_NOT_LT] THEN FIRST_ASSUM MATCH_MP_TAC THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_SIMP_TAC[REAL_LE_ADDL; REAL_LT_IMP_LE]; ALL_TAC] THEN ASM_CASES_TAC `z:real = b` THENL [UNDISCH_THEN `z:real = b` SUBST_ALL_TAC THEN MP_TAC(SPECL[`f:real->real`; `b:real`; `(f':real->real) b`] DIFF_LDEC) THEN ASM_SIMP_TAC[REAL_LE_REFL; REAL_LT_IMP_LE] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d:real`; `b - a`] REAL_DOWN2) THEN ASM_REWRITE_TAC[REAL_LT_SUB_LADD; REAL_ADD_LID] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN UNDISCH_TAC `!h. &0 < h /\ h < d ==> w < f (b - h)` THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN CONV_TAC CONTRAPOS_CONV THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[REAL_NOT_LT] THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD] THEN ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ASM_SIMP_TAC[REAL_LE_ADDL; REAL_LT_IMP_LE]; ALL_TAC] THEN SUBGOAL_THEN `a < z /\ z < b` STRIP_ASSUME_TAC THENL [ASM_REWRITE_TAC[REAL_LT_LE]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIFF_LMAX THEN MP_TAC(SPECL [`z - a`; `b - z`] REAL_DOWN2) THEN ASM_REWRITE_TAC[REAL_LT_SUB_LADD; REAL_ADD_LID] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`f:real->real`; `z:real`] THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN MAP_EVERY UNDISCH_TAC [`e + z < b`; `e + a < z`] THEN REAL_ARITH_TAC);;
let IVT_DERIVATIVE_POS = 
prove (`!f f' a b y. a <= b /\ (!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) /\ f'(a) > y /\ f'(b) < y ==> ?z. a < z /\ z < b /\ (f'(z) = y)`,
REWRITE_TAC[real_gt] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x. f(x) - y * x`; `\x:real. f'(x) - y`; `a:real`; `b:real`] IVT_DERIVATIVE_0) THEN ASM_REWRITE_TAC[real_gt] THEN ASM_REWRITE_TAC[REAL_LT_SUB_LADD; REAL_LT_SUB_RADD] THEN ASM_REWRITE_TAC[REAL_EQ_SUB_RADD; REAL_ADD_LID] THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV o BINDER_CONV o RAND_CONV o LAND_CONV o RAND_CONV) [GSYM REAL_MUL_RID] THEN ASM_SIMP_TAC[DIFF_SUB; DIFF_X; DIFF_CMUL]);;
let IVT_DERIVATIVE_NEG = 
prove (`!f f' a b y. a <= b /\ (!x. a <= x /\ x <= b ==> (f diffl f'(x))(x)) /\ f'(a) < y /\ f'(b) > y ==> ?z. a < z /\ z < b /\ (f'(z) = y)`,
REWRITE_TAC[real_gt] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x:real. --(f x)`; `\x:real. --(f' x)`; `a:real`; `b:real`; `--y`] IVT_DERIVATIVE_POS) THEN ASM_REWRITE_TAC[real_gt; REAL_LT_NEG2; REAL_EQ_NEG2] THEN ASM_SIMP_TAC[DIFF_NEG]);;
(* ------------------------------------------------------------------------- *) (* Uniformly convergent sequence of continuous functions is continuous. *) (* (Continuity at a point; uniformity in some neighbourhood of that point.) *) (* ------------------------------------------------------------------------- *)
let SEQ_CONT_UNIFORM = 
prove (`!s f x0. (!e. &0 < e ==> ?N d. &0 < d /\ !x n. abs(x - x0) < d /\ n >= N ==> abs(s n x - f(x)) < e) /\ (?N:num. !n. n >= N ==> (s n) contl x0) ==> f contl x0`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `M:num`)) THEN REWRITE_TAC[CONTL_LIM; LIM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &3`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`N:num`; `d1:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `M + N:num`) THEN REWRITE_TAC[GE; LE_ADD] THEN REWRITE_TAC[CONTL_LIM; LIM] THEN DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `!fx sx fx0 sx0 e3. abs(sx - fx) < e3 /\ abs(sx0 - fx0) < e3 /\ abs(sx - sx0) < e3 /\ (&3 * e3 = e) ==> abs(fx - fx0) < e`) THEN MAP_EVERY EXISTS_TAC [`(s:num->real->real) (M + N) x`; `(s:num->real->real) (M + N) x0`; `e / &3`] THEN ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN ASM_MESON_TAC[REAL_SUB_REFL; REAL_ABS_NUM; REAL_LT_TRANS; ARITH_RULE `M + N >= N:num`]);;
(* ------------------------------------------------------------------------- *) (* Comparison test gives uniform convergence of sum in a neighbourhood. *) (* ------------------------------------------------------------------------- *)
let SER_COMPARA_UNIFORM = 
prove (`!s x0 g. (?N d. &0 < d /\ !n x. abs(x - x0) < d /\ n >= N ==> abs(s x n) <= g n) /\ summable g ==> ?f d. &0 < d /\ !e. &0 < e ==> ?N. !x n. abs(x - x0) < d /\ n >= N ==> abs(sum(0,n) (s x) - f(x)) < e`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x. abs(x - x0) < d ==> ?y. (s x) sums y` MP_TAC THENL [ASM_MESON_TAC[summable; SER_COMPAR]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real->real` THEN DISCH_TAC THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SER_CAUCHY]) THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN EXISTS_TAC `M + N:num` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:real`; `n:num`] THEN STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (ARITH_RULE `n >= M + N ==> n >= M /\ n >= N:num`)) THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[sums; SEQ] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` (MP_TAC o SPEC `m + n:num`)) THEN REWRITE_TAC[GE; LE_ADD] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN ONCE_REWRITE_TAC[GSYM SUM_TWO] THEN MATCH_MP_TAC(REAL_ARITH `abs(snm) < e2 /\ (&2 * e2 = e) ==> abs((sn + snm) - fx) < e2 ==> abs(sn - fx) < e`) THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(n,m) (\n. abs(s (x:real) n))` THEN REWRITE_TAC[SUM_ABS_LE] THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `sum(n,m) g` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE THEN X_GEN_TAC `r:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[GE; LE_TRANS]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `abs(x) < a ==> x < a`) THEN ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *) (* A weaker variant matching the requirement for continuity of limit. *) (* ------------------------------------------------------------------------- *)
let SER_COMPARA_UNIFORM_WEAK = 
prove (`!s x0 g. (?N d. &0 < d /\ !n x. abs(x - x0) < d /\ n >= N ==> abs(s x n) <= g n) /\ summable g ==> ?f. !e. &0 < e ==> ?N d. &0 < d /\ !x n. abs(x - x0) < d /\ n >= N ==> abs(sum(0,n) (s x) - f(x)) < e`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SER_COMPARA_UNIFORM) THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* More convenient formulation of continuity. *) (* ------------------------------------------------------------------------- *)
let CONTL = 
prove (`!f x. f contl x <=> !e. &0 < e ==> ?d. &0 < d /\ !x'. abs(x' - x) < d ==> abs(f(x') - f(x)) < e`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTL_LIM; LIM] THEN REWRITE_TAC[REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN DISCH_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);;
(* ------------------------------------------------------------------------- *) (* Of course we also have this and similar results for sequences. *) (* ------------------------------------------------------------------------- *)
let CONTL_SEQ = 
prove (`!f x l. f contl l /\ x tends_num_real l ==> (\n. f(x n)) tends_num_real f(l)`,
REWRITE_TAC[CONTL; SEQ] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Uniformity of continuity over closed interval. *) (* ------------------------------------------------------------------------- *)
let SUP_INTERVAL = 
prove (`!P a b. (?x. a <= x /\ x <= b /\ P x) ==> ?s. a <= s /\ s <= b /\ !y. y < s <=> (?x. a <= x /\ x <= b /\ P x /\ y < x)`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. a <= x /\ x <= b /\ P x` REAL_SUP) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ARITH_RULE `x <= b ==> x < b + &1`]; ALL_TAC] THEN ABBREV_TAC `s = sup (\x. a <= x /\ x <= b /\ P x)` THEN REWRITE_TAC[] THEN DISCH_TAC THEN EXISTS_TAC `s:real` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LTE_TRANS; REAL_NOT_LE; REAL_LT_ANTISYM]);;
let CONT_UNIFORM = 
prove (`!f a b. a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==> !e. &0 < e ==> ?d. &0 < d /\ !x y. a <= x /\ x <= b /\ a <= y /\ y <= b /\ abs(x - y) < d ==> abs(f(x) - f(y)) < e`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\c. ?d. &0 < d /\ !x y. a <= x /\ x <= c /\ a <= y /\ y <= c /\ abs(x - y) < d ==> abs(f(x) - f(y)) < e` SUP_INTERVAL) THEN DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN ANTS_TAC THENL [EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_OF_NUM_LT; ARITH] THEN ASM_MESON_TAC[REAL_LE_ANTISYM; REAL_ARITH `abs(x - x) = &0`]; ALL_TAC] THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `s:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?t. s < t /\ ?d. &0 < d /\ !x y. a <= x /\ x <= t /\ a <= y /\ y <= t /\ abs(x - y) < d ==> abs(f(x) - f(y)) < e` MP_TAC THENL [UNDISCH_TAC `!x. a <= x /\ x <= b ==> f contl x` THEN DISCH_THEN(MP_TAC o SPEC `s:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[CONTL_LIM; LIM] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `&0 < d1 / &2 /\ d1 / &2 < d1` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; REAL_LT_LDIV_EQ; REAL_ARITH `d < d * &2 <=> &0 < d`]; ALL_TAC] THEN SUBGOAL_THEN `!x y. abs(x - s) < d1 /\ abs(y - s) < d1 ==> abs(f(x) - f(y)) < e` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `!a. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 /\ (&2 * e / &2 = e) ==> abs(x - y) < e`) THEN EXISTS_TAC `(f:real->real) s` THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN SUBGOAL_THEN `!x. abs(x - s) < d1 ==> abs(f x - f s) < e / &2` (fun th -> ASM_MESON_TAC[th]) THEN X_GEN_TAC `u:real` THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `u:real = s` THENL [ASM_SIMP_TAC[REAL_SUB_REFL; REAL_ABS_NUM; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH]; ALL_TAC] THEN ASM_MESON_TAC[REAL_ARITH `&0 < abs(x - s) <=> ~(x = s)`]; ALL_TAC] THEN SUBGOAL_THEN `s - d1 / &2 < s` MP_TAC THENL [ASM_REWRITE_TAC[REAL_ARITH `x - y < x <=> &0 < y`]; ALL_TAC] THEN DISCH_THEN(fun th -> FIRST_ASSUM(fun th' -> MP_TAC(GEN_REWRITE_RULE I [th'] th))) THEN DISCH_THEN(X_CHOOSE_THEN `r:real` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d2:real`; `d1 / &2`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `s + d / &2` THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH; REAL_ARITH `s < s + d <=> &0 < d`] THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN ASM_CASES_TAC `x <= r /\ y <= r` THENL [ASM_MESON_TAC[REAL_LT_TRANS]; ALL_TAC] THEN MATCH_MP_TAC(ASSUME `!x y. abs(x - s) < d1 /\ abs(y - s) < d1 ==> abs(f x - f y) < e`) THEN MATCH_MP_TAC(REAL_ARITH `!r t d d12. ~(x <= r /\ y <= r) /\ abs(x - y) < d /\ s - d12 < r /\ t <= s + d /\ x <= t /\ y <= t /\ &2 * d12 <= e /\ &2 * d < e ==> abs(x - s) < e /\ abs(y - s) < e`) THEN MAP_EVERY EXISTS_TAC [`r:real`; `s + d / &2`; `d:real`; `d1 / &2`] THEN ASM_REWRITE_TAC[REAL_LE_LADD] THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN SIMP_TAC[REAL_LE_LDIV_EQ; GSYM REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < d ==> d <= d * &2`; REAL_LE_REFL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `t:real` (CONJUNCTS_THEN ASSUME_TAC)) THEN SUBGOAL_THEN `b <= t` (fun th -> ASM_MESON_TAC[REAL_LE_TRANS; th]) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN UNDISCH_THEN `!x. a <= x /\ x <= b ==> f contl x` (K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o check(is_eq o concl) o SPEC `s:real`) THEN REWRITE_TAC[REAL_LT_REFL] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN EXISTS_TAC `t:real` THEN ASM_MESON_TAC[REAL_LT_IMP_LE; REAL_LE_TRANS]);;
(* ------------------------------------------------------------------------- *) (* Slightly stronger version exploiting 2-sided continuity at ends. *) (* ------------------------------------------------------------------------- *)
let CONT_UNIFORM_STRONG = 
prove (`!f a b. (!x. a <= x /\ x <= b ==> f contl x) ==> !e. &0 < e ==> ?d. &0 < d /\ !x y. (a <= x /\ x <= b \/ a <= y /\ y <= b) /\ abs(x - y) < d ==> abs(f(x) - f(y)) < e`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `a <= b` THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_TRANS; REAL_LT_01]] THEN FIRST_ASSUM(fun th -> MP_TAC(SPEC `a:real` th) THEN MP_TAC(SPEC `b:real` th)) THEN REWRITE_TAC[CONTL; REAL_LE_REFL] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d1:real`; `d2:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d0:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`f:real->real`; `a:real`; `b:real`] CONT_UNIFORM) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d3:real` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`d0:real`; `d3:real`] REAL_DOWN2) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THENL [MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN REPEAT STRIP_TAC THENL [ASM_CASES_TAC `y <= b` THENL [ASM_MESON_TAC[REAL_LT_TRANS; REAL_LE_TRANS]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `!a. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 /\ (&2 * e / &2 = e) ==> abs(x - y) < e`) THEN EXISTS_TAC `(f:real->real) b` THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ] THEN ASM_MESON_TAC[REAL_LT_TRANS; REAL_ARITH `x <= b /\ ~(y <= b) /\ abs(x - y) < d /\ d < d1 ==> abs(x - b) < d1 /\ abs(y - b) < d1`]; ASM_CASES_TAC `a <= x` THENL [ASM_MESON_TAC[REAL_LT_TRANS; REAL_LE_TRANS]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `!a. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 /\ (&2 * e / &2 = e) ==> abs(x - y) < e`) THEN EXISTS_TAC `(f:real->real) a` THEN SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ] THEN ASM_MESON_TAC[REAL_LT_TRANS; REAL_ARITH `~(a <= x) /\ a <= y /\ abs(x - y) < d /\ d < d1 ==> abs(x - a) < d1 /\ abs(y - a) < d1`]]);;
(* ------------------------------------------------------------------------- *) (* Get rid of special syntax status of '-->'. *) (* ------------------------------------------------------------------------- *) remove_interface "-->";;