(* ========================================================================= *)
(* Independence of the parallel postulate. The statement and some ideas are  *)
(* taken from Tim Makarios's MSc thesis "A mechanical verification of the    *)
(* independence of Tarski's Euclidean axiom".                                *)
(*                                                                           *)
(* In the file Multivariate/tarski.ml it is shown that all 11 of Tarski's    *)
(* axioms for geometry hold for the Euclidean plane `:real^2`, with          *)
(* betweenness and congruence of segments as:                                *)
(*                                                                           *)
(*      B x y z  <=> between y (x,z)                                         *)
(*      ab == pq <=> dist(a,b) = dist(p,q)                                   *)
(*                                                                           *)
(* The present file shows that the Klein model of the hyperbolic plane (type *)
(* `:plane`) satisfies all Tarski's axioms except that it satisfies the      *)
(* negation of the Euclidean axiom (10), with betweenness and congruence of  *)
(* segments as:                                                              *)
(*                                                                           *)
(*      B x y z  <=> pbetween y (x,z)                                        *)
(*      ab == pq <=> pdist(a,b) = pdist(p,q)                                 *)
(*                                                                           *)
(* Collectively, these two results show that the Euclidean axiom is          *)
(* independent of the others. For more references regarding Tarski's axioms  *)
(* for geometry see "http://en.wikipedia.org/wiki/Tarski's_axioms".          *)
(* ========================================================================= *)
needs "Multivariate/tarski.ml";;
needs "Multivariate/cauchy.ml";;
(* ------------------------------------------------------------------------- *)
(* The semimetric we will use, directly on real^N first. Choose a sensible   *)
(* default outside unit ball so some handy theorems become unconditional.    *)
(* ------------------------------------------------------------------------- *)
let mdist = new_definition
 `mdist(x:real^N,y:real^N) =
    if norm(x) < &1 /\ norm(y) < &1 then
     (&1 - x dot y) pow 2 / ((&1 - norm(x) pow 2) * (&1 - norm(y) pow 2)) - &1
    else dist(x,y)`;; 
let MDIST_INCREASES_ONLINE = prove
 (`!a b x:real^N.
      norm a < &1 /\ norm b < &1 /\ norm x < &1 /\ between x (a,b) /\ ~(x = b)
      ==> mdist(a,x) < mdist(a,b)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL
   [ASM_MESON_TAC[
BETWEEN_REFL_EQ]; ALL_TAC] THEN
  ASM_SIMP_TAC[mdist; 
real_div; 
REAL_INV_MUL] THEN
  SUBGOAL_THEN
   `norm(a:real^N) pow 2 < &1 /\ norm(b:real^N) pow 2 < &1 /\
    norm(x:real^N) pow 2 < &1`
  MP_TAC THENL [ASM_SIMP_TAC[
ABS_SQUARE_LT_1; 
REAL_ABS_NORM]; ALL_TAC] THEN
  REWRITE_TAC[REAL_ARITH `a * inv x * inv b - &1 < c * inv x * d - &1 <=>
                          (a / b) / x < (c * d) / x`] THEN
  SIMP_TAC[
REAL_LT_DIV2_EQ; 
REAL_LT_LDIV_EQ; 
REAL_SUB_LT] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `(a * inv b) * c:real = (a * c) / b`] THEN
  SIMP_TAC[
REAL_LT_RDIV_EQ; 
REAL_SUB_LT] THEN
  SUBGOAL_THEN `(a:real^N) dot b < &1 /\ (a:real^N) dot x < &1` MP_TAC THENL
   [CONJ_TAC THEN MATCH_MP_TAC(MESON[
REAL_LET_TRANS; 
NORM_CAUCHY_SCHWARZ]
     `norm(x) * norm(y) < &1 ==> (x:real^N) dot y < &1`) THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC 
REAL_LT_MUL2 THEN ASM_REWRITE_TAC[
NORM_POS_LE];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
BETWEEN_IN_SEGMENT]) THEN
  REWRITE_TAC[
IN_SEGMENT; 
LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:real` THEN
  ASM_CASES_TAC `u = &1` THEN
  ASM_SIMP_TAC[VECTOR_ARITH `(&1 - &1) % a + &1 % b:real^N = b`] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[VECTOR_ARITH `(&1 - u) % a + u % b:real^N = a + u % (b - a)`] THEN
  ABBREV_TAC `c:real^N = b - a` THEN
  SUBGOAL_THEN `b:real^N = a + c` SUBST_ALL_TAC THENL
   [EXPAND_TAC "c" THEN VECTOR_ARITH_TAC; ALL_TAC] THEN
  RULE_ASSUM_TAC(SIMP_RULE[VECTOR_ARITH `a + c:real^N = a <=> c = vec 0`]) THEN
  REWRITE_TAC[
NORM_POW_2; VECTOR_ARITH
    `(a + b:real^N) dot (a + b) = a dot a + &2 * a dot b + b dot b`] THEN
  REWRITE_TAC[
DOT_RADD; 
DOT_RMUL] THEN REWRITE_TAC[
DOT_LMUL] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH
   `(&1 - (a + x * b)) pow 2 * (&1 - (a + &2 * b + c)) <
    (&1 - (a + b)) pow 2 * (&1 - (a + &2 * x * b + x * x * c)) <=>
    &0 < (&1 - a - b * x) * ((&1 - a) * c + b pow 2) * (&1 - x) +
         (&1 - a - b) * ((&1 - a) * c + b pow 2) * (&1 - x) * x`] THEN
  MATCH_MP_TAC 
REAL_LTE_ADD THEN CONJ_TAC THENL
   [REPEAT(MATCH_MP_TAC 
REAL_LT_MUL THEN CONJ_TAC);
    REPEAT(MATCH_MP_TAC 
REAL_LE_MUL THEN CONJ_TAC)] THEN
  TRY ASM_REAL_ARITH_TAC THEN TRY(MATCH_MP_TAC 
REAL_LT_IMP_LE) THEN
  MATCH_MP_TAC 
REAL_LTE_ADD THEN REWRITE_TAC[
REAL_LE_POW_2] THEN
  MATCH_MP_TAC 
REAL_LT_MUL THEN ASM_REWRITE_TAC[
DOT_POS_LT; 
REAL_SUB_LT]);;
 
 
let BETWEEN_COLLINEAR_MDIST_EQ = prove
 (`!a b x:real^N.
        norm(a) < &1 /\ norm(b) < &1 /\ norm(x) < &1
        ==> (between x (a,b) <=>
             collinear {a, x, b} /\
             mdist(x,a) <= mdist (a,b) /\ mdist(x,b) <= mdist(a,b))`,
 
 
let MDIST_EQ_ORIGIN = prove
 (`!x:real^N y:real^N.
        norm x < &1 /\ norm y < &1
        ==> (mdist(vec 0,x) = mdist(vec 0,y) <=> norm x = norm y)`,
 
 
let MDIST_CONGRUENT_TRIPLES_0 = prove
 (`!a b:real^N a' b':real^N.
        norm a < &1 /\ norm b < &1 /\ norm a' < &1 /\ norm b' < &1
        ==> (mdist(vec 0,a) = mdist(vec 0,a') /\ mdist(a,b) = mdist(a',b') /\
             mdist(b,vec 0) = mdist(b',vec 0) <=>
             dist(vec 0,a) = dist(vec 0,a') /\ dist(a,b) = dist(a',b') /\
             dist(b,vec 0) = dist(b',vec 0))`,
 
 
(* ------------------------------------------------------------------------- *)
(* Deduce existence of hyperbolic translations via the Poincare disc model.  *)
(* Use orthogonal projection onto a hemisphere touching the unit disc,       *)
(* then stereographic projection back from the other pole of the sphere plus *)
(* scaling. See Greenberg's "Euclidean & Non-Euclidean Geometries" fig 7.13. *)
(* ------------------------------------------------------------------------- *)
let KLEINIFY_0,POINCARIFY_0 = (CONJ_PAIR o prove)
 (`kleinify (Cx(&0)) = Cx(&0) /\ poincarify (Cx(&0)) = Cx(&0)`,
  REWRITE_TAC[kleinify; poincarify; COMPLEX_MUL_RZERO]);;
let MDIST_KLEINIFY = prove
 (`!w z. ~(norm w = &1) /\ ~(norm z = &1)
         ==> mdist(kleinify w,kleinify z) =
             &4 * (&1 / &2 + norm(w - z) pow 2 /
                             ((&1 - norm w pow 2) * (&1 - norm z pow 2))) pow 2
             - &1`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC 
EQ_TRANS THEN EXISTS_TAC
   `(&4 * norm(w - z:real^2) pow 2 *
     ((&1 - norm w pow 2) * (&1 - norm z pow 2) + norm(w - z) pow 2)) /
    ((&1 - norm w pow 2) pow 2 * (&1 - norm z pow 2) pow 2)` THEN
  CONJ_TAC THENL
   [ASM_SIMP_TAC[mdist; 
NORM_KLEINIFY_LT] THEN MATCH_MP_TAC(REAL_FIELD
     `~(y = &0) /\ z = (w + &1) * y ==> z / y - &1 = w`) THEN
    CONJ_TAC THENL
     [REWRITE_TAC[
REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THEN
      MATCH_MP_TAC (REAL_ARITH `x < &1 ==> ~(&1 - x = &0)`) THEN
      ASM_SIMP_TAC[
REAL_POW_1_LT; 
NORM_KLEINIFY_LT; 
NORM_POS_LE; ARITH];
      REWRITE_TAC[kleinify; 
COMPLEX_NORM_MUL; 
COMPLEX_NORM_CX] THEN
      REWRITE_TAC[GSYM 
COMPLEX_CMUL; 
DOT_LMUL] THEN REWRITE_TAC[
DOT_RMUL] THEN
      SIMP_TAC[
REAL_ABS_DIV; 
REAL_ABS_NUM; 
REAL_POW_LE; 
NORM_POS_LE;
               REAL_ARITH `&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
      MATCH_MP_TAC(REAL_FIELD
       `(~(y' = &0) /\ ~(y = &0)) /\
        (y * y' - &4 * d) pow 2 =
        b * (y pow 2 - &4 * x pow 2) * (y' pow 2 - &4 * x' pow 2)
        ==> (&1 - &2 / y * &2 / y' * d) pow 2 =
            b * (&1 - (&2 / y * x) pow 2) * (&1 - (&2 / y' * x') pow 2)`) THEN
      CONJ_TAC THENL
       [CONJ_TAC THEN
        MATCH_MP_TAC(REAL_ARITH `~(abs x = &1) ==> ~(&1 + x = &0)`) THEN
        ASM_SIMP_TAC[
REAL_ABS_POW; 
REAL_POW_EQ_1; 
REAL_ABS_NORM] THEN ARITH_TAC;
        REWRITE_TAC[REAL_RING `(&1 + x) pow 2 - &4 * x = (&1 - x) pow 2`] THEN
        MATCH_MP_TAC(REAL_FIELD
         `(~(y = &0) /\ ~(y' = &0)) /\ a - y * y' = b
          ==> a = (b / (y * y') + &1) * y * y'`) THEN
        CONJ_TAC THENL
         [ASM_REWRITE_TAC[
REAL_POW_EQ_0; 
REAL_POW_EQ_1; 
REAL_ABS_NORM; ARITH;
                          REAL_ARITH `&1 - x = &0 <=> x = &1`];
          REWRITE_TAC[
NORM_POW_2; 
DOT_LSUB; 
DOT_RSUB; 
DOT_SYM] THEN
          REAL_ARITH_TAC]]];
    REPEAT(POP_ASSUM MP_TAC) THEN
    REWRITE_TAC[
NORM_EQ_SQUARE; GSYM 
NORM_POW_2] THEN CONV_TAC REAL_FIELD]);;
 
 
let MDIST_KLEINIFY_EQ = prove
 (`!w z w' z'.
      ~(norm w = &1) /\ ~(norm z = &1) /\ ~(norm w' = &1) /\ ~(norm z' = &1) /\
      norm(w - z) pow 2 * (&1 - norm w' pow 2) * (&1 - norm z' pow 2) =
      norm(w' - z') pow 2 * (&1 - norm w pow 2) * (&1 - norm z pow 2)
      ==> mdist(kleinify w,kleinify z) = mdist(kleinify w',kleinify z')`,
 
 
let COLLINEAR_KLEINIFY_MOEBIUS = prove
 (`!w x y z. norm w < &1 /\ norm x < &1 /\ norm y < &1 /\ norm z < &1
             ==> (collinear {kleinify(
moebius_function (&0) w x),
                             kleinify(
moebius_function (&0) w y),
                             kleinify(
moebius_function (&0) w z)} <=>
                  collinear {kleinify x,kleinify y,kleinify z})`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[
COLLINEAR_3_2D; kleinify; GSYM 
RE_DEF; GSYM 
IM_DEF] THEN
  REWRITE_TAC[
RE_MUL_CX; 
IM_MUL_CX] THEN
  SIMP_TAC[
NORM_POS_LE; 
REAL_POW_LE; REAL_ARITH `&0 <= x ==> ~(&1 + x = &0)`;
     REAL_FIELD
     `~(nx = &0) /\ ~(ny = &0) /\ ~(nz = &0)
      ==> ((&2 / nz * rz - &2 / nx * rx) * (&2 / ny * iy - &2 / nx * ix) =
           (&2 / ny * ry - &2 / nx * rx) * (&2 / nz * iz - &2 / nx * ix) <=>
           (nx * rz - nz * rx) * (nx * iy - ny * ix) =
           (nx * ry - ny * rx) * (nx * iz - nz * ix))`] THEN
  REWRITE_TAC[
COMPLEX_NORM_DIV; 
MOEBIUS_FUNCTION_SIMPLE] THEN
  ONCE_REWRITE_TAC[
COMPLEX_DIV_CNJ] THEN
  REWRITE_TAC[
RE_DIV_CX; GSYM 
CX_POW; 
IM_DIV_CX] THEN
  SUBGOAL_THEN
   `~(Cx (&1) - cnj w * x = Cx(&0)) /\ ~(Cx (&1) - cnj w * y = Cx(&0)) /\
    ~(Cx (&1) - cnj w * z = Cx(&0))`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[
COMPLEX_SUB_0] THEN REPEAT CONJ_TAC THEN
    MATCH_MP_TAC(MESON[
REAL_LT_REFL] `norm x < norm y ==> ~(y = x)`) THEN
    REWRITE_TAC[
COMPLEX_NORM_MUL; 
COMPLEX_NORM_CNJ; 
COMPLEX_NORM_CX] THEN
    ONCE_REWRITE_TAC[REAL_ARITH `abs(&1) = &1 * &1`] THEN
    MATCH_MP_TAC 
REAL_LT_MUL2 THEN ASM_REWRITE_TAC[
NORM_POS_LE];
    ALL_TAC] THEN
  ASM_SIMP_TAC[
COMPLEX_NORM_ZERO; REAL_FIELD
   `~(nx = &0) /\ ~(ny = &0) /\ ~(nz = &0)
    ==>(((&1 + (nxw / nx) pow 2) * rz / nz pow 2 -
         (&1 + (nzw / nz) pow 2) * rx / nx pow 2) *
        ((&1 + (nxw / nx) pow 2) * iy / ny pow 2 -
         (&1 + (nyw / ny) pow 2) * ix / nx pow 2) =
        ((&1 + (nxw / nx) pow 2) * ry / ny pow 2 -
         (&1 + (nyw / ny) pow 2) * rx / nx pow 2) *
        ((&1 + (nxw / nx) pow 2) * iz / nz pow 2 -
         (&1 + (nzw / nz) pow 2) * ix / nx pow 2) <=>
        ((nx pow 2 + nxw pow 2) * rz - (nz pow 2 + nzw pow 2) * rx) *
        ((nx pow 2 + nxw pow 2) * iy - (ny pow 2 + nyw pow 2) * ix) =
        ((nx pow 2 + nxw pow 2) * ry - (ny pow 2 + nyw pow 2) * rx) *
        ((nx pow 2 + nxw pow 2) * iz - (nz pow 2 + nzw pow 2) * ix))`] THEN
  REWRITE_TAC[
COMPLEX_SQNORM; 
complex_sub; 
complex_mul; 
complex_add;
              
complex_neg; cnj; 
CX_DEF; 
RE; 
IM] THEN
  ONCE_REWRITE_TAC[GSYM 
REAL_SUB_0] THEN MATCH_MP_TAC(REAL_RING
   `!a b. a * lhs = b * rhs /\ ~(a = &0) /\ ~(b = &0)
          ==> (lhs = &0 <=> rhs = &0)`) THEN
  EXISTS_TAC `Re x pow 2 + Im x pow 2 + &1` THEN
  EXISTS_TAC `--(Re w pow 2 + Im w pow 2 - &1) pow 3 *
              ((&1 - Re(x) pow 2 - Im(x) pow 2) *
               (&1 - Re(w) pow 2 - Im(w) pow 2) +
               &2 * (Re w - Re x) pow 2 + &2 * (Im w - Im x) pow 2)` THEN
  REWRITE_TAC[
REAL_ENTIRE; DE_MORGAN_THM; 
REAL_POW_EQ_0; 
ARITH_EQ] THEN
  REPEAT CONJ_TAC THENL
   [REAL_ARITH_TAC;
    MATCH_MP_TAC(REAL_ARITH `&0 <= x + y ==> ~(x + y + &1 = &0)`) THEN
    ASM_SIMP_TAC[GSYM 
COMPLEX_SQNORM; 
REAL_LE_POW_2];
    MATCH_MP_TAC(REAL_ARITH `x + y < &1 ==> ~(--(x + y - &1) = &0)`) THEN
    ASM_SIMP_TAC[GSYM 
COMPLEX_SQNORM; 
REAL_POW_1_LT; 
NORM_POS_LE; ARITH];
    MATCH_MP_TAC(REAL_ARITH `&0 < x /\ &0 <= y ==> ~(x + y = &0)`) THEN
    SIMP_TAC[
REAL_LE_ADD; 
REAL_LE_MUL; 
REAL_POS; 
REAL_LE_POW_2] THEN
    MATCH_MP_TAC 
REAL_LT_MUL THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < &1 - x - y <=> x + y < &1`] THEN
    ASM_SIMP_TAC[GSYM 
COMPLEX_SQNORM; 
REAL_POW_1_LT; 
NORM_POS_LE; ARITH]]);;
 
 
let hyperbolic_isometry = new_definition
 `hyperbolic_isometry (f:real^2->real^2) <=>
    (!x. norm x < &1 ==> norm(f x) < &1) /\
    (!x y. norm x < &1 /\ norm y < &1 ==> mdist(f x,f y) = mdist(x,y)) /\
    (!x y z. norm x < &1 /\ norm y < &1 /\ norm z < &1
             ==> (between (f x) (f y,f z) <=> between x (y,z)))`;; 
(* ------------------------------------------------------------------------- *)
(* Our model.                                                                *)
(* ------------------------------------------------------------------------- *)
let plane_tybij =
  let th = prove
   (`?x:real^2. norm x < &1`,
    EXISTS_TAC `vec 0:real^2` THEN NORM_ARITH_TAC) in
  new_type_definition "plane" ("mk_plane","dest_plane") th;;
 
 
(* ------------------------------------------------------------------------- *)
(* Axiom 1 (reflexivity for equidistance).                                   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 2 (transitivity for equidistance).                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 3 (identity for equidistance).                                      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 4 (segment construction).                                           *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_4_NONEUCLIDEAN = prove
 (`!a q b c. ?x. pbetween a (q,x) /\ pdist(a,x) = pdist(b,c)`,
  REWRITE_TAC[pbetween; pdist; 
FORALL_DEST_PLANE; 
EXISTS_DEST_PLANE] THEN
  REWRITE_TAC[
RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM 
CONJ_ASSOC] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `?d:real^2. norm d < &1 /\ mdist(b:real^2,c) = mdist(vec 0,d)`
  STRIP_ASSUME_TAC THENL
   [MP_TAC(SPEC `b:real^2` 
HYPERBOLIC_TRANSLATION) THEN
    ASM_REWRITE_TAC[
hyperbolic_isometry] THEN ASM_MESON_TAC[];
    ASM_REWRITE_TAC[]] THEN
  SUBGOAL_THEN
   `norm(a:real^2) < &1 /\ norm(q:real^2) < &1 /\ norm(d:real^2) < &1`
   MP_TAC THENL [ASM_REWRITE_TAC[]; REPEAT(POP_ASSUM(K ALL_TAC))] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`d:real^2`; `q:real^2`; `a:real^2`] THEN
  MATCH_MP_TAC(MESON[] `P(vec 0) /\ (P(vec 0) ==> !x. P x) ==> !x. P x`) THEN
  REWRITE_TAC[
NORM_0; 
REAL_LT_01] THEN CONJ_TAC THENL
   [MP_TAC(ISPEC `vec 0:real^2` 
TARSKI_AXIOM_4_EUCLIDEAN) THEN
    MESON_TAC[
DIST_0; 
MDIST_EQ_ORIGIN];
    DISCH_THEN(LABEL_TAC "*") THEN REPEAT STRIP_TAC THEN
    MP_TAC(ISPEC `a:real^2` 
HYPERBOLIC_TRANSLATION) THEN
    ASM_REWRITE_TAC[
hyperbolic_isometry; 
LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`f:real^2->real^2`; `g:real^2->real^2`] THEN
    STRIP_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`(f:real^2->real^2) q`; `d:real^2`]) THEN
    ASM_SIMP_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `x:real^2` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(g:real^2->real^2) x` THEN ASM_MESON_TAC[]]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Axiom 5 (five-segments axiom).                                            *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_5_NONEUCLIDEAN = prove
 (`!a b c x a' b' c' x'.
        ~(a = b) /\
        pdist(a,b) = pdist(a',b') /\
        pdist(a,c) = pdist(a',c') /\
        pdist(b,c) = pdist(b',c') /\
        pbetween b (a,x) /\ pbetween b' (a',x') /\ pdist(b,x) = pdist(b',x')
        ==> pdist(c,x) = pdist(c',x')`,
  REWRITE_TAC[
FORALL_DEST_PLANE; pdist; pbetween; GSYM 
DEST_PLANE_EQ] THEN
  REPEAT STRIP_TAC THEN MP_TAC(ISPEC `b':real^2` 
HYPERBOLIC_TRANSLATION) THEN
  MP_TAC(ISPEC `b:real^2` 
HYPERBOLIC_TRANSLATION) THEN
  ASM_REWRITE_TAC[
RIGHT_IMP_FORALL_THM; 
LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[
hyperbolic_isometry] THEN MAP_EVERY X_GEN_TAC
   [`f:real^2->real^2`; `f':real^2->real^2`; `g:real^2->real^2`;
    `g':real^2->real^2`] THEN REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`(f:real^2->real^2) x`; `(f:real^2->real^2) c`;
                `(g:real^2->real^2) x'`; `(g:real^2->real^2) c'`]
        
MDIST_CONGRUENT_TRIPLES_0) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `(p ==> r) /\ q ==> (p <=> q) ==> r`) THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
MDIST_SYM]; ALL_TAC] THEN
  MP_TAC(ISPECL [`(f:real^2->real^2) a`; `(f:real^2->real^2) c`;
                `(g:real^2->real^2) a'`; `(g:real^2->real^2) c'`]
        
MDIST_CONGRUENT_TRIPLES_0) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL
   [ASM_SIMP_TAC[GSYM 
MDIST_CONGRUENT_TRIPLES_0] THEN  CONJ_TAC THEN
    GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
     [SYM(ASSUME `(f:complex->complex) b = vec 0`)] THEN
    GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
     [SYM(ASSUME `(g:complex->complex) b' = vec 0`)] THEN
    ASM_SIMP_TAC[] THEN ASM_MESON_TAC[
MDIST_SYM];
    STRIP_TAC THEN MP_TAC(ISPECL
     [`(f:real^2->real^2) a`; `(f:real^2->real^2) b`; `(f:real^2->real^2) c`;
      `(f:real^2->real^2) x`;`(g:real^2->real^2) a'`; `(g:real^2->real^2) b'`;
      `(g:real^2->real^2) c'`; `(g:real^2->real^2) x'`]
     
TARSKI_AXIOM_5_EUCLIDEAN) THEN
    SUBGOAL_THEN
     `mdist((f:real^2->real^2) b,f x) = mdist((g:real^2->real^2) b',g x')`
    MP_TAC THENL
     [ASM_SIMP_TAC[];
      ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[
MDIST_EQ_ORIGIN] THEN DISCH_TAC] THEN
    ASM_MESON_TAC[
DIST_SYM; 
DIST_0]]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Axiom 6 (identity for between-ness).                                      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 7 (Pasch's axiom).                                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 8 (lower 2-dimensional axiom).                                      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 9 (upper 2-dimensional axiom).                                      *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_9_NONEUCLIDEAN = prove
 (`!p q a b c.
        ~(p = q) /\
        pdist(a,p) = pdist(a,q) /\ pdist(b,p) = pdist(b,q) /\
        pdist(c,p) = pdist(c,q)
        ==> pbetween b (a,c) \/ pbetween c (b,a) \/ pbetween a (c,b)`,
  REWRITE_TAC[pdist; pbetween; 
FORALL_DEST_PLANE; GSYM 
DEST_PLANE_EQ] THEN
  REWRITE_TAC[
RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM 
CONJ_ASSOC] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:real^2`; `q:real^2`] 
HYPERBOLIC_MIDPOINT) THEN
  ASM_REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:real^2` THEN
  STRIP_TAC THEN MP_TAC(ISPEC `x:real^2` 
HYPERBOLIC_TRANSLATION) THEN
  SUBGOAL_THEN `norm(x:real^2) < &1` ASSUME_TAC THENL
   [ASM_MESON_TAC[
BETWEEN_NORM_LT]; ONCE_REWRITE_TAC[
BETWEEN_SYM]] THEN
  ASM_REWRITE_TAC[
LEFT_IMP_EXISTS_THM; 
hyperbolic_isometry] THEN
  REWRITE_TAC[GSYM 
COLLINEAR_BETWEEN_CASES] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `collinear{(f:real^2->real^2) b,f c,f a}` MP_TAC THENL
   [ALL_TAC; ASM_SIMP_TAC[
COLLINEAR_BETWEEN_CASES]] THEN
  SUBGOAL_THEN `mdist(f a,f p) = mdist(f a,f q) /\
                mdist(f b,f p) = mdist(f b,f q) /\
                mdist(f c,f p) = mdist(f c,f q) /\
                ~((f:real^2->real^2) q = f p)`
  MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `(f:real^2->real^2) q = --(f p)` SUBST1_TAC THENL
   [SUBGOAL_THEN `between ((f:real^2->real^2) x) (f p,f q) /\
                  mdist(f x,f p) = mdist(f x,f q)`
    MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[
MDIST_EQ_ORIGIN] THEN
    REWRITE_TAC[GSYM 
MIDPOINT_BETWEEN; midpoint; NORM_ARITH
     `norm(a:real^N) = norm b <=> dist(a,vec 0) = dist(vec 0,b)`] THEN
    VECTOR_ARITH_TAC;
    REWRITE_TAC[mdist] THEN ASM_SIMP_TAC[
NORM_NEG; 
real_div; 
REAL_INV_MUL] THEN
    ASM_SIMP_TAC[
REAL_SUB_LT; 
ABS_SQUARE_LT_1; 
REAL_ABS_NORM; REAL_FIELD
     `&0 < x /\ &0 < y
      ==> (a * inv x * inv y - &1 = b * inv x * inv y - &1 <=> a = b)`] THEN
    ONCE_REWRITE_TAC[VECTOR_ARITH `--x:real^N = x <=> x = vec 0`] THEN
    REWRITE_TAC[
COLLINEAR_3_2D; 
VECTOR_SUB_COMPONENT; 
DOT_2; GSYM 
DOT_EQ_0;
                  
VECTOR_NEG_COMPONENT] THEN CONV_TAC REAL_RING]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Axiom 10 (Euclidean axiom).                                               *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Axiom 11 (Continuity).                                                    *)
(* ------------------------------------------------------------------------- *)