(* ========================================================================= *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Authour : VU KHAC KY *) (* Book lemma: HDTFNFZ *) (* Chaper : Packing (Marchal cells) *) (* *) (* ========================================================================= *) (* ========================================================================= *) (* FILES NEED TO BE LOADED *) (* flyspeck_needs "packing/marchal_cells_2_new.hl";; *) (* flyspeck_needs "packing/LEPJBDJ.hl";; *) (* ========================================================================= *) module Hdtfnfz = struct open Rogers;; open Vukhacky_tactics;; open Pack_defs;; open Pack_concl;; open Pack1;; open Sphere;; open Marchal_cells;; open Emnwuus;; open Marchal_cells_2_new;; open Lepjbdj;; let HDTFNFZ_concl = `!V ul k v X. saturated V /\ packing V /\ barV V 3 ul /\ X = mcell k V ul /\ ~(NULLSET X) ==> VX V X = V INTER X`;;end;;let HDTFNFZ = prove_by_refinement (HDTFNFZ_concl, [(REPEAT STRIP_TAC); (REWRITE_TAC[VX]); (COND_CASES_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[]); (ASM_MESON_TAC[]); (LET_TAC); (COND_CASES_TAC); (* break into 2 subgoals k' = 0 and k' > 0 *) (UNDISCH_TAC `cell_params V X = k',ul'`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[cell_params]); (ABBREV_TAC `P = (\(k,ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul)`); (DISCH_TAC); (NEW_GOAL `(P:(num#(real^3)list->bool)) (k',ul')`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `((if (k <= 3) then k else 4),ul:(real^3)list)`); (EXPAND_TAC "P"); (COND_CASES_TAC); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[]); (ASM_ARITH_TAC); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[ARITH_RULE `4 <= 4`]); (REWRITE_WITH `mcell k V ul = mcell4 V ul`); (ASM_SIMP_TAC [MCELL_EXPLICIT; ARITH_RULE `~(k <= 3) ==> (k >= 4)`]); (REWRITE_WITH `mcell 4 V ul = mcell4 V ul`); (ASM_SIMP_TAC [MCELL_EXPLICIT; ARITH_RULE `(4 >= 4)`]); (UP_ASM_TAC THEN EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM] THEN STRIP_TAC); (REWRITE_TAC[ASSUME `X = mcell k' V ul'`; ASSUME `k' = 0` ]); (MATCH_MP_TAC LEPJBDJ_0); (ASM_REWRITE_TAC[] THEN ASM_SET_TAC[]); (* Finish the case k' = 0 *) (* Continue with the case k' > 0 *) (UNDISCH_TAC `cell_params V X = k',ul'`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (REWRITE_TAC[cell_params]); (ABBREV_TAC `P = (\(k,ul). k <= 4 /\ ul IN barV V 3 /\ X = mcell k V ul)`); (DISCH_TAC); (NEW_GOAL `(P:(num#(real^3)list->bool)) (k',ul')`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC SELECT_AX); (EXISTS_TAC `((if (k <= 3) then k else 4),ul:(real^3)list)`); (EXPAND_TAC "P"); (COND_CASES_TAC); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[]); (ASM_ARITH_TAC); (REWRITE_TAC[BETA_THM]); (REWRITE_TAC[IN] THEN ASM_REWRITE_TAC[ARITH_RULE `4 <= 4`]); (REWRITE_WITH `mcell k V ul = mcell4 V ul`); (ASM_SIMP_TAC [MCELL_EXPLICIT; ARITH_RULE `~(k <= 3) ==> (k >= 4)`]); (REWRITE_WITH `mcell 4 V ul = mcell4 V ul`); (ASM_SIMP_TAC [MCELL_EXPLICIT; ARITH_RULE `(4 >= 4)`]); (UP_ASM_TAC THEN EXPAND_TAC "P"); (REWRITE_TAC[BETA_THM] THEN STRIP_TAC); (REWRITE_TAC[ASSUME `X = mcell k' V ul'`]); (MATCH_MP_TAC LEPJBDJ); (ASM_REWRITE_TAC[]); (REPEAT STRIP_TAC); (ASM_SET_TAC[]); (ASM_ARITH_TAC); (NEW_GOAL `X:real^3->bool = {}`); (ASM_MESON_TAC[]); (NEW_GOAL `NULLSET (X:real^3->bool)`); (ASM_MESON_TAC[NEGLIGIBLE_EMPTY]); (ASM_MESON_TAC[])]);;