(* This file now uses Harrison's R^n from hol-light version 2.20.
It should also be compatible with the Feb 2008 release of HOL-Light.
It is not compatible with pre-2.20 versions of HOL-LIGHT.
*)
(* system dependent :
load_path :=
["/Users/thomashales/Desktop/flyspeck_google/source/inequalities/"]
@ (!load_path)
*)
(*
needs "Multivariate/vectors.ml";; (* Eventually should load entire *)
needs "Examples/analysis.ml";; (* multivariate-complex theory. *)
needs "Examples/transc.ml";; (* Then it won't need these three. *)
*)
let kepler_def = (* local_definition "kepler";; *) new_definition;;
prioritize_real();;
(* ------------------------------------------------------------------ *)
(* Extend atn to allow zero denominators. *)
(* ------------------------------------------------------------------ *)
(* new argument order 2/14/2008 to make it compatible with the
ANSI C arctan2 function. Also reworked for better numerical
stability in the regions that matter for us. The way things
are defined, it gives atn2(0,0) = pi. This is a bit strange,
but we never need its value at the origin anyway.
4/19/2008: changed final case to pi along the negative real axis.
*)
(* ------------------------------------------------------------------ *)
let sqrt8 = kepler_def (`sqrt8 = sqrt (&8) `);;
let sqrt2 = kepler_def (`sqrt2 = sqrt (&2) `);;
(* ------------------------------------------------------------------ *)
let t0 = kepler_def (`t0 = (#1.255)`);;
let two_t0 = kepler_def(`two_t0 = (#2.51)`);;
let square_2t0 = kepler_def(`square_2t0 = two_t0*two_t0`);;
let square_4t0 = kepler_def(`square_4t0 = (&4)*square_2t0`);;
let pt = kepler_def(`pt = (&4)*(atn (sqrt2/(&5))) - (pi/(&3))`);;
let square = kepler_def(`square x = x*x`);;
(* ------------------------------------------------------------------ *)
(* Standard constants. *)
(* ------------------------------------------------------------------ *)
let zeta = kepler_def(`zeta= (&1)/((&2) * atn (sqrt2/(&5)))`);;
let doct = kepler_def(`doct= (pi - (&2)/zeta)/sqrt8`);;
let dtet = kepler_def(`dtet = sqrt2/zeta`);;
let pi_rt18 = kepler_def(`pi_rt18= pi/(sqrt (&18))`);;
(* ------------------------------------------------------------------ *)
(* Technical constants. *)
(* ------------------------------------------------------------------ *)
let rogers_density=kepler_def(`rogers_density= sqrt2/zeta`);;
let compression_cut=kepler_def(`compression_cut=(#1.41)`);;
let squander_target=kepler_def(`squander_target =
((&4)*pi*zeta - (&8))*pt`);;
let xiV=kepler_def(`xiV=(#0.003521)`);;
let xi_gamma=kepler_def(`xi_gamma=(#0.01561)`);;
let xi'_gamma=kepler_def(`xi'_gamma=(#0.00935)`);;
let xi_kappa=kepler_def(`xi_kappa= -- (#0.029)`);;
let xi_kappa_gamma=kepler_def(`xi_kappa_gamma=
xi_kappa+xi_gamma`);;
let pi_max =kepler_def(`xi_max = (#0.006688)`);;
let t4 = kepler_def(`t4= (#0.1317)`);;
let t5 = kepler_def(`t5= (#0.27113)`);;
let t6 = kepler_def(`t6= (#0.41056)`);;
let t7 = kepler_def(`t7= (#0.54999)`);;
let t8 = kepler_def(`t8= (#0.6045)`);;
let t9 = kepler_def(`t9= (#0.6978)`);;
let t10= kepler_def(`t10=(#0.7891)`);;
let s5 = kepler_def(`s5= --(#0.05704)`);;
let s6 = kepler_def(`s6= --(#0.11408)`);;
let s7 = kepler_def(`s7= --(#0.17112)`);;
let s8 = kepler_def(`s8= --(#0.22816)`);;
let s9 = kepler_def(`s9= --(#0.1972)`);;
(* Note this is what s10 is in DCG p128, but for the blueprint
it should be made -eps0 so that the 8pt bound holds by margin eps0 *)
let s10= kepler_def(`s10= #0.0`);;
let eps0 = kepler_def(`eps0 = #0.000000000001`);; (* eps0 = 10^-12 *)
let Z31 = kepler_def(`Z31 = (#0.00005)`);;
let Z32 = kepler_def(`Z32 = -- (#0.05714)`);;
let Z33 = kepler_def(`Z33 = s6 - (#3.0)*Z31`);;
let Z41 = kepler_def(`Z41 = s5 - Z31`);;
let Z42 = kepler_def(`Z42 = s6 - (#2.0)*Z31`);;
let D31 = kepler_def(`D31 = t4 - (#0.06585)`);; (* = 0.06585 *)
let D32 = kepler_def(`D32 = (#0.13943)`);;
let D33 = kepler_def(`D33 = t6 - (#0.06585)*(#3.0)`);;
let D41 = kepler_def(`D41 = t5 - (#0.06585)`);;
let D42 = kepler_def(`D42 = t6 - (#2.0)*(#0.06585)`);;
let D51 = kepler_def(`D51 = t6 - (#0.06585)`);;
(* ------------------------------------------------------------------ *)
(* Ferguson's thesis constants from DCG-2006-Sec 17.4 *)
(* ------------------------------------------------------------------ *)
let pp_a1 = kepler_def(`pp_a1 = #0.38606588081240521`);;
let pp_a2 = kepler_def(`pp_a2 = #0.4198577862`);;
let pp_d0 = kepler_def(`pp_d0 = #1.4674`);;
let pp_m = kepler_def(`pp_m = #0.3621`);;
let pp_b = kepler_def(`pp_b = #0.49246`);;
let pp_a = kepler_def(`pp_a = #0.0739626`);;
let pp_bc = kepler_def(`pp_bc = #0.253095`);;
let pp_c = kepler_def(`pp_c = #0.1533667634670977`);;
let pp_d = kepler_def(`pp_d = #0.2265`);;
(* solt0 = Solid[2,2,2,2,2,Sqrt[8]] *)
let pp_solt0 = kepler_def(`pp_solt0 = &2 * atn2 (&1, sqrt8)`);;
(* ------------------------------------------------------------------ *)
(* This polynomial is essentially the Cayley-Menger determinant. *)
(* ------------------------------------------------------------------ *)
let delta_x = kepler_def (`delta_x x1 x2 x3 x4 x5 x6 =
x1*x4*(--x1 + x2 + x3 -x4 + x5 + x6) +
x2*x5*(x1 - x2 + x3 + x4 -x5 + x6) +
x3*x6*(x1 + x2 - x3 + x4 + x5 - x6)
-x2*x3*x4 - x1*x3*x5 - x1*x2*x6 -x4*x5*x6`);;
(* ------------------------------------------------------------------ *)
(* The partial derivative of delta_x with respect to x4. *)
(* ------------------------------------------------------------------ *)
let delta_x4 = kepler_def(`delta_x4 x1 x2 x3 x4 x5 x6
= -- x2* x3 - x1* x4 + x2* x5
+ x3* x6 - x5* x6 + x1* (-- x1 + x2 + x3 - x4 + x5 + x6)`);;
let delta_x6 = kepler_def(`delta_x6 x1 x2 x3 x4 x5 x6
= -- x1 * x2 - x3*x6 + x1 * x4
+ x2* x5 - x4* x5 + x3*(-- x3 + x1 + x2 - x6 + x4 + x5)`);;
(* ------------------------------------------------------------------ *)
(* Circumradius . *)
(* ------------------------------------------------------------------ *)
(* same as ups_x
let u_x = kepler_def(
`u_x x1 x2 x3 = (--(x1*x1+x2*x2+x3*x3)) +
(&2) * (x1*x2+x2*x3+x3*x1)`);;
*)
let ups_x = kepler_def(`ups_x x1 x2 x6 =
--x1*x1 - x2*x2 - x6*x6
+ &2 *x1*x6 + &2 *x1*x2 + &2 *x2*x6`);;
let eta_x = kepler_def(`eta_x x1 x2 x3 =
(sqrt ((x1*x2*x3)/(ups_x x1 x2 x3)))
`);;
let eta_y = kepler_def(`eta_y y1 y2 y3 =
let x1 = y1*y1 in
let x2 = y2*y2 in
let x3 = y3*y3 in
eta_x x1 x2 x3`);;
let rho_x = kepler_def(`rho_x x1 x2 x3 x4 x5 x6 =
--x1*x1*x4*x4 - x2*x2*x5*x5 - x3*x3*x6*x6 +
(&2)*x1*x2*x4*x5 + (&2)*x1*x3*x4*x6 + (&2)*x2*x3*x5*x6`);;
let rad2_y = kepler_def(`rad2_y y1 y2 y3 y4 y5 y6 =
let (x1,x2,x3,x4,x5,x6)= (y1*y1,y2*y2,y3*y3,y4*y4,y5*y5,y6*y6) in
(rho_x x1 x2 x3 x4 x5 x6)/((delta_x x1 x2 x3 x4 x5 x6)*(&4))`);;
let chi_x = kepler_def(`chi_x x1 x2 x3 x4 x5 x6
= -- (x1*x4*x4) + x1*x4*x5 + x2*x4*x5 - x2*x5*x5
+ x1*x4*x6 + x3*x4*x6 +
x2*x5*x6 + x3*x5*x6 - (&2) * x4*x5*x6 - x3*x6*x6`);;
(* ------------------------------------------------------------------ *)
(* The formula for the dihedral angle of a simplex. *)
(* The variables xi are the squares of the lengths of the edges. *)
(* The angle is computed along the first edge (x1). *)
(* ------------------------------------------------------------------ *)
let dih_x = kepler_def(`dih_x x1 x2 x3 x4 x5 x6 =
let d_x4 = delta_x4 x1 x2 x3 x4 x5 x6 in
let d = delta_x x1 x2 x3 x4 x5 x6 in
pi/ (&2) + atn2( (sqrt ((&4) * x1 * d)),-- d_x4)`);;
let dih_y = kepler_def(`dih_y y1 y2 y3 y4 y5 y6 =
let (x1,x2,x3,x4,x5,x6)= (y1*y1,y2*y2,y3*y3,y4*y4,y5*y5,y6*y6) in
dih_x x1 x2 x3 x4 x5 x6`);;
let dih2_y = kepler_def(`dih2_y y1 y2 y3 y4 y5 y6 =
dih_y y2 y1 y3 y5 y4 y6`);;
let dih3_y = kepler_def(`dih3_y y1 y2 y3 y4 y5 y6 =
dih_y y3 y1 y2 y6 y4 y5`);;
let dih2_x = kepler_def(`dih2_x x1 x2 x3 x4 x5 x6 =
dih_x x2 x1 x3 x5 x4 x6`);;
let dih3_x = kepler_def(`dih3_x x1 x2 x3 x4 x5 x6 =
dih_x x3 x1 x2 x6 x4 x5`);;
(* ------------------------------------------------------------------ *)
(* Harriot-Euler formula for the area of a spherical triangle *)
(* in terms of the angles: area = alpha+beta+gamma - pi *)
(* ------------------------------------------------------------------ *)
let sol_x = kepler_def(`sol_x x1 x2 x3 x4 x5 x6 =
(dih_x x1 x2 x3 x4 x5 x6) +
(dih_x x2 x3 x1 x5 x6 x4) + (dih_x x3 x1 x2 x6 x4 x5) - pi`);;
let sol_y = kepler_def(`sol_y y1 y2 y3 y4 y5 y6 =
(dih_y y1 y2 y3 y4 y5 y6) +
(dih_y y2 y3 y1 y5 y6 y4) + (dih_y y3 y1 y2 y6 y4 y5) - pi`);;
(* ------------------------------------------------------------------ *)
(* The Cayley-Menger formula for the volume of a simplex *)
(* The variables xi are the squares of the lengths of the edges. *)
(* ------------------------------------------------------------------ *)
let vol_x = kepler_def(`vol_x x1 x2 x3 x4 x5 x6 =
(sqrt (delta_x x1 x2 x3 x4 x5 x6))/ (&12)`);;
(* ------------------------------------------------------------------ *)
(* Some lower dimensional funcions and Rogers simplices. *)
(* ------------------------------------------------------------------ *)
let beta = kepler_def(`beta psi theta =
let arg = ((cos psi)*(cos psi) - (cos theta)*(cos theta))/
((&1) - (cos theta)*(cos theta)) in
(acs (sqrt arg))`);;
let arclength = kepler_def(`arclength a b c =
pi/(&2) + (atn2( (sqrt (ups_x (a*a) (b*b) (c*c))),(c*c - a*a -b*b)))`);;
let volR = kepler_def(`volR a b c =
(sqrt (a*a*(b*b-a*a)*(c*c-b*b)))/(&6)`);;
let solR = kepler_def(`solR a b c =
(&2)*atn2( sqrt(((c+b)*(b+a))), sqrt ((c-b)*(b-a)))`);;
let dihR = kepler_def(`dihR a b c =
atn2( sqrt(b*b-a*a),sqrt (c*c-b*b))`);;
let vorR = kepler_def(`vorR a b c =
(&4)*(--doct*(volR a b c) + (solR a b c)/(&3))`);;
let denR = kepler_def(`denR a b c =
(solR a b c)/((&3)*(volR a b c))`);;
let tauR = kepler_def(`tauR a b c =
--(volR a b c) + (solR a b c)*zeta*pt`);;
let quoin = kepler_def(`quoin a b c =
let u = sqrt ((c*c-b*b)/(b*b-a*a)) in
if ((a>=b) \/ (b>=c)) then (&0) else
(--(a*a + a*c-(&2)*c*c)*(c-a)*atn(u)/(&6) +
a*(b*b-a*a)*u/(&6)
- ((&2)/(&3))*c*c*c*(atn2((b+c),(u*(b-a)))))`);;
let qy = kepler_def(`qy y1 y2 y3 t =
quoin (y1/(&2)) (eta_y y1 y2 y3) t`);;
let quo_x = kepler_def(`quo_x x y z = qy (sqrt x) (sqrt y) (sqrt z) t0`);;
let qn = kepler_def(`qn y1 y2 z t =
--(&4)*doct*((qy y1 y2 z t) +(qy y2 y1 z t))`);;
let phi = kepler_def(`phi h t =
(&2)*((&2) - doct*h*t*(h+t))/(&3)`);;
let phi0 = kepler_def(`phi0 =
phi t0 t0`);;
let eta0 = kepler_def(`eta0 h =
eta_y ((&2)*h) (two_t0) (&2)`);;
let crown = kepler_def(`crown h =
let e = eta0 h in
(&2)*pi*((&1)- h/e)*(phi h e - phi0)`);;
let anc = kepler_def(`anc y1 y2 y6 =
let h1 = y1/(&2) in
let h2 = y2/(&2) in
let b = eta_y y1 y2 y6 in
let c = eta0 h1 in
if (b>c) then (&0) else
--(dihR h1 b c)*(crown h1)/((&2)*pi)
-(solR h1 b c)*phi0 + (vorR h1 b c)
-(dihR h2 b c)*((&1)-h2/t0)*((phi h2 t0)-phi0)
-(solR h2 b c)*(phi0) + (vorR h2 b c)`);;
let K0 = kepler_def(`K0 y1 y2 y6 =
(vorR (y1/(&2)) (eta_y y1 y2 y6) (sqrt2)) +
(vorR (y2/(&2)) (eta_y y1 y2 y6) (sqrt2)) -
(dihR (y1/(&2)) (eta_y y1 y2 y6) (sqrt2))*
(&1 - (y1/(sqrt8)))*(phi (y1/(&2)) sqrt2)`);;
let AH = kepler_def(`AH h t = (&1 - (h/t))*((phi h t) - (phi t t))`);;
let BHY = kepler_def(`BHY y = (AH (y/(&2)) t0) + phi0`);;
(*
(* This definition still needs to be finished *)
let overlap_f = kepler_def(
`overlap_f y1 y2 =
let ell = (#3.2) in
let lam = (#1.945) in
let dih1 = dih_y y1 t0 y2 lam ell lam in
let dih2 = dih_y y2 t0 y1 lam ell lam in
let s = sol_y y2 t0 y1 lam ell lam in
let phi1 = phi (y1/(&2)) t0 in
let phi2 = phi (y2/(&2)) t0 in
(&2)*(zeta*pt - phi0)*s
+ (&2)*dih1*((&1) - (y1/two_t0))*(phi0-phi1)
+ (&2)*dih2*((&1) - (y2/two_t0))*(phi0-phi2)
+ xxxxx-- need to insert tau terms ---xxxxx`);;
*)
(* ------------------------------------------------------------------ *)
(* Analytic and truncated Voronoi function *)
(* ------------------------------------------------------------------ *)
let KY = kepler_def(`KY y1 y2 y3 y4 y5 y6 =
(K0 y1 y2 y6) + (K0 y1 y3 y5) +
(dih_y y1 y2 y3 y4 y5 y6)*
(&1 - (y1/(sqrt8)))*(phi (y1/(&2)) sqrt2)`);;
let KX = kepler_def(`KX x1 x2 x3 x4 x5 x6 =
KY (sqrt x1) (sqrt x2) (sqrt x3) (sqrt x4) (sqrt x5) (sqrt x6)`);;
let vor_analytic_x = kepler_def(`vor_analytic_x x1 x2 x3 x4 x5 x6 =
let del = sqrt (delta_x x1 x2 x3 x4 x5 x6) in
let u126 = ups_x x1 x2 x6 in
let u135 = ups_x x1 x3 x5 in
let u234 = ups_x x2 x3 x4 in
let vol = ((&1)/((&48)*del))*
((x1*(x2+x6-x1)+x2*(x1+x6-x2))*(chi_x x4 x5 x3 x1 x2 x6)/u126
+(x2*(x3+x4-x2)+x3*(--x3+x4+x2))*(chi_x x6 x5 x1 x3 x2 x4)/u234
+(x1*(--x1+x3+x5)+x3*(x1-x3+x5))*(chi_x x4 x6 x2 x1 x3 x5)/u135)
in
(&4)*(--doct*vol + (sol_x x1 x2 x3 x4 x5 x6)/(&3))`);;
let vor_analytic_x_flipped = kepler_def(`vor_analytic_x_flipped x1 x2 x3 x4 x5 x6 =
vor_analytic_x x1 x5 x6 x4 x2 x3`);;
let octavor_analytic_x = kepler_def(`octavor_analytic_x
x1 x2 x3 x4 x5 x6 =
(#0.5)*((vor_analytic_x x1 x2 x3 x4 x5 x6) + (vor_analytic_x_flipped x1 x2 x3 x4 x5 x6))`);;
let tau_analytic_x = kepler_def(`tau_analytic_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(vor_analytic_x x1 x2 x3 x4 x5 x6)`);;
(* bug found 3/21/2008: had parenthesis misplaced. -tch *)
let kappa = kepler_def(`kappa y1 y2 y3 y4 y5 y6 =
(crown (y1/(&2)))*(dih_y y1 y2 y3 y4 y5 y6)/((&2)*pi)
+ (anc y1 y2 y6) + (anc y1 y3 y5)`);;
let kappa_dih_y = kepler_def(`kappa_dih_y y1 y2 y3 y5 y6 d =
(crown (y1/(&2)))*d/((&2)*pi)
+ (anc y1 y2 y6) + (anc y1 y3 y5)`);;
let level_at = kepler_def(`level_at h t = if (h<t) then h else t`);;
let vorstar = kepler_def(`vorstar h1 h2 h3 a1 a2 a3 t=
let phit = phi t t in
a1*((&1)-(level_at h1 t)/t)*(phi h1 t - phit)
+a2*((&1)-(level_at h2 t)/t)*(phi h2 t - phit)
+a3*((&1)-(level_at h3 t)/t)*(phi h3 t - phit)
+(a1+a2+a3-pi)*phit`);;
let vort_y = kepler_def(`vort_y y1 y2 y3 y4 y5 y6 t =
let h1 = y1/(&2) in
let h2 = y2/(&2) in
let h3 = y3/(&2) in
let a1 = dih_y y1 y2 y3 y4 y5 y6 in
let a2 = dih2_y y1 y2 y3 y4 y5 y6 in
let a3 = dih3_y y1 y2 y3 y4 y5 y6 in
(vorstar h1 h2 h3 a1 a2 a3 t)+
(qn y1 y2 y6 t)+(qn y2 y3 y4 t)+(qn y1 y3 y5 t)`);;
let vor_0_y = kepler_def(`vor_0_y y1 y2 y3 y4 y5 y6 =
vort_y y1 y2 y3 y4 y5 y6 t0`);;
let tau_0_y = kepler_def(`tau_0_y y1 y2 y3 y4 y5 y6 =
(sol_y y1 y2 y3 y4 y5 y6)*zeta*pt - (vor_0_y y1 y2 y3 y4 y5
y6)`);;
let vor_0_x = kepler_def(`vor_0_x x1 x2 x3 x4 x5 x6=
let (y1,y2,y3,y4,y5,y6) = (sqrt x1,sqrt x2,sqrt x3,
sqrt x4,sqrt x5,sqrt x6) in
vor_0_y y1 y2 y3 y4 y5 y6`);;
let tau_0_x = kepler_def(`tau_0_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(vor_0_x x1 x2 x3 x4 x5 x6)`);;
let vort_x = kepler_def(`vort_x x1 x2 x3 x4 x5 x6 t =
let (y1,y2,y3,y4,y5,y6) = (sqrt x1,sqrt x2,sqrt x3,
sqrt x4,sqrt x5,sqrt x6) in
vort_y y1 y2 y3 y4 y5 y6 t`);;
let tauVt_x = kepler_def(`tauVt_x x1 x2 x3 x4 x5 x6 t =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(vort_x x1 x2 x3 x4 x5 x6 t)`);;
let vorA_x = kepler_def(`vorA_x x1 x2 x3 x4 x5 x6 =
if ((x5 <= (square (#2.77))) /\ (x6 <= (square (#2.77))) /\
(((eta_x x4 x5 x6) < sqrt2)))
then (vor_analytic_x x1 x2 x3 x4 x5 x6 )
else (vor_0_x x1 x2 x3 x4 x5 x6)`);;
let tauA_x = kepler_def(`tauA_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(vorA_x x1 x2 x3 x4 x5 x6)`);;
let vorC0_x = kepler_def(`vorC0_x x1 x2 x3 x4 x5 x6 =
if ((x4 <= (square (#2.77))) \/
((eta_x x4 x5 x6 <= sqrt2) /\ (eta_x x2 x3 x4 <= sqrt2)))
then (vor_analytic_x x1 x2 x3 x4 x5 x6 )
else (vor_0_x x1 x2 x3 x4 x5 x6)`);;
let tauC0_x = kepler_def(`tauC0_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(vorC0_x x1 x2 x3 x4 x5 x6)`);;
let vorC_x = kepler_def(`vorC_x x1 x2 x3 x4 x5 x6 =
if ((x4 <= (square (#2.77))) \/
((eta_x x4 x5 x6 <= sqrt2) /\ (eta_x x2 x3 x4 <= sqrt2)) \/
((square (#2.45) <= x2) /\ ((square (#2.45) <= x6))))
then (vor_analytic_x x1 x2 x3 x4 x5 x6 )
else (vor_0_x x1 x2 x3 x4 x5 x6)`);;
let tauC_x = kepler_def(`tauC_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(vorC_x x1 x2 x3 x4 x5 x6)`);;
let v0x = kepler_def(`v0x x1 x2 x3 x4 x5 x6 =
let (y1,y2,y3) = (sqrt x1,sqrt x2,sqrt x3) in
(-- (BHY y1))*y1*(delta_x6 x1 x2 x3 x4 x5 x6) +
(BHY y2)* y2* (ups_x x1 x3 x5) +
(-- (BHY y3))*y3*(delta_x4 x1 x2 x3 x4 x5 x6)`);;
let v1x = kepler_def(`v1x x1 x2 x3 x4 x5 x6 =
let (y1,y2,y3) = (sqrt x1,sqrt x2,sqrt x3) in
(-- (BHY y1 - (zeta*pt)))*y1*(delta_x6 x1 x2 x3 x4 x5 x6) +
(BHY y2 - (zeta*pt))* y2* (ups_x x1 x3 x5) +
(-- (BHY y3 - (zeta*pt)))*y3*(delta_x4 x1 x2 x3 x4 x5 x6)`);;
(* ------------------------------------------------------------------ *)
(* The function gamma is called the "compression" in the proof *)
(* of the Kepler conjecture. It is interpreted as a linearized *)
(* density of a simplex. *)
(* ------------------------------------------------------------------ *)
let gamma_x = kepler_def(`gamma_x x1 x2 x3 x4 x5 x6 =
--doct*(vol_x x1 x2 x3 x4 x5 x6) + ((&2)/(&3))*
((dih_x x1 x2 x3 x4 x5 x6) + (dih_x x2 x3 x1 x5 x6 x4)+
(dih_x x3 x1 x2 x6 x4 x5) + (dih_x x4 x5 x3 x1 x2 x6)+
(dih_x x5 x6 x1 x2 x3 x4) + (dih_x x6 x5 x1 x3 x2 x4))
- (&4)*pi/(&3)`);;
let tau_gamma_x = kepler_def(`tau_gamma_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(gamma_x x1 x2 x3 x4 x5 x6)`);;
(* 1.41^2 = 1.9881 *)
let rad2_x = kepler_def(`rad2_x x1 x2 x3 x4 x5 x6 =
(rho_x x1 x2 x3 x4 x5 x6)/((delta_x x1 x2 x3 x4 x5 x6)*(&4))`);;
let sigma_qrtet_x = kepler_def(`sigma_qrtet_x x1 x2 x3 x4 x5 x6=
let r = rad2_x x1 x2 x3 x4 x5 x6 in
let r_cut = (#1.9881) in
if (r_cut <= r) then
vor_analytic_x x1 x2 x3 x4 x5 x6
else gamma_x x1 x2 x3 x4 x5 x6`);;
let sigma1_qrtet_x = kepler_def(`sigma1_qrtet_x x1 x2 x3 x4 x5 x6=
sigma_qrtet_x x1 x2 x3 x4 x5 x6 - (sol_x x1 x2 x3 x4 x5 x6)*zeta*pt`);;
let tau_sigma_x = kepler_def `tau_sigma_x x1 x2 x3 x4 x5 x6=
-- (sigma1_qrtet_x x1 x2 x3 x4 x5 x6)`;;
let sigma32_qrtet_x = kepler_def(`sigma32_qrtet_x x1 x2 x3 x4 x5 x6=
sigma_qrtet_x x1 x2 x3 x4 x5 x6 -
(#3.2)*(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt`);;
let mu_flat_x = kepler_def(`mu_flat_x x1 x2 x3 x4 x5 x6 =
let r1 = eta_x x2 x3 x4 in
let r2 = eta_x x4 x5 x6 in
if ((sqrt2 <= r1)\/(sqrt2 <= r2))
then vor_analytic_x x1 x2 x3 x4 x5 x6
else gamma_x x1 x2 x3 x4 x5 x6`);;
let taumu_flat_x = kepler_def(`taumu_flat_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt -
(mu_flat_x x1 x2 x3 x4 x5 x6)`);;
let mu_upright_x = kepler_def(`mu_upright_x x1 x2 x3 x4 x5 x6 =
let r1 = eta_x x1 x2 x6 in
let r2 = eta_x x1 x3 x5 in
if ((sqrt2 <= r1)\/(sqrt2 <= r2))
then vor_analytic_x x1 x2 x3 x4 x5 x6
else gamma_x x1 x2 x3 x4 x5 x6`);;
let mu_flipped_x = kepler_def(`mu_flipped_x x1 x2 x3 x4 x5 x6 =
mu_upright_x x1 x5 x6 x4 x2 x3`);;
let vor_0_x_flipped = kepler_def(`vor_0_x_flipped x1 x2 x3 x4 x5 x6=
vor_0_x x1 x5 x6 x4 x2 x3`);;
let octavor0_x = kepler_def(`octavor0_x x1 x2 x3 x4 x5 x6 =
(#0.5)* (vor_0_x x1 x2 x3 x4 x5 x6 + (vor_0_x_flipped x1 x2 x3 x4 x5 x6))`);;
(* STM changed to use mu_flipped_x and vor_0_x_flipped instead of the definition *)
(* let nu_x = kepler_def(`nu_x x1 x2 x3 x4 x5 x6 = *)
(* ((&1)/(&2))* *)
(* ( *)
(* (mu_upright_x x1 x2 x3 x4 x5 x6)+ *)
(* (mu_upright_x x1 x5 x6 x4 x2 x3)+ *)
(* (vor_0_x x1 x2 x3 x4 x5 x6)- *)
(* (vor_0_x x1 x5 x6 x4 x2 x3))`);; *)
let nu_x = kepler_def(`nu_x x1 x2 x3 x4 x5 x6 =
((&1)/(&2))*
(
(mu_upright_x x1 x2 x3 x4 x5 x6)+
(mu_flipped_x x1 x2 x3 x4 x5 x6)+
(vor_0_x x1 x2 x3 x4 x5 x6)-
(vor_0_x_flipped x1 x2 x3 x4 x5 x6))`);;
(* STM changed to use vor_0_x_flipped instead of the definition *)
(* let nu_gamma_x = kepler_def(`nu_gamma_x x1 x2 x3 x4 x5 x6 = *)
(* ((&1)/(&2))* *)
(* ( *)
(* (&2 * (gamma_x x1 x2 x3 x4 x5 x6))+ *)
(* (vor_0_x x1 x2 x3 x4 x5 x6)- *)
(* (vor_0_x x1 x5 x6 x4 x2 x3))`);; *)
let nu_gamma_x = kepler_def(`nu_gamma_x x1 x2 x3 x4 x5 x6 =
((&1)/(&2))*
(
(&2 * (gamma_x x1 x2 x3 x4 x5 x6))+
(vor_0_x x1 x2 x3 x4 x5 x6)-
(vor_0_x_flipped x1 x2 x3 x4 x5 x6))`);;
let taunu_x = kepler_def(`taunu_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt - (nu_x x1 x2 x3 x4 x5 x6)`);;
(* score for upright quarters in a quasi-regular octahedron.
I don't think I had a name for this specifically. *)
(* let octa_x = kepler_def(`octa_x x1 x2 x3 x4 x5 x6 = *)
(* (#0.5)*( *)
(* (mu_upright_x x1 x2 x3 x4 x5 x6)+ *)
(* (mu_upright_x x1 x5 x6 x4 x2 x3))`);; *)
let octa_x = kepler_def(`octa_x x1 x2 x3 x4 x5 x6 =
(#0.5)*(
(mu_upright_x x1 x2 x3 x4 x5 x6)+
(mu_flipped_x x1 x2 x3 x4 x5 x6))`);;
let sigmahat_x = kepler_def(`sigmahat_x x1 x2 x3 x4 x5 x6 =
let r234 = eta_x x2 x3 x4 in
let r456 = eta_x x4 x5 x6 in
let v0 = (if (sqrt2 <= r456) then
(vor_0_x x1 x2 x3 x4 x5 x6)
else if (sqrt2 <= r234) then
(vor_analytic_x x1 x2 x3 x4 x5 x6)
else
(gamma_x x1 x2 x3 x4 x5 x6)) in
let v1 = (if ((r234 <= sqrt2) /\ (r456 <= sqrt2)) then
max_real v0 (gamma_x x1 x2 x3 x4 x5 x6)
else v0) in
let v2 = (if (sqrt2 <= r234) then
max_real v1 (vor_analytic_x x1 x2 x3 x4 x5 x6)
else v1) in
let v3 = (if ((square (#2.6)) <= x4) /\ ((square (#2.2)) <= x1)
then max_real v2 (vor_0_x x1 x2 x3 x4 x5 x6)
else v2) in
let v4 = (if ((square (#2.7) <= x4))
then
max_real v3 (vor_0_x x1 x2 x3 x4 x5 x6)
else v3) in
if (sqrt2 <= r456)
then
max_real v4 (vor_analytic_x x1 x2 x3 x4 x5 x6)
else v4`);;
let sigmahat_x' = kepler_def(`sigmahat_x' x1 x2 x3 x4 x5 x6 =
let r234 = eta_x x2 x3 x4 in
let r456 = eta_x x4 x5 x6 in
let P1 = sqrt2 <= r456 in
let P2 = sqrt2 <= r234 in
let P3 = square (#2.2) <= x1 in
let P4 = square (#2.6) <= x4 in
let P5 = square (#2.7) <= x4 in
if ~P1 /\ P2 /\ ~P5 /\ (~P3 \/ ~P4) then
vor_analytic_x x1 x2 x3 x4 x5 x6
else if ~P1 /\ ~P2 /\ ~P5 /\ (~P3 \/ ~P4) then
gamma_x x1 x2 x3 x4 x5 x6
else if ~P1 /\ ~P2 /\ P4 /\ (P3 \/ P5) then
max_real (gamma_x x1 x2 x3 x4 x5 x6) (vor_0_x x1 x2 x3 x4 x5 x6)
else
max_real (vor_analytic_x x1 x2 x3 x4 x5 x6) (vor_0_x x1 x2 x3 x4 x5 x6)`);;
let sigmahatpi_x = kepler_def(`sigmahatpi_x x1 x2 x3 x4 x5 x6 =
let r234 = eta_x x2 x3 x4 in
let r456 = eta_x x4 x5 x6 in
let piF = (#2.0)*(xiV) + (xi_gamma) in
let v0 = (if (sqrt2 <= r456) then
(vor_0_x x1 x2 x3 x4 x5 x6)
else if (sqrt2 <= r234) then
(vor_analytic_x x1 x2 x3 x4 x5 x6)
else
(gamma_x x1 x2 x3 x4 x5 x6)) in
let v1 = (if ((r234 <= sqrt2) /\ (r456 <= sqrt2)) then
max_real v0 (gamma_x x1 x2 x3 x4 x5 x6)
else v0) in
let v2 = (if (sqrt2 <= r234) then
max_real v1 (vor_analytic_x x1 x2 x3 x4 x5 x6)
else v1) in
let v3 = (if ((square (#2.6)) <= x4) /\ ((square (#2.2)) <= x2)
then max_real v2 (piF + (vor_0_x x1 x2 x3 x4 x5 x6))
else v2) in
let v4 = (if ((square (#2.7) <= x4))
then
max_real v3 (piF + (vor_0_x x1 x2 x3 x4 x5 x6) )
else v3) in
if (sqrt2 <= r456)
then
max_real v4 (vor_analytic_x x1 x2 x3 x4 x5 x6)
else v4`);;
let tauhat_x = kepler_def(`tauhat_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt - (sigmahat_x x1 x2 x3 x4 x5 x6)`);;
let tauhatpi_x = kepler_def(`tauhatpi_x x1 x2 x3 x4 x5 x6 =
(sol_x x1 x2 x3 x4 x5 x6)*zeta*pt - (sigmahatpi_x x1 x2 x3 x4 x5 x6)`);;
let pi_prime_tau = kepler_def
`pi_prime_tau k0 k1 k2 =
if (k2=0) then (&0)
else if (k0=1) /\ (k1=1) /\ (k2=1) then (#0.0254)
else (#0.04683 + (&k0 + &(2*k2) - #3.0)*((#0.008)/(#3.0))
+ (&k2) * (#0.0066))`;;
let pi_prime_sigma = kepler_def
`pi_prime_sigma k0 (k1:num) k2 =
if (k2=0) then (&0)
else if (k0=1) /\ (k2=1) then (#0.009)
else (& (k0 + 2*k2))*((#0.008)/(#3.0)) + (&k2)* (#0.009)`;;
(* ------------------------------------------------------------------ *)
(* Three space *)
(* ------------------------------------------------------------------ *)
(* We are swithing from real3 to real^3. *)
(* For now I'm keeping these definitons (at least the names, the definitions*)
(* themselves are changed radically), but it might be better to just get *)
(* rid of most of them. *)
(* deprecated *)
(* let dot3 = new_definition `dot3 (v:real^3) w = v dot w`;; *)
(* deprecated *)
(* let norm3 = new_definition `norm3 (v:real^3) = norm v`;; *)
(* deprecated *)
(* No need for this one. "basis" does something similar. *)
(*
let dirac_delta = new_definition `dirac_delta (i:num) =
(\j. if (i=j) then (&1) else (&0))`;;
*)
(* deprecated, use vector, instead *)
(* deprecated *)
(* let orig3 = new_definition `orig3 = (vec 0):real^3`;; *)
(* ------------------------------------------------------------------ *)
(* Cross diagonal and Enclosed *)
(* ------------------------------------------------------------------ *)
(* find point in euclidean 3 space atdistance a b c
from
v1 = mk_vec3 0 0 0;
v2 = mk_vec3 y4 0 0;
v3 = mk_vec3 v3_1 v3_2 0;
*)
let findpoint = kepler_def `findpoint a b c y4 v3_1 v3_2 sgn =
let y5 = sqrt (v3_1*v3_1 + v3_2*v3_2) in
let w1 = (a*a + y4*y4 - b*b)/((&2)*y4) in
let w2 = (a*a + y5*y5 -c*c - (&2)*w1*v3_1)/((&2)*v3_2) in
let w3 = sgn* (sqrt(a*a - w1*w1 - w2*w2)) in
mk_vec3 w1 w2 w3`;;
let enclosed = kepler_def `enclosed y1 y2 y3 y4 y5 y6 y1' y2' y3' =
let v1:real^3 = mk_vec3 (&0) (&0) (&0) in
let v2:real^3 = mk_vec3 y4 (&0) (&0) in
let a = ((y5*y5) + (y4*y4) - (y6*y6))/((&2)*y4) in
let b = sqrt((y5*y5) - (a*a)) in
let v3:real^3 = mk_vec3 a b (&0) in
let v4:real^3 = findpoint y3 y2 y1 y4 a b (#1.0) in
let v5 = findpoint y3' y2' y1' y4 a b (--(#1.0)) in
dist(v4,v5)`;;
let cross_diag = kepler_def `cross_diag y1 y2 y3 y4 y5 y6 y7 y8 y9=
enclosed y1 y5 y6 y4 y2 y3 y7 y8 y9`;;
let cross_diag_x = kepler_def `cross_diag_x x1 x2 x3 x4 x5 x6 x7 x8 x9=
cross_diag (sqrt x1) (sqrt x2) (sqrt x3) (sqrt x4) (sqrt x5)
(sqrt x6) (sqrt x7) (sqrt x8) (sqrt x9)`;;
(* ------------------------------------------------------------------ *)
(* Definitions of Affine Geometry (from BLUEPRINT : Trigonometry ) *)
(* ------------------------------------------------------------------ *)
(* Notes on unique existence of definitions:
> min_num
Exists uniquely on all nonempty subsets of N.
Can be uniquely extended to all subsets by defining min_num {} = 0
> deriv
This is the derivative of a function of a real variable. Its domain is more difficult to describe.
> aff
Exists uniquely on all finite subsets of R3.
It will only be used on finite sets.
Can be uniquely extended to all subsets by defining aff S = S, when S is infinite
> min_polar
Exists uniquely on all nonempty finite sets of ordered pairs of real numbers
Can be uniquely extended to all sets of ordered pairs by setting min_polar X = ( &0, &0 ), when X is empty or infinite.
This definition actually holds for some infinite sets, but I never use it, except on finite sets, so you are free
to redefine it to be (&0,&0) on infinite sets.
> iter
iter is uniquely defined with no domain conditions, no preconditions
> azim
Exists uniquely when the stated non collinearity preconditions are met: ~(collinear {v, w, w1}) /\ ~(collinear {v, w, w2})
(The preconditions azim_hyp, orthonormality, and e3 normalization are not domain constraints, because they do not restrict v w w1 w2.)
Can be uniquely extended to all cases, by setting azim w1 w2 w3 w4 = &0, when the non-collinearity preconditions are not met.
> azim_cycle
azim_cycle W v w p exists uniquely under the preconditions (W p) /\ (cyclic_set W v w).
It is only used when the preconditions are met.
Can be uniquely extended to all cases, by setting azim_cycle W v w p = p, when these two preconditions are not met.
*)
(* from convex.ml: *)
let affine = new_definition
`affine s <=> !x y u v. x IN s /\ y IN s /\ (u + v = &1)
==> (u % x + v % y) IN s`;;
let convex = new_definition
`convex s <=>
!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ (u + v = &1)
==> (u % x + v % y) IN s`;;
(* aff is deprecated *)
(* Fix "sum" because Harrison's interface is too special in analysis.ml *)
reduce_interface("sum",`sum:(num->bool)->(num->real)->real`);;
reduce_interface("sum",`psum:(num#num)->(num->real)->real`);;
let remove_overload sym =
let overload_skeletons = filter ((<>)sym o fst) (!the_overload_skeletons) in
the_overload_skeletons := overload_skeletons;;
remove_overload "sum";;
make_overloadable "sum" `:A->(B->real)->real`;;
overload_interface("sum",`sum:(A->bool)->(A->real)->real`);;
overload_interface("sum",`psum:(num#num)->(num->real)->real`);;
(* conv is deprecated. Use `convex hull S` instead *)
(* deprecated:
let semiconvex = new_definition
`semiconvex sgn s t <=>
!x y z u v w. x IN (affine hull s) /\ y IN t /\ z IN t /\ sgn v /\ sgn w /\ (u + v + w = &1)
==> (u % x + v % y + w % z) IN t`;;
*)
(* conv is deprecated. Use `convex hull S` instead *)
(* Vuong Quyen has pointed out that the definition of aff_insert
is incorrect.
New definitions are based on Multivariate/convex.ml.
-TCH 8/17/08.
*)
(* SWSAMQE *)
(* LFQMLPU *)
(* Done in Harrison's Multilinear/vectors.ml (Feb 2008 release only) : let collinear = new_definition `collinear S = (?x. line x /\ S SUBSET x)`;; *)
(* repeat of definition for 2.20 version *)
(* PPZSAYG *)
(* BUGLQNN *)
(* MHHXNTW *)
(* QTQNLKK *)
(* WMJHKBL *)
(* TIWZVEW *)
(* XCJABYH *)
(* XPLPHNG *)
(* circumradius *)
(* EOBLRCS *)
(* ANGLE *)
let dihV = new_definition `dihV w0 w1 w2 w3 =
let va = w2 - w0 in
let vb = w3 - w0 in
let vc = w1 - w0 in
let vap = ( vc dot vc) % va - ( va dot vc) % vc in
let vbp = ( vc dot vc) % vb - ( vb dot vc) % vc in
arcV (vec 0) vap vbp`;;
(* conventional ordering on variables *)
let ylist = new_definition `ylist w0 w1 w2 w3 =
((dist (w0, w1)),(dist( w0, w2)),(dist( w0, w3)),(dist( w2, w3)),(dist( w1, w3)),(dist( w1, w2)))`;;
let xlist = new_definition `xlist w0 w1 w2 w3 =
let (y1,y2,y3,y4,y5,y6) = ylist w0 w1 w2 w3 in
(y1 pow 2, y2 pow 2, y3 pow 2, y4 pow 2, y5 pow 2, y6 pow 2)`;;
let euler_p = new_definition `euler_p v0 v1 v2 v3 =
(let (y1,y2,y3,y4,y5,y6) = ylist v0 v1 v2 v3 in
let w1 = v1 - v0 in
let w2 = v2 - v0 in
let w3 = v3 - v0 in
y1*y2*y3 + y1*( w2 dot w3) + y2*( w3 dot w1) + y3*( w1 dot w2))`;;
(* polar coordinates *)
(* iterates of a function must be done already, but I don't know where *)
let iter_spec = prove(`?iter. !f u:A. (iter 0 f u = u) /\ (!n. (iter (SUC n) f u = f(iter n f u)))`,
(SUBGOAL_THEN `?g. !f (u:A). (g f u 0 = u) /\ (!n. (g f u (SUC n) = f (g f u n)))` CHOOSE_TAC) THENL
([REWRITE_TAC[GSYM
SKOLEM_THM;
num_RECURSION_STD];REWRITE_TAC[]]) THEN
(EXISTS_TAC `\ (i:num) (f:A->A) (u:A). (g f u i):A`) THEN
(BETA_TAC) THEN
(ASM_REWRITE_TAC[]));;
(*
let polar_power_spec = prove(`?fn. !V v. (fn V v 0 = v ) /\ (!n. (fn V v (SUC n) = polar_cycle V (fn V v n)))`,
(REWRITE_TAC[GSYM SKOLEM_THM;num_RECURSION_STD]));;
let polar_power = new_specification ["polar_power"] polar_power_spec;;
*)
(* spherical coordinates *)
(* ------------------------------------------------------------------ *)
(* Definitions from the Collection in Elementary Geometry *)
(* ------------------------------------------------------------------ *)
(* EDSFZOT *)
let cayleyR = new_definition `cayleyR x12 x13 x14 x15 x23 x24 x25 x34 x35 x45 =
-- (x14*x14*x23*x23) + &2 *x14*x15*x23*x23 - x15*x15*x23*x23 + &2 *x13*x14*x23*x24 - &2 *x13*x15*x23*x24 - &2 *x14*x15*x23*x24 +
&2 *x15*x15*x23*x24 - x13*x13*x24*x24 + &2 *x13*x15*x24*x24 - x15*x15*x24*x24 - &2 *x13*x14*x23*x25 +
&2 *x14*x14*x23*x25 + &2 *x13*x15*x23*x25 - &2 *x14*x15*x23*x25 + &2 *x13*x13*x24*x25 - &2 *x13*x14*x24*x25 - &2 *x13*x15*x24*x25 +
&2 *x14*x15*x24*x25 - x13*x13*x25*x25 + &2 *x13*x14*x25*x25 - x14*x14*x25*x25 + &2 *x12*x14*x23*x34 - &2 *x12*x15*x23*x34 -
&2 *x14*x15*x23*x34 + &2 *x15*x15*x23*x34 + &2 *x12*x13*x24*x34 - &2 *x12*x15*x24*x34 - &2 *x13*x15*x24*x34 + &2 *x15*x15*x24*x34 +
&4 *x15*x23*x24*x34 - &2 *x12*x13*x25*x34 - &2 *x12*x14*x25*x34 + &4 *x13*x14*x25*x34 + &4 *x12*x15*x25*x34 - &2 *x13*x15*x25*x34 - &2 *x14*x15*x25*x34 -
&2 *x14*x23*x25*x34 - &2 *x15*x23*x25*x34 - &2 *x13*x24*x25*x34 - &2 *x15*x24*x25*x34 + &2 *x13*x25*x25*x34 + &2 *x14*x25*x25*x34 -
x12*x12*x34*x34 + &2 *x12*x15*x34*x34 - x15*x15*x34*x34 + &2 *x12*x25*x34*x34 + &2 *x15*x25*x34*x34 -
x25*x25*x34*x34 - &2 *x12*x14*x23*x35 + &2 *x14*x14*x23*x35 + &2 *x12*x15*x23*x35 - &2 *x14*x15*x23*x35 - &2 *x12*x13*x24*x35 +
&4 *x12*x14*x24*x35 - &2 *x13*x14*x24*x35 - &2 *x12*x15*x24*x35 + &4 *x13*x15*x24*x35 - &2 *x14*x15*x24*x35 - &2 *x14*x23*x24*x35 - &2 *x15*x23*x24*x35 +
&2 *x13*x24*x24*x35 + &2 *x15*x24*x24*x35 + &2 *x12*x13*x25*x35 - &2 *x12*x14*x25*x35 - &2 *x13*x14*x25*x35 + &2 *x14*x14*x25*x35 +
&4 *x14*x23*x25*x35 - &2 *x13*x24*x25*x35 - &2 *x14*x24*x25*x35 + &2 *x12*x12*x34*x35 - &2 *x12*x14*x34*x35 - &2 *x12*x15*x34*x35 +
&2 *x14*x15*x34*x35 - &2 *x12*x24*x34*x35 - &2 *x15*x24*x34*x35 - &2 *x12*x25*x34*x35 - &2 *x14*x25*x34*x35 + &2 *x24*x25*x34*x35 -
x12*x12*x35*x35 + &2 *x12*x14*x35*x35 - x14*x14*x35*x35 + &2 *x12*x24*x35*x35 + &2 *x14*x24*x35*x35 -
x24*x24*x35*x35 + &4 *x12*x13*x23*x45 - &2 *x12*x14*x23*x45 - &2 *x13*x14*x23*x45 - &2 *x12*x15*x23*x45 - &2 *x13*x15*x23*x45 +
&4 *x14*x15*x23*x45 + &2 *x14*x23*x23*x45 + &2 *x15*x23*x23*x45 - &2 *x12*x13*x24*x45 + &2 *x13*x13*x24*x45 + &2 *x12*x15*x24*x45 -
&2 *x13*x15*x24*x45 - &2 *x13*x23*x24*x45 - &2 *x15*x23*x24*x45 - &2 *x12*x13*x25*x45 + &2 *x13*x13*x25*x45 + &2 *x12*x14*x25*x45 -
&2 *x13*x14*x25*x45 - &2 *x13*x23*x25*x45 - &2 *x14*x23*x25*x45 + &4 *x13*x24*x25*x45 + &2 *x12*x12*x34*x45 - &2 *x12*x13*x34*x45 -
&2 *x12*x15*x34*x45 + &2 *x13*x15*x34*x45 - &2 *x12*x23*x34*x45 - &2 *x15*x23*x34*x45 - &2 *x12*x25*x34*x45 - &2 *x13*x25*x34*x45 + &2 *x23*x25*x34*x45 +
&2 *x12*x12*x35*x45 - &2 *x12*x13*x35*x45 - &2 *x12*x14*x35*x45 + &2 *x13*x14*x35*x45 - &2 *x12*x23*x35*x45 - &2 *x14*x23*x35*x45 -
&2 *x12*x24*x35*x45 - &2 *x13*x24*x35*x45 + &2 *x23*x24*x35*x45 + &4 *x12*x34*x35*x45 - x12*x12*x45*x45 + &2 *x12*x13*x45*x45 -
x13*x13*x45*x45 + &2 *x12*x23*x45*x45 + &2 *x13*x23*x45*x45 - x23*x23*x45*x45`;;
(* PUSACOU *)
(* SIDEXYO *)
let wedge = new_definition (`wedge v1 v2 w1 w2 =
let z = v2 - v1 in
let u1 = w1 - v1 in
let u2 = w2 - v1 in
let n = cross z u1 in
let d = n dot u2 in
if (aff_ge {v1,v2} {w1} w2) then {} else
if (aff_lt {v1,v2} {w1} w2) then aff_gt {v1,v2,w1} {n} else
if (d > &0) then aff_gt {v1,v2} {w1,w2} else
(:real^3) DIFF aff_ge {v1,v2} {w1,w2}`);;
(* ------------------------------------------------------------------ *)
(* Measure and Volume, following Nguyen Tat Thang *)
(* ------------------------------------------------------------------ *)
let sphere= new_definition`sphere x=(?(v:real^3)(r:real). (r> &0)/\ (x={w:real^3 | norm (w-v)= r}))`;;
let NULLSET_RULES,NULLSET_INDUCT,NULLSET_CASES =
new_inductive_definition
`(!P. ((plane P)\/ (sphere P) \/ (circular_cone P)) ==> NULLSET P) /\
!(s:real^3->bool) t. (NULLSET s /\ NULLSET t) ==> NULLSET (s UNION t)`;;
(* drop primes *)
let scale = new_definition `scale (t:real^3) (u:real^3) = vector[t$1 * u$1; t$2 * u$2; t$3 * u$3]`;;
let frustum = new_definition `frustum v0 v1 h1 h2 a = { y | rcone_gt v0 v1 a y /\
let d = (y - v0) dot (v1 - v0) in
let n = norm(v1 - v0) in
(h1*n < d /\ d < h2*n)}`;;
let rect = new_definition `rect (a:real^3) (b:real^3) = {(v:real^3) | !i. ( a$i < v$i /\ v$i < b$i )}`;;
(*
let is_tetrahedron = new_definition `is_tetrahedron S = ?v0 v1 v2 v3. (S = conv0 {v0,v1,v2,v3})`;;
*)
let MEASURABLE_RULES,MEASURABLE_INDUCT,MEASURABLE_CASES =
new_inductive_definition
`(!C. primitive C ==> measurable C) /\
( !Z. NULLSET Z ==> measurable Z) /\
(!X t. measurable X ==> (measurable (IMAGE (scale t) X))) /\
(!X v. measurable X ==> (measurable (IMAGE ((+) v) X))) /\
( !(s:real^3->bool) t. (measurable s /\ measurable t) ==> measurable (s UNION t)) /\
( !(s:real^3->bool) t. (measurable s /\ measurable t) ==> measurable (s INTER t)) /\
( !(s:real^3->bool) t. (measurable s /\ measurable t) ==> measurable (s DIFF t))
`;;
(* volume of intersection of conic cap and wedge *)
let vol_conv = new_definition `vol_conv v1 v2 v3 v4 =
let x12 = dist(v1,v2) pow 2 in
let x13 = dist(v1,v3) pow 2 in
let x14 = dist(v1,v4) pow 2 in
let x23 = dist(v2,v3) pow 2 in
let x24 = dist(v2,v4) pow 2 in
let x34 = dist(v3,v4) pow 2 in
sqrt(delta_x x12 x13 x14 x34 x24 x34)/(&12)`;;
let vol_rect = new_definition `vol_rect a b =
if (a$1 < b$1) /\ (a$2 < b$2) /\ (a$3 < b$3) then (b$3-a$3)*(b$2-a$2)*(b$1-a$1) else &0`;;
let volume_props = new_definition `volume_props (vol:(real^3->bool)->real) =
( (!C. vol C >= &0) /\
(!Z. NULLSET Z ==> (vol Z = &0)) /\
(!X Y. measurable X /\ measurable Y /\ NULLSET (SDIFF X Y) ==> (vol X = vol Y)) /\
(!X t. (measurable X) /\ (measurable (IMAGE (scale t) X)) ==> (vol (IMAGE (scale t) X) = abs(t$1 * t$2 * t$3)*vol(X))) /\
(!X v. measurable X ==> (vol (IMAGE ((+) v) X) = vol X)) /\
(!v0 v1 v2 v3 r. (r > &0) /\ (~(collinear {v0,v1,v2})) /\ ~(collinear {v0,v1,v3}) ==> vol (solid_triangle v0 {v1,v2,v3} r) = vol_solid_triangle v0 v1 v2 v3 r) /\
(!v0 v1 v2 v3. vol(conv0 {v0,v1,v2,v3}) = vol_conv v0 v1 v2 v3) /\
(!v0 v1 v2 v3 h a. ~(collinear {v0,v1,v2}) /\ ~(collinear {v0,v1,v3}) /\ (h >= &0) /\ (a > &0) /\ (a <= &1) ==> vol(frustt v0 v1 h a INTER wedge v0 v1 v2 v3) = vol_frustt_wedge v0 v1 v2 v3 h a) /\
(!v0 v1 v2 v3 r c. ~(collinear {v0,v1,v2}) /\ ~(collinear {v0,v1,v3}) /\ (r >= &0) /\ (c >= -- (&1)) /\ (c <= &1) ==> (vol(conic_cap v0 v1 r c INTER wedge v0 v1 v2 v3) = vol_conic_cap_wedge v0 v1 v2 v3 r c)) /\
(!(a:real^3) (b:real^3). vol(rect a b) = vol_rect a b) /\
(!v0 v1 v2 v3 r. ~(collinear {v0,v1,v2}) /\ ~(collinear {v0,v1,v3}) /\ (r >= &0) ==> (vol(normball v0 r INTER wedge v0 v1 v2 v3) = vol_ball_wedge v0 v1 v2 v3 r)))`;;
let abc_param = new_definition `abc_param v0 v1 v2 c =
let a = (&1/(&2)) * dist(v0,v1) in
let b = radV {v0,v1,v2} in
(a,b,c)`;;
(* ------------------------------------------------------------------ *)
(* Format of inequalities in the archive. *)
(* ------------------------------------------------------------------ *)
let ineq = kepler_def `ineq (bounds:(real#real#real) list) (A:bool) =
((!(a,x,b). ((MEM (a,x,b) bounds) ==> ((a <= x) /\ (x <= b)))) /\ A)`;;
let all_forall bod =
let mk_forall = mk_binder "!" in
itlist (curry mk_forall) (frees bod) bod;;