(* ========================================================================== *)
(* FLYSPECK - BOOK FORMALIZATION                                              *)
(*                                                                            *)
(* Chapter: Jordan                                                               *)
(* Copied from HOL Light jordan directory *)
(* Author: Thomas C. Hales                                                    *)
(* Date: 2010-07-08                                                           *)
(* ========================================================================== *)

(* needs tactics_ext.ml;;   
    needs parse_ext_override_interface.ml;;  *)

module Num_ext_gcd = struct

open Tactics_jordan;;
open Parse_ext_override_interface;;
(* 
        Author: Thomas C. Hales, 2003

        GCD_CONV takes two HOL-light terms (NUMERALs) a and b and
        produces a theorem of the form
                |- GCD a b = g

        (In particular, the arguments cannot be negative.)

*)


prioritize_num();;

let DIVIDE = new_definition(`DIVIDE a b = ?m. (b = m*a )`);;
parse_as_infix("||",(16,"right"));; override_interface("||",`DIVIDE:num->num->bool`);; (* Now prove the lemmas *) let DIV_TAC t = EVERY[ REP_GEN_TAC; REWRITE_TAC[DIVIDE]; DISCH_ALL_TAC; REPEAT (FIRST_X_ASSUM CHOOSE_TAC); TRY (EXISTS_TAC t)];;
let DIVIDE_DIVIDE = 
prove_by_refinement( `!a b c. (((a || b) /\ (b || c)) ==> (a || c))`,
[ DIV_TAC `m'*m`; ASM_REWRITE_TAC[MULT_ASSOC] ]);;
let DIVIDE_EQ = 
prove_by_refinement( `! a b. (((a || b) /\ (b || a)) ==> (a = b))`,
[ DIV_TAC `1`; FIRST_X_ASSUM (fun th -> (POP_ASSUM MP_TAC) THEN REWRITE_TAC[th]); ASM_CASES_TAC `b=0`; ASM_REWRITE_TAC[]; ARITH_TAC; REWRITE_TAC[ARITH_RULE `(b = m*m'*b) = (1*b = m*m'*b)`]; ASM_REWRITE_TAC[MULT_ASSOC;EQ_MULT_RCANCEL]; DISCH_THEN (fun th -> MP_TAC (REWRITE_RULE[MULT_EQ_1] (GSYM th)) ); DISCH_THEN (fun th -> REWRITE_TAC[CONJUNCT2 th] THEN ARITH_TAC); ]);;
let DIVIDE_SUM = 
prove_by_refinement( `!a b h. (((h || a) /\ (h||b)) ==> (h || (a+b)))`,
[ DIV_TAC `m+m'`; ASM_REWRITE_TAC[ARITH;RIGHT_ADD_DISTRIB]; ]);;
let DIVIDE_SUMMAND = 
prove_by_refinement( `!a b h. (((h|| b) /\ (h || (a+b))) ==> (h|| a))`,
[ DIV_TAC `m'-m`; REWRITE_TAC[RIGHT_SUB_DISTRIB]; REPEAT (FIRST_X_ASSUM (fun th -> REWRITE_TAC[GSYM th])); ARITH_TAC; ]);;
let DIVIDE_PROD = 
prove_by_refinement( `!a b h. (((h|| a) ==> (h || (b*a))))`,
[ DIV_TAC `b*m`; ASM_REWRITE_TAC[MULT_ASSOC]; ]);;
let DIVIDE_PROD2 = 
prove_by_refinement( `!a b h. (((h|| a) ==> (h || (a*b))))`,
[ DIV_TAC `b*m`; ASM_REWRITE_TAC[MULT_AC] ]);;
let GCD = new_definition(`GCD a b = @g. 
        ((g || a) /\ (g || b) /\
        (!h. (((h || a) /\ (h || b)) ==> (h || g))))`);;
let gcd_certificate = 
prove(`!a b g. ((? r s r' s' a' b'. ((a = a'*g) /\ (b = b'*g) /\ (g +r'*a+s'*b= r*a + s*b))) ==> (GCD a b = g))`,
let tac1 = ( (REPEAT GEN_TAC) THEN (DISCH_TAC) THEN (REPEAT (POP_ASSUM CHOOSE_TAC)) THEN (REWRITE_TAC[GCD]) THEN (MATCH_MP_TAC SELECT_UNIQUE) THEN BETA_TAC THEN GEN_TAC THEN EQ_TAC) and ygbranch = ( DISCH_TAC THEN (MATCH_MP_TAC DIVIDE_EQ) THEN CONJ_TAC) and ydivg_branch = ( (SUBGOAL_MP_TAC (` (y || (r*a + s*b))/\ (y || (r'*a +s'*b))`)) THENL [((ASM MESON_TAC)[DIVIDE_SUM;DIVIDE_PROD]); ((ASM MESON_TAC)[DIVIDE_SUMMAND])] ) and gdivy_branch = ( (UNDISCH_TAC (`(y||a) /\ (y ||b) /\ (!h. (((h||a)/\(h||b))==> (h||y)))`)) THEN (TAUT_TAC (` (A ==> B) ==> ((C /\ D/\ A)==> B)`)) THEN (DISCH_TAC) THEN (POP_ASSUM MATCH_MP_TAC) THEN (REWRITE_TAC[DIVIDE]) THEN (CONJ_TAC) THEN ((ASM MESON_TAC)[]) ) and yghyp_branch = ( (DISCH_TAC) THEN (let x t = REWRITE_TAC[t] in (POP_ASSUM x)) THEN (CONJ_TAC) THENL [((ASM MESON_TAC)[DIVIDE]);ALL_TAC] THEN (CONJ_TAC) THENL [((ASM MESON_TAC)[DIVIDE]);ALL_TAC] THEN GEN_TAC THEN DISCH_TAC THEN (SUBGOAL_MP_TAC (` (h || (r*a + s*b))/\ (h || (r'*a+s'*b))`)) THENL [((ASM MESON_TAC)[DIVIDE_SUM;DIVIDE_PROD]); ((ASM MESON_TAC)[DIVIDE_SUMMAND])] ) in tac1 THENL [ygbranch THENL [ydivg_branch;gdivy_branch];yghyp_branch]);;
(* Now compute gcd with CAML num calculations, then check the answer in HOL-light *) let gcd_num x1 x2 = let rec gcd_data (a1,b1,x1,a2,b2,x2) = if (x1 < (Int 0)) then gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2) else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num b2,minus_num x2) else if (x1 = (Int 0)) then (a2,b2,x2) else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1) else ( let r = (quo_num x2 x1) in gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1) ) in gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);; let gcd_num x1 x2 = let rec gcd_data (a1,b1,x1,a2,b2,x2) = if (x1 < (Int 0)) then gcd_data(minus_num a1,minus_num b1,minus_num x1,a2,b2,x2) else if (x2 < (Int 0)) then gcd_data(a1,b1,x1,minus_num a2,minus_num b2,minus_num x2) else if (x1 = (Int 0)) then (a2,b2,x2) else if (x1>x2) then gcd_data (a2,b2,x2,a1,b1,x1) else ( let r = (quo_num x2 x1) in gcd_data (a1,b1,x1,a2 -/ r*/ a1,b2 -/ r*/ b1, x2 -/ r*/ x1) ) in gcd_data ((Int 1),(Int 0),x1,(Int 0),(Int 1),x2);; (* g = gcd, (a',b') = (a,b)/g, g +r1'*a+s1'*b = r1*a+s1*b *) let gcd_numdata a b = let a = abs_num a in let b = abs_num b in let Z = Int 0 in let (r,s,g) = gcd_num a b in let a' = if (g=Z) then Z else round_num(a//g) in let b' = if (g=Z) then Z else round_num(b//g) in let _ = if not(a=a'*/g) then failwith "GCD_CONV a" else 0 in let _ = if not(b=b'*/g) then failwith "GCD_CONV b" else 0 in let _ = if not(g=r*/a+/s*/b) then failwith "GCD_CONV g" else 0 in let (r1,r1') = if (r >/ Z) then (r,Z) else (Z,minus_num r) in let (s1,s1') = if (s >/ Z) then (s,Z) else (Z,minus_num s) in (g,a,b,a',b',r1',s1',r1,s1);; (* Here is the conversion. Example: GCD_CONV (`66`) (`144`) *) let GCD_CONV at bt = let a = dest_numeral at in let b = dest_numeral bt in let (g,a,b,a',b',r1',s1',r1,s1) = gcd_numdata a b in prove(parse_term("GCD "^(string_of_num a)^" "^(string_of_num b)^" = "^ (string_of_num g)), (MATCH_MP_TAC gcd_certificate) THEN (EXISTS_TAC (mk_numeral r1)) THEN (EXISTS_TAC (mk_numeral s1)) THEN (EXISTS_TAC (mk_numeral r1')) THEN (EXISTS_TAC (mk_numeral s1')) THEN (EXISTS_TAC (mk_numeral a')) THEN (EXISTS_TAC (mk_numeral b')) THEN (ARITH_TAC));; (* Example: hol_gcd 66 144 This version can overflow on CAML integers before it reaches hol-light. Example: hol_gcd 1000000000000000000 10000000000000000000000 - : thm = |- GCD 660865024 843055104 = 262144 *) let hol_gcd a b = GCD_CONV (mk_small_numeral a) (mk_small_numeral b);; remove_interface ("||");; pop_priority();; (* test code *) exception Test_suite_num_ext_gcd of string;; (* For the tests we use integers a and b. These can overflow if a and b are too large, so that we should confine ourselves to tests that are not too large. *) let test_num_ext_gcd (a, b) = let a1 = string_of_int (abs a) in let b1 = string_of_int (abs b) in let c = gcd a b in let c1 = string_of_int (abs c) in let th = GCD_CONV (mk_small_numeral a) (mk_small_numeral b) in if (not (hyp th = ([]:term list))) then raise (failwith ("num_ext_gcd test suite failure "^a1^" "^b1)) else if (not (concl th = (parse_term ("GCD "^a1^" "^b1^"="^c1)))) then raise (failwith ("num_ext_gcd test suite failure "^a1^" "^b1)) else ();; let test_suite_num_ext_gcd = let _ = map test_num_ext_gcd [(0,0);(0,1);(1,0);(-0,-0); (2,3);(4,6); (0,2);(2,0); (10,100);(100,10);(17,100);(100,17)] in print_string "num_ext_gcd loaded\n";; let divide = DIVIDE and gcd = GCD and gcd_conv = GCD_CONV;; end;;