(* ========================================================================== *)
(* FLYSPECK - BOOK FORMALIZATION *)
(* *)
(* Nonlinear Inequalities *)
(* Chapter: Further Results *)
(* Section: Strong Dodecahedral Conjecture *)
(* Author: Thomas C. Hales *)
(* Date: 2010-05-18 *)
(* ========================================================================== *)
(*
Nonlinear inequalities for the Strong Dodecahedral Conjecture,
The inequalities in this file are not part of the Flyspeck project.
But they are in the book "Dense Sphere Packings"
*)
module Strongdodec_ineq = struct
(* strong dodecahedral conjecture *)
(*
let rad_y = new_definition
`rad2_y y1 y2 y3 y4 y5 y6 = rad2_x (y1*y1) (y2*y2) (y3*y3) (y4*y4) (y5*y5) (y6*y6)`;;
*)
(*
let surfRyc2 = new_definition `surfRyc2 y1 y2 y6 c =
surfR (y1/ &2) (eta_y y1 y2 y6) (sqrt c)`;;
*)
(* S.P.I. sec. 8.6.3: *)
(*
let surfRx = new_definition `surfRx c x1 x2 x3 x4 x5 x6 =
sqrt(x1) * (x2 + x6 - x1) * sqrt(c*c - eta_x x1 x2 x6)/
(&2 * sqrt(ups_x x1 x2 x6) )`;;
*)
(*
let surfRx_div_sqrt_delta = new_definition `surfRx_div_sqrt_delta x1 x2 x3 x4 x5 x6 =
*)
(* surfRy y1 y2 y6 c = surfRx c (y1 * y1) (y2 * y2) . . . (y6 * y6) *)
let surfy = new_definition `surfy y1 y2 y3 y4 y5 y6 =
(let c = sqrt(rad2_y y1 y2 y3 y4 y5 y6) in
surfRy y1 y2 y6 c + surfRy y2 y1 y6 c +
surfRy y2 y3 y4 c + surfRy y3 y2 y4 c +
surfRy y3 y1 y5 c + surfRy y1 y3 y5 c)`;;
(*
let surfR126_x = new_definition `surfR126_x c2 x1 (x2:real) (x3:real) (x4:real) (x5:real) x6 =
surfRyc2 (sqrt x1) (sqrt x2) (sqrt x6) c2`;;
*)
open Ineq;;
(*
let pyth_x1 = new_definition `pyth_x1 (x1:real) (x2:real) (x3:real)
(x4:real) (x5:real) (x6:real) = sqrt (&2 - x1 / (&4))`;;
*)
let all_forall = Sphere.all_forall;;
add {
idv="5079741806 a1";
ineq = all_forall `ineq
[
(#2.01,y1,&2 * h0);
(#2.0,y2,&2 * h0);
(#2.0,y3,sqrt8);
(&1,y4,&1);
(&1,y5,&1);
(&1,y6,&1)
]
(
let chex = &1 / sqrt(&3) - &2 * pi / &9 in
(y_of_x ell_uvx y1 y2 y3 y4 y5 y6
>
(&4 / &3) * y_of_x arclength_x_123 y1 y2 y3 y4 y5 y6 +
chex * lfun(y1/ &2) + chex * lfun(y2 / &2)
))`;
doc = "Two dimensional analogue of strong dodecahedral conjecture (hexagon perimeter).
3D case";
tags = [Tex;Cfsqp;Xconvert;Strongdodec];
};;
add {
idv="5079741806 a2";
ineq = all_forall `ineq
[
(&2 * h0,y1,sqrt8);
(#2.0,y2,&2 * h0);
(#2.0,y3,sqrt8);
(&1,y4,&1);
(&1,y5,&1);
(&1,y6,&1)
]
(
let chex = &1 / sqrt(&3) - &2 * pi / &9 in
((y_of_x ell_uvx y1 y2 y3 y4 y5 y6
>
(&4 / &3) * y_of_x arclength_x_123 y1 y2 y3 y4 y5 y6 +
chex * lfun(y2 / &2)
) \/ (y_of_x ell_vx2 y1 y2 y3 y4 y5 y6
>
(&4 / &3) * y_of_x arclength_x_123 y1 y2 y3 y4 y5 y6 +
chex * lfun(y2 / &2))))`;
doc = "Two dimensional analogue of strong dodecahedral conjecture (hexagon perimeter).
3D case";
tags = [Tex;Cfsqp;Xconvert;Strongdodec];
};;
add {
idv="5079741806 a3";
ineq = all_forall `ineq
[
(&2 * h0,y1,sqrt8);
(&2 * h0,y2,sqrt8);
(#2.0,y3,sqrt8);
(&1,y4,&1);
(&1,y5,&1);
(&1,y6,&1)
]
(
let chex = &1 / sqrt(&3) - &2 * pi / &9 in
(y_of_x ell_uvx y1 y2 y3 y4 y5 y6
>
(&4 / &3) * y_of_x arclength_x_123 y1 y2 y3 y4 y5 y6
) )`;
doc = "Two dimensional analogue of strong dodecahedral conjecture (hexagon perimeter).
3D case";
tags = [Tex;Cfsqp;Xconvert;Strongdodec];
};;
add {
idv="5079741806 a4";
ineq = all_forall `ineq
[
(#2.0,y1,#2.01);
(#2.0,y2,#2.01);
(#2.005,y3,sqrt8);
(&1,y4,&1);
(&1,y5,&1);
(&1,y6,&1)
]
(
let chex = &1 / sqrt(&3) - &2 * pi / &9 in
(y_of_x ell_uvx y1 y2 y3 y4 y5 y6
>
(&4 / &3) * y_of_x arclength_x_123 y1 y2 y3 y4 y5 y6 +
chex * lfun(y1/ &2) + chex * lfun(y2 / &2)
))`;
doc = "Two dimensional analogue of strong dodecahedral conjecture (hexagon perimeter).
3D case";
tags = [Tex;Eps 1.0e-8;Cfsqp;Xconvert;Strongdodec;];
};;
add {
idv="5079741806 a5";
ineq = all_forall `ineq
[
(#2.0,y1,#2.01);
(#2.0,y2,#2.01);
(&2,y3,#2.005);
(&1,y4,&1);
(&1,y5,&1);
(&1,y6,&1)
]
(
let chex = &1 / sqrt(&3) - &2 * pi / &9 in
(y_of_x ell_uvx y1 y2 y3 y4 y5 y6
>
(&4 / &3) * y_of_x arclength_x_123 y1 y2 y3 y4 y5 y6 +
chex * lfun(y1/ &2) + chex * lfun(y2 / &2)
))`;
doc = "Two dimensional analogue of strong dodecahedral conjecture (hexagon perimeter).
3D case";
tags = [Tex;Eps 1.0e-8;Cfsqp;Xconvert;Strongdodec;Onlycheckderiv1negative];
};;
(* D4-inequality, sharp at (2,2,2,ydodec,ydodec,ydodec)
The domain has been simiplified by arguments in software_guide.tex *)
add {
idv= "9627800748 a";
ineq = all_forall `ineq
[(#2.01,y1,#2.75);
(#2.0,y2,#2.75);
(#2.0,y3,#2.75);
(#2.0,y4,#2.75);
(#2.0,y5,#2.75);
(#2.0,y6,#2.75)
]
((surfy y1 y2 y3 y4 y5 y6 + #3.0*adodec*sol_y y1 y2 y3 y4 y5 y6
+ &3 * bdodec*(lmfun(y1/ &2)*dih_y y1 y2 y3 y4 y5 y6
+ lmfun(y2/ &2)*dih2_y y1 y2 y3 y4 y5 y6
+ lmfun(y3/ &2)*dih3_y y1 y2 y3 y4 y5 y6
) > &0) \/ (rad2_y y1 y2 y3 y4 y5 y6 > #1.375 * #1.375))`;
doc = "Strong dodecahedral conjecture D4 case.";
tags = [Flypaper["TNVWUGK"];Tex;Cfsqp;Xconvert;Strongdodec;Branching;Split[0;1;2]];
};;
add {
idv= "9627800748 b";
ineq = all_forall `ineq
[(#2.0,y1,#2.01);
(#2.0,y2,#2.01);
(#2.0,y3,#2.01);
(#2.2,y4,#2.75);
(#2.0,y5,#2.75);
(#2.0,y6,#2.75)
]
((surfy y1 y2 y3 y4 y5 y6 + #3.0*adodec*sol_y y1 y2 y3 y4 y5 y6
+ &3 * bdodec*(lfun(y1/ &2)*dih_y y1 y2 y3 y4 y5 y6
+ lfun(y2/ &2)*dih2_y y1 y2 y3 y4 y5 y6
+ lfun(y3/ &2)*dih3_y y1 y2 y3 y4 y5 y6
) > &0) \/ (rad2_y y1 y2 y3 y4 y5 y6 > #1.375 * #1.375))`;
doc = "Strong dodecahedral conjecture D4 case.";
tags = [Flypaper["TNVWUGK"];Tex;Cfsqp;Xconvert;Strongdodec;];
};;
add {
idv= "9627800748 c";
ineq = all_forall `ineq
[(#2.0,y1,#2.01);
(#2.0,y2,#2.01);
(#2.0,y3,#2.01);
(#2.0,y4,#2.05);
(#2.0,y5,#2.2);
(#2.0,y6,#2.2)
]
((surfy y1 y2 y3 y4 y5 y6 + #3.0*adodec*sol_y y1 y2 y3 y4 y5 y6
+ &3 * bdodec*(lfun(y1/ &2)*dih_y y1 y2 y3 y4 y5 y6
+ lfun(y2/ &2)*dih2_y y1 y2 y3 y4 y5 y6
+ lfun(y3/ &2)*dih3_y y1 y2 y3 y4 y5 y6
) > &0))`;
doc = "Strong dodecahedral conjecture D4 case.";
tags = [Flypaper["TNVWUGK"];Tex;Cfsqp;Xconvert;Strongdodec;];
};;
add {
idv= "9627800748 d";
ineq = all_forall `ineq
[(#2.0,y1,#2.01);
(#2.0,y2,#2.01);
(#2.0,y3,#2.01);
(#2.05,y4,#2.2);
(#2.05,y5,#2.2);
(#2.05,y6,#2.2)
]
((surfy y1 y2 y3 y4 y5 y6 + #3.0*adodec*sol_y y1 y2 y3 y4 y5 y6
+ &3 * bdodec*(lfun(y1/ &2)*dih_y y1 y2 y3 y4 y5 y6
+ lfun(y2/ &2)*dih2_y y1 y2 y3 y4 y5 y6
+ lfun(y3/ &2)*dih3_y y1 y2 y3 y4 y5 y6
) >= &0) )`;
doc = "Strong dodecahedral conjecture D4 case. I have used a Mathematica
calculation to reduce this inequality to showing that dimension reduction
holds in the variables $y_1,y_2,y_3$. In other words,
along the 3 dimensional subspace $(2,2,2,y_4,y_5,y_6)$,
Mathematica gives exact analysis showing that the only minimum is at
$(2,2,2,y_D,y_D,y_D)$. This exact analysis goes along the lines of
the analytic Voronoi cases in Ferguson's thesis.
For dimension reduction in $y_1$, the only relevant
terms are $\\op{surfy}$ and $\\op{lfun}(y_1/2)\\op{dih}$.";
tags = [Flypaper["TNVWUGK"];Tex;Cfsqp;Xconvert;Eps 1.0e-13;Strongdodec;Onlycheckderiv1negative];
};;
(* D3-local inequality for strong dodecahedral conjecture
The domain has been simplified by arguments in nonlinear_list.tex
*)
add {
idv= "6938212390";
ineq = all_forall `ineq
[(#2.0,y1,#2.7);
(#2.0,y2,#2.7);
(#1.375,y3,#1.375);
(#1.375,y4,#1.375);
(#1.375,y5,#1.375);
(#2.0,y6,#2.7)]
(let c2 = (#1.375 pow 2) in
(surfRdyc2 y1 y2 y6 c2
+ #3.0 * adodec * (sol_y y1 y2 y3 y4 y5 y6)
+ #3.0 * bdodec * (lmfun (y1/ &2)* dih_y y1 y2 y3 y4 y5 y6
+ lmfun (y2/ &2)*dih2_y y1 y2 y3 y4 y5 y6) >= &0)
\/ ((eta_y y1 y2 y6) pow 2 > #1.35 * #1.35))`;
doc = "Strong dodecahedral conjecture D3 case.";
(* was (solRy y1 y2 y6 c + solRy y2 y1 y6 c) *)
tags = [Flypaper["TNVWUGK"];Tex;Cfsqp;Xconvert;Strongdodec;Branching;Split[0;1]];
};;
end;;