(* ========================================================================= *)
(* Arithmetic-geometric mean inequality.                                     *)
(* ========================================================================= *)
needs "Library/products.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* There's already one proof of this in "Library/agm.ml". This one is from  *)
(* an article by Michael Hirschhorn, Math. Intelligencer vol. 29, p7.        *)
(* ------------------------------------------------------------------------- *)
let LEMMA_1 = prove
 (`!x n. x pow (n + 1) - (&n + &1) * x + &n =
         (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`,
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[
SUM_CLAUSES_NUMSEG; 
ARITH_EQ; 
ADD_CLAUSES] THENL
   [REAL_ARITH_TAC; REWRITE_TAC[ARITH_RULE `1 <= SUC n`]] THEN
  SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; 
SUB_REFL] THEN
  REWRITE_TAC[
real_pow; 
REAL_MUL_RID] THEN
  REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN
  ASM_REWRITE_TAC[
SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN
  REWRITE_TAC[GSYM 
REAL_OF_NUM_SUC; 
REAL_POW_ADD] THEN REAL_ARITH_TAC);;
 
let LEMMA_2 = prove
 (`!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`,
 
let LEMMA_3 = prove
 (`!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i)
         ==> x(n + 1) * (sum(1..n) x / &n) pow n
                <= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`,
  REPEAT STRIP_TAC THEN
  ABBREV_TAC `a = sum(1..n+1) x / (&n + &1)` THEN
  ABBREV_TAC `b = sum(1..n) x / &n` THEN
  SUBGOAL_THEN `x(n + 1) = (&n + &1) * a - &n * b` SUBST1_TAC THENL
   [MAP_EVERY EXPAND_TAC ["a";
 
let AGM = prove
 (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i))
         ==> product(1..n) a <= (sum(1..n) a / &n) pow n`,
  INDUCT_TAC THEN REWRITE_TAC[ARITH; 
PRODUCT_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `x:num->real` THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[
PRODUCT_CLAUSES_NUMSEG; ARITH; 
SUM_SING_NUMSEG] THEN
    REAL_ARITH_TAC;
    REWRITE_TAC[
ADD1] THEN STRIP_TAC THEN MATCH_MP_TAC 
REAL_LE_TRANS THEN     
    EXISTS_TAC `x(n + 1) * (sum(1..n) x / &n) pow n` THEN
    ASM_SIMP_TAC[
LEMMA_3; GSYM REAL_OF_NUM_ADD; 
LE_1;
                 ARITH_RULE `i <= n ==> i <= n + 1`] THEN
    GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC 
REAL_LE_RMUL THEN
    ASM_SIMP_TAC[
LE_REFL; 
LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]]);;
 
let AGM_ROOT = prove
 (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i))
         ==> root n (product(1..n) a) <= sum(1..n) a / &n`,