(* A special definition for introducing equalities with the construction move eq: a => b *)
(* Generalizes given variables in a term *)
let gen_variables binders tm =
if type_of tm <> bool_ty then
if length binders = 0 then tm
else
failwith "gen_variables: bool term is required"
else
let f_vars = map dest_var (frees tm) in
let find_type name = assoc name f_vars in
let gen_variable var_name tm =
let var =
try mk_var (var_name, find_type var_name)
with Failure _ ->
failwith ("gen_variables: variable "^var_name
^" is not free in the term "^(string_of_term tm)) in
mk_forall (var, tm) in
itlist gen_variable binders tm;;
(* Combined type of theorems and terms *)
type arg_type = Arg_theorem of thm | Arg_term of term | Arg_type of hol_type;;
let get_arg_thm arg =
match arg with
| Arg_theorem th -> th
| _ -> failwith "A theorem expected";;
let get_arg_term arg =
match arg with
| Arg_term tm -> tm
| _ -> failwith "A term expected";;
let get_arg_type arg =
match arg with
| Arg_type ty -> ty
| _ -> failwith "A type expected";;
(* Converts a theorem tactic into a tactic which accepts thm_term arguments *)
let thm_tac (ttac : thm_tactic) = ttac o get_arg_thm;;
let term_tac (ttac : term -> tactic) = ttac o get_arg_term;;
let type_tac (ttac : hol_type -> tactic) arg = ttac o get_arg_type;;
let conv_thm_tac (ttac : thm_tactic->tactic) (arg_tac : arg_type->tactic) =
ttac (fun th -> arg_tac (Arg_theorem th));;
(* Based on the code from tactics.ml *)
(* Applies the second tactic to either the first subgoal or
the last subgoal *)
let (THENL_FIRST),(THENL_LAST) =
let propagate_empty i [] = []
and propagate_thm th i [] = INSTANTIATE_ALL i th in
let compose_justs n just1 just2 i ths =
let ths1,ths2 = chop_list n ths in
(just1 i ths1)::(just2 i ths2) in
let rec seqapply l1 l2 = match (l1,l2) with
([],[]) -> null_meta,[],propagate_empty
| ((tac:tactic)::tacs),((goal:goal)::goals) ->
let ((mvs1,insts1),gls1,just1) = tac goal in
let goals' = map (inst_goal insts1) goals in
let ((mvs2,insts2),gls2,just2) = seqapply tacs goals' in
((union mvs1 mvs2,compose_insts insts1 insts2),
gls1@gls2,compose_justs (length gls1) just1 just2)
| _,_ -> failwith "seqapply: Length mismatch" in
let justsequence just1 just2 insts2 i ths =
just1 (compose_insts insts2 i) (just2 i ths) in
let tacsequence ((mvs1,insts1),gls1,just1) tacl =
let ((mvs2,insts2),gls2,just2) = seqapply tacl gls1 in
let jst = justsequence just1 just2 insts2 in
let just = if gls2 = [] then propagate_thm (jst null_inst []) else jst in
((union mvs1 mvs2,compose_insts insts1 insts2),gls2,just) in
let (thenl_first: tactic -> tactic -> tactic) =
fun tac1 tac2 g ->
let _,gls,_ as gstate = tac1 g in
if gls = [] then failwith "No subgoals"
else
let tac_list = tac2 :: (replicate ALL_TAC (length gls - 1)) in
tacsequence gstate tac_list
and (thenl_last: tactic -> tactic -> tactic) =
fun tac1 tac2 g ->
let _,gls,_ as gstate = tac1 g in
if gls = [] then failwith "No subgoals"
else
let tac_list = (replicate ALL_TAC (length gls - 1)) @ [tac2] in
tacsequence gstate tac_list in
thenl_first, thenl_last;;
(* Rotates the goalstack *)
let (THENL_ROT: int -> tactic -> tactic) =
fun n tac g ->
let gstate = tac g in
rotate n gstate;;
(* Repeats the given tactic exactly n times and then repeats the same tactic at most m times *)
let repeat_tactic n m tac =
let rec replicate_at_most m tac =
if m <= 0 then ALL_TAC else (tac THEN replicate_at_most (m - 1) tac) ORELSE ALL_TAC in
REPLICATE_TAC n tac THEN replicate_at_most m tac;;
(* Returns all free variables in the goal *)
let get_context_vars (g : goal) =
let list, g_tm = g in
let tms = g_tm :: map (concl o snd) list in
let f_vars = setify (flat (map frees tms)) in
map (fun v -> ((fst o dest_var) v, v)) f_vars;;
(* Clears the given assumption *)
let clear_assumption name =
TRY (REMOVE_THEN name (fun th -> ALL_TAC));;
(* DISCH_THEN (LABEL_TAC name) for assumptions and X_GEN_TAC name for variables *)
let move labels =
(* Automatically introduces an assumption for a top-level ssreflect_eq *)
let move_eq (g:goal) =
let g_tm = snd g in
let tac =
try
let eq_tm = (rator o fst o dest_imp) g_tm in
if (fst o dest_const o rator) eq_tm = "ssreflect_eq" then
let label = (fst o dest_var o rand) eq_tm in
DISCH_THEN (LABEL_TAC label o PURE_ONCE_REWRITE_RULE[ssreflect_eq_def])
else
ALL_TAC
with Failure _ -> ALL_TAC in
tac g in
let move1 name (g:goal) =
let g_tm = snd g in
let tac =
if is_forall g_tm then
let tm0, g_tm1 = dest_forall g_tm in
let tm = mk_var (name, type_of tm0) in
if name = "_" then
GEN_TAC
else
X_GEN_TAC tm
else
if is_imp g_tm then
if name = "_" then
DISCH_THEN (fun th -> ALL_TAC)
else
DISCH_THEN (LABEL_TAC name)
else
failwith "move: not (!) or (==>)" in
tac g in
fun g ->
let tac = itlist
(fun name tac -> move_eq THEN move1 name THEN tac) labels ALL_TAC in
tac g;;
(* Localization tactical *)
let in_tac a_list in_goal tac (g:goal) =
let goal_tm = snd g in
let tmp_goal_name = "$_goal_$" in
let tmp_goal_var = mk_var (tmp_goal_name, bool_ty) in
let tmp_goal = mk_eq (tmp_goal_var, goal_tm) in
let tmp_goal_sym = mk_eq (goal_tm, tmp_goal_var) in
let disch_tac =
rev_itlist (fun name tac -> REMOVE_THEN name MP_TAC THEN tac) a_list ALL_TAC in
let intro_tac = move a_list in
let hide_goal, unfold_goal =
if in_goal then
ALL_TAC, ALL_TAC
else
ABBREV_TAC tmp_goal,
EXPAND_TAC tmp_goal_name THEN
UNDISCH_TAC tmp_goal_sym THEN DISCH_THEN (fun th -> ALL_TAC)
in
(hide_goal THEN disch_tac THEN tac THEN TRY intro_tac THEN unfold_goal) g;;
(* Finds a subterm in the given term which matches against the given
pattern; local_consts is a list of variable which must be fixed in
the pattern.
This function returns the path to the first matched subterm *)
let match_subterm local_consts pat tm =
let rec find tm path =
try
let inst = term_match local_consts pat tm in
if instantiate inst pat = tm then path else failwith "Bad instantiation"
with x ->
try
match tm with
| Abs(_, b_tm) -> find b_tm (path^"b")
| Comb(l_tm, r_tm) ->
try find l_tm (path^"l")
with Failure _ -> find r_tm (path^"r")
| _ -> failwith "match_subterm: no match"
with x ->
failwith ("match_subterm: no match: "^string_of_term pat) in
find tm "";;
(* Returns paths to all subterms satisfying p *)
let find_all_paths p tm =
let rec find_path p tm path =
let paths =
match tm with
| Abs(_, b_tm) ->
find_path p b_tm (path ^ "b")
| Comb(l_tm, r_tm) ->
(find_path p l_tm (path ^ "l")) @ (find_path p r_tm (path ^ "r"))
| _ -> [] in
if p tm then path :: paths else paths in
find_path p tm "";;
(* Instantiates types of the given context variables in the given term.*)
let inst_context_vars vars tm_vars tm =
let find_type var =
let name, ty = dest_var var in
try
(ty, type_of (assoc name vars))
with Failure _ ->
failwith (name^" is free in the term `"^(string_of_term tm)^"` and in the context") in
let ty_src, ty_dst = unzip (map find_type tm_vars) in
let ty_inst = itlist2 type_match ty_src ty_dst [] in
inst ty_inst tm;;
(* Instantiates types of all free variables in the term using the context *)
let inst_all_free_vars tm (g : goal) =
let context_vars = get_context_vars g in
let f_vars = frees tm in
inst_context_vars context_vars f_vars tm;;
(* Finds a subterm corresponding to the given pattern.
Before matching, the term types are instantiated in the given context. *)
let match_subterm_in_context pat tm (g : goal) =
let context_vars = get_context_vars g in
let f0_vars = filter (fun tm -> ((fst o dest_var) tm).[0] <> '_') (frees pat) in
let pattern = inst_context_vars context_vars f0_vars pat in
let f1_vars = filter (fun tm -> ((fst o dest_var) tm).[0] <> '_') (frees pattern) in
match_subterm f1_vars pattern tm;;
(*************************)
(* Rewriting *)
(*************************)
(* Breaks conjunctions and does other misc stuff *)
let rec break_conjuncts th : thm list =
(* Convert P ==> (!x. Q x) to !x. P ==> Q x and P ==> Q ==> R to P /\ Q ==> R *)
let th0 = PURE_REWRITE_RULE[GSYM RIGHT_FORALL_IMP_THM; IMP_IMP] th in
let th1 = SPEC_ALL th0 in
(* Break top level conjunctions *)
let th_list = CONJUNCTS th1 in
if length th_list > 1 then
List.concat (map break_conjuncts th_list)
else
let th_tm = concl th1 in
(* Deal with assumptions *)
if is_imp th_tm then
let a_tm = lhand th_tm in
let th_list = break_conjuncts (UNDISCH th1) in
map (DISCH a_tm) th_list
else
if is_eq th_tm then [th1]
else
if is_neg th_tm then
[PURE_ONCE_REWRITE_RULE[TAUT `~P <=> (P <=> F)`] th1]
else
[EQT_INTRO th1];;
(* Finds an instantination for the given term inside another term *)
let rec find_term_inst local_consts tm src_tm path =
try (term_match local_consts tm src_tm, true, path)
with Failure _ ->
match src_tm with
| Comb(l_tm, r_tm) ->
let r_inst, flag, s = find_term_inst local_consts tm l_tm (path ^ "l") in
if flag then (r_inst, flag, s)
else
find_term_inst local_consts tm r_tm (path ^ "r")
| Abs(_, b_tm) ->
find_term_inst local_consts tm b_tm (path ^ "b")
| _ -> (([],[],[]), false, path);;
(* Rewrites the subterm at the given path using the given equation theorem *)
let path_rewrite path th tm =
let rec build path tm =
let n = String.length path in
if n = 0 then
th
else
let ch = path.[0] in
let path' = String.sub path 1 (n - 1) in
if ch = 'l' then
let lhs, rhs = dest_comb tm in
let th0 = build path' lhs in
AP_THM th0 rhs
else if ch = 'r' then
let lhs, rhs = dest_comb tm in
let th0 = build path' rhs in
AP_TERM lhs th0
else if ch = 'b' then
let var, body = dest_abs tm in
let th0 = build path' body in
try ABS var th0
with Failure _ -> failwith ("ABS failed: (" ^ string_of_term var ^ ", " ^ string_of_thm th0)
else
failwith ("Bad path symbol: "^path) in
let res = build path tm in
let lhs = (lhand o concl) res in
if not (aconv lhs tm) then failwith ("path_rewrite: incorrect result [required: "^
(string_of_term tm)^"; obtained: "^
(string_of_term lhs))
else
res;;
let new_rewrite occ pat th g =
let goal_tm = snd g in
(* Free variables in the given theorem will not be matched *)
let local_consts = frees (concl th) in
(* Apply the pattern *)
let goal_subterm_path =
if pat = [] then "" else match_subterm_in_context (hd pat) goal_tm g in
let goal_subterm = follow_path goal_subterm_path goal_tm in
(* Local rewrite function *)
let rewrite th =
let concl_th = concl th in
let cond_flag = is_imp concl_th in
let match_fun = lhs o (if cond_flag then rand else I) in
(* Match the theorem *)
let lhs_tm = match_fun concl_th in
let ii, flag, path = find_term_inst local_consts lhs_tm goal_subterm goal_subterm_path in
if not flag then
failwith (string_of_term lhs_tm ^ " does not match any subterm in the goal")
else
let matched_th = INSTANTIATE ii th in
let matched_tm = (match_fun o concl) matched_th in
(* Find all matched subterms *)
let paths = find_all_paths (fun x -> aconv x matched_tm) goal_tm in
let paths = if occ = [] then paths else
map (fun i -> List.nth paths (i - 1)) occ in
(* Find all free variables in the matched theorem which do not correspond to free variables in
the matched subterm *)
let tm_frees = frees matched_tm in
let mth_frees = frees (concl matched_th) in
let vars = subtract mth_frees (union local_consts tm_frees) in
if vars = [] then
(* Construct the tactic for rewriting *)
let r_tac = fun th -> MAP_EVERY (fun path -> CONV_TAC (path_rewrite path th)) paths in
if cond_flag then
MP_TAC matched_th THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN r_tac]
else
r_tac matched_th
else
let rec gen_vars vars th =
match vars with
| v :: vs -> gen_vars vs (GEN v th)
| [] -> th in
let th2 = gen_vars vars matched_th in
MP_TAC th2 THEN PURE_REWRITE_TAC[LEFT_IMP_FORALL_THM] in
(* Try to rewrite with all given theorems *)
let th_list = break_conjuncts th in
let rec my_first th_list =
if length th_list = 1 then
rewrite (hd th_list) g
else
try rewrite (hd th_list) g
with Failure _ -> my_first (tl th_list) in
my_first th_list;;
(*
let th = ARITH_RULE `!n. n * 0 <= 1`;;
let tm = `m * 0 <= 1 <=> T`;;
g tm;;
e(new_rewrite [] [] th);;
let th = CONJ REAL_MUL_RINV REAL_MUL_LINV;;
let tm = `inv (x - y) * (x - y) + &1 = &1 + inv (x - y) * (x - y) + x * inv x`;;
let tm0 = `!x. inv (x - y) * (x - y) = &1`;;
g tm0;;
e(new_rewrite [] [] (th));;
e(new_rewrite [] [] (GSYM th));;
e(new_rewrite [] [`_ + &1`] th);;
g(`x < 2`);;
e(new_rewrite [] [] (ARITH_RULE `!x. x > 2 ==> (!n. n = 2 ==> ~(x < n))`));;
*)
(* Rewrite tactic for usual and conditional theorems *)
let rewrite occ pat th g =
let rec match_theorem ffun th tm str =
try (PART_MATCH ffun th tm, true, str)
with Failure _ ->
match tm with
| Comb(l_tm, r_tm) ->
let r_th, flag, s = match_theorem ffun th l_tm (str ^ "l") in
if flag then (r_th, flag, s)
else
match_theorem ffun th r_tm (str ^ "r")
| Abs(_, b_tm) ->
match_theorem ffun th b_tm (str ^ "b")
| _ -> (th, false, str) in
(* Initialize auxiliary variables *)
let goal_tm = snd g in
let th0 = PURE_REWRITE_RULE[IMP_IMP] th in
let concl_th = concl (SPEC_ALL th0) in
let cond_flag = is_imp concl_th in
let eq_tm = if cond_flag then rand concl_th else concl_th in
let match_fun = (if is_eq eq_tm then lhand else I) o (if cond_flag then rand else I) in
(* Apply the pattern *)
let goal_subterm_path =
if pat = [] then "" else match_subterm_in_context (hd pat) goal_tm g in
let goal_subterm = follow_path goal_subterm_path goal_tm in
(* Match the theorem *)
let matched_th, flag, path = match_theorem match_fun th0 goal_subterm goal_subterm_path in
if not flag then
failwith "lhs does not match any term in the goal"
else
let matched_tm = (match_fun o concl) matched_th in
(* Find all matched subterms *)
let paths = find_all_paths (fun x -> x = matched_tm) goal_tm in
let paths = if occ = [] then paths else
map (fun i -> List.nth paths (i - 1)) occ in
(* Find all free variables in the matched theorem which do not correspond to free variables in
the matched subterm *)
let tm_frees = frees matched_tm in
let th_frees = frees (concl th0) in
let mth_frees = frees (concl matched_th) in
let vars = subtract mth_frees (union th_frees tm_frees) in
if vars = [] then
let r_tac = fun th -> MAP_EVERY (fun path -> GEN_REWRITE_TAC (PATH_CONV path) [th]) paths in
if cond_flag then
(MP_TAC matched_th THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN r_tac]) g
else
(r_tac matched_th) g
else
let rec gen_vars vars th =
match vars with
| v :: vs -> gen_vars vs (GEN v th)
| [] -> th in
let th2 = gen_vars vars matched_th in
(MP_TAC th2 THEN REWRITE_TAC[LEFT_IMP_FORALL_THM]) g;;
(* Analogue of the "done" tactic in SSReflect *)
let done_tac = ASM_REWRITE_TAC[] THEN FAIL_TAC "done: not all subgoals are proved";;
(* Simplification: /= *)
let simp_tac = SIMP_TAC[];;
(* Linear arithmetic simplification *)
let arith_tac = FIRST [ARITH_TAC; REAL_ARITH_TAC; INT_ARITH_TAC];;
(* split *)
let split_tac = FIRST [CONJ_TAC; EQ_TAC];;
(* Creates an abbreviation for the given term with the given name *)
let set_tac name tm (g : goal) =
let goal_tm = snd g in
let tm0 =
try
follow_path (match_subterm_in_context tm goal_tm g) goal_tm
with Failure _ -> tm in
let tm1 = inst_all_free_vars tm0 g in
let abbrev_tm = mk_eq (mk_var (name, type_of tm1), tm1) in
(ABBREV_TAC abbrev_tm THEN POP_ASSUM (LABEL_TAC (name ^ "_def"))) g;;
(* Generates a fresh name for the given term *)
(* taking into account names of the provided variables *)
let generate_fresh_name names tm =
let rec find_name prefix n =
let name = prefix ^ (if n = 0 then "" else string_of_int n) in
if can (find (fun str -> str = name)) names then
find_name prefix (n + 1)
else
name in
let prefix = if is_var tm then (fst o dest_var) tm else "x" in
find_name prefix 0;;
(* Returns a variable which name does not conflict with names of given vars *)
let get_fresh_var var vars =
let names = map (fst o dest_var) vars in
mk_var (generate_fresh_name names var, type_of var);;
(* Matches all wild cards in the term and *)
(* instantinates all type variables in the given context *)
let prepare_term tm (g : goal) =
let goal_tm = snd g in
let tm0 =
try follow_path (match_subterm_in_context tm goal_tm g) goal_tm
with Failure _ -> tm in
inst_all_free_vars tm0 g;;
(* Discharges a term by generalizing all occurences of this term first *)
let disch_tm_tac occs tm (g : goal) =
let tm0 = prepare_term tm g in
let name = generate_fresh_name ((fst o unzip) (get_context_vars g)) tm in
let new_tm = mk_var (name, type_of tm0) in
let new_tm1 =
if occs = [] && is_var tm then
mk_var ((fst o dest_var) tm, type_of tm0)
else new_tm in
let abbrev_tm = mk_eq (new_tm, tm0) in
(ABBREV_TAC abbrev_tm THEN
EXPAND_TAC name THEN
POP_ASSUM (fun th -> TRY (new_rewrite occs [] th)) THEN
SPEC_TAC (new_tm, new_tm1)) g;;
(* Discharges a theorem or a term *)
let disch_tac occs arg =
match arg with
| Arg_theorem th -> MP_TAC th
| Arg_term tm -> disch_tm_tac occs tm
| _ -> failwith "disch_tac: a type cannot be discharged";;
(* process_thm *)
let process_thm =
let conj_imp = TAUT `(A /\ B ==> C) ==> (A ==> B ==> C)` in
let dummy_tm = `F` in
fun local_consts ->
let rec process th =
let ctm = concl th in
(* forall *)
if is_forall ctm then
let (var_tm, _) = dest_forall ctm in
let var = get_fresh_var var_tm (thm_frees th @ local_consts) in
let th1 = SPEC var th in
let list, th0 = process th1 in
("spec", var) :: list, th0
(* P ==> Q *)
else if is_imp ctm then
let ant_tm, _ = dest_imp ctm in
(* P /\ R ==> Q *)
if is_conj ant_tm then
let th1 = MATCH_MP conj_imp th in
let list, th0 = process th1 in
("conj", dummy_tm) :: list, th0
(* P ==> Q *)
else
let th1 = UNDISCH th in
let list, th0 = process th1 in
("undisch", ant_tm) :: list, th0
else
[], th in
process;;
(* reconstruct_thm *)
let reconstruct_thm =
let imp_conj = TAUT `(A ==> B ==> C) ==> (A /\ B ==> C)` in
let triv_ths = TAUT `((T ==> A) <=> A) /\ ((T /\ A) = A) /\ ((A /\ T) = A)` in
let rec reconstruct list th =
match list with
| [] -> th
| cmd :: t ->
let th1 =
match cmd with
| ("spec", (_ as tm)) -> GEN tm th
| ("conj", _) -> MATCH_MP imp_conj th
| ("undisch", (_ as tm)) -> DISCH tm th
| _ -> failwith ("Unknown command: " ^ fst cmd) in
reconstruct t th1 in
fun (cmd_list, th) ->
let th1 = reconstruct (rev cmd_list) th in
PURE_REWRITE_RULE[triv_ths] th1;;
(* spec_var_th *)
let spec_var_th th n tm =
let cmd, th0 = process_thm (frees tm) th in
let ty = type_of tm in
let rec spec n list head =
match list with
| ("spec", (_ as var_tm)) :: t ->
(try
let ty_ii = type_match (type_of var_tm) ty [] in
if n <= 1 then
let th1 = reconstruct_thm (list, th0) in
let th2 = ISPEC tm th1 in
let tail, th0 = process_thm [] th2 in
let head1 = map (fun s, tm -> s, inst ty_ii tm) head in
head1 @ tail, th0
else
spec (n - 1) t (head @ [hd list])
with Failure _ ->
spec n t (head @ [hd list]))
| h :: t -> spec n t (head @ [h])
| [] -> failwith ("spec_var_th") in
reconstruct_thm (spec n cmd []);;
(* match_mp_th *)
let match_mp_th ith n th =
let lconsts = thm_frees ith in
let cmd, th0 = process_thm (thm_frees th) ith in
let tm = concl th in
let rec rec_match n list head =
match list with
| ("undisch", (_ as tm0)) :: t ->
(try
let ii = term_match lconsts tm0 tm in
if n <= 1 then
let th1 = INSTANTIATE_ALL ii th0 in
let th2 = PROVE_HYP th th1 in
let list0 = head @ (("undisch", `T`) :: t) in
let f_vars = frees tm0 in
let list1 = filter
(fun s, tm -> not (s = "spec" && mem tm f_vars)) list0 in
let list = map (fun s, tm -> s, instantiate ii tm) list1 in
list, th2
else
rec_match (n - 1) t (head @ [hd list])
with Failure _ ->
rec_match n t (head @ [hd list]))
| h :: t -> rec_match n t (head @ [h])
| [] -> failwith "match_mp_th: no match" in
let r = rec_match n cmd [] in
reconstruct_thm r;;
(* Introduces a subgoal *)
let have_gen_tac binders then_tac tm (g : goal) =
(* let tm0 = inst_all_free_vars tm g in *)
let tm1 = gen_variables binders tm in
let tm2 = prepare_term tm1 g in
(THENL_FIRST (SUBGOAL_THEN tm2 (fun th -> MP_TAC th THEN then_tac))
(move binders)) g;;
let have_tac then_tac tm (g : goal) =
(* let tm0 = inst_all_free_vars tm g in *)
let tm0 = prepare_term tm g in
(SUBGOAL_THEN tm0 (fun th -> MP_TAC th THEN then_tac)) g;;
(* 'wlog' tactic *)
let wlog_tac then_tac vars tm (g : goal) =
(* let tm0 = inst_all_free_vars tm g in *)
let tm0 = prepare_term tm g in
let vars0 = map (fun tm -> inst_all_free_vars tm g) vars in
let g_tm = snd g in
let imp = list_mk_forall (vars0, mk_imp (tm0, g_tm)) in
(THENL_ROT 1 (SUBGOAL_THEN imp (fun th -> MP_TAC th THEN then_tac) THENL
[REPLICATE_TAC (length vars) GEN_TAC; ALL_TAC])) g;;
(* Provides a witness for an existential goal *)
let exists_tac tm (g : goal) =
let tm0 = inst_all_free_vars tm g in
let target_ty = (type_of o fst o dest_exists o snd) g in
let inst_ty = type_match (type_of tm0) target_ty [] in
let tm1 = inst inst_ty tm0 in
(EXISTS_TAC tm1) g;;
(* Instantiates the first type variable in the given theorem *)
let inst_first_type th ty =
let ty_vars = type_vars_in_term (concl th) in
if ty_vars = [] then
failwith "inst_first_type: no type variables in the theorem"
else
INST_TYPE [(ty, hd ty_vars)] th;;
(* The first argument must be a theorem, the second argument is arbitrary *)
let combine_args arg1 arg2 =
let th1 = get_arg_thm arg1 in
let th0 =
match arg2 with
| Arg_theorem th2 ->
(try MATCH_MP th1 th2 with Failure _ -> match_mp_th th1 1 th2)
| Arg_term tm2 ->
(try ISPEC tm2 th1 with Failure _ -> spec_var_th th1 1 tm2)
| Arg_type ty2 -> inst_first_type th1 ty2 in
Arg_theorem th0;;
(* A temporary variable *)
let use_arg_then_result = ref TRUTH;;
(* Tests if the given id defines a theorem *)
let test_id_thm id =
let lexbuf =
Lexing.from_string ("use_arg_then_result := " ^ id ^ ";;") in
let ast = (!Toploop.parse_toplevel_phrase) lexbuf in
try
let _ = Toploop.execute_phrase false Format.std_formatter ast in
true
with _ -> false;;
(* For a given id (string) finds an assumption or an existing theorem with the same name
and then applies the given tactic *)
let use_arg_then id (arg_tac:arg_type->tactic) (g:goal) =
let list = fst g in
let arg =
try
let assumption = assoc id list in
Arg_theorem assumption
with Failure _ ->
try
let vars = get_context_vars g in
let var = assoc id vars in
Arg_term var
with Failure _ ->
let lexbuf =
Lexing.from_string ("use_arg_then_result := " ^ id ^ ";;") in
let ast = (!Toploop.parse_toplevel_phrase) lexbuf in
let _ =
try
Toploop.execute_phrase false Format.std_formatter ast
with _ -> failwith ("Bad identifier: " ^ id) in
Arg_theorem !use_arg_then_result in
arg_tac arg g;;
(* The same effect as use_arg_then but the theorem is given explicitly*)
let use_arg_then2 (id, opt_thm) (arg_tac:arg_type->tactic) (g:goal) =
let list = fst g in
let arg =
try
let assumption = assoc id list in
Arg_theorem assumption
with Failure _ ->
try
let vars = get_context_vars g in
let var = assoc id vars in
Arg_term var
with Failure _ ->
if opt_thm <> [] then
Arg_theorem (hd opt_thm)
else
failwith ("Assumption is not found: " ^ id) in
arg_tac arg g;;
let combine_args_then (tac:arg_type->tactic) arg1 arg2 (g:goal) =
let th1 = get_arg_thm arg1 in
let th0 =
match arg2 with
| Arg_theorem th2 ->
(try MATCH_MP th1 th2 with Failure _ -> match_mp_th th1 1 th2)
| Arg_term tm2 ->
let tm0 = prepare_term tm2 g in
(try ISPEC tm0 th1 with Failure _ -> spec_var_th th1 1 tm0)
| Arg_type ty2 -> inst_first_type th1 ty2 in
tac (Arg_theorem th0) g;;
(* Specializes a variable and applies the next tactic *)
let ispec_then tm (tac : thm_tactic) th (g : goal) =
let tm0 = prepare_term tm g in
let th0 = try ISPEC tm0 th with Failure _ -> spec_var_th th 1 tm0 in
tac th0 g;;
let ISPEC_THEN tm (tac : thm_tactic) th (g : goal) =
let tm0 = inst_all_free_vars tm g in
tac (ISPEC tm0 th) g;;
let USE_THM_THEN th (tac : thm_tactic) =
tac th;;
let MATCH_MP_THEN th2 (tac : thm_tactic) th1 =
tac (MATCH_MP th1 th2);;
let match_mp_then th2 (tac : thm_tactic) th1 =
let th0 = try MATCH_MP th1 th2 with Failure _ -> match_mp_th th1 1 th2 in
tac th0;;
let GSYM_THEN (tac : thm -> tactic) th =
tac (GSYM th);;
let gsym_then (tac:arg_type->tactic) arg =
tac (Arg_theorem (GSYM (get_arg_thm arg)));;
(* The 'apply' tactic *)
let apply_tac th g =
let rec try_match th =
try MATCH_MP_TAC th g with Failure _ ->
let th0 = PURE_ONCE_REWRITE_RULE[IMP_IMP] th in
if th = th0 then failwith "apply_tac: no match"
else
try_match th0 in
try MATCH_ACCEPT_TAC th g with Failure _ ->
try_match th;;
(*let apply_tac th =
FIRST [MATCH_ACCEPT_TAC th; MATCH_MP_TAC th];; *)
(* The 'exact' tactic *)
(* TODO: do [done | by move => top; apply top], here apply top
works as ACCEPT_TAC with matching (rewriting) in some cases *)
let exact_tac = FIRST [done_tac; DISCH_THEN (fun th -> apply_tac th) THEN done_tac];;
(* Specializes the theorem using the given set of variables *)
let spec0 names vars =
let find name =
try (assoc name vars, true)
with Failure _ -> (parse_term name, false) in
let find_type var =
let name, ty = dest_var var in
let t, flag = find name in
if flag then
(ty, type_of t)
else
(`:bool`, `:bool`) in
let inst_term tm =
let ty_src, ty_dst = unzip (map find_type (frees tm)) in
let ty_inst = itlist2 type_match ty_src ty_dst [] in
inst ty_inst tm in
let list = map find names in
let tm_list = map (fun tm, flag -> if flag then tm else inst_term tm) list in
ISPECL tm_list;;
let spec names = spec0 names (get_context_vars (top_realgoal()));;
let spec_mp names th g = MP_TAC (spec0 names (get_context_vars g) th) g;;
(* Case theorems *)
let bool_cases = ONCE_REWRITE_RULE[CONJ_ACI] bool_INDUCT;;
let list_cases = prove(`!P. P [] /\ (!(h:A) t. P (CONS h t)) ==> (!l. P l)`,
REPEAT STRIP_TAC THEN
MP_TAC (SPEC `l:(A)list`
list_CASES) THEN DISCH_THEN DISJ_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM (CHOOSE_THEN MP_TAC) THEN DISCH_THEN (CHOOSE_THEN MP_TAC) THEN
DISCH_THEN (fun
th -> ASM_REWRITE_TAC[
th]));;
let pair_cases = pair_INDUCT;;
let num_cases = prove(`!P. P 0 /\ (!n. P (SUC n)) ==> (!m. P m)`,
REPEAT STRIP_TAC THEN
MP_TAC (SPEC `m:num`
num_CASES) THEN DISCH_THEN DISJ_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM (CHOOSE_THEN (fun
th -> ASM_REWRITE_TAC[
th])));;
let option_cases = option_INDUCT;;
let cases_table = Hashtbl.create 10;;
Hashtbl.add cases_table "bool" bool_cases;;
Hashtbl.add cases_table "list" list_cases;;
Hashtbl.add cases_table "prod" pair_cases;;
Hashtbl.add cases_table "num" num_cases;;
Hashtbl.add cases_table "option" option_cases;;
(* Induction theorems *)
let bool_elim = bool_cases;;
let list_elim = list_INDUCT;;
let pair_elim = pair_INDUCT;;
let num_elim = num_INDUCTION;;
let option_elim = option_INDUCT;;
let elim_table = Hashtbl.create 10;;
Hashtbl.add elim_table "bool" bool_elim;;
Hashtbl.add elim_table "list" list_elim;;
Hashtbl.add elim_table "prod" pair_elim;;
Hashtbl.add elim_table "num" num_elim;;
Hashtbl.add elim_table "option" option_elim;;
(* case: works only for (A /\ B) -> C; (A \/ B) -> C; (?x. P) -> Q; !(n:num). P; !(l:list(A)). P *)
let case (g:goal) =
let goal_tm = snd g in
if not (is_imp goal_tm) then
(* !a. P *)
if is_forall goal_tm then
let var, _ = dest_forall goal_tm in
let ty_name = (fst o dest_type o type_of) var in
let case_th = Hashtbl.find cases_table ty_name in
(MATCH_MP_TAC case_th THEN REPEAT CONJ_TAC) g
else
failwith "case: not imp or forall"
else
let tm = lhand goal_tm in
(* A /\ B *)
if is_conj tm then
(DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN POP_ASSUM MP_TAC) g
(* A \/ B *)
else if is_disj tm then
(DISCH_THEN DISJ_CASES_TAC THEN POP_ASSUM MP_TAC) g
(* ?x. P *)
else if is_exists tm then
(ONCE_REWRITE_TAC[GSYM LEFT_FORALL_IMP_THM]) g
else
failwith "case: not implemented";;
(* elim: works only for num and list *)
let elim (g:goal) =
let goal_tm = snd g in
(* !a. P *)
if is_forall goal_tm then
let var, _ = dest_forall goal_tm in
let ty_name = (fst o dest_type o type_of) var in
let induct_th = Hashtbl.find elim_table ty_name in
(MATCH_MP_TAC induct_th THEN REPEAT CONJ_TAC) g
else
failwith "elim: not forall";;
(* Instantiates the first type variable in the given theorem *)
let INST_FIRST_TYPE_THEN ty (then_tac:thm_tactic) th =
let ty_vars = type_vars_in_term (concl th) in
if ty_vars = [] then
failwith "inst_first_type: no type variables in the theorem"
else
then_tac (INST_TYPE [(ty, hd ty_vars)] th);;
(* Replaces all occurrences of distinct '_' with unique variables *)
let transform_pattern pat_tm =
let names = ref (map (fst o dest_var) (frees pat_tm)) in
let rec transform tm =
match tm with
| Abs(x_tm, b_tm) ->
let _ = names := (fst o dest_var) x_tm :: !names in
mk_abs (x_tm, transform b_tm)
| Comb(l_tm, r_tm) ->
mk_comb (transform l_tm, transform r_tm)
| Var ("_", ty) ->
let name = generate_fresh_name !names tm in
let _ = names := name :: !names in
mk_var (name, ty)
| _ -> tm in
transform pat_tm;;
let wild_frees tm =
filter (fun tm -> ((fst o dest_var) tm).[0] = '_') (frees tm);;
let nwild_frees tm =
filter (fun tm -> ((fst o dest_var) tm).[0] <> '_') (frees tm);;
(* congr_tac *)
let congr_tac pat_tm goal =
let goal_tm = snd goal in
let context_vars = get_context_vars goal in
let pat = transform_pattern pat_tm in
let f0_vars = nwild_frees pat in
let pattern = inst_context_vars context_vars f0_vars pat in
let const_pat = nwild_frees pattern in
let wild_pat = wild_frees pattern in
let lhs, rhs = dest_eq goal_tm in
let lm, rm =
term_match const_pat pattern lhs, term_match const_pat pattern rhs in
let eq_tms = map
(fun tm -> mk_eq (instantiate lm tm, instantiate rm tm)) wild_pat in
let eq_tm = itlist (curry mk_imp) eq_tms goal_tm in
let eq_thm = EQT_ELIM (SIMP_CONV[] eq_tm) in
(apply_tac eq_thm THEN REPEAT CONJ_TAC) goal;;
(* Eliminates the first antecedent of a goal *)
let elim_fst_ants_tac =
let gen_elim_thm tm =
let vars, tm1 = strip_forall tm in
let ants_tm, concl_tm = dest_imp tm1 in
let th1 = ASSUME (itlist (curry mk_forall) vars concl_tm) in
let th2 = DISCH ants_tm (SPECL vars th1) in
DISCH_ALL (itlist GEN vars th2) in
fun (g:goal) ->
let goal_tm = snd g in
let elim_th = gen_elim_thm goal_tm in
MATCH_MP_TAC elim_th g;;
(* If a goal has the form ssreflect_eq ==> P then the equality is introduced as
an assumption.
If a goal has the form !x. ssreflect_eq ==> P then the equality is eliminated *)
let process_fst_eq_tac (g:goal) =
let vars, g_tm = strip_forall (snd g) in
let tac =
try
let eq_tm = (rator o fst o dest_imp) g_tm in
let label = (fst o dest_var o rand) eq_tm in
if (fst o dest_const o rator) eq_tm = "ssreflect_eq" then
if length vars = 0 then
DISCH_THEN (LABEL_TAC label o PURE_ONCE_REWRITE_RULE[ssreflect_eq_def])
else
elim_fst_ants_tac
else
ALL_TAC
with Failure _ -> ALL_TAC in
tac g;;
(* Discharges a term by generalizing all occurences of this term first *)
let disch_tm_eq_tac eq_name occs tm (g : goal) =
let tm0 = prepare_term tm g in
let name = generate_fresh_name ((fst o unzip) (get_context_vars g)) tm in
let eq_var = mk_var (eq_name, aty) in
let new_tm = mk_var (name, type_of tm0) in
let abbrev_tm = mk_eq (new_tm, tm0) in
(ABBREV_TAC abbrev_tm THEN
EXPAND_TAC name THEN
FIRST_ASSUM (fun th -> TRY (new_rewrite occs [] th)) THEN
POP_ASSUM (MP_TAC o PURE_ONCE_REWRITE_RULE[GSYM (SPEC eq_var ssreflect_eq_def)]) THEN
SPEC_TAC (new_tm, new_tm)) g;;
(* Discharges a term and generates an equality *)
let disch_eq_tac eq_name occs arg =
disch_tm_eq_tac eq_name occs (get_arg_term arg);;