(* ========================================================================= *)
(* Bernoulli numbers and polynomials; sum of kth powers.                     *)
(* ========================================================================= *)
needs "Library/binomial.ml";;
needs "Library/analysis.ml";;
needs "Library/transc.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* A couple of basic lemmas about new-style sums.                            *)
(* ------------------------------------------------------------------------- *)
let SUM_DIFFS = prove
 (`!a m n. m <= n + 1 ==> sum(m..n) (\i. a(i + 1) - a(i)) = a(n + 1) - a(m)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[
SUM_CLAUSES_NUMSEG] THENL
   [REWRITE_TAC[ARITH_RULE `m <= 0 + 1 <=> m = 0 \/ m = 1`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[ARITH; 
ADD_CLAUSES; 
REAL_SUB_REFL];
    SIMP_TAC[ARITH_RULE `m <= SUC n + 1 <=> m <= n + 1 \/ m = SUC n + 1`] THEN
    STRIP_TAC THEN ASM_SIMP_TAC[
ADD1] THENL [REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[
REAL_SUB_REFL; ARITH_RULE `~((n + 1) + 1 <= n + 1)`] THEN
    MATCH_MP_TAC 
SUM_TRIV_NUMSEG THEN ARITH_TAC]);;
 
let DIFF_SUM = prove
 (`!f f' a b.
        (!k. a <= k /\ k <= b ==> ((\x. f x k) diffl f'(k)) x)
        ==> ((\x. sum(a..b) (f x)) diffl (sum(a..b) f')) x`,
  REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN
  REWRITE_TAC[
SUM_CLAUSES_NUMSEG] THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[ARITH; 
DIFF_CONST; 
SUM_TRIV_NUMSEG;
               ARITH_RULE `~(a <= SUC b) ==> b < a`] THEN
  DISCH_TAC THEN MATCH_MP_TAC 
DIFF_ADD THEN
  ASM_SIMP_TAC[
LE_REFL; ARITH_RULE `k <= b ==> k <= SUC b`]);;
 
let bernoulli = define
 `(bernoulli 0 = &1) /\
  (!n. bernoulli(SUC n) =
       --sum(0..n) (\j. &(binom(n + 2,j)) * bernoulli j) / (&n + &2))`;;let BERNOULLI = prove
 (`!n. sum(0..n) (\j. &(binom(n + 1,j)) * bernoulli j) =
       if n = 0 then &1 else &0`,
 
let DIFF_BERNPOLY = prove
 (`!n x. ((bernpoly (SUC n)) diffl (&(SUC n) * bernpoly n x)) x`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN
  REWRITE_TAC[bernpoly; 
SUM_CLAUSES_NUMSEG; 
LE_0] THEN
  GEN_REWRITE_TAC LAND_CONV [GSYM 
REAL_ADD_RID] THEN
  MATCH_MP_TAC 
DIFF_ADD THEN REWRITE_TAC[
SUB_REFL; 
real_pow; 
DIFF_CONST] THEN
  REWRITE_TAC[GSYM 
SUM_LMUL] THEN MATCH_MP_TAC 
DIFF_SUM THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[
ADD1; 
BINOM_TOP_STEP_REAL] THEN
  DIFF_TAC THEN ASM_SIMP_TAC[ARITH_RULE `k <= n ==> ~(k = n + 1)`] THEN
  REWRITE_TAC[
REAL_MUL_LZERO; REAL_ADD_LID] THEN
  ASM_SIMP_TAC[ARITH_RULE `k <= n ==> (n + 1) - k - 1 = n - k`] THEN
  ASM_SIMP_TAC[GSYM 
REAL_OF_NUM_SUB; ARITH_RULE `k <= n ==> k <= n + 1`] THEN
  UNDISCH_TAC `k <= n:num` THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_LE] THEN
  ABBREV_TAC `z = x pow (n - k)` THEN CONV_TAC REAL_FIELD);;
 
let INTEGRALS_EQ = prove
 (`!f g. (!x. ((\x. f(x) - g(x)) diffl &0) x) /\ f(&0) = g(&0)
         ==> !x. f(x) = g(x)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`\x:real. f(x) - g(x)`; `x:real`; `&0`] 
DIFF_ISCONST_ALL) THEN
  ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
 
let RECURRENCE_BERNPOLY = prove
 (`!n x. bernpoly n (x + &1) - bernpoly n x = &n * x pow (n - 1)`,
  INDUCT_TAC THENL
   [REWRITE_TAC[bernpoly; 
SUM_SING_NUMSEG; 
REAL_SUB_REFL; 
SUB_REFL;
                
real_pow; 
REAL_MUL_LZERO];
    ALL_TAC] THEN
  MATCH_MP_TAC 
INTEGRALS_EQ THEN CONJ_TAC THENL
   [X_GEN_TAC `x:real` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN
    ONCE_REWRITE_TAC[GSYM 
REAL_SUB_0] THEN
    DISCH_THEN(MP_TAC o AP_TERM `(*) (&(SUC n))`) THEN
    REWRITE_TAC[REAL_MUL_RZERO] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[REAL_SUB_LDISTRIB] THEN
    REPEAT(MATCH_MP_TAC DIFF_SUB THEN CONJ_TAC) THEN
    SIMP_TAC[SUC_SUB1; DIFF_CMUL; DIFF_POW; DIFF_BERNPOLY; ETA_AX] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN
    MATCH_MP_TAC DIFF_CHAIN THEN REWRITE_TAC[DIFF_BERNPOLY] THEN
    DIFF_TAC THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[bernpoly; GSYM SUM_SUB_NUMSEG] THEN
  REWRITE_TAC[REAL_ADD_LID; REAL_POW_ONE; GSYM REAL_SUB_LDISTRIB] THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; SUB_REFL; real_pow] THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_RID] THEN
  SIMP_TAC[ARITH_RULE `i <= n ==> SUC n - i = SUC(n - i)`] THEN
  REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_SUB_RZERO; REAL_MUL_RID] THEN
  REWRITE_TAC[BERNOULLI; ADD1] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH; real_pow; REAL_MUL_LID] THEN
  CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN
  ASM_REWRITE_TAC[ADD_SUB]);;
(* ------------------------------------------------------------------------- *)
(* Hence we get the main result.                                             *)
(* ------------------------------------------------------------------------- *)
let SUM_OF_POWERS = prove
 (`!n. sum(0..n) (\k. &k pow m) =
        (bernpoly(SUC m) (&n + &1) - bernpoly(SUC m) (&0)) / (&m + &1)`,
  GEN_TAC THEN ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN
  ONCE_REWRITE_TAC[GSYM REAL_MUL_SYM] THEN
  REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `sum(0..n) (\i. bernpoly (SUC m) (&(i + 1)) - bernpoly (SUC m) (&i))` THEN
  CONJ_TAC THENL
   [REWRITE_TAC[RECURRENCE_BERNPOLY; GSYM REAL_OF_NUM_ADD] THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_SUC; SUC_SUB1];
    SIMP_TAC[SUM_DIFFS; LE_0] THEN REWRITE_TAC[REAL_OF_NUM_ADD]]);; 
let pth = prove
   (`sum(0..0) f = f 0 /\ sum(0..SUC n) f = sum(0..n) f + f(SUC n)`,
    SIMP_TAC[
SUM_CLAUSES_NUMSEG; 
LE_0]) in
  let econv_0 = GEN_REWRITE_CONV I [CONJUNCT1 pth]
  and econv_1 = GEN_REWRITE_CONV I [CONJUNCT2 pth] in
  let rec sconv tm =
    (econv_0 ORELSEC
     (LAND_CONV(RAND_CONV num_CONV) THENC econv_1 THENC
      COMB2_CONV (RAND_CONV sconv) (RAND_CONV NUM_SUC_CONV))) tm in
  sconv;;
 
let pth = prove
   (`a * b * x = 
FACT c ==> x = (
FACT c) DIV (a * b)`,
    REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC 
DIV_UNIQ THEN EXISTS_TAC `0` THEN CONJ_TAC THENL
     [POP_ASSUM MP_TAC THEN ARITH_TAC;
      POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
      SIMP_TAC[
LT_NZ; 
MULT_ASSOC; 
MULT_CLAUSES] THEN
      MESON_TAC[
LT_NZ; 
FACT_LT]]) in
  let match_pth = MATCH_MP pth
  and binom_tm = `binom` in
  fun tm ->
    let bop,lr = dest_comb tm in
    if bop <> binom_tm then failwith "BINOM_CONV" else
    let l,r = dest_pair lr in
    let n = dest_numeral l and k = dest_numeral r in
    if n </ k then
      let th = SPECL [l;r] 
BINOM_LT in
      MP th (EQT_ELIM(NUM_LT_CONV(lhand(concl th))))
    else
      let d = n -/ k in
      let th1 = match_pth(SPECL [mk_numeral d; r] 
BINOM_FACT) in
      CONV_RULE NUM_REDUCE_CONV th1;;
 
let pth = prove
   (`sum(0..n) (\k. &k pow m) =
        (\p. (p(&n + &1) - p(&0)) / (&m + &1))
        (\x. bernpoly (SUC m) x)`,
    REWRITE_TAC[
SUM_OF_POWERS]) in
  let conv_0 = REWR_CONV pth in
  REWR_CONV pth THENC
  RAND_CONV(ABS_CONV(LAND_CONV NUM_SUC_CONV THENC BERNPOLY_CONV)) THENC
  TOP_DEPTH_CONV BETA_CONV THENC
  REAL_POLY_CONV;;
 
let pth = prove
   (`sum(0..n) (\k. &k pow p) = &m ==> nsum(0..n) (\k. k 
EXP p) = m`,
    REWRITE_TAC[
REAL_OF_NUM_POW; GSYM 
REAL_OF_NUM_SUM_NUMSEG;
                REAL_OF_NUM_EQ]) in
  let rule_1 = PART_MATCH (lhs o rand) pth in
  fun tm ->
    let th1 = rule_1 tm in
    let th2 = SOP_CONV(lhs(lhand(concl th1))) in
    MATCH_MP th1 th2;;