(* ========================================================================= *)
(* Complex path integrals and Cauchy's theorem.                              *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2008                       *)
(* (c) Copyright, Gianni Ciolli, Graziano Gentili, Marco Maggesi 2008-2009.  *)
(*              (c) Copyright, Valentina Bruno 2010                          *)
(* ========================================================================= *)
needs "Library/binomial.ml";;
needs "Library/iter.ml";;
needs "Multivariate/moretop.ml";;
prioritize_complex();;
(* ------------------------------------------------------------------------- *)
(* A couple of extra tactics used in some proofs below.                      *)
(* ------------------------------------------------------------------------- *)
let ASSERT_TAC tm =
  SUBGOAL_THEN tm STRIP_ASSUME_TAC;;
let EQ_TRANS_TAC tm =
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC tm THEN CONJ_TAC;;
(* ------------------------------------------------------------------------- *)
(* Piecewise differentiability on a 1-D interval. The definition doesn't     *)
(* tie it to real^1 but it's not obviously that useful elsewhere.            *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("piecewise_differentiable_on",(12,"right"));;
(* ------------------------------------------------------------------------- *)
(* Valid paths, and their start and finish.                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* In particular, all results for paths apply.                               *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Theorems about rectifiable valid paths.                                   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Negligibility of valid_path image                                         *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Integrals along a path (= piecewise differentiable function on [0,1]).    *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("has_path_integral",(12,"right"));;
parse_as_infix("path_integrable_on",(12,"right"));;
(* ------------------------------------------------------------------------- *)
(* Show that we can forget about the localized derivative.                   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Reversing a path.                                                         *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Joining two paths together.                                               *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Reparametrizing to shift the starting point of a (closed) path.           *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* More about straight-line paths.                                           *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Relation to subpath construction.                                         *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Easier to reason about segments via convex hulls.                         *)
(* ------------------------------------------------------------------------- *)
let SEGMENTS_SUBSET_CONVEX_HULL = prove
 (`!a b c. segment[a,b] 
SUBSET (convex hull {a,b,c}) /\
           segment[a,c] 
SUBSET (convex hull {a,b,c}) /\
           segment[b,c] 
SUBSET (convex hull {a,b,c}) /\
           segment[b,a] 
SUBSET (convex hull {a,b,c}) /\
           segment[c,a] 
SUBSET (convex hull {a,b,c}) /\
           segment[c,b] 
SUBSET (convex hull {a,b,c})`,
 
 
(* ------------------------------------------------------------------------- *)
(* Cauchy's theorem where there's a primitive.                               *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Existence of path integral for continuous function.                       *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Arithmetical combining theorems.                                          *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Same thing non-relationally.                                              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Arithmetic theorems for path integrability.                               *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Considering a path integral "backwards".                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Splitting a path integral in a flat way.                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* The special case of midpoints used in the main quadrisection.             *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A couple of special case lemmas that are useful below.                    *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Reversing the order in a double path integral. The condition is           *)
(* stronger than needed but it's often true in typical situations.           *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* The key quadrisection step.                                               *)
(* ------------------------------------------------------------------------- *)
let NORM_SUM_LEMMA = prove
 (`norm(a + b + c + d:complex) >= e
   ==> norm(a) >= e / &4 \/
       norm(b) >= e / &4 \/
       norm(c) >= e / &4 \/
       norm(d) >= e / &4`,
  NORM_ARITH_TAC);;
 
 
let CAUCHY_THEOREM_QUADRISECTION = prove
 (`!f a b c e K.
        f 
continuous_on (convex hull {a,b,c}) /\
        dist (a,b) <= K /\
        dist (b,c) <= K /\
        dist (c,a) <= K /\
        norm(
path_integral(linepath(a,b)) f +
             
path_integral(linepath(b,c)) f +
             
path_integral(linepath(c,a)) f) >= e * K pow 2
        ==> ?a' b' c'. a' 
IN convex hull {a,b,c} /\
                       b' 
IN convex hull {a,b,c} /\
                       c' 
IN convex hull {a,b,c} /\
                       dist(a',b') <= K / &2 /\
                       dist(b',c') <= K / &2 /\
                       dist(c',a') <= K / &2 /\
                       norm(
path_integral(linepath(a',b')) f +
                            
path_integral(linepath(b',c')) f +
                            
path_integral(linepath(c',a')) f)
                        >= e * (K / &2) pow 2`,
  REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC
   [`a':complex = midpoint(b,c)`;
    `b':complex = midpoint(c,a)`;
    `c':complex = midpoint(a,b)`] THEN
  SUBGOAL_THEN
   `
path_integral(linepath(a,b)) f +
    
path_integral(linepath(b,c)) f +
    
path_integral(linepath(c,a)) f =
    (
path_integral(linepath(a,c')) f +
     
path_integral(linepath(c',b')) f +
     
path_integral(linepath(b',a)) f) +
    (
path_integral(linepath(a',c')) f +
     
path_integral(linepath(c',b)) f +
     
path_integral(linepath(b,a')) f) +
    (
path_integral(linepath(a',c)) f +
     
path_integral(linepath(c,b')) f +
     
path_integral(linepath(b',a')) f) +
    (
path_integral(linepath(a',b')) f +
     
path_integral(linepath(b',c')) f +
     
path_integral(linepath(c',a')) f)`
  SUBST_ALL_TAC THENL
   [MP_TAC(SPEC `f:complex->complex` 
PATH_INTEGRAL_MIDPOINT) THEN DISCH_THEN
     (fun th -> MP_TAC(SPECL [`a:complex`; `b:complex`] th) THEN
                MP_TAC(SPECL [`b:complex`; `c:complex`] th) THEN
                MP_TAC(SPECL [`c:complex`; `a:complex`] th)) THEN
    MP_TAC(SPEC `f:complex->complex` 
PATH_INTEGRAL_REVERSE_LINEPATH) THEN DISCH_THEN
     (fun th -> MP_TAC(SPECL [`a':complex`; `b':complex`] th) THEN
                MP_TAC(SPECL [`b':complex`; `c':complex`] th) THEN
                MP_TAC(SPECL [`c':complex`; `a':complex`] th)) THEN
    ASM_REWRITE_TAC[] THEN
    REPEAT(MATCH_MP_TAC(TAUT
     `((a /\ c ==> b /\ d) ==> e) ==> (a ==> b) ==> (c ==> d) ==> e`)) THEN
    ANTS_TAC THENL [ALL_TAC; CONV_TAC COMPLEX_RING] THEN
    REWRITE_TAC[
SEGMENT_CONVEX_HULL] THEN
    REPEAT CONJ_TAC THEN MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
    EXISTS_TAC `convex hull {a:complex,b,c}` THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
    SIMP_TAC[
IN_INSERT; 
NOT_IN_EMPTY;
             TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
    MAP_EVERY EXPAND_TAC ["a'";
 
  "b'"; "c'"] THEN
    SIMP_TAC[MIDPOINTS_IN_CONVEX_HULL; POINTS_IN_CONVEX_HULL; IN_INSERT];
    ALL_TAC] THEN
  REWRITE_TAC[REAL_ARITH `e * (K / &2) pow 2 = (e * K pow 2) / &4`] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP NORM_SUM_LEMMA) THEN STRIP_TAC THENL
   [MAP_EVERY EXISTS_TAC [`a:complex`; `c':complex`; `b':complex`];
    MAP_EVERY EXISTS_TAC [`a':complex`; `c':complex`; `b:complex`];
    MAP_EVERY EXISTS_TAC [`a':complex`; `c:complex`; `b':complex`];
    MAP_EVERY EXISTS_TAC [`a':complex`; `b':complex`; `c':complex`]] THEN
  ASM_REWRITE_TAC[] THEN
  MAP_EVERY EXPAND_TAC ["a'"; "b'"; "c'"] THEN
  SIMP_TAC[MIDPOINTS_IN_CONVEX_HULL; POINTS_IN_CONVEX_HULL; IN_INSERT] THEN
  REWRITE_TAC[midpoint; dist; GSYM VECTOR_SUB_LDISTRIB;
              VECTOR_ARITH `a - inv(&2) % (a + b) = inv(&2) % (a - b)`;
              VECTOR_ARITH `inv(&2) % (c + a) - a = inv(&2) % (c - a)`;
              VECTOR_ARITH `(a + b) - (c + a) = b - c`;
              VECTOR_ARITH `(b + c) - (c + a) = b - a`] THEN
  SIMP_TAC[NORM_MUL; REAL_ARITH `abs(inv(&2)) * x <= k / &2 <=> x <= k`] THEN
  ASM_REWRITE_TAC[GSYM dist] THEN ASM_MESON_TAC[DIST_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Yet at small enough scales this cannot be the case.                       *)
(* ------------------------------------------------------------------------- *)
let TRIANGLE_POINTS_CLOSER = prove
 (`!a b c x y:real^N.
        x 
IN convex hull {a,b,c} /\
        y 
IN convex hull {a,b,c}
        ==> norm(x - y) <= norm(a - b) \/
            norm(x - y) <= norm(b - c) \/
            norm(x - y) <= norm(c - a)`,
 
 
let HOLOMORPHIC_POINT_SMALL_TRIANGLE = prove
 (`!f s x e.
        x 
IN s /\ f 
continuous_on s /\
        f 
complex_differentiable (at x within s) /\
        &0 < e
        ==> ?k. &0 < k /\
                !a b c. dist(a,b) <= k /\ dist(b,c) <= k /\ dist(c,a) <= k /\
                        x 
IN convex hull {a,b,c} /\ convex hull {a,b,c} 
SUBSET s
                        ==> norm(
path_integral(linepath(a,b)) f +
                                 
path_integral(linepath(b,c)) f +
                                 
path_integral(linepath(c,a)) f)
                            <= e * (dist(a,b) + dist(b,c) + dist(c,a)) pow 2`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
complex_differentiable]) THEN
  DISCH_THEN(X_CHOOSE_THEN `f':complex` MP_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [
has_complex_derivative] THEN
  REWRITE_TAC[
HAS_DERIVATIVE_WITHIN_ALT] THEN
  DISCH_THEN(MP_TAC o SPEC `e:real` o CONJUNCT2) THEN
  ASM_SIMP_TAC[
REAL_LT_DIV; 
REAL_OF_NUM_LT; ARITH] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
   [TAUT `a /\ b ==> c <=> b ==> a ==> c`] THEN
  REWRITE_TAC[
APPROACHABLE_LT_LE] THEN
  ONCE_REWRITE_TAC[TAUT `b ==> a ==> c <=> a /\ b ==> c`] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[dist] THEN
  MAP_EVERY X_GEN_TAC [`a:complex`; `b:complex`; `c:complex`] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN
   `
path_integral (linepath(a,b)) f +
    
path_integral (linepath(b,c)) f +
    
path_integral (linepath(c,a)) f =
    
path_integral (linepath(a,b)) (\y. f y - f x - f' * (y - x)) +
    
path_integral (linepath(b,c)) (\y. f y - f x - f' * (y - x)) +
    
path_integral (linepath(c,a)) (\y. f y - f x - f' * (y - x))`
  SUBST1_TAC THENL
   [SUBGOAL_THEN
     `
path_integral (linepath(a,b)) (\y. f y - f x - f' * (y - x)) =
      
path_integral (linepath(a,b)) f -
      
path_integral (linepath(a,b)) (\y. f x + f' * (y - x)) /\
      
path_integral (linepath(b,c)) (\y. f y - f x - f' * (y - x)) =
      
path_integral (linepath(b,c)) f -
      
path_integral (linepath(b,c)) (\y. f x + f' * (y - x)) /\
      
path_integral (linepath(c,a)) (\y. f y - f x - f' * (y - x)) =
      
path_integral (linepath(c,a)) f -
      
path_integral (linepath(c,a)) (\y. f x + f' * (y - x))`
    (REPEAT_TCL CONJUNCTS_THEN SUBST1_TAC) THENL
     [REWRITE_TAC[SIMPLE_COMPLEX_ARITH `a - b - c = a - (b + c)`] THEN
      REPEAT CONJ_TAC THEN MATCH_MP_TAC 
PATH_INTEGRAL_UNIQUE THEN
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_SUB THEN
      CONJ_TAC THEN MATCH_MP_TAC 
HAS_PATH_INTEGRAL_INTEGRAL THEN
      MATCH_MP_TAC 
PATH_INTEGRABLE_CONTINUOUS_LINEPATH THEN
      MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
      EXISTS_TAC `s:complex->bool` THEN
      ASM_SIMP_TAC[
CONTINUOUS_ON_ID; 
CONTINUOUS_ON_ADD; 
CONTINUOUS_ON_CONST;
                   
CONTINUOUS_ON_COMPLEX_MUL; 
CONTINUOUS_ON_SUB] THEN
      MATCH_MP_TAC 
SUBSET_TRANS THEN
      EXISTS_TAC `convex hull {a:complex,b,c}` THEN
      ASM_REWRITE_TAC[
SEGMENT_CONVEX_HULL] THEN
      MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
      REWRITE_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN
      ASM_SIMP_TAC[
MIDPOINTS_IN_CONVEX_HULL; 
POINTS_IN_CONVEX_HULL; 
IN_INSERT];
      ALL_TAC] THEN
    REWRITE_TAC[COMPLEX_RING
     `x + y + z = (x - x') + (y - y') + (z - z') <=>
      x' + y' + z' = Cx(&0)`] THEN
    MP_TAC(ISPECL [`a:complex`; `b:complex`; `c:complex`;
                   `f':complex`; `f x - f' * x`]
           
TRIANGLE_LINEAR_HAS_CHAIN_INTEGRAL) THEN
    REWRITE_TAC[COMPLEX_RING
     `f' * x' + f x - f' * x = f x + f' * (x' - x)`] THEN
    DISCH_THEN(MP_TAC o MATCH_MP 
HAS_CHAIN_INTEGRAL_CHAIN_INTEGRAL) THEN
    REWRITE_TAC[];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[
NORM_SUB] THEN MATCH_MP_TAC(REAL_ARITH
   `&0 <= x * y /\ &0 <= x * z /\ &0 <= y * z /\
    a <= (e * (x + y + z)) * x +
         (e * (x + y + z)) * y +
         (e * (x + y + z)) * z
    ==> a <= e * (x + y + z) pow 2`) THEN
  SIMP_TAC[
REAL_LE_MUL; 
NORM_POS_LE] THEN
  REPEAT(MATCH_MP_TAC 
NORM_TRIANGLE_LE THEN
         MATCH_MP_TAC 
REAL_LE_ADD2 THEN CONJ_TAC) THEN
  (MATCH_MP_TAC 
HAS_PATH_INTEGRAL_BOUND_LINEPATH THEN
   EXISTS_TAC `\y:complex. f y - f x - f' * (y - x)` THEN
   ASM_SIMP_TAC[
REAL_LE_MUL; 
REAL_LE_ADD; 
REAL_LT_IMP_LE; 
NORM_POS_LE] THEN
   CONJ_TAC THENL
    [MATCH_MP_TAC 
HAS_PATH_INTEGRAL_INTEGRAL THEN
     MATCH_MP_TAC 
PATH_INTEGRABLE_CONTINUOUS_LINEPATH THEN
     MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `s:complex->bool` THEN
     ASM_SIMP_TAC[
CONTINUOUS_ON_SUB; ETA_AX; 
CONTINUOUS_ON_COMPLEX_MUL;
                 
CONTINUOUS_ON_CONST; 
CONTINUOUS_ON_ID] THEN
     MATCH_MP_TAC 
SUBSET_TRANS THEN
     EXISTS_TAC `convex hull {a:complex,b,c}` THEN
     ASM_REWRITE_TAC[
SEGMENT_CONVEX_HULL] THEN
     MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
     REWRITE_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN
     ASM_SIMP_TAC[
MIDPOINTS_IN_CONVEX_HULL; 
POINTS_IN_CONVEX_HULL; 
IN_INSERT];
     ALL_TAC] THEN
   X_GEN_TAC `y:complex` THEN STRIP_TAC THEN
   MATCH_MP_TAC 
REAL_LE_TRANS THEN
   EXISTS_TAC `e * norm(y - x:complex)` THEN CONJ_TAC THENL
    [FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
      [MATCH_MP_TAC(SET_RULE `!t. y 
IN t /\ t 
SUBSET s ==> y 
IN s`) THEN
       EXISTS_TAC `convex hull {a:complex,b,c}` THEN ASM_REWRITE_TAC[];
       MATCH_MP_TAC(REAL_ARITH
        `!n1 n2 n3. n1 <= d /\ n2 <= d /\ n3 <= d /\
                    (n <= n1 \/ n <= n2 \/ n <= n3)
                    ==> n <= d`) THEN
       MAP_EVERY EXISTS_TAC
        [`norm(a - b:complex)`; `norm(b - c:complex)`;
         `norm(c - a:complex)`] THEN
       ASM_REWRITE_TAC[] THEN MATCH_MP_TAC 
TRIANGLE_POINTS_CLOSER];
     ASM_SIMP_TAC[
REAL_LE_LMUL_EQ] THEN
     ONCE_REWRITE_TAC[
NORM_SUB] THEN
     MATCH_MP_TAC(REAL_ARITH
      `(x <= a \/ x <= b \/ x <= c) /\ (&0 <= a /\ &0 <= b /\ &0 <= c)
       ==> x <= a + b + c`) THEN
     REWRITE_TAC[
NORM_POS_LE] THEN MATCH_MP_TAC 
TRIANGLE_POINTS_CLOSER THEN
     ASM_REWRITE_TAC[]] THEN
    REPEAT CONJ_TAC THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
     `x 
IN s ==> s 
SUBSET t ==> x 
IN t`)) THEN
    REWRITE_TAC[
SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
    REWRITE_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN
    ASM_SIMP_TAC[
MIDPOINTS_IN_CONVEX_HULL; 
POINTS_IN_CONVEX_HULL;
                 
IN_INSERT]));;
 
 
(* ------------------------------------------------------------------------- *)
(* Hence the most basic theorem for a triangle.                              *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_THEOREM_TRIANGLE = prove
 (`!f a b c.
        f 
holomorphic_on (convex hull {a,b,c})
        ==> (f 
has_path_integral Cx(&0))
            (linepath(a,b) ++ linepath(b,c) ++ linepath(c,a))`,
  let lemma1 = prove
   (`!P Q abc.
          P abc 0 /\
          (!abc:A n. P abc n ==> ?abc'. P abc' (SUC n) /\ Q abc' abc)
          ==> ?ABC. ABC 0 = abc /\ !n. P (ABC n) n /\ Q (ABC(SUC n)) (ABC n)`,
    REPEAT STRIP_TAC THEN
    (MP_TAC o prove_recursive_functions_exist num_RECURSION)
      `ABC 0 = abc:A /\
       !n. ABC(SUC n) = @abc. P abc (SUC n) /\ Q abc (ABC n)` THEN
    MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
    STRIP_TAC THEN CONJ_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[FORALL_AND_THM] THEN
    MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
     [INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]) in
  let lemma3 = prove
   (`!P Q a:A b:A c:A.
          P a b c 0 /\
          (!a b c n. P a b c n
                     ==> ?a' b' c'. P a' b' c' (SUC n) /\ Q a' b' c' a b c)
          ==> ?A B C. A 0 = a /\ B 0 = b /\ C 0 = c /\
                      !n. P (A n) (B n) (C n) n /\
                          Q (A(SUC n)) (B(SUC n)) (C(SUC n)) (A n) (B n) (C n)`,
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL
     [`\(a,b,c). (P:A->A->A->num->bool) a b c`;
      `\(a,b,c) (a',b',c'). (Q:A->A->A->A->A->A->bool) a b c a' b' c'`;
      `(a:A,b:A,c:A)`]
          lemma1) THEN
    REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN
    ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `ABC:num->A#A#A` STRIP_ASSUME_TAC) THEN
    MAP_EVERY EXISTS_TAC
     [`(\(a,b,c). a) o (ABC:num->A#A#A)`;
      `(\(a,b,c). b) o (ABC:num->A#A#A)`;
      `(\(a,b,c). c) o (ABC:num->A#A#A)`] THEN
    REWRITE_TAC[o_THM] THEN
    REPEAT(CONJ_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC]) THEN
    X_GEN_TAC `n:num` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN
    SPEC_TAC(`(ABC:num->A#A#A) (SUC n)`,`y:A#A#A`) THEN
    SPEC_TAC(`(ABC:num->A#A#A) n`,`x:A#A#A`) THEN
    REWRITE_TAC[FORALL_PAIR_THM]) in
  REPEAT STRIP_TAC THEN
  STRIP_ASSUME_TAC(ISPECL [`a:complex`; `b:complex`; `c:complex`]
                SEGMENTS_SUBSET_CONVEX_HULL) THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP HOLOMORPHIC_ON_IMP_CONTINUOUS_ON) THEN
  SUBGOAL_THEN
   `f path_integrable_on (linepath(a,b) ++ linepath(b,c) ++ linepath(c,a))`
  MP_TAC THENL
   [SIMP_TAC[PATH_INTEGRABLE_JOIN; VALID_PATH_JOIN; VALID_PATH_LINEPATH;
             PATHSTART_JOIN; PATHFINISH_JOIN; PATHSTART_LINEPATH;
             PATHFINISH_LINEPATH] THEN
    ASM_MESON_TAC[PATH_INTEGRABLE_CONTINUOUS_LINEPATH; CONTINUOUS_ON_SUBSET];
    ALL_TAC] THEN
  SIMP_TAC[path_integrable_on] THEN DISCH_THEN(X_CHOOSE_TAC `y:complex`) THEN
  ASM_CASES_TAC `y = Cx(&0)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  ABBREV_TAC
   `K = &1 + max (dist(a:complex,b)) (max (dist(b,c)) (dist(c,a)))` THEN
  SUBGOAL_THEN `&0 < K` ASSUME_TAC THENL
   [EXPAND_TAC "K" THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < &1 + x`) THEN
    REWRITE_TAC[REAL_LE_MAX; DIST_POS_LE];
    ALL_TAC] THEN
  ABBREV_TAC `e = norm(y:complex) / K pow 2` THEN
  SUBGOAL_THEN `&0 < e` ASSUME_TAC THENL
   [EXPAND_TAC "e" THEN
    ASM_SIMP_TAC[REAL_LT_DIV; REAL_POW_LT; COMPLEX_NORM_NZ];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `?A B C. A 0 = a /\ B 0 = b /\ C 0 = c /\
            !n. (convex hull {A n,B n,C n} SUBSET convex hull {a,b,c} /\
                 dist(A n,B n) <= K / &2 pow n /\
                 dist(B n,C n) <= K / &2 pow n /\
                 dist(C n,A n) <= K / &2 pow n /\
                 norm(path_integral(linepath (A n,B n)) f +
                      path_integral(linepath (B n,C n)) f +
                      path_integral(linepath (C n,A n)) f) >=
                 e * (K / &2 pow n) pow 2) /\
                convex hull {A(SUC n),B(SUC n),C(SUC n)} SUBSET
                convex hull {A n,B n,C n}`
  MP_TAC THENL
   [MATCH_MP_TAC lemma3 THEN CONJ_TAC THENL
     [ASM_REWRITE_TAC[real_pow; REAL_DIV_1; CONJ_ASSOC; SUBSET_REFL] THEN
      CONJ_TAC THENL [EXPAND_TAC "K" THEN REAL_ARITH_TAC; ALL_TAC] THEN
      EXPAND_TAC "e" THEN
      ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_LT_IMP_NZ; REAL_POW_LT] THEN
      MATCH_MP_TAC(REAL_ARITH `x = y ==> x >= y`) THEN AP_TERM_TAC THEN
      FIRST_ASSUM(SUBST1_TAC o SYM o
        MATCH_MP HAS_CHAIN_INTEGRAL_CHAIN_INTEGRAL) THEN
      REWRITE_TAC[];
      ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC
     [`a':complex`; `b':complex`; `c':complex`; `n:num`] THEN
    REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`f:complex->complex`; `a':complex`; `b':complex`;
       `c':complex`; `e:real`; `K / &2 pow n`]
       CAUCHY_THEOREM_QUADRISECTION) THEN
    ASM_REWRITE_TAC[] THEN
    ANTS_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ALL_TAC] THEN
    REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[real_pow; REAL_FIELD `x / (&2 * y) = x / y / &2`] THEN
    MATCH_MP_TAC(SET_RULE
     `s SUBSET t /\ t SUBSET u ==> s SUBSET u /\ s SUBSET t`) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONVEX_HULL_SUBSET THEN
    ASM SET_TAC[];
    ALL_TAC] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `?x:complex. !n:num. x IN convex hull {A n,B n,C n}`
  STRIP_ASSUME_TAC THENL
   [MATCH_MP_TAC BOUNDED_CLOSED_NEST THEN REPEAT CONJ_TAC THENL
     [GEN_TAC THEN MATCH_MP_TAC COMPACT_IMP_CLOSED;
      REWRITE_TAC[CONVEX_HULL_EQ_EMPTY; NOT_INSERT_EMPTY];
      MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_REWRITE_TAC[] THEN
      MESON_TAC[SUBSET_REFL; SUBSET_TRANS];
      MATCH_MP_TAC COMPACT_IMP_BOUNDED] THEN
    MATCH_MP_TAC FINITE_IMP_COMPACT_CONVEX_HULL THEN
    REWRITE_TAC[FINITE_INSERT; FINITE_RULES];
    ALL_TAC] THEN
  MP_TAC(ISPECL [`f:complex->complex`; `convex hull {a:complex,b,c}`;
                 `x:complex`; `e / &10`] HOLOMORPHIC_POINT_SMALL_TRIANGLE) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON; complex_differentiable] THEN
    ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
    ASM_MESON_TAC[holomorphic_on; SUBSET];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPEC `K:real / k` REAL_ARCH_POW2) THEN
  ASM_SIMP_TAC[REAL_LT_LDIV_EQ] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH] THEN
  DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN FIRST_X_ASSUM(MP_TAC o SPECL
   [`(A:num->complex) n`; `(B:num->complex) n`; `(C:num->complex) n`]) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [ASM_MESON_TAC[REAL_LE_TRANS; REAL_LT_IMP_LE]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  REWRITE_TAC[REAL_NOT_LE] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC `e * (K / &2 pow n) pow 2` THEN
  CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[GSYM real_ge]] THEN
  ASM_SIMP_TAC[real_div; GSYM REAL_MUL_ASSOC; REAL_LT_LMUL_EQ] THEN
  MATCH_MP_TAC(REAL_ARITH
   `&0 < x /\ y <= &9 * x ==> inv(&10) * y < x`) THEN
  ASM_SIMP_TAC[REAL_POW_LT; REAL_LT_MUL; REAL_LT_INV_EQ;
                REAL_OF_NUM_LT; ARITH] THEN
  REWRITE_TAC[REAL_ARITH `&9 * x pow 2 = (&3 * x) pow 2`] THEN
  MATCH_MP_TAC REAL_POW_LE2 THEN
  SIMP_TAC[REAL_LE_ADD; DIST_POS_LE; GSYM real_div] THEN
  MATCH_MP_TAC(REAL_ARITH
   `x <= a /\ y <= a /\ z <= a ==> x + y + z <= &3 * a`) THEN
  ASM_REWRITE_TAC[]);;  
 
(* ------------------------------------------------------------------------- *)
(* Version needing function holomorphic in interior only.                    *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_THEOREM_TRIANGLE_INTERIOR = prove
 (`!f a b c.
        f 
continuous_on (convex hull {a,b,c}) /\
        f 
holomorphic_on interior (convex hull {a,b,c})
        ==> (f 
has_path_integral Cx(&0))
            (linepath(a,b) ++ linepath(b,c) ++ linepath(c,a))`,
  REPEAT STRIP_TAC THEN
  STRIP_ASSUME_TAC(ISPECL [`a:complex`; `b:complex`; `c:complex`]
                
SEGMENTS_SUBSET_CONVEX_HULL) THEN
  SUBGOAL_THEN
    `?B. &0 < B /\
         !y. y 
IN IMAGE (f:complex->complex) (convex hull {a,b,c})
             ==> norm(y) <= B`
  MP_TAC THENL
   [REWRITE_TAC[GSYM 
BOUNDED_POS] THEN MATCH_MP_TAC 
COMPACT_IMP_BOUNDED THEN
    MATCH_MP_TAC 
COMPACT_CONTINUOUS_IMAGE THEN
    ASM_SIMP_TAC[
FINITE_IMP_COMPACT_CONVEX_HULL; 
FINITE_INSERT; 
FINITE_RULES];
    REWRITE_TAC[
FORALL_IN_IMAGE] THEN STRIP_TAC] THEN
  SUBGOAL_THEN
    `?C. &0 < C /\ !x:complex. x 
IN convex hull {a,b,c} ==> norm(x) <= C`
  MP_TAC THENL
   [REWRITE_TAC[GSYM 
BOUNDED_POS] THEN
    MATCH_MP_TAC 
COMPACT_IMP_BOUNDED THEN
    ASM_SIMP_TAC[
FINITE_IMP_COMPACT_CONVEX_HULL; 
FINITE_INSERT; 
FINITE_RULES];
    STRIP_TAC] THEN
  SUBGOAL_THEN
   `(f:complex->complex) 
uniformly_continuous_on (convex hull {a,b,c})`
  MP_TAC THENL
   [MATCH_MP_TAC 
COMPACT_UNIFORMLY_CONTINUOUS THEN
    ASM_SIMP_TAC[
FINITE_IMP_COMPACT_CONVEX_HULL; 
FINITE_RULES; 
FINITE_INSERT];
    ALL_TAC] THEN
  REWRITE_TAC[
uniformly_continuous_on] THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `f 
path_integrable_on
    (linepath (a,b) ++ linepath(b,c) ++ linepath(c,a))`
  MP_TAC THENL
   [SIMP_TAC[
PATH_INTEGRABLE_JOIN; 
VALID_PATH_JOIN; 
VALID_PATH_LINEPATH;
             
PATHSTART_JOIN; 
PATHFINISH_JOIN; 
PATHSTART_LINEPATH;
             
PATHFINISH_LINEPATH] THEN
    ASM_MESON_TAC[
PATH_INTEGRABLE_CONTINUOUS_LINEPATH; 
CONTINUOUS_ON_SUBSET];
    ALL_TAC] THEN
  SIMP_TAC[
path_integrable_on] THEN DISCH_THEN(X_CHOOSE_TAC `y:complex`) THEN
  ASM_CASES_TAC `y = Cx(&0)` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  UNDISCH_TAC `~(y = Cx(&0))` THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
  DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[] THEN
  FIRST_ASSUM(ASSUME_TAC o SYM o MATCH_MP
     
HAS_CHAIN_INTEGRAL_CHAIN_INTEGRAL) THEN
  ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `c:complex = a` THENL
   [MATCH_MP_TAC 
CAUCHY_THEOREM_FLAT THEN
    EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[
VECTOR_MUL_LZERO; 
VECTOR_SUB_EQ];
    ALL_TAC] THEN
  ASM_CASES_TAC `b:complex = c` THENL
   [ONCE_REWRITE_TAC[COMPLEX_RING `a + b + c:complex = c + a + b`] THEN
    MATCH_MP_TAC 
CAUCHY_THEOREM_FLAT THEN
    EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[
VECTOR_MUL_LZERO; 
VECTOR_SUB_EQ] THEN
    ASM_MESON_TAC[
INSERT_AC];
    ALL_TAC] THEN
  ASM_CASES_TAC `a:complex = b` THENL
   [ONCE_REWRITE_TAC[COMPLEX_RING `a + b + c:complex = b + c + a`] THEN
    MATCH_MP_TAC 
CAUCHY_THEOREM_FLAT THEN
    EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[
VECTOR_MUL_LZERO; 
VECTOR_SUB_EQ] THEN
    ASM_MESON_TAC[
INSERT_AC];
    ALL_TAC] THEN
  ASM_CASES_TAC `interior(convex hull {a:complex,b,c}) = {}` THENL
   [MATCH_MP_TAC 
CAUCHY_THEOREM_FLAT THEN
    SUBGOAL_THEN `{a:complex,b,c} 
HAS_SIZE (dimindex(:2) + 1)`
    MP_TAC THENL
     [ASM_SIMP_TAC[
HAS_SIZE; 
CARD_CLAUSES; 
FINITE_INSERT; 
FINITE_EMPTY] THEN
      ASM_REWRITE_TAC[DIMINDEX_2; ARITH; 
IN_INSERT; 
NOT_IN_EMPTY];
      ALL_TAC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP 
INTERIOR_CONVEX_HULL_EQ_EMPTY) THEN
    ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
    SUBGOAL_THEN `collinear{a:complex,b,c}` MP_TAC THENL
     [ASM_REWRITE_TAC[
COLLINEAR_3_EQ_AFFINE_DEPENDENT]; ALL_TAC] THEN
    ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {b,a,c}`] THEN
    ONCE_REWRITE_TAC[
COLLINEAR_3] THEN
    ASM_REWRITE_TAC[
COLLINEAR_LEMMA; 
VECTOR_SUB_EQ];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM 
MEMBER_NOT_EMPTY]) THEN
  DISCH_THEN(X_CHOOSE_TAC `d:complex`) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN
  DISCH_TAC THEN
  ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `y = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `norm(y:complex) / &24 / C`) THEN
  SUBGOAL_THEN `&0 < norm(y:complex) / &24 / C` ASSUME_TAC THENL
   [ASM_SIMP_TAC[
REAL_LT_DIV; 
REAL_OF_NUM_LT; ARITH; 
NORM_POS_LE; 
REAL_LTE_ADD;
                 
COMPLEX_NORM_NZ; 
COMPLEX_SUB_0];
    ASM_REWRITE_TAC[dist]] THEN
  DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN ABBREV_TAC
   `e = min (&1)
            (min (d1 / (&4 * C))
                 ((norm(y:complex) / &24 / C) / B))` THEN
  SUBGOAL_THEN `&0 < e` ASSUME_TAC THENL
   [EXPAND_TAC "e" THEN
    ASM_SIMP_TAC[
REAL_HALF; 
REAL_LT_MIN; 
REAL_LT_DIV; 
COMPLEX_NORM_NZ;
                 
REAL_LT_MUL; 
REAL_OF_NUM_LT; ARITH];
    ALL_TAC] THEN
  ABBREV_TAC `shrink = \x:complex. x - e % (x - d)` THEN
  SUBGOAL_THEN `shrink (a:complex) 
IN interior(convex hull {a,b,c}) /\
                shrink b 
IN interior(convex hull {a,b,c}) /\
                shrink c 
IN interior(convex hull {a,b,c})`
  STRIP_ASSUME_TAC THENL
   [REPEAT CONJ_TAC THEN EXPAND_TAC "shrink" THEN
    MATCH_MP_TAC 
IN_INTERIOR_CONVEX_SHRINK THEN
    ASM_REWRITE_TAC[
CONVEX_CONVEX_HULL] THEN
    (CONJ_TAC THENL [ALL_TAC; EXPAND_TAC "e" THEN REAL_ARITH_TAC]) THEN
    MATCH_MP_TAC(REWRITE_RULE[
SUBSET] 
HULL_SUBSET) THEN
    REWRITE_TAC[
IN_INSERT];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `norm((
path_integral(linepath(shrink a,shrink b)) f -
          
path_integral(linepath(a,b)) f) +
         (
path_integral(linepath(shrink b,shrink c)) f -
          
path_integral(linepath(b,c)) f) +
         (
path_integral(linepath(shrink c,shrink a)) f -
          
path_integral(linepath(c,a)) f)) <= norm(y:complex) / &2`
  MP_TAC THENL
   [ALL_TAC;
    ASM_REWRITE_TAC[COMPLEX_RING
     `(ab' - ab) + (bc' - bc) + (ca' - ca) =
      (ab' + bc' + ca') - (ab + bc + ca)`] THEN
    SUBGOAL_THEN
     `(f 
has_path_integral (Cx(&0)))
      (linepath (shrink a,shrink b) ++
       linepath (shrink b,shrink c) ++
       linepath (shrink c,shrink (a:complex)))`
    MP_TAC THENL
     [MATCH_MP_TAC 
CAUCHY_THEOREM_TRIANGLE THEN
      MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
      EXISTS_TAC `interior(convex hull {a:complex,b,c})` THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC 
HULL_MINIMAL THEN
      SIMP_TAC[
CONVEX_INTERIOR; 
CONVEX_CONVEX_HULL] THEN
      ASM SET_TAC[];
      ALL_TAC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP 
HAS_CHAIN_INTEGRAL_CHAIN_INTEGRAL) THEN
    SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
    REWRITE_TAC[
COMPLEX_SUB_LZERO; 
NORM_NEG] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ ~(y = &0) ==> ~(y <= y / &2)`) THEN
    ASM_REWRITE_TAC[
COMPLEX_NORM_ZERO; 
NORM_POS_LE]] THEN
  SUBGOAL_THEN
   `!x y. x 
IN convex hull {a,b,c} /\ y 
IN convex hull {a,b,c}
          ==> norm(x - y) <= &2 * C`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN REWRITE_TAC[
REAL_MUL_2; 
VECTOR_SUB] THEN
    MATCH_MP_TAC 
NORM_TRIANGLE_LE THEN REWRITE_TAC[
NORM_NEG] THEN
    MATCH_MP_TAC 
REAL_LE_ADD2 THEN ASM_SIMP_TAC[];
    ALL_TAC] THEN
  REWRITE_TAC[REAL_ARITH `x / &2 = x / &6 + x / &6 + x / &6`] THEN
  REPEAT(MATCH_MP_TAC 
NORM_TRIANGLE_LE THEN
         MATCH_MP_TAC 
REAL_LE_ADD2 THEN CONJ_TAC) THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM 
REAL_MUL_RID] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM 
CONTENT_UNIT_1] THEN
  MATCH_MP_TAC 
HAS_INTEGRAL_BOUND THENL
   [EXISTS_TAC `\x. f(linepath(shrink a,shrink b) x) *
                    (shrink b - shrink a) -
                    f(linepath(a,b) x) * (b - a)`;
    EXISTS_TAC `\x. f(linepath(shrink b,shrink c) x) *
                    (shrink c - shrink b) -
                    f(linepath(b,c) x) * (c - b)`;
    EXISTS_TAC `\x. f(linepath(shrink c,shrink a) x) *
                    (shrink a - shrink c) -
                    f(linepath(c,a) x) * (a - c)`] THEN
  ASM_SIMP_TAC[
COMPLEX_NORM_NZ; REAL_ARITH `&0 < x ==> &0 <= x / &6`] THEN
  (CONJ_TAC THENL
    [MATCH_MP_TAC 
HAS_INTEGRAL_SUB THEN
     REWRITE_TAC[GSYM 
HAS_PATH_INTEGRAL_LINEPATH] THEN
     CONJ_TAC THEN MATCH_MP_TAC 
HAS_PATH_INTEGRAL_INTEGRAL THEN
     MATCH_MP_TAC 
PATH_INTEGRABLE_CONTINUOUS_LINEPATH THEN
     MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
     EXISTS_TAC `convex hull {a:complex,b,c}` THEN
     ASM_REWRITE_TAC[
SEGMENT_CONVEX_HULL] THEN
     MATCH_MP_TAC 
HULL_MINIMAL THEN
     REWRITE_TAC[
CONVEX_CONVEX_HULL; 
SUBSET; 
IN_INSERT; 
NOT_IN_EMPTY] THEN
     ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET];
     ALL_TAC] THEN
   REPEAT STRIP_TAC THEN
   ONCE_REWRITE_TAC[COMPLEX_RING
    `f' * x' - f * x = f' * (x' - x) + x * (f' - f):complex`] THEN
   MATCH_MP_TAC 
NORM_TRIANGLE_LE THEN REWRITE_TAC[
COMPLEX_NORM_MUL] THEN
   MATCH_MP_TAC 
REAL_LE_TRANS THEN
   EXISTS_TAC `B * (norm(y:complex) / &24 / C / B) * &2 * C +
               (&2 * C) * (norm y / &24 / C)` THEN
   CONJ_TAC THENL
    [ALL_TAC;
     MATCH_MP_TAC 
REAL_EQ_IMP_LE THEN
     MAP_EVERY UNDISCH_TAC [`&0 < B`; `&0 < C`] THEN CONV_TAC REAL_FIELD] THEN
   MATCH_MP_TAC 
REAL_LE_ADD2 THEN CONJ_TAC THEN
   MATCH_MP_TAC 
REAL_LE_MUL2 THEN REWRITE_TAC[
NORM_POS_LE] THENL
    [CONJ_TAC THENL
      [FIRST_X_ASSUM MATCH_MP_TAC THEN
       W(fun (asl,w) ->
         MP_TAC(PART_MATCH (lhand o rand) 
LINEPATH_IN_PATH (lhand w))) THEN
       ASM_REWRITE_TAC[] THEN
       W(fun (asl,w) -> SPEC_TAC(lhand(rand w),`x:complex`)) THEN
       REWRITE_TAC[GSYM 
SUBSET; 
SEGMENT_CONVEX_HULL] THEN
       MATCH_MP_TAC 
HULL_MINIMAL THEN
       REWRITE_TAC[
CONVEX_CONVEX_HULL; 
SUBSET; 
IN_INSERT; 
NOT_IN_EMPTY] THEN
       ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET];
       ALL_TAC] THEN
     EXPAND_TAC "shrink" THEN
     REWRITE_TAC[VECTOR_ARITH `(b - e % (b - d)) - (a - e % (a - d)) -
                           (b - a) = e % (a - b)`] THEN
     REWRITE_TAC[
NORM_MUL] THEN MATCH_MP_TAC 
REAL_LE_MUL2 THEN
     ASM_SIMP_TAC[
NORM_POS_LE; REAL_ARITH `&0 < x ==> abs x = x`;
                  
REAL_ABS_POS] THEN
     CONJ_TAC THENL [EXPAND_TAC "e" THEN REAL_ARITH_TAC; ALL_TAC] THEN
     FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THEN
     MATCH_MP_TAC(REWRITE_RULE[
SUBSET] 
HULL_SUBSET) THEN
     REWRITE_TAC[
IN_INSERT];
     ALL_TAC] THEN
   CONJ_TAC THENL
    [FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THEN
     MATCH_MP_TAC(REWRITE_RULE[
SUBSET] 
HULL_SUBSET) THEN
     REWRITE_TAC[
IN_INSERT];
     ALL_TAC] THEN
   MATCH_MP_TAC 
REAL_LT_IMP_LE THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
   CONJ_TAC THENL
    [W(fun (asl,w) ->
       MP_TAC(PART_MATCH (lhand o rand) 
LINEPATH_IN_PATH (lhand w))) THEN
     ASM_MESON_TAC[
SUBSET];
     ALL_TAC] THEN
   CONJ_TAC THENL
    [W(fun (asl,w) ->
       MP_TAC(PART_MATCH (lhand o rand) 
LINEPATH_IN_PATH (lhand w))) THEN
     ASM_REWRITE_TAC[] THEN
     W(fun (asl,w) -> SPEC_TAC(lhand(rand w),`x:complex`)) THEN
     REWRITE_TAC[GSYM 
SUBSET; 
SEGMENT_CONVEX_HULL] THEN
     MATCH_MP_TAC 
HULL_MINIMAL THEN
     REWRITE_TAC[
CONVEX_CONVEX_HULL; 
SUBSET; 
IN_INSERT; 
NOT_IN_EMPTY] THEN
     ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET];
     ALL_TAC] THEN
   REWRITE_TAC[linepath] THEN REWRITE_TAC[VECTOR_ARITH
     `((&1 - x) % a' + x % b') - ((&1 - x) % a + x % b) =
      (&1 - x) % (a' - a) + x % (b' - b)`] THEN
   EXPAND_TAC "shrink" THEN REWRITE_TAC[VECTOR_ARITH `a - b - a = --b`] THEN
   MATCH_MP_TAC 
NORM_TRIANGLE_LT THEN REWRITE_TAC[
NORM_MUL; 
NORM_NEG] THEN
   MATCH_MP_TAC 
REAL_CONVEX_BOUND_LT THEN ONCE_REWRITE_TAC[TAUT
    `a /\ b /\ c /\ d /\ e <=> (c /\ d /\ e) /\ a /\ b`] THEN
   CONJ_TAC THENL
    [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_INTERVAL_1]) THEN
     REWRITE_TAC[
DROP_VEC] THEN REAL_ARITH_TAC;
     ALL_TAC] THEN
   CONJ_TAC THEN
   MATCH_MP_TAC 
REAL_LET_TRANS THEN
   EXISTS_TAC `e * &2 * C` THEN
   ASM_SIMP_TAC[
REAL_LE_LMUL_EQ; REAL_ARITH `&0 < x ==> abs x = x`] THEN
   (CONJ_TAC THENL
     [FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET; 
HULL_SUBSET; 
IN_INSERT];
      ALL_TAC]) THEN
   ASM_SIMP_TAC[GSYM 
REAL_LT_RDIV_EQ; 
REAL_LT_MUL; 
REAL_OF_NUM_LT; ARITH] THEN
   EXPAND_TAC "e" THEN REWRITE_TAC[
REAL_MIN_LT] THEN
   DISJ2_TAC THEN DISJ1_TAC THEN
   REWRITE_TAC[REAL_FIELD `d / (a * b) = inv(a:real) * d / b`] THEN
   REWRITE_TAC[REAL_ARITH `inv(&4) * x < inv(&2) * x <=> &0 < x`] THEN
   ASM_SIMP_TAC[
REAL_LT_DIV]));;
 
 
(* ------------------------------------------------------------------------- *)
(* Version allowing finite number of exceptional points.                     *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_THEOREM_TRIANGLE_COFINITE = prove
 (`!f s a b c.
        f 
continuous_on (convex hull {a,b,c}) /\
        
FINITE s /\
        (!x. x 
IN interior(convex hull {a,b,c}) 
DIFF s
             ==> f 
complex_differentiable (at x))
        ==> (f 
has_path_integral Cx(&0))
            (linepath (a,b) ++ linepath(b,c) ++ linepath(c,a))`,
  GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `
CARD(s:complex->bool)` THEN
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:complex->bool = {}` THENL
   [MATCH_MP_TAC 
CAUCHY_THEOREM_TRIANGLE_INTERIOR THEN
    ASM_REWRITE_TAC[
holomorphic_on] THEN X_GEN_TAC `z:complex` THEN
    DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`) THEN
    ASM_REWRITE_TAC[
complex_differentiable; 
IN_DIFF; 
NOT_IN_EMPTY] THEN
    MESON_TAC[
HAS_COMPLEX_DERIVATIVE_AT_WITHIN];
    ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM 
MEMBER_NOT_EMPTY]) THEN
  DISCH_THEN(X_CHOOSE_TAC `d:complex`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `s 
DELETE (d:complex)`) THEN
  ASM_SIMP_TAC[
CARD_DELETE; 
CARD_EQ_0;
                 ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN
  ASM_CASES_TAC `(d:complex) 
IN convex hull {a,b,c}` THENL
   [ALL_TAC;
    DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[
FINITE_DELETE; 
IN_DIFF; 
IN_DELETE] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[
IN_DIFF] THEN ASM_MESON_TAC[
INTERIOR_SUBSET; 
SUBSET]] THEN
  DISCH_TAC THEN SUBGOAL_THEN
   `(f 
has_path_integral Cx(&0))
    (linepath(a,b) ++ linepath(b,d) ++ linepath(d,a)) /\
    (f 
has_path_integral Cx(&0))
    (linepath(b,c) ++ linepath(c,d) ++ linepath(d,b)) /\
    (f 
has_path_integral Cx(&0))
    (linepath(c,a) ++ linepath(a,d) ++ linepath(d,c))`
  MP_TAC THENL
   [RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP; 
RIGHT_IMP_FORALL_THM]) THEN
    REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[
FINITE_DELETE] THEN
    (CONJ_TAC THENL
      [MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
       EXISTS_TAC `convex hull {a:complex,b,c}` THEN ASM_REWRITE_TAC[] THEN
       MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
       REWRITE_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN
       REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
       MATCH_MP_TAC(REWRITE_RULE[
SUBSET] 
HULL_SUBSET) THEN
       REWRITE_TAC[
IN_INSERT];
       ALL_TAC]) THEN
    ASM_REWRITE_TAC[
FINITE_DELETE; 
IN_DIFF; 
IN_DELETE] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN
    (ASM_CASES_TAC `x:complex = d` THEN ASM_REWRITE_TAC[] THENL
      [ASM_MESON_TAC[
NOT_IN_INTERIOR_CONVEX_HULL_3]; ALL_TAC]) THEN
    DISCH_TAC THEN ASM_REWRITE_TAC[
IN_DIFF] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
     `x 
IN interior s
      ==> interior s 
SUBSET interior t ==> x 
IN interior t`)) THEN
    MATCH_MP_TAC 
SUBSET_INTERIOR THEN
    MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
    SIMP_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC(REWRITE_RULE[
SUBSET] 
HULL_SUBSET) THEN REWRITE_TAC[
IN_INSERT];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `f 
path_integrable_on
    (linepath (a,b) ++ linepath(b,c) ++ linepath(c,a))`
  MP_TAC THENL
   [SIMP_TAC[
PATH_INTEGRABLE_JOIN; 
VALID_PATH_JOIN; 
VALID_PATH_LINEPATH;
             
PATHSTART_JOIN; 
PATHFINISH_JOIN; 
PATHSTART_LINEPATH;
             
PATHFINISH_LINEPATH] THEN
    STRIP_ASSUME_TAC(ISPECL [`a:complex`; `b:complex`; `c:complex`]
                  
SEGMENTS_SUBSET_CONVEX_HULL) THEN
    ASM_MESON_TAC[
PATH_INTEGRABLE_CONTINUOUS_LINEPATH; 
CONTINUOUS_ON_SUBSET];
    ALL_TAC] THEN
  REWRITE_TAC[
path_integrable_on; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `y:complex` THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
  REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN
   (MP_TAC o MATCH_MP 
HAS_CHAIN_INTEGRAL_CHAIN_INTEGRAL)) THEN
  ASM_CASES_TAC `y = Cx(&0)` THEN ASM_REWRITE_TAC[] THENL
   [ASM_MESON_TAC[]; UNDISCH_TAC `~(y = Cx(&0))`] THEN
  REWRITE_TAC[] THEN
  SUBGOAL_THEN `(f:complex->complex) 
continuous_on segment[a,d] /\
                f 
continuous_on segment[b,d] /\
                f 
continuous_on segment[c,d]`
  MP_TAC THENL
   [ALL_TAC;
    DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (MP_TAC o MATCH_MP
               
PATH_INTEGRAL_REVERSE_LINEPATH)) THEN
    CONV_TAC COMPLEX_RING] THEN
  REPEAT CONJ_TAC THEN MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
  EXISTS_TAC `convex hull {a:complex,b,c}` THEN
  ASM_REWRITE_TAC[
SEGMENT_CONVEX_HULL] THEN
  MATCH_MP_TAC 
CONVEX_HULL_SUBSET THEN
  SIMP_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(REWRITE_RULE[
SUBSET] 
HULL_SUBSET) THEN REWRITE_TAC[
IN_INSERT]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Existence of a primitive.                                                 *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Cauchy's theorem for an open starlike set.                                *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* For a convex set we can avoid assuming openness and boundary analyticity. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* In particular for a disc.                                                 *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Generalize integrability to local primitives.                             *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* In particular if a function is holomorphic.                               *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Key fact that path integral is the same for a "nearby" path. This is the  *)
(* main lemma for the homotopy form of Cauchy's theorem and is also useful   *)
(* if we want "without loss of generality" to assume some niceness of our    *)
(* path (e.g. smoothness). It can also be used to define the integrals of    *)
(* analytic functions over arbitrary continuous paths. This is just done for *)
(* winding numbers now; I'm not sure if it's worth going further with that.  *)
(* ------------------------------------------------------------------------- *)
let PATH_INTEGRAL_NEARBY_ENDS,PATH_INTEGRAL_NEARBY_LOOP = (CONJ_PAIR o prove)
 (`(!s p.
      open s /\ path p /\ path_image p SUBSET s
      ==> ?d. &0 < d /\
              !g h. valid_path g /\ valid_path h /\
                    (!t. t IN interval[vec 0,vec 1]
                         ==> norm(g t - p t) < d /\ norm(h t - p t) < d) /\
                    pathstart h = pathstart g /\ pathfinish h = pathfinish g
                    ==> path_image g SUBSET s /\
                        path_image h SUBSET s /\
                        !f. f holomorphic_on s
                            ==> path_integral h f = path_integral g f) /\
   (!s p.
      open s /\ path p /\ path_image p SUBSET s
      ==> ?d. &0 < d /\
              !g h. valid_path g /\ valid_path h /\
                    (!t. t IN interval[vec 0,vec 1]
                         ==> norm(g t - p t) < d /\ norm(h t - p t) < d) /\
                    pathfinish g = pathstart g /\ pathfinish h = pathstart h
                    ==> path_image g SUBSET s /\
                        path_image h SUBSET s /\
                        !f. f holomorphic_on s
                            ==> path_integral h f = path_integral g f)`,
  REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN
  MAP_EVERY (fun t -> ASM_CASES_TAC t THEN ASM_REWRITE_TAC[])
   [`open(s:complex->bool)`;
    `path(p:real^1->complex)`;
    `path_image(p:real^1->complex) SUBSET s`] THEN
  REWRITE_TAC[RIGHT_IMP_EXISTS_THM] THEN
  MATCH_MP_TAC(MESON[] `(?x. P x /\ Q x) ==> (?x. P x) /\ (?x. Q x)`) THEN
  SUBGOAL_THEN
   `!z. z IN path_image p ==> ?e. &0 < e /\ ball(z:complex,e) SUBSET s`
  MP_TAC THENL
   [ASM_MESON_TAC[OPEN_CONTAINS_BALL; SUBSET]; ALL_TAC] THEN
  GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
   [RIGHT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; SKOLEM_THM] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `ee:complex->real` THEN
  DISCH_THEN(LABEL_TAC "*") THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_HEINE_BOREL o
    MATCH_MP COMPACT_PATH_IMAGE) THEN
  DISCH_THEN(MP_TAC o SPEC
   `IMAGE (\z:complex. ball(z,ee z / &3)) (path_image p)`) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[FORALL_IN_IMAGE; OPEN_BALL; SUBSET] THEN
    X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM] THEN EXISTS_TAC `z:complex` THEN
    ASM_SIMP_TAC[CENTRE_IN_BALL; REAL_ARITH `&0 < e / &3 <=> &0 < e`];
    ALL_TAC] THEN
  REWRITE_TAC[path_image; GSYM IMAGE_o] THEN REWRITE_TAC[GSYM path_image] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
  REWRITE_TAC[CONJ_ASSOC; FINITE_SUBSET_IMAGE] THEN
  REWRITE_TAC[LEFT_AND_EXISTS_THM; MESON[]
   `(?f s. (P s /\ f = g s) /\ Q f) <=> ?s. P s /\ Q(g s)`] THEN
  REWRITE_TAC[UNIONS_IMAGE; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `k:real^1->bool` THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [SUBSET] THEN REWRITE_TAC[IN_ELIM_THM; o_THM] THEN
  ASM_CASES_TAC `k:real^1->bool = {}` THENL
   [ASM_REWRITE_TAC[NOT_IN_EMPTY; GSYM NOT_EXISTS_THM; MEMBER_NOT_EMPTY] THEN
    REWRITE_TAC[PATH_IMAGE_NONEMPTY];
    DISCH_THEN(LABEL_TAC "+")] THEN
  SUBGOAL_THEN
    `!i:real^1. i IN k ==> &0 < ee((p i):complex)`
  ASSUME_TAC THENL
   [ASM_MESON_TAC[SUBSET; path_image; IN_IMAGE]; ALL_TAC] THEN
  ABBREV_TAC `e = inf(IMAGE ((ee:complex->real) o (p:real^1->complex)) k)` THEN
  MP_TAC(ISPEC `IMAGE ((ee:complex->real) o (p:real^1->complex)) k`
    INF_FINITE) THEN
  MP_TAC(ISPECL [`IMAGE ((ee:complex->real) o (p:real^1->complex)) k`; `&0`]
    REAL_LT_INF_FINITE) THEN
  ASM_SIMP_TAC[FINITE_IMAGE; IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN
  ASM_REWRITE_TAC[o_THM] THEN DISCH_TAC THEN
  DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN
  EXISTS_TAC `e / &3` THEN
  MP_TAC(ISPECL [`p:real^1->complex`; `interval[vec 0:real^1,vec 1]`]
        COMPACT_UNIFORMLY_CONTINUOUS) THEN REWRITE_TAC[COMPACT_INTERVAL] THEN
  ANTS_TAC THENL [ASM_MESON_TAC[path]; ALL_TAC] THEN
  REWRITE_TAC[uniformly_continuous_on] THEN
  DISCH_THEN(MP_TAC o SPEC `e / &3`) THEN
  ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`] THEN
  DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[RIGHT_IMP_FORALL_THM; AND_FORALL_THM] THEN
  MAP_EVERY X_GEN_TAC [`g:real^1->complex`; `h:real^1->complex`] THEN
  MAP_EVERY (fun t -> ASM_CASES_TAC t THEN ASM_REWRITE_TAC[])
   [`!t. t IN interval[vec 0,vec 1]
         ==> norm((g:real^1->complex) t - p t) < e / &3 /\
             norm((h:real^1->complex) t - p t) < e / &3`;
    `valid_path(g:real^1->complex)`; `valid_path(h:real^1->complex)`] THEN
  MATCH_MP_TAC(TAUT
   `q /\ (p1 \/ p2 ==> q ==> r) ==> (p1 ==> q /\ r) /\ (p2 ==> q /\ r)`) THEN
  CONJ_TAC THENL
   [CONJ_TAC THEN REWRITE_TAC[path_image; SUBSET; FORALL_IN_IMAGE] THEN
    X_GEN_TAC `t:real^1` THEN DISCH_TAC THEN
    REMOVE_THEN "+" (MP_TAC o SPEC `(p:real^1->complex) t`) THEN
    ASM_SIMP_TAC[path_image; FUN_IN_IMAGE; IN_BALL] THEN
    DISCH_THEN(X_CHOOSE_THEN `u:real^1` STRIP_ASSUME_TAC) THENL
     [SUBGOAL_THEN `(g:real^1->complex) t IN ball(p(u:real^1),ee(p u))`
      MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[path_image; IN_IMAGE; SUBSET]];
      SUBGOAL_THEN `(h:real^1->complex) t IN ball(p(u:real^1),ee(p u))`
      MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[path_image; IN_IMAGE; SUBSET]]] THEN
    REWRITE_TAC[IN_BALL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
     (NORM_ARITH `dist(gu,gt) < eu / &3
                  ==> norm(ht - gt) < e / &3 /\ e <= eu
                  ==> dist(gu,ht) < eu`)) THEN
    ASM_SIMP_TAC[];
    DISCH_TAC THEN STRIP_TAC THEN
    X_GEN_TAC `f:complex->complex` THEN DISCH_TAC] THEN
  SUBGOAL_THEN
   `?ff. !z. z IN path_image p
             ==> &0 < ee z /\ ball(z,ee z) SUBSET s /\
                 !w. w IN ball(z,ee z)
                     ==> (ff z has_complex_derivative f w) (at w)`
  MP_TAC THENL
   [REWRITE_TAC[GSYM SKOLEM_THM; RIGHT_EXISTS_IMP_THM;
                RIGHT_EXISTS_AND_THM] THEN
    X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPEC `z:complex`) THEN
    ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    MP_TAC(ISPECL [`f:complex->complex`; `ball(z:complex,ee z)`;
                   `{}:complex->bool`] HOLOMORPHIC_CONVEX_PRIMITIVE) THEN
    SIMP_TAC[HAS_COMPLEX_DERIVATIVE_WITHIN_OPEN; OPEN_BALL] THEN
    DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[CONVEX_BALL; FINITE_EMPTY] THEN
    SIMP_TAC[DIFF_EMPTY; INTERIOR_OPEN; OPEN_BALL] THEN
    SUBGOAL_THEN `f holomorphic_on ball(z,ee z)` MP_TAC THENL
     [MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN EXISTS_TAC `s:complex->bool` THEN
      ASM_REWRITE_TAC[];
      SIMP_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON] THEN
      SIMP_TAC[holomorphic_on; HAS_COMPLEX_DERIVATIVE_WITHIN_OPEN; OPEN_BALL;
               complex_differentiable]];
    REMOVE_THEN "*" (K ALL_TAC) THEN
    DISCH_THEN(CHOOSE_THEN (LABEL_TAC "*"))] THEN
  MP_TAC(ISPEC `d:real` REAL_ARCH_INV) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `!n. n <= N
        ==> path_integral(subpath (vec 0) (&n / &N % vec 1) h) f -
            path_integral(subpath (vec 0) (&n / &N % vec 1) g) f =
            path_integral(linepath (g(&n / &N % vec 1),h(&n / &N % vec 1))) f -
            path_integral(linepath (g(vec 0),h(vec 0))) f`
  (MP_TAC o SPEC `N:num`) THENL
   [ALL_TAC;
    ASM_SIMP_TAC[LE_REFL; REAL_DIV_REFL; REAL_OF_NUM_EQ; VECTOR_MUL_LID] THEN
    FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THEN
    REWRITE_TAC[pathstart; pathfinish] THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[SUBPATH_TRIVIAL; PATH_INTEGRAL_TRIVIAL] THEN
    CONV_TAC COMPLEX_RING] THEN
  INDUCT_TAC THENL
   [REWRITE_TAC[real_div; REAL_MUL_LZERO; VECTOR_MUL_LZERO] THEN
    FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THEN
    REWRITE_TAC[pathstart; pathfinish] THEN REPEAT STRIP_TAC THEN
    ASM_REWRITE_TAC[PATH_INTEGRAL_TRIVIAL; PATH_INTEGRAL_SUBPATH_REFL] THEN
    REWRITE_TAC[COMPLEX_SUB_REFL];
    DISCH_TAC THEN FIRST_X_ASSUM(K ALL_TAC o check (is_disj o concl))] THEN
  REMOVE_THEN "+" (MP_TAC o SPEC `(p:real^1->complex)(&n / &N % vec 1)`) THEN
  REWRITE_TAC[IN_BALL] THEN ANTS_TAC THENL
   [REWRITE_TAC[path_image] THEN MATCH_MP_TAC FUN_IN_IMAGE THEN
    REWRITE_TAC[IN_INTERVAL_1; DROP_CMUL; DROP_VEC; REAL_MUL_RID] THEN
    ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
    DISCH_THEN(X_CHOOSE_THEN `t:real^1` STRIP_ASSUME_TAC)] THEN
  MP_TAC(ISPECL
   [`(ff:complex->complex->complex) (p(t:real^1))`; `f:complex->complex`;
    `subpath (&n / &N % vec 1) (&(SUC n) / &N % vec 1) (g:real^1->complex) ++
     linepath(g (&(SUC n) / &N % vec 1),h(&(SUC n) / &N % vec 1)) ++
     subpath (&(SUC n) / &N % vec 1) (&n / &N % vec 1) h ++
     linepath(h (&n / &N % vec 1),g (&n / &N % vec 1))`;
    `ball((p:real^1->complex) t,ee(p t))`] CAUCHY_THEOREM_PRIMITIVE) THEN
  ASM_SIMP_TAC[VALID_PATH_JOIN_EQ; PATHSTART_JOIN; PATHFINISH_JOIN;
   PATHSTART_SUBPATH; PATHFINISH_SUBPATH; PATH_IMAGE_JOIN; PATHSTART_LINEPATH;
   PATHFINISH_LINEPATH; VALID_PATH_LINEPATH; UNION_SUBSET] THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN ANTS_TAC THENL
   [X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPEC `(p:real^1->complex) t`) THEN ANTS_TAC THENL
     [ASM_MESON_TAC[path_image; IN_IMAGE; SUBSET];
      ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; CENTRE_IN_BALL]];
    ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `p /\ q /\ (p ==> r ==> s) ==> (p /\ q ==> r) ==> s`) THEN
  CONJ_TAC THENL
   [CONJ_TAC THEN MATCH_MP_TAC VALID_PATH_SUBPATH THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[IN_INTERVAL_1; DROP_CMUL; DROP_VEC; REAL_MUL_RID] THEN
    ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
    REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC;
    ALL_TAC] THEN
  CONJ_TAC THENL
   [SUBGOAL_THEN `drop(&n / &N % vec 1) <= drop(&(SUC n) / &N % vec 1)`
    ASSUME_TAC THENL
     [ASM_SIMP_TAC[DROP_CMUL; DROP_VEC; REAL_MUL_RID; REAL_LE_DIV2_EQ;
                   REAL_OF_NUM_LT; LE_1; REAL_OF_NUM_LE] THEN
      ARITH_TAC;
      ASM_SIMP_TAC[PATH_IMAGE_SUBPATH; PATH_IMAGE_LINEPATH] THEN
      ONCE_REWRITE_TAC[GSYM REVERSEPATH_SUBPATH] THEN
      ASM_SIMP_TAC[PATH_IMAGE_SUBPATH; PATH_IMAGE_REVERSEPATH]] THEN
    MATCH_MP_TAC(TAUT
     `(p /\ r) /\ (p /\ r ==> q /\ s) ==> p /\ q /\ r /\ s`) THEN
    CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
      REWRITE_TAC[AND_FORALL_THM; TAUT
        `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN
      X_GEN_TAC `u:real^1` THEN REWRITE_TAC[IN_INTERVAL_1] THEN
      REWRITE_TAC[DROP_CMUL; DROP_VEC; REAL_MUL_RID] THEN STRIP_TAC THEN
      REWRITE_TAC[IN_BALL] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
       `!e pu. dist(pt,pn) < ee / &3
               ==> dist(pn,pu) < e / &3 /\ e <= ee /\
                   norm(gu - pu) < e / &3 /\ norm(hu - pu) < e / &3
                   ==> dist(pt,gu) < ee /\ dist(pt,hu) < ee`)) THEN
      MAP_EVERY EXISTS_TAC [`e:real`; `(p:real^1->complex) u`] THEN
      ASM_SIMP_TAC[] THEN
      SUBGOAL_THEN `(u:real^1) IN interval[vec 0,vec 1]` ASSUME_TAC THENL
       [REWRITE_TAC[IN_INTERVAL_1; DROP_VEC] THEN CONJ_TAC THENL
         [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
           REAL_LE_TRANS)) THEN ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS];
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
           REAL_LE_TRANS)) THEN
          ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
          ASM_REWRITE_TAC[REAL_MUL_LID; REAL_OF_NUM_LE]];
        ASM_SIMP_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_REWRITE_TAC[] THEN
        REWRITE_TAC[DIST_REAL; GSYM drop; IN_INTERVAL_1;
                    DROP_VEC; DROP_CMUL; REAL_MUL_RID] THEN
        ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POS; REAL_LE_DIV;
              REAL_OF_NUM_LT; LE_1; REAL_MUL_LID; REAL_OF_NUM_LE;
              ARITH_RULE `SUC n <= N ==> n <= N`] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
         `u <= s ==> n <= u /\ s - n < d ==> abs(n - u) < d`)) THEN
        ASM_REWRITE_TAC[] THEN
        REWRITE_TAC[real_div; GSYM REAL_SUB_RDISTRIB] THEN
        SIMP_TAC[REAL_OF_NUM_SUB; ARITH_RULE `n <= SUC n`] THEN
        ASM_REWRITE_TAC[ARITH_RULE `SUC n - n = 1`; REAL_MUL_LID]];
      GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SUBSET] THEN
      REWRITE_TAC[FORALL_IN_IMAGE] THEN STRIP_TAC THEN
      REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN CONJ_TAC THEN
      MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONVEX_BALL] THEN
      REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
      CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; REAL_NOT_LT] THEN
      REWRITE_TAC[DROP_VEC; DROP_CMUL; REAL_MUL_RID] THEN
        ASM_SIMP_TAC[REAL_LE_DIV2_EQ; REAL_POS; REAL_LE_DIV;
              REAL_OF_NUM_LT; LE_1; REAL_MUL_LID; REAL_OF_NUM_LE] THEN
      ARITH_TAC];
    STRIP_TAC THEN DISCH_THEN(fun th ->
        MP_TAC(MATCH_MP PATH_INTEGRAL_UNIQUE th) THEN
        MP_TAC(MATCH_MP HAS_PATH_INTEGRAL_INTEGRABLE th)) THEN
    ASM_SIMP_TAC[PATH_INTEGRABLE_JOIN; VALID_PATH_JOIN_EQ; VALID_PATH_LINEPATH;
      PATHSTART_SUBPATH; PATHFINISH_SUBPATH; PATHSTART_JOIN; PATHFINISH_JOIN;
      PATHSTART_LINEPATH; PATHFINISH_LINEPATH; VALID_PATH_LINEPATH;
      PATH_INTEGRAL_JOIN] THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o check(is_imp o concl)) THEN
    ASM_SIMP_TAC[ARITH_RULE `SUC n <= N ==> n <= N`] THEN
    MATCH_MP_TAC(COMPLEX_RING
     `hn - he = hn' /\ gn + gd = gn' /\ hgn = --ghn
      ==> hn - gn = ghn - gh0
          ==> gd + ghn' + he + hgn = Cx(&0)
              ==> hn' - gn' = ghn' - gh0`) THEN
    REPEAT CONJ_TAC THENL
     [ASM_SIMP_TAC[complex_sub; GSYM PATH_INTEGRAL_REVERSEPATH] THEN
      REWRITE_TAC[REVERSEPATH_SUBPATH] THEN
      MATCH_MP_TAC PATH_INTEGRAL_SUBPATH_COMBINE;
      MATCH_MP_TAC PATH_INTEGRAL_SUBPATH_COMBINE;
      GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
       [GSYM REVERSEPATH_LINEPATH] THEN
      MATCH_MP_TAC PATH_INTEGRAL_REVERSEPATH] THEN
    ASM_REWRITE_TAC[VALID_PATH_LINEPATH] THEN
    ASM_REWRITE_TAC[IN_INTERVAL_1; DROP_CMUL; DROP_VEC; REAL_MUL_RID] THEN
    ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1;
                 REAL_MUL_LID; REAL_OF_NUM_LE] THEN
    ASM_SIMP_TAC[ARITH_RULE `SUC n <= N ==> n <= N`] THEN
    TRY(MATCH_MP_TAC PATH_INTEGRABLE_HOLOMORPHIC_SIMPLE THEN
        EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[] THEN NO_TAC) THEN
    ASM_MESON_TAC[PATH_INTEGRABLE_REVERSEPATH; VALID_PATH_LINEPATH;
                  REVERSEPATH_LINEPATH]]);;
(* ------------------------------------------------------------------------- *)
(* Hence we can treat even non-rectifiable paths as having a "length"        *)
(* for bounds on analytic functions in open sets.                            *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Winding number.                                                           *)
(* ------------------------------------------------------------------------- *)
let WINDING_NUMBER_UNIQUE = prove
 (`!g z e n.
        path g /\ ~(z 
IN path_image g) /\
        (!e. &0 < e
             ==> ?p. 
valid_path p /\ ~(z 
IN path_image p) /\
                     pathstart p = pathstart g /\
                     pathfinish p = pathfinish g /\
                     (!t. t 
IN interval[vec 0,vec 1]
                          ==> norm(g t - p t) < e) /\
                     
path_integral p (\w. Cx(&1) / (w - z)) =
                     Cx(&2) * Cx(pi) * ii * n)
        ==> 
winding_number(g,z) = n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`(:complex) 
DELETE z`; `g:real^1->complex`]
        PATH_INTEGRAL_NEARBY_ENDS) THEN
  ASM_SIMP_TAC[
OPEN_DELETE; 
OPEN_UNIV] THEN
  ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:real^1->complex` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL [`g:real^1->complex`; `z:complex`] 
WINDING_NUMBER) THEN
  DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `q:real^1->complex` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`p:real^1->complex`; `q:real^1->complex`]) THEN
  ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[
NORM_SUB] THEN ASM_SIMP_TAC[] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\w. Cx(&1) / (w - z)`) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[
OPEN_DELETE; 
OPEN_UNIV; 
HOLOMORPHIC_ON_OPEN] THEN
    REWRITE_TAC[
IN_DELETE; 
IN_UNIV; GSYM 
complex_differentiable] THEN
    REPEAT STRIP_TAC THEN COMPLEX_DIFFERENTIABLE_TAC THEN
    ASM_REWRITE_TAC[
COMPLEX_SUB_0];
    ASM_REWRITE_TAC[] THEN MP_TAC 
CX_2PII_NZ THEN
    CONV_TAC COMPLEX_RING]);;
 
 
let WINDING_NUMBER_UNIQUE_LOOP = prove
 (`!g z e n.
        path g /\ ~(z 
IN path_image g) /\ pathfinish g = pathstart g /\
        (!e. &0 < e
             ==> ?p. 
valid_path p /\ ~(z 
IN path_image p) /\
                     pathfinish p = pathstart p /\
                     (!t. t 
IN interval[vec 0,vec 1]
                          ==> norm(g t - p t) < e) /\
                     
path_integral p (\w. Cx(&1) / (w - z)) =
                     Cx(&2) * Cx(pi) * ii * n)
        ==> 
winding_number(g,z) = n`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`(:complex) 
DELETE z`; `g:real^1->complex`]
        PATH_INTEGRAL_NEARBY_LOOP) THEN
  ASM_SIMP_TAC[
OPEN_DELETE; 
OPEN_UNIV] THEN
  ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `p:real^1->complex` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL [`g:real^1->complex`; `z:complex`] 
WINDING_NUMBER) THEN
  DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `q:real^1->complex` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`p:real^1->complex`; `q:real^1->complex`]) THEN
  ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[
NORM_SUB] THEN ASM_SIMP_TAC[] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\w. Cx(&1) / (w - z)`) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[
OPEN_DELETE; 
OPEN_UNIV; 
HOLOMORPHIC_ON_OPEN] THEN
    REWRITE_TAC[
IN_DELETE; 
IN_UNIV; GSYM 
complex_differentiable] THEN
    REPEAT STRIP_TAC THEN COMPLEX_DIFFERENTIABLE_TAC THEN
    ASM_REWRITE_TAC[
COMPLEX_SUB_0];
    ASM_REWRITE_TAC[] THEN MP_TAC 
CX_2PII_NZ THEN
    CONV_TAC COMPLEX_RING]);;
 
 
(* ------------------------------------------------------------------------- *)
(* A combined theorem deducing several things piecewise.                     *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Useful sufficient conditions for the winding number to be positive etc.   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* The winding number is an integer (proof from Ahlfors's book).             *)
(* ------------------------------------------------------------------------- *)
let WINDING_NUMBER_AHLFORS_LEMMA = prove
 (`!g a b.
        g 
piecewise_differentiable_on interval [a,b] /\
        drop a <= drop b /\ (!x. x 
IN interval [a,b] ==> ~(g x = z))
        ==> (\x. 
vector_derivative g (at x within interval[a,b]) / (g(x) - z))
            
integrable_on interval[a,b] /\
            cexp(--(integral (interval[a,b])
                        (\x. 
vector_derivative g (at x within interval[a,b]) /
                               (g(x) - z)))) *
            (g(b) - z) = g(a) - z`,
  let lemma = prove
   (`!f g g' s x z.
          (g has_vector_derivative g') (at x within s) /\
          (f has_vector_derivative (g' / (g x - z))) (at x within s) /\
          ~(g x = z)
          ==> ((\x. cexp(--f x) * (g x - z)) has_vector_derivative Cx(&0))
              (at x within s)`,
    REPEAT STRIP_TAC THEN
    SUBGOAL_THEN
     `cexp(--f x) * (g' - Cx(&0)) +
      (cexp(--f x) * --(g' / ((g:real^1->complex) x - z))) * (g x - z) = Cx(&0)`
     (SUBST1_TAC o SYM)
    THENL
     [FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN
      CONV_TAC COMPLEX_FIELD;
      ALL_TAC] THEN
    MATCH_MP_TAC(ISPEC `( * ):complex->complex->complex`
      HAS_VECTOR_DERIVATIVE_BILINEAR_WITHIN) THEN
    REWRITE_TAC[BILINEAR_COMPLEX_MUL; GSYM COMPLEX_VEC_0] THEN
    ASM_SIMP_TAC[HAS_VECTOR_DERIVATIVE_SUB; ETA_AX;
                 HAS_VECTOR_DERIVATIVE_CONST] THEN
    GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN
    REWRITE_TAC[has_vector_derivative] THEN
    SUBGOAL_THEN `!x y. (\z. drop z % (x * y :complex)) =
                        (\w. x * w) o (\z. drop z % y)`
     (fun th -> REWRITE_TAC[th])
    THENL
     [REWRITE_TAC[FUN_EQ_THM; o_THM; COMPLEX_CMUL] THEN
      SIMPLE_COMPLEX_ARITH_TAC;
      ALL_TAC] THEN
    MATCH_MP_TAC DIFF_CHAIN_WITHIN THEN
    REWRITE_TAC[GSYM has_complex_derivative; GSYM has_vector_derivative] THEN
    SIMP_TAC[HAS_COMPLEX_DERIVATIVE_CEXP; HAS_COMPLEX_DERIVATIVE_AT_WITHIN] THEN
    ASM_SIMP_TAC[HAS_VECTOR_DERIVATIVE_NEG]) in
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `!w. ~(w = z)
        ==> ?h. !y. norm(y - w) < norm(w - z)
                    ==> (h has_complex_derivative inv(y - z)) (at y)`
   (LABEL_TAC "P")
  THENL
   [REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL [`\w:complex. inv(w - z)`;
               `ball(w:complex,norm(w - z))`;
               `{}:complex->bool`]
              HOLOMORPHIC_CONVEX_PRIMITIVE) THEN
    SIMP_TAC[HAS_COMPLEX_DERIVATIVE_WITHIN_OPEN; OPEN_BALL; INTERIOR_OPEN] THEN
    REWRITE_TAC[CONVEX_BALL; FINITE_RULES; DIFF_EMPTY] THEN ANTS_TAC THENL
     [SUBGOAL_THEN `(\w. inv(w - z)) holomorphic_on ball(w:complex,norm(w - z))`
       (fun th ->
        MESON_TAC[HOLOMORPHIC_ON_OPEN; HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
                  OPEN_BALL; complex_differentiable; th]) THEN
      SIMP_TAC[HOLOMORPHIC_ON_OPEN; OPEN_BALL; IN_BALL] THEN
      X_GEN_TAC `u:complex` THEN DISCH_TAC THEN
      EXISTS_TAC `--Cx(&1) / (u - z) pow 2` THEN COMPLEX_DIFF_TAC THEN
      REWRITE_TAC[COMPLEX_SUB_RZERO; COMPLEX_SUB_0] THEN
      ASM_MESON_TAC[REAL_LT_REFL; dist];
      ALL_TAC] THEN
    REWRITE_TAC[IN_BALL; dist] THEN MESON_TAC[NORM_SUB];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!t. t IN interval[a,b]
        ==> (\x. vector_derivative g (at x within interval[a,b]) / (g(x) - z))
            integrable_on interval[a,t] /\
            cexp(--(integral (interval[a,t])
                         (\x. vector_derivative g (at x within interval[a,b]) /
                              (g(x) - z)))) *
            (g(t) - z) = g(a) - z`
   (fun th -> MATCH_MP_TAC th THEN
              ASM_REWRITE_TAC[IN_INTERVAL_1; REAL_LE_REFL]) THEN
  REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_SUBINTERVAL THEN
    MAP_EVERY EXISTS_TAC [`a:real^1`; `b:real^1`] THEN
    ASM_REWRITE_TAC[SUBSET_INTERVAL_1; REAL_LE_REFL] THEN
    CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[IN_INTERVAL_1]] THEN
    REWRITE_TAC[integrable_on; complex_div] THEN
    ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN
    REWRITE_TAC[HAS_INTEGRAL_LOCALIZED_VECTOR_DERIVATIVE] THEN
    REWRITE_TAC[GSYM integrable_on] THEN
    MATCH_MP_TAC PATH_INTEGRAL_LOCAL_PRIMITIVE_ANY THEN
    EXISTS_TAC `(:complex) DELETE z` THEN
    ASM_SIMP_TAC[IN_DELETE; IN_UNIV;
                 DIFFERENTIABLE_ON_IMP_PIECEWISE_DIFFERENTIABLE] THEN
    X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
    EXISTS_TAC `norm(w - z:complex)` THEN
    ASM_REWRITE_TAC[COMPLEX_NORM_NZ; COMPLEX_SUB_0] THEN
    ASM_MESON_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN];
    ALL_TAC] THEN
  DISCH_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_ZERO_UNIQUE_STRONG_INTERVAL THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [piecewise_differentiable_on]) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[IN_DIFF; FINITE_IMP_COUNTABLE] THEN
  X_GEN_TAC `k:real^1->bool` THEN STRIP_TAC THEN
  ASM_SIMP_TAC[CONVEX_INTERVAL; INTEGRAL_REFL] THEN
  REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_NEG_0; CEXP_0; COMPLEX_MUL_LID] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC CONTINUOUS_ON_COMPLEX_MUL THEN
    ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST; ETA_AX;
                 PIECEWISE_DIFFERENTIABLE_ON_IMP_CONTINUOUS_ON] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
    MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
    REWRITE_TAC[CONTINUOUS_ON_CEXP] THEN
    MATCH_MP_TAC CONTINUOUS_ON_NEG THEN
    MATCH_MP_TAC INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[IN_INTERVAL_1; REAL_LE_REFL];
    ALL_TAC] THEN
  X_GEN_TAC `t:real^1` THEN DISCH_TAC THEN
  MP_TAC(ISPECL [`\w:complex. inv(w - z)`;
                 `ball((g:real^1->complex) t,dist(g t,z))`;
                 `{}:complex->bool`]
                HOLOMORPHIC_CONVEX_PRIMITIVE) THEN
  SIMP_TAC[HAS_COMPLEX_DERIVATIVE_WITHIN_OPEN; OPEN_BALL; INTERIOR_OPEN] THEN
  REWRITE_TAC[CONVEX_BALL; FINITE_RULES; DIFF_EMPTY] THEN ANTS_TAC THENL
   [SUBGOAL_THEN `(\w. inv(w - z)) holomorphic_on ball(g(t:real^1),dist(g t,z))`
     (fun th ->
      MESON_TAC[HOLOMORPHIC_ON_OPEN; HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
                OPEN_BALL; complex_differentiable; th]) THEN
    SIMP_TAC[HOLOMORPHIC_ON_OPEN; OPEN_BALL; IN_BALL] THEN
    X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
    EXISTS_TAC `--Cx(&1) / (w - z) pow 2` THEN COMPLEX_DIFF_TAC THEN
    REWRITE_TAC[COMPLEX_SUB_RZERO; COMPLEX_SUB_0] THEN
    ASM_MESON_TAC[REAL_LT_REFL];
    ALL_TAC] THEN
  REWRITE_TAC[IN_BALL; dist] THEN
  DISCH_THEN(X_CHOOSE_TAC `h:complex->complex`) THEN
  SUBGOAL_THEN `(\h. Cx(&0)) = (\h. drop h % Cx(&0))` SUBST1_TAC THENL
   [REWRITE_TAC[FUN_EQ_THM; GSYM COMPLEX_VEC_0; VECTOR_MUL_RZERO];
    ALL_TAC] THEN
  REWRITE_TAC[GSYM has_vector_derivative] THEN MATCH_MP_TAC lemma THEN
  EXISTS_TAC `vector_derivative g (at t within interval[a,b]):complex` THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[GSYM VECTOR_DERIVATIVE_WORKS] THEN
    ASM_MESON_TAC[DIFFERENTIABLE_AT_WITHIN];
    ALL_TAC;
    ASM_MESON_TAC[]] THEN
  REWRITE_TAC[has_vector_derivative] THEN
  MATCH_MP_TAC HAS_DERIVATIVE_TRANSFORM_WITHIN THEN
  ASM_REWRITE_TAC[GSYM has_vector_derivative] THEN
  EXISTS_TAC `\u. integral (interval [a,t])
                  (\x. vector_derivative g (at x within interval [a,b]) /
                       ((g:real^1->complex) x - z)) + (h(g(u)) - h(g(t)))` THEN
  REWRITE_TAC[LEFT_EXISTS_AND_THM; CONJ_ASSOC] THEN
  REWRITE_TAC[GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[COMPLEX_RING `a + (b - c) = b + (a - c):complex`] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_ADD_RID] THEN
    MATCH_MP_TAC HAS_VECTOR_DERIVATIVE_ADD THEN
    REWRITE_TAC[HAS_VECTOR_DERIVATIVE_CONST] THEN
    REWRITE_TAC[has_vector_derivative] THEN
    SUBGOAL_THEN `!x y. (\h. drop h % x / y) =
                        (\x. inv(y) * x) o (\h. drop h % x)`
     (fun th -> REWRITE_TAC[th])
    THENL
     [REWRITE_TAC[FUN_EQ_THM; o_THM; COMPLEX_CMUL] THEN
      SIMPLE_COMPLEX_ARITH_TAC;
      ALL_TAC] THEN
    GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN
    MATCH_MP_TAC DIFF_CHAIN_WITHIN THEN
    REWRITE_TAC[GSYM has_complex_derivative; GSYM has_vector_derivative] THEN
    REWRITE_TAC[GSYM VECTOR_DERIVATIVE_WORKS] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[DIFFERENTIABLE_AT_WITHIN]; ALL_TAC] THEN
    MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_NORM_0; COMPLEX_NORM_NZ] THEN
    ASM_SIMP_TAC[COMPLEX_SUB_0]] THEN
  SUBGOAL_THEN
   `?d. &0 < d /\
        !y:real^1. y IN interval[a,b] /\ dist(y,t) < d
                   ==> dist(g y:complex,g t) < norm(g t - z) /\ ~(y IN k)`
  MP_TAC THENL
   [SUBGOAL_THEN `(g:real^1->complex) continuous (at t within interval[a,b])`
    MP_TAC THENL
     [ASM_MESON_TAC[PIECEWISE_DIFFERENTIABLE_ON_IMP_CONTINUOUS_ON;
                    CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN];
      ALL_TAC] THEN
    REWRITE_TAC[continuous_within] THEN
    DISCH_THEN(MP_TAC o SPEC `norm((g:real^1->complex) t - z)`) THEN
    ASM_SIMP_TAC[COMPLEX_NORM_NZ; COMPLEX_SUB_0] THEN
    DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC o
      SPEC `t:real^1` o MATCH_MP FINITE_SET_AVOID) THEN
    EXISTS_TAC `min d1 d2` THEN ASM_SIMP_TAC[REAL_LT_MIN] THEN
    ASM_MESON_TAC[DIST_SYM; REAL_NOT_LE];
    ALL_TAC] THEN
  REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN
  REWRITE_TAC[FORALL_AND_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `u:real^1` THEN REWRITE_TAC[dist] THEN
  STRIP_TAC THEN
  DISJ_CASES_TAC(REAL_ARITH `drop t <= drop u \/ drop u <= drop t`) THENL
   [SUBGOAL_THEN
     `integral (interval [a,u])
        (\x. vector_derivative g (at x within interval [a,b]) / (g x - z)) =
      integral (interval [a,t])
        (\x. vector_derivative g (at x within interval [a,b]) / (g x - z)) +
      integral (interval [t,u])
        (\x. vector_derivative g (at x within interval [a,b]) / (g x - z))`
    SUBST1_TAC THENL
     [CONV_TAC SYM_CONV THEN MATCH_MP_TAC INTEGRAL_COMBINE THEN
      ASM_MESON_TAC[IN_INTERVAL_1];
      ALL_TAC] THEN
    SIMP_TAC[COMPLEX_RING `a + x = a + y <=> y:complex = x`];
    SUBGOAL_THEN
     `integral (interval [a,t])
        (\x. vector_derivative g (at x within interval [a,b]) / (g x - z)) =
      integral (interval [a,u])
        (\x. vector_derivative g (at x within interval [a,b]) / (g x - z)) +
      integral (interval [u,t])
        (\x. vector_derivative g (at x within interval [a,b]) / (g x - z))`
    SUBST1_TAC THENL
     [CONV_TAC SYM_CONV THEN MATCH_MP_TAC INTEGRAL_COMBINE THEN
      ASM_MESON_TAC[IN_INTERVAL_1];
      ALL_TAC] THEN
    SIMP_TAC[COMPLEX_RING `(a + x) + (w - z) = a <=> x:complex = z - w`]] THEN
  (MATCH_MP_TAC INTEGRAL_UNIQUE THEN
   MATCH_MP_TAC FUNDAMENTAL_THEOREM_OF_CALCULUS THEN
   ASM_REWRITE_TAC[GSYM o_DEF] THEN X_GEN_TAC `x:real^1` THEN
   REPEAT STRIP_TAC THEN REWRITE_TAC[has_vector_derivative; COMPLEX_CMUL] THEN
   SUBGOAL_THEN `!x y. (\h. Cx(drop h) * x / y) =
                       (\x. inv(y) * x) o (\h. drop h % x)`
    (fun th -> REWRITE_TAC[th])
   THENL
    [REWRITE_TAC[FUN_EQ_THM; o_THM; COMPLEX_CMUL] THEN
     SIMPLE_COMPLEX_ARITH_TAC;
     ALL_TAC] THEN
   MATCH_MP_TAC DIFF_CHAIN_WITHIN THEN
   REWRITE_TAC[GSYM has_complex_derivative; GSYM has_vector_derivative] THEN
   CONJ_TAC THENL
    [MATCH_MP_TAC HAS_VECTOR_DERIVATIVE_WITHIN_SUBSET THEN
     EXISTS_TAC `interval[a:real^1,b]` THEN
     REWRITE_TAC[GSYM VECTOR_DERIVATIVE_WORKS] THEN CONJ_TAC THENL
      [MATCH_MP_TAC DIFFERENTIABLE_AT_WITHIN THEN
       FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
        [ALL_TAC; FIRST_X_ASSUM MATCH_MP_TAC];
       ALL_TAC] THEN
     REPEAT(FIRST_X_ASSUM(MP_TAC o
        check (fun t -> not(is_forall (concl t))))) THEN
     REWRITE_TAC[dist; NORM_REAL; GSYM drop; DROP_SUB] THEN
     REWRITE_TAC[SUBSET_INTERVAL_1; IN_INTERVAL_1; REAL_LE_REFL] THEN
     REAL_ARITH_TAC;
     ALL_TAC] THEN
   MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
   FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM dist] THEN
   ONCE_REWRITE_TAC[DIST_SYM] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
   CONJ_TAC THENL [ASM_MESON_TAC[IN_INTERVAL_1; REAL_LE_TRANS]; ALL_TAC] THEN
   REPEAT(FIRST_X_ASSUM(MP_TAC o
      check (fun t -> not(is_forall (concl t))))) THEN
   REWRITE_TAC[dist; NORM_REAL; GSYM drop; DROP_SUB] THEN
   REWRITE_TAC[SUBSET_INTERVAL_1; IN_INTERVAL_1; REAL_LE_REFL] THEN
   REAL_ARITH_TAC));;  
 
(* ------------------------------------------------------------------------- *)
(* State in terms of complex integers. Note the useful equality version.     *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* For |WN| >= 1 the path must contain points in every direction.            *)
(* We can thus bound the WN of a path that doesn't meet some "cut".          *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* One way of proving that WN=1 for a loop.                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Continuity of winding number and invariance on connected sets.            *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Winding number is zero "outside" a curve, in various senses.              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* If a path winds round a set, it winds rounds its inside.                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Bounding a WN by 1/2 for a path and point in opposite halfspaces.         *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Positivity of WN for a linepath.                                          *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Winding number for a triangle.                                            *)
(* ------------------------------------------------------------------------- *)
let WINDING_NUMBER_TRIANGLE = prove
 (`!a b c z.
        z 
IN interior(convex hull {a,b,c})
        ==> 
winding_number(linepath(a,b) ++ linepath(b,c) ++ linepath(c,a),z) =
            if &0 < Im((b - a) * cnj (b - z)) then Cx(&1) else --Cx(&1)`,
  let lemma1 = prove
   (`!a b c. vec 0 IN interior(convex hull {a,b,c})
             ==> ~(Im(a / b) <= &0 /\ &0 <= Im(b / c))`,
    REPEAT GEN_TAC THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN SIMP_TAC[] THEN
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)
     [GSYM COMPLEX_INV_DIV] THEN
    REWRITE_TAC[IM_COMPLEX_INV_GE_0] THEN
    GEOM_BASIS_MULTIPLE_TAC 1 `b:complex` THEN
    REWRITE_TAC[COMPLEX_CMUL; COMPLEX_BASIS; GSYM CX_MUL; REAL_MUL_RID] THEN
    X_GEN_TAC `x:real` THEN GEN_REWRITE_TAC LAND_CONV [REAL_LE_LT] THEN
    REWRITE_TAC[IM_DIV_CX] THEN ASM_CASES_TAC `x = &0` THEN
    ASM_REWRITE_TAC[NOT_IN_INTERIOR_CONVEX_HULL_3; COMPLEX_VEC_0] THEN
    DISCH_TAC THEN REPEAT GEN_TAC THEN
    ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_MUL_LZERO] THEN STRIP_TAC THEN
    MATCH_MP_TAC(SET_RULE
     `!s. ~(x IN s) /\ t SUBSET s ==> ~(x IN t)`) THEN
    EXISTS_TAC `interior {z | Im z <= &0}` THEN CONJ_TAC THENL
     [REWRITE_TAC[IM_DEF; INTERIOR_HALFSPACE_COMPONENT_LE] THEN
      REWRITE_TAC[GSYM COMPLEX_VEC_0; IN_ELIM_THM; VEC_COMPONENT] THEN
      REAL_ARITH_TAC;
      MATCH_MP_TAC SUBSET_INTERIOR THEN MATCH_MP_TAC HULL_MINIMAL THEN
      REWRITE_TAC[CONVEX_HALFSPACE_IM_LE] THEN
      ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM] THEN
      REWRITE_TAC[IM_CX; REAL_LE_REFL]]) in
  let lemma2 = prove
   (`z IN interior(convex hull {a,b,c})
     ==>  &0 < Im((b - a) * cnj (b - z)) /\
          &0 < Im((c - b) * cnj (c - z)) /\
          &0 < Im((a - c) * cnj (a - z)) \/
          Im((b - a) * cnj (b - z)) < &0 /\
          &0 < Im((b - c) * cnj (b - z)) /\
          &0 < Im((a - b) * cnj (a - z)) /\
          &0 < Im((c - a) * cnj (c - z))`,
    GEOM_ORIGIN_TAC `z:complex` THEN
    REWRITE_TAC[VECTOR_SUB_RZERO; COMPLEX_SUB_RDISTRIB] THEN
    REWRITE_TAC[COMPLEX_MUL_CNJ; IM_SUB; GSYM CX_POW; IM_CX] THEN
    REWRITE_TAC[REAL_ARITH `&0 < &0 - x <=> x < &0`;
                REAL_ARITH `&0 - x < &0 <=> &0 < x`] THEN
    REWRITE_TAC[GSYM IM_COMPLEX_DIV_GT_0; GSYM IM_COMPLEX_DIV_LT_0] THEN
    REPEAT STRIP_TAC THEN
    GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM COMPLEX_INV_DIV] THEN
    REWRITE_TAC[IM_COMPLEX_INV_LT_0; IM_COMPLEX_INV_GT_0] THEN
    GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV o RAND_CONV)
     [GSYM COMPLEX_INV_DIV] THEN
    REWRITE_TAC[IM_COMPLEX_INV_LT_0] THEN
    MP_TAC(ISPECL [`a:complex`; `b:complex`; `c:complex`] lemma1) THEN
    MP_TAC(ISPECL [`b:complex`; `c:complex`; `a:complex`] lemma1) THEN
    MP_TAC(ISPECL [`c:complex`; `a:complex`; `b:complex`] lemma1) THEN
    POP_ASSUM MP_TAC THEN SIMP_TAC[INSERT_AC] THEN REAL_ARITH_TAC) in
  let lemma3 = prove
   (`!a b c z.
          z IN interior(convex hull {a,b,c}) /\
          &0 < Im((b - a) * cnj (b - z)) /\
          &0 < Im((c - b) * cnj (c - z)) /\
          &0 < Im((a - c) * cnj (a - z))
          ==> winding_number
               (linepath(a,b) ++ linepath(b,c) ++ linepath(c,a),z) = Cx(&1)`,
    REPEAT STRIP_TAC THEN
    MATCH_MP_TAC WINDING_NUMBER_EQ_1 THEN
    REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; CONJ_ASSOC;
                PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[GSYM CONJ_ASSOC] THEN
      REPEAT(MATCH_MP_TAC WINDING_NUMBER_JOIN_POS_COMBINED THEN
             REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN;
                         PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
             CONJ_TAC) THEN
      ASM_SIMP_TAC[WINDING_NUMBER_LINEPATH_POS_LT; VALID_PATH_LINEPATH] THEN
      RULE_ASSUM_TAC(REWRITE_RULE
       [INTERIOR_OF_TRIANGLE; IN_DIFF; IN_UNION; DE_MORGAN_THM]) THEN
      ASM_REWRITE_TAC[PATH_IMAGE_LINEPATH];
      RULE_ASSUM_TAC(REWRITE_RULE
         [INTERIOR_OF_TRIANGLE; IN_DIFF; IN_UNION; DE_MORGAN_THM]) THEN
      ASM_SIMP_TAC[WINDING_NUMBER_JOIN; PATH_IMAGE_JOIN; PATH_JOIN; IN_UNION;
             PATH_LINEPATH; PATHSTART_JOIN; PATHFINISH_JOIN; RE_ADD;
             PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_IMAGE_LINEPATH] THEN
      MATCH_MP_TAC(REAL_ARITH
       `abs a < &1 / &2 /\ abs b < &1 / &2 /\ abs c < &1 / &2
        ==> a + b + c < &2`) THEN
      REPEAT CONJ_TAC THEN MATCH_MP_TAC WINDING_NUMBER_LT_HALF_LINEPATH THEN
      ASM_REWRITE_TAC[]]) in
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP lemma2) THEN
  ASM_SIMP_TAC[lemma3; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
  SUBGOAL_THEN
   `winding_number
      (linepath(c,b) ++ linepath(b,a) ++ linepath(a,c),z) = Cx(&1)`
  MP_TAC THENL
   [MATCH_MP_TAC lemma3 THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[INSERT_AC];
    COND_CASES_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]] THEN
  DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN
  REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
  RULE_ASSUM_TAC(REWRITE_RULE
   [INTERIOR_OF_TRIANGLE; IN_DIFF; IN_UNION; DE_MORGAN_THM]) THEN
  FIRST_ASSUM(ASSUME_TAC o ONCE_REWRITE_RULE[SEGMENT_SYM] o CONJUNCT2) THEN
  ASM_SIMP_TAC[WINDING_NUMBER_JOIN; PATH_IMAGE_JOIN; PATH_JOIN; IN_UNION;
         PATH_LINEPATH; PATHSTART_JOIN; PATHFINISH_JOIN; RE_ADD;
         PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_IMAGE_LINEPATH] THEN
  ASM_SIMP_TAC[COMPLEX_NEG_ADD; GSYM WINDING_NUMBER_REVERSEPATH;
              PATH_IMAGE_LINEPATH; PATH_LINEPATH; REVERSEPATH_LINEPATH] THEN
  CONV_TAC COMPLEX_RING);;  
 
(* ------------------------------------------------------------------------- *)
(* Cauchy's integral formula, again for a convex enclosing set.              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Homotopy forms of Cauchy's theorem. The first two proofs are almost the   *)
(* same and could potentially be unified with a little more work.            *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_THEOREM_HOMOTOPIC_PATHS = prove
 (`!f g h s.
        open s /\ f 
holomorphic_on s /\
        
valid_path g /\ 
valid_path h /\ 
homotopic_paths s g h
        ==> 
path_integral g f = 
path_integral h f`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o SYM o MATCH_MP 
HOMOTOPIC_PATHS_IMP_PATHSTART) THEN
  FIRST_ASSUM(ASSUME_TAC o SYM o MATCH_MP 
HOMOTOPIC_PATHS_IMP_PATHFINISH) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
homotopic_paths]) THEN
  REWRITE_TAC[
homotopic_with; 
LEFT_IMP_EXISTS_THM; 
PCROSS] THEN
  X_GEN_TAC `k:real^(1,1)finite_sum->complex` THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `!t. t 
IN interval[vec 0:real^1,vec 1]
        ==> ?e. &0 < e /\
              !t1 t2. t1 
IN interval[vec 0:real^1,vec 1] /\
                      t2 
IN interval[vec 0,vec 1] /\
                      norm(t1 - t) < e /\ norm(t2 - t) < e
                   ==> ?d. &0 < d /\
                        !g1 g2. 
valid_path g1 /\ 
valid_path g2 /\
                                (!u. u 
IN interval[vec 0,vec 1]
                                     ==> norm(g1 u - k(pastecart t1 u)) < d /\
                                         norm(g2 u - k(pastecart t2 u)) < d) /\
                                pathstart g1 = pathstart g /\
                                pathfinish g1 = pathfinish g /\
                                pathstart g2 = pathstart g /\
                                pathfinish g2 = pathfinish g
                                ==> 
path_image g1 
SUBSET s /\
                                    
path_image g2 
SUBSET s /\
                                    
path_integral g2 f = 
path_integral g1 f`
  MP_TAC THENL
   [X_GEN_TAC `t:real^1` THEN STRIP_TAC THEN
    MP_TAC(ISPECL
     [`s:complex->bool`; `\u. (k:real^(1,1)finite_sum->complex)(pastecart t u)`]
     PATH_INTEGRAL_NEARBY_ENDS) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL
     [ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM 
o_DEF] THEN
      REWRITE_TAC[
path_image; path; 
IMAGE_o] THEN CONJ_TAC THENL
       [ALL_TAC; ASM SET_TAC[]] THEN
      MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
      SIMP_TAC[
CONTINUOUS_ON_PASTECART; 
CONTINUOUS_ON_ID;
               
CONTINUOUS_ON_CONST] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[];
      DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC)] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
          
COMPACT_UNIFORMLY_CONTINUOUS)) THEN
    SIMP_TAC[REWRITE_RULE[
PCROSS] 
COMPACT_PCROSS; 
COMPACT_INTERVAL] THEN
    REWRITE_TAC[
uniformly_continuous_on] THEN
    DISCH_THEN(MP_TAC o SPEC `e / &4`) THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REWRITE_TAC[
IMP_CONJ; 
RIGHT_FORALL_IMP_THM] THEN
    REWRITE_TAC[
FORALL_IN_GSPEC] THEN
    REWRITE_TAC[
RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM 
CONJ_ASSOC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (MESON[]
     `(!t x t' x'. P t x t' x') ==> (!t t' u. P t u t' u)`)) THEN
    REWRITE_TAC[dist; 
NORM_PASTECART; 
PASTECART_SUB] THEN
    REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[TAUT `a /\ b /\ c /\ b /\ d <=> a /\ c /\ b /\ d`] THEN
    SIMP_TAC[
REAL_ADD_RID; 
POW_2_SQRT; 
NORM_POS_LE] THEN DISCH_TAC THEN
    ASM_REWRITE_TAC[] THEN
    MAP_EVERY X_GEN_TAC [`t1:real^1`; `t2:real^1`] THEN
    STRIP_TAC THEN EXISTS_TAC `e / &4` THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN
    MAP_EVERY X_GEN_TAC [`g1:real^1->complex`; `g2:real^1->complex`] THEN
    STRIP_TAC THEN FIRST_X_ASSUM
     (MP_TAC o SPECL [`g1:real^1->complex`; `g2:real^1->complex`]) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    X_GEN_TAC `u:real^1` THEN STRIP_TAC THEN
    ASM_MESON_TAC[NORM_ARITH
     `norm(g1 - k1) < e / &4 /\ norm(g2 - k2) < e / &4 /\
      norm(k1 - kt) < e / &4 /\ norm(k2 - kt) < e / &4
      ==> norm(g1 - kt) < e /\ norm(g2 - kt) < e`];
    GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [
RIGHT_IMP_EXISTS_THM] THEN
    REWRITE_TAC[ 
SKOLEM_THM; 
LEFT_IMP_EXISTS_THM]] THEN
  X_GEN_TAC `ee:real^1->real` THEN DISCH_THEN(LABEL_TAC "*") THEN
  MP_TAC(ISPEC `interval[vec 0:real^1,vec 1]` 
COMPACT_IMP_HEINE_BOREL) THEN
  REWRITE_TAC[
COMPACT_INTERVAL] THEN
  DISCH_THEN(MP_TAC o SPEC
   `
IMAGE (\t:real^1. ball(t,ee t / &3)) (interval[vec 0,vec 1])`) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[
FORALL_IN_IMAGE; 
OPEN_BALL; 
SUBSET] THEN
    X_GEN_TAC `t:real^1` THEN DISCH_TAC THEN
    REWRITE_TAC[
UNIONS_IMAGE; 
IN_ELIM_THM] THEN EXISTS_TAC `t:real^1` THEN
    ASM_SIMP_TAC[
CENTRE_IN_BALL; REAL_ARITH `&0 < e / &3 <=> &0 < e`];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
  REWRITE_TAC[
CONJ_ASSOC; 
FINITE_SUBSET_IMAGE] THEN
  REWRITE_TAC[
LEFT_AND_EXISTS_THM; MESON[]
   `(?f s. (P s /\ f = g s) /\ Q f) <=> ?s. P s /\ Q(g s)`] THEN
  REWRITE_TAC[
UNIONS_IMAGE; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `k:real^1->bool` THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [
SUBSET] THEN REWRITE_TAC[
IN_ELIM_THM] THEN
  ASM_CASES_TAC `k:real^1->bool = {}` THENL
   [ASM_REWRITE_TAC[
NOT_IN_EMPTY; GSYM 
NOT_EXISTS_THM; 
MEMBER_NOT_EMPTY] THEN
    REWRITE_TAC[
INTERVAL_EQ_EMPTY_1; 
DROP_VEC] THEN REAL_ARITH_TAC;
    DISCH_THEN(LABEL_TAC "+")] THEN
  SUBGOAL_THEN `!i:real^1. i 
IN k ==> &0 < ee(i)`
  ASSUME_TAC THENL [ASM_MESON_TAC[
SUBSET]; ALL_TAC] THEN
  ABBREV_TAC `e = inf(
IMAGE (ee:real^1->real) k)` THEN
  MP_TAC(ISPEC `
IMAGE (ee:real^1->real) k` 
INF_FINITE) THEN
  MP_TAC(ISPECL [`
IMAGE (ee:real^1->real) k`; `&0`]
    
REAL_LT_INF_FINITE) THEN
  ASM_SIMP_TAC[
FINITE_IMAGE; 
IMAGE_EQ_EMPTY; 
FORALL_IN_IMAGE] THEN
  DISCH_TAC THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN
  MP_TAC(ISPEC `e / &3` 
REAL_ARCH_INV) THEN
  ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`] THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `!n. n <= N
        ==> ?d. &0 < d /\
                !j. 
valid_path j /\
                    (!u. u 
IN interval [vec 0,vec 1]
                        ==> norm(j u - k(pastecart (lift(&n / &N)) u)) < d) /\
                    pathstart j = pathstart g /\
                    pathfinish j = pathfinish g
                    ==> 
path_image j 
SUBSET s /\
                        
path_integral j f = 
path_integral g f`
  (MP_TAC o SPEC `N:num`) THENL
   [ALL_TAC;
    REWRITE_TAC[
LE_REFL; 
LEFT_IMP_EXISTS_THM] THEN
    GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `h:real^1->complex`) THEN
    ASM_SIMP_TAC[
REAL_DIV_REFL; REAL_OF_NUM_EQ; 
LIFT_NUM] THEN
    ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN MESON_TAC[]] THEN
  INDUCT_TAC THENL
   [REMOVE_THEN "*" (MP_TAC o SPEC `vec 0:real^1`) THEN
    ASM_REWRITE_TAC[
real_div; 
REAL_MUL_LZERO; 
LE_0; 
LIFT_NUM] THEN
    REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
REAL_POS; 
REAL_LE_REFL] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REPEAT(DISCH_THEN(MP_TAC o SPEC `vec 0:real^1`) THEN
           REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
REAL_POS; 
REAL_LE_REFL]) THEN
    ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[] THEN X_GEN_TAC `j:real^1->complex` THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
     [`g:real^1->complex`; `j:real^1->complex`]) THEN
    ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN MESON_TAC[];
    DISCH_TAC] THEN
  SUBGOAL_THEN `lift(&n / &N) 
IN interval[vec 0,vec 1] /\
                lift(&(SUC n) / &N) 
IN interval[vec 0,vec 1]`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
LIFT_DROP] THEN
    ASM_SIMP_TAC[
REAL_LE_RDIV_EQ; 
REAL_LE_LDIV_EQ; 
REAL_OF_NUM_LT; 
LE_1] THEN
    REWRITE_TAC[
REAL_MUL_LZERO; REAL_MUL_LID; REAL_OF_NUM_LE] THEN
    ASM_ARITH_TAC;
    ALL_TAC] THEN
  REMOVE_THEN "+" (MP_TAC o SPEC `lift(&n / &N)`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real^1` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `d1:real`
    (CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "1"))) THEN
  REMOVE_THEN "*" (MP_TAC o SPEC `t:real^1`) THEN
  ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(MP_TAC o SPECL [`lift(&n / &N)`; `lift(&(SUC n) / &N)`]) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_BALL]) THEN
    MATCH_MP_TAC(NORM_ARITH
     `!e. norm(n' - n:real^N) < e / &3 /\ e <= ee
     ==> dist(t,n) < ee / &3 ==> norm(n - t) < ee /\ norm(n' - t) < ee`) THEN
    EXISTS_TAC `e:real` THEN
    REWRITE_TAC[
NORM_REAL; GSYM drop; 
DROP_SUB; 
LIFT_DROP] THEN
    REWRITE_TAC[
real_div; GSYM 
REAL_SUB_RDISTRIB] THEN
    SIMP_TAC[
REAL_OF_NUM_SUB; ARITH_RULE `n <= SUC n`] THEN
    REWRITE_TAC[ARITH_RULE `SUC n - n = 1`; REAL_MUL_LID] THEN
    REWRITE_TAC[
REAL_ABS_INV; 
REAL_ABS_NUM] THEN
    ASM_SIMP_TAC[GSYM 
real_div];
    ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `d2:real` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  X_GEN_TAC `j:real^1->complex` THEN STRIP_TAC THEN
  MP_TAC(ISPECL
   [`\u:real^1. (k(pastecart (lift (&n / &N)) u):complex)`;
    `min d1 d2`] 
PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION) THEN
  ASM_SIMP_TAC[
REAL_LT_MIN; REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN
  ANTS_TAC THENL
   [REWRITE_TAC[path] THEN GEN_REWRITE_TAC LAND_CONV [GSYM 
o_DEF] THEN
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
    SIMP_TAC[
CONTINUOUS_ON_PASTECART; 
CONTINUOUS_ON_ID;
             
CONTINUOUS_ON_CONST] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
    ASM SET_TAC[];
    DISCH_THEN(X_CHOOSE_THEN `p:real^1->complex` STRIP_ASSUME_TAC)] THEN
  REMOVE_THEN "1" (MP_TAC o SPEC `p:real^1->complex`) THEN
  ASM_SIMP_TAC[
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`p:real^1->complex`; `j:real^1->complex`]) THEN
  ASM_SIMP_TAC[
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION]);;
 
 
let CAUCHY_THEOREM_HOMOTOPIC_LOOPS = prove
 (`!f g h s.
        open s /\ f 
holomorphic_on s /\
        
valid_path g /\ 
valid_path h /\ 
homotopic_loops s g h
        ==> 
path_integral g f = 
path_integral h f`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP 
HOMOTOPIC_LOOPS_IMP_LOOP) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
homotopic_loops]) THEN
  REWRITE_TAC[
homotopic_with; 
PCROSS; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `k:real^(1,1)finite_sum->complex` THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `!t. t 
IN interval[vec 0:real^1,vec 1]
        ==> ?e. &0 < e /\
              !t1 t2. t1 
IN interval[vec 0:real^1,vec 1] /\
                      t2 
IN interval[vec 0,vec 1] /\
                      norm(t1 - t) < e /\ norm(t2 - t) < e
                   ==> ?d. &0 < d /\
                        !g1 g2. 
valid_path g1 /\ 
valid_path g2 /\
                                (!u. u 
IN interval[vec 0,vec 1]
                                     ==> norm(g1 u - k(pastecart t1 u)) < d /\
                                         norm(g2 u - k(pastecart t2 u)) < d) /\
                                pathfinish g1 = pathstart g1 /\
                                pathfinish g2 = pathstart g2
                                ==> 
path_image g1 
SUBSET s /\
                                    
path_image g2 
SUBSET s /\
                                    
path_integral g2 f = 
path_integral g1 f`
  MP_TAC THENL
   [X_GEN_TAC `t:real^1` THEN STRIP_TAC THEN
    MP_TAC(ISPECL
     [`s:complex->bool`; `\u. (k:real^(1,1)finite_sum->complex)(pastecart t u)`]
     PATH_INTEGRAL_NEARBY_LOOP) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL
     [ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM 
o_DEF] THEN
      REWRITE_TAC[
path_image; path; 
IMAGE_o] THEN CONJ_TAC THENL
       [ALL_TAC; ASM SET_TAC[]] THEN
      MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
      SIMP_TAC[
CONTINUOUS_ON_PASTECART; 
CONTINUOUS_ON_ID;
               
CONTINUOUS_ON_CONST] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[];
      DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC)] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
          
COMPACT_UNIFORMLY_CONTINUOUS)) THEN
    SIMP_TAC[REWRITE_RULE[
PCROSS] 
COMPACT_PCROSS; 
COMPACT_INTERVAL] THEN
    REWRITE_TAC[
uniformly_continuous_on] THEN
    DISCH_THEN(MP_TAC o SPEC `e / &4`) THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REWRITE_TAC[
IMP_CONJ; 
RIGHT_FORALL_IMP_THM] THEN
    REWRITE_TAC[
FORALL_IN_GSPEC] THEN
    REWRITE_TAC[
RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM 
CONJ_ASSOC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP (MESON[]
     `(!t x t' x'. P t x t' x') ==> (!t t' u. P t u t' u)`)) THEN
    REWRITE_TAC[dist; 
NORM_PASTECART; 
PASTECART_SUB] THEN
    REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[TAUT `a /\ b /\ c /\ b /\ d <=> a /\ c /\ b /\ d`] THEN
    SIMP_TAC[
REAL_ADD_RID; 
POW_2_SQRT; 
NORM_POS_LE] THEN DISCH_TAC THEN
    ASM_REWRITE_TAC[] THEN
    MAP_EVERY X_GEN_TAC [`t1:real^1`; `t2:real^1`] THEN
    STRIP_TAC THEN EXISTS_TAC `e / &4` THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN
    MAP_EVERY X_GEN_TAC [`g1:real^1->complex`; `g2:real^1->complex`] THEN
    STRIP_TAC THEN FIRST_X_ASSUM
     (MP_TAC o SPECL [`g1:real^1->complex`; `g2:real^1->complex`]) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
    X_GEN_TAC `u:real^1` THEN STRIP_TAC THEN
    ASM_MESON_TAC[NORM_ARITH
     `norm(g1 - k1) < e / &4 /\ norm(g2 - k2) < e / &4 /\
      norm(k1 - kt) < e / &4 /\ norm(k2 - kt) < e / &4
      ==> norm(g1 - kt) < e /\ norm(g2 - kt) < e`];
    GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [
RIGHT_IMP_EXISTS_THM] THEN
    REWRITE_TAC[ 
SKOLEM_THM; 
LEFT_IMP_EXISTS_THM]] THEN
  X_GEN_TAC `ee:real^1->real` THEN DISCH_THEN(LABEL_TAC "*") THEN
  MP_TAC(ISPEC `interval[vec 0:real^1,vec 1]` 
COMPACT_IMP_HEINE_BOREL) THEN
  REWRITE_TAC[
COMPACT_INTERVAL] THEN
  DISCH_THEN(MP_TAC o SPEC
   `
IMAGE (\t:real^1. ball(t,ee t / &3)) (interval[vec 0,vec 1])`) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[
FORALL_IN_IMAGE; 
OPEN_BALL; 
SUBSET] THEN
    X_GEN_TAC `t:real^1` THEN DISCH_TAC THEN
    REWRITE_TAC[
UNIONS_IMAGE; 
IN_ELIM_THM] THEN EXISTS_TAC `t:real^1` THEN
    ASM_SIMP_TAC[
CENTRE_IN_BALL; REAL_ARITH `&0 < e / &3 <=> &0 < e`];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN
  REWRITE_TAC[
CONJ_ASSOC; 
FINITE_SUBSET_IMAGE] THEN
  REWRITE_TAC[
LEFT_AND_EXISTS_THM; MESON[]
   `(?f s. (P s /\ f = g s) /\ Q f) <=> ?s. P s /\ Q(g s)`] THEN
  REWRITE_TAC[
UNIONS_IMAGE; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `k:real^1->bool` THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC LAND_CONV [
SUBSET] THEN REWRITE_TAC[
IN_ELIM_THM] THEN
  ASM_CASES_TAC `k:real^1->bool = {}` THENL
   [ASM_REWRITE_TAC[
NOT_IN_EMPTY; GSYM 
NOT_EXISTS_THM; 
MEMBER_NOT_EMPTY] THEN
    REWRITE_TAC[
INTERVAL_EQ_EMPTY_1; 
DROP_VEC] THEN REAL_ARITH_TAC;
    DISCH_THEN(LABEL_TAC "+")] THEN
  SUBGOAL_THEN `!i:real^1. i 
IN k ==> &0 < ee(i)`
  ASSUME_TAC THENL [ASM_MESON_TAC[
SUBSET]; ALL_TAC] THEN
  ABBREV_TAC `e = inf(
IMAGE (ee:real^1->real) k)` THEN
  MP_TAC(ISPEC `
IMAGE (ee:real^1->real) k` 
INF_FINITE) THEN
  MP_TAC(ISPECL [`
IMAGE (ee:real^1->real) k`; `&0`]
    
REAL_LT_INF_FINITE) THEN
  ASM_SIMP_TAC[
FINITE_IMAGE; 
IMAGE_EQ_EMPTY; 
FORALL_IN_IMAGE] THEN
  DISCH_TAC THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN
  MP_TAC(ISPEC `e / &3` 
REAL_ARCH_INV) THEN
  ASM_REWRITE_TAC[REAL_ARITH `&0 < e / &3 <=> &0 < e`] THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `!n. n <= N
        ==> ?d. &0 < d /\
                !j. 
valid_path j /\
                    (!u. u 
IN interval [vec 0,vec 1]
                        ==> norm(j u - k(pastecart (lift(&n / &N)) u)) < d) /\
                    pathfinish j = pathstart j
                    ==> 
path_image j 
SUBSET s /\
                        
path_integral j f = 
path_integral g f`
  (MP_TAC o SPEC `N:num`) THENL
   [ALL_TAC;
    REWRITE_TAC[
LE_REFL; 
LEFT_IMP_EXISTS_THM] THEN
    GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(MP_TAC o SPEC `h:real^1->complex`) THEN
    ASM_SIMP_TAC[
REAL_DIV_REFL; REAL_OF_NUM_EQ; 
LIFT_NUM] THEN
    ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN MESON_TAC[]] THEN
  INDUCT_TAC THENL
   [REMOVE_THEN "*" (MP_TAC o SPEC `vec 0:real^1`) THEN
    ASM_REWRITE_TAC[
real_div; 
REAL_MUL_LZERO; 
LE_0; 
LIFT_NUM] THEN
    REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
REAL_POS; 
REAL_LE_REFL] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REPEAT(DISCH_THEN(MP_TAC o SPEC `vec 0:real^1`) THEN
           REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
REAL_POS; 
REAL_LE_REFL]) THEN
    ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[] THEN X_GEN_TAC `j:real^1->complex` THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
     [`g:real^1->complex`; `j:real^1->complex`]) THEN
    ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THEN MESON_TAC[];
    DISCH_TAC] THEN
  SUBGOAL_THEN `lift(&n / &N) 
IN interval[vec 0,vec 1] /\
                lift(&(SUC n) / &N) 
IN interval[vec 0,vec 1]`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
LIFT_DROP] THEN
    ASM_SIMP_TAC[
REAL_LE_RDIV_EQ; 
REAL_LE_LDIV_EQ; 
REAL_OF_NUM_LT; 
LE_1] THEN
    REWRITE_TAC[
REAL_MUL_LZERO; REAL_MUL_LID; REAL_OF_NUM_LE] THEN
    ASM_ARITH_TAC;
    ALL_TAC] THEN
  REMOVE_THEN "+" (MP_TAC o SPEC `lift(&n / &N)`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real^1` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
  ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `d1:real`
    (CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "1"))) THEN
  REMOVE_THEN "*" (MP_TAC o SPEC `t:real^1`) THEN
  ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(MP_TAC o SPECL [`lift(&n / &N)`; `lift(&(SUC n) / &N)`]) THEN
  ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_BALL]) THEN
    MATCH_MP_TAC(NORM_ARITH
     `!e. norm(n' - n:real^N) < e / &3 /\ e <= ee
     ==> dist(t,n) < ee / &3 ==> norm(n - t) < ee /\ norm(n' - t) < ee`) THEN
    EXISTS_TAC `e:real` THEN
    REWRITE_TAC[
NORM_REAL; GSYM drop; 
DROP_SUB; 
LIFT_DROP] THEN
    REWRITE_TAC[
real_div; GSYM 
REAL_SUB_RDISTRIB] THEN
    SIMP_TAC[
REAL_OF_NUM_SUB; ARITH_RULE `n <= SUC n`] THEN
    REWRITE_TAC[ARITH_RULE `SUC n - n = 1`; REAL_MUL_LID] THEN
    REWRITE_TAC[
REAL_ABS_INV; 
REAL_ABS_NUM] THEN
    ASM_SIMP_TAC[GSYM 
real_div];
    ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `d2:real` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  X_GEN_TAC `j:real^1->complex` THEN STRIP_TAC THEN
  MP_TAC(ISPECL
   [`\u:real^1. (k(pastecart (lift (&n / &N)) u):complex)`;
    `min d1 d2`] 
PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION) THEN
  ASM_SIMP_TAC[
REAL_LT_MIN; REAL_ARITH `&0 < e / &4 <=> &0 < e`] THEN
  ANTS_TAC THENL
   [REWRITE_TAC[path] THEN GEN_REWRITE_TAC LAND_CONV [GSYM 
o_DEF] THEN
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
    SIMP_TAC[
CONTINUOUS_ON_PASTECART; 
CONTINUOUS_ON_ID;
             
CONTINUOUS_ON_CONST] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
    ASM SET_TAC[];
    DISCH_THEN(X_CHOOSE_THEN `p:real^1->complex` STRIP_ASSUME_TAC)] THEN
  REMOVE_THEN "1" (MP_TAC o SPEC `p:real^1->complex`) THEN
  ASM_SIMP_TAC[
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`p:real^1->complex`; `j:real^1->complex`]) THEN
  ASM_SIMP_TAC[
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION]);;
 
 
(* ------------------------------------------------------------------------- *)
(* More winding number properties, including the fact that it's +-1 inside   *)
(* a simple closed curve.                                                    *)
(* ------------------------------------------------------------------------- *)
let SIMPLE_CLOSED_PATH_WINDING_NUMBER_INSIDE = prove
 (`!g. 
simple_path g
       ==> (!z. z 
IN inside(
path_image g) ==> 
winding_number(g,z) = Cx(&1)) \/
           (!z. z 
IN inside(
path_image g) ==> 
winding_number(g,z) = --Cx(&1))`,
  let lemma1 = prove
   (`!p a e.
          &0 < e /\
          simple_path(p ++ linepath(a - e % basis 1,a + e % basis 1)) /\
          pathstart p = a + e % basis 1 /\ pathfinish p = a - e % basis 1 /\
          ball(a,e) INTER path_image p = {}
          ==> ?z. z IN inside(path_image
                         (p ++ linepath(a - e % basis 1,a + e % basis 1))) /\
                  norm(winding_number
                   (p ++ linepath(a - e % basis 1,a + e % basis 1),z)) = &1`,
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL
     [`p:real^1->complex`; `linepath(a - e % basis 1,a + e % basis 1)`]
     SIMPLE_PATH_JOIN_LOOP_EQ) THEN
    ASM_REWRITE_TAC[PATHFINISH_LINEPATH; PATHSTART_LINEPATH] THEN
    STRIP_TAC THEN
    SUBGOAL_THEN
      `(a:complex) IN frontier(inside
       (path_image(p ++ linepath(a - e % basis 1,a + e % basis 1))))`
    MP_TAC THENL
     [FIRST_ASSUM
       (MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] JORDAN_INSIDE_OUTSIDE)) THEN
      ASM_REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN;
                      PATHFINISH_LINEPATH] THEN
      STRIP_TAC THEN ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH] THEN
      REWRITE_TAC[IN_UNION; PATH_IMAGE_LINEPATH] THEN DISJ2_TAC THEN
      REWRITE_TAC[IN_SEGMENT] THEN EXISTS_TAC `&1 / &2` THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN VECTOR_ARITH_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[FRONTIER_STRADDLE] THEN
    DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `c:complex` STRIP_ASSUME_TAC o CONJUNCT1) THEN
    MP_TAC(ISPEC
     `path_image (p ++ linepath(a - e % basis 1:complex,a + e % basis 1))`
     INSIDE_NO_OVERLAP) THEN
    REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `c:complex`) THEN
    ASM_REWRITE_TAC[IN_INTER; NOT_IN_EMPTY] THEN
    ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH; PATH_IMAGE_LINEPATH] THEN
    REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SEGMENT_AS_BALL] THEN
    ASM_REWRITE_TAC[IN_INTER;
      VECTOR_ARITH `inv(&2) % ((a - e) + (a + e)):complex = a`;
      VECTOR_ARITH `(a + e) - (a - e):complex = &2 % e`] THEN
    ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
    ASM_SIMP_TAC[REAL_ARITH `&0 < e ==> (abs(&2) * abs e * &1) / &2 = e`] THEN
    ASM_SIMP_TAC[IN_CBALL; REAL_LT_IMP_LE] THEN STRIP_TAC THEN
    SUBGOAL_THEN
     `~collinear{a - e % basis 1,c:complex,a + e % basis 1}`
    ASSUME_TAC THENL
     [MP_TAC(ISPECL
       [`a - e % basis 1:complex`; `a + e % basis  1:complex`; `c:complex`]
       COLLINEAR_3_AFFINE_HULL) THEN
      ASM_SIMP_TAC[VECTOR_ARITH `a - x:complex = a + x <=> x = vec 0`;
                   BASIS_NONZERO; DIMINDEX_2; ARITH; VECTOR_MUL_EQ_0;
                   REAL_LT_IMP_NZ] THEN
      REWRITE_TAC[INSERT_AC];
      ALL_TAC] THEN
    SUBGOAL_THEN
    `~(interior(convex hull {a - e % basis 1,c:complex,a + e % basis 1}) = {})`
    MP_TAC THENL
     [ASM_SIMP_TAC[INTERIOR_CONVEX_HULL_3_MINIMAL] THEN
      REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN
      REPEAT(ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN EXISTS_TAC `&1 / &3`) THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o AP_TERM `norm:complex->real` o
      MATCH_MP WINDING_NUMBER_TRIANGLE) THEN
    REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COND_RAND] THEN
    REWRITE_TAC[NORM_NEG; COND_ID; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
    DISCH_TAC THEN
    MP_TAC(ISPECL
     [`linepath(a + e % basis 1:complex,a - e % basis 1)`;
      `p:real^1->complex`;
      `linepath(a + e % basis 1:complex,c) ++ linepath(c,a - e % basis 1)`;
      `a + e % basis 1:complex`; `a - e % basis 1:complex`;
      `z:complex`;
      `winding_number
        (linepath(a - e % basis 1,c) ++
         linepath(c,a + e % basis 1) ++
         linepath(a + e % basis 1,a - e % basis 1),
         z)`] WINDING_NUMBER_FROM_INNERPATH) THEN
    ASM_SIMP_TAC[SIMPLE_PATH_LINEPATH; PATHSTART_JOIN; PATHFINISH_JOIN;
             VECTOR_ARITH `a + x:complex = a - x <=> x = vec 0`;
             BASIS_NONZERO; DIMINDEX_2; ARITH; VECTOR_MUL_EQ_0;
             REAL_LT_IMP_NZ; PATHSTART_LINEPATH; PATHFINISH_LINEPATH;
             ARC_IMP_SIMPLE_PATH; PATH_IMAGE_JOIN; PATH_IMAGE_LINEPATH] THEN
    ANTS_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC(TAUT
       `(p ==> p') /\ (p /\ q ==> q') ==> p /\ q ==> p' /\ q'`) THEN
      CONJ_TAC THENL [MESON_TAC[UNION_COMM; SEGMENT_SYM]; ALL_TAC] THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST_ALL_TAC o SYM)) THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
       `norm(z:complex) = &1 ==> u = --z ==> norm u = &1`)) THEN
      GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
       [GSYM REVERSEPATH_LINEPATH] THEN
      ASM_SIMP_TAC[GSYM REVERSEPATH_JOINPATHS; PATHSTART_LINEPATH] THEN
      ONCE_REWRITE_TAC[COMPLEX_RING `a:complex = --b <=> b = --a`] THEN
      MATCH_MP_TAC WINDING_NUMBER_REVERSEPATH THEN
      ASM_SIMP_TAC[PATH_JOIN; PATHSTART_LINEPATH; PATH_IMAGE_JOIN;
                   PATH_LINEPATH; ARC_IMP_PATH; PATH_IMAGE_LINEPATH] THEN
      ONCE_REWRITE_TAC[SEGMENT_SYM] THEN ONCE_REWRITE_TAC[UNION_COMM] THEN
      ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY]] THEN
    REPEAT CONJ_TAC THENL
     [MATCH_MP_TAC ARC_IMP_SIMPLE_PATH THEN MATCH_MP_TAC ARC_JOIN THEN
      REWRITE_TAC[ARC_LINEPATH_EQ; PATHSTART_LINEPATH;
                  PATHFINISH_LINEPATH] THEN
      REPEAT(CONJ_TAC THENL
       [DISCH_THEN SUBST_ALL_TAC THEN
        RULE_ASSUM_TAC(REWRITE_RULE[INSERT_AC; COLLINEAR_2]) THEN
        FIRST_X_ASSUM CONTR_TAC;
        ALL_TAC]) THEN
      REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN
      MATCH_MP_TAC(SET_RULE `s = t ==> s SUBSET t`) THEN
      MATCH_MP_TAC INTER_SEGMENT THEN ASM_MESON_TAC[INSERT_AC];
      REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
       `b INTER p = {}
        ==> s SUBSET b /\ k SUBSET p
            ==> (s UNION k) INTER p = k`)) THEN
      CONJ_TAC THENL
       [REWRITE_TAC[SUBSET; IN_SEGMENT; IN_BALL] THEN
        REWRITE_TAC[VECTOR_ARITH
         `(&1 - u) % (a + e) + u % (a - e):complex =
          a + (&1 - &2 * u) % e`] THEN
        REPEAT STRIP_TAC THEN
        ASM_REWRITE_TAC[NORM_ARITH `dist(a:complex,a + e) = norm e`] THEN
        SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
        MATCH_MP_TAC(REAL_ARITH
         `x * e < &1 * e /\ &0 < e ==> x * abs e * &1 < e`) THEN
        ASM_SIMP_TAC[REAL_LT_RMUL_EQ] THEN ASM_REAL_ARITH_TAC;
        REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
        ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE]];
      MATCH_MP_TAC(SET_RULE
       `s INTER t1 = {a} /\ s INTER t2 = {b}
        ==> s INTER (t1 UNION t2) = {a,b}`) THEN
      CONJ_TAC THENL
       [GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SEGMENT_SYM];
        GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SEGMENT_SYM]] THEN
      MATCH_MP_TAC INTER_SEGMENT THEN DISJ2_TAC THEN
      ASM_MESON_TAC[INSERT_AC];
      MATCH_MP_TAC(SET_RULE
       `s INTER t1 = {a} /\ s INTER t2 = {b}
        ==> s INTER (t1 UNION t2) = {a,b}`) THEN
      CONJ_TAC THENL [ONCE_REWRITE_TAC[SEGMENT_SYM]; ALL_TAC] THEN
      REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN
      MATCH_MP_TAC(SET_RULE
       `b IN p /\ ~(c IN p) /\ p INTER s = {}
        ==> p INTER (s UNION {c,b}) = {b}`) THEN
      (CONJ_TAC THENL
        [ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE; PATHFINISH_IN_PATH_IMAGE];
         ASM_REWRITE_TAC[]]) THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
       `b INTER p = {} ==> s SUBSET b ==> p INTER s = {}`)) THEN
      REWRITE_TAC[GSYM INTERIOR_CBALL] THEN
      MATCH_MP_TAC IN_INTERIOR_CLOSURE_CONVEX_SEGMENT THEN
      ASM_REWRITE_TAC[CONVEX_CBALL; INTERIOR_CBALL; IN_BALL] THEN
      MATCH_MP_TAC(REWRITE_RULE[SUBSET] CLOSURE_SUBSET) THEN
      REWRITE_TAC[IN_CBALL;
                  NORM_ARITH `dist(a:complex,a - e) = norm e`;
                  NORM_ARITH `dist(a:complex,a + e) = norm e`] THEN
      ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
      ASM_REAL_ARITH_TAC;
      REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `c:complex` THEN
      REWRITE_TAC[IN_INTER; ENDS_IN_SEGMENT; IN_UNION] THEN
      FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
       `c IN s ==> s = t ==> c IN t`)) THEN
      ASM_SIMP_TAC[PATH_IMAGE_JOIN; PATHSTART_LINEPATH] THEN
      REWRITE_TAC[UNION_COMM; PATH_IMAGE_LINEPATH; SEGMENT_SYM];
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [GSYM
        INSIDE_OF_TRIANGLE]) THEN
      REWRITE_TAC[UNION_ACI; SEGMENT_SYM];
      ASM_SIMP_TAC[REVERSEPATH_JOINPATHS; PATHSTART_JOIN; PATHFINISH_JOIN;
           PATHSTART_LINEPATH; PATHFINISH_LINEPATH; REVERSEPATH_LINEPATH] THEN
      RULE_ASSUM_TAC(REWRITE_RULE
        [INTERIOR_OF_TRIANGLE; IN_DIFF; IN_UNION; DE_MORGAN_THM]) THEN
      ASM_SIMP_TAC[WINDING_NUMBER_JOIN; PATH_JOIN; PATH_LINEPATH;
          PATH_IMAGE_JOIN; IN_UNION; PATHSTART_JOIN; PATHFINISH_JOIN;
          PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_IMAGE_LINEPATH] THEN
      CONV_TAC COMPLEX_RING;
      DISCH_THEN SUBST_ALL_TAC THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [COMPLEX_NORM_CX]) THEN
      REAL_ARITH_TAC]) in
  let lemma2 = prove
   (`!p a d e.
          &0 < d /\ &0 < e /\
          simple_path(p ++ linepath(a - d % basis 1,a + e % basis 1)) /\
          pathstart p = a + e % basis 1 /\ pathfinish p = a - d % basis 1
          ==> ?z. z IN inside(path_image
                         (p ++ linepath(a - d % basis 1,a + e % basis 1))) /\
                  norm(winding_number
                   (p ++ linepath(a - d % basis 1,a + e % basis 1),z)) = &1`,
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL
     [`p:real^1->complex`; `linepath(a - d % basis 1,a + e % basis 1)`]
     SIMPLE_PATH_JOIN_LOOP_EQ) THEN
    ASM_REWRITE_TAC[PATHFINISH_LINEPATH; PATHSTART_LINEPATH] THEN
    REWRITE_TAC[ARC_LINEPATH_EQ; PATH_IMAGE_LINEPATH] THEN STRIP_TAC THEN
    SUBGOAL_THEN `~((a:complex) IN path_image p)` ASSUME_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
       `p INTER s SUBSET {d,e}
        ==> a IN s /\ ~(d = a) /\ ~(e = a) ==> ~(a IN p)`)) THEN
      REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
      REWRITE_TAC[NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e)`;
        NORM_ARITH `dist(a - d:complex,a) + dist(a,a + e) = norm(d) + norm(e)`;
        VECTOR_ARITH `a + e:complex = a <=> e = vec 0`;
        VECTOR_ARITH `a - d:complex = a <=> d = vec 0`] THEN
      SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; NORM_MUL; VECTOR_MUL_EQ_0] THEN
      ASM_SIMP_TAC[BASIS_NONZERO; NORM_BASIS; DIMINDEX_2; ARITH] THEN
      ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    MP_TAC(ISPEC `(:complex) DIFF path_image p` OPEN_CONTAINS_BALL) THEN
    ASM_SIMP_TAC[GSYM closed; CLOSED_ARC_IMAGE; IN_UNIV; IN_DIFF] THEN
    DISCH_THEN(MP_TAC o SPEC `a:complex`) THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[SET_RULE `s SUBSET UNIV DIFF t <=> s INTER t = {}`] THEN
    DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
    ABBREV_TAC `kde:real = min k (min d e) / &2` THEN
    SUBGOAL_THEN `&0 < kde /\ kde < k /\ kde < d /\ kde < e`
    STRIP_ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    MP_TAC(ISPECL
     [`linepath(a + kde % basis 1,a + e % basis 1) ++ p ++
       linepath(a - d % basis 1,a - kde % basis 1)`;
      `a:complex`; `kde:real`] lemma1) THEN
    ASM_SIMP_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; PATH_IMAGE_JOIN;
      PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_IMAGE_LINEPATH;
      SIMPLE_PATH_JOIN_LOOP_EQ] THEN
    ANTS_TAC THENL
     [REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC ARC_JOIN THEN
        ASM_SIMP_TAC[ARC_JOIN_EQ; PATHSTART_LINEPATH; PATHFINISH_LINEPATH;
                     PATHSTART_JOIN; PATHFINISH_JOIN; PATH_IMAGE_LINEPATH;
                     ARC_LINEPATH_EQ; PATH_IMAGE_JOIN] THEN
        REWRITE_TAC[VECTOR_ARITH `a + e:complex = a + d <=> e - d = vec 0`;
                  VECTOR_ARITH `a - d:complex = a - e <=> e - d = vec 0`] THEN
        REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB; VECTOR_MUL_EQ_0; REAL_SUB_0] THEN
        ASM_SIMP_TAC[BASIS_NONZERO; NORM_BASIS; DIMINDEX_2; ARITH] THEN
        ASM_SIMP_TAC[REAL_LT_IMP_NE] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
         `p INTER de SUBSET {e,d}
          ==> dk SUBSET de /\ ke SUBSET de /\ ~(e IN dk) /\ ~(d IN ke) /\
              ke INTER dk = {}
          ==> p INTER dk SUBSET {d} /\ ke INTER (p UNION dk) SUBSET {e}`)) THEN
        REWRITE_TAC[SUBSET_SEGMENT; ENDS_IN_SEGMENT] THEN
        REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
        REWRITE_TAC[NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e) /\
                                dist(a + d,a - e) = norm(d + e) /\
                                dist(a - d,a - e) = norm(d - e) /\
                                dist(a + d,a + e) = norm(d - e)`] THEN
        REWRITE_TAC[GSYM VECTOR_ADD_RDISTRIB; GSYM VECTOR_SUB_RDISTRIB] THEN
        ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
        REPEAT(CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN
        REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY] THEN
        MATCH_MP_TAC(MESON[REAL_LT_ANTISYM]
         `!a:complex. (!x. x IN t ==> x$1 < a$1) /\ (!x. x IN s ==> a$1 < x$1)
                      ==> !x. ~(x IN s /\ x IN t)`) THEN
        EXISTS_TAC `a:complex` THEN
        SIMP_TAC[IN_SEGMENT; LEFT_IMP_EXISTS_THM] THEN
        SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_ADD_COMPONENT;
                 VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN
        REWRITE_TAC[REAL_ARITH
         `(a < (&1 - u) * (a + x) + u * (a + y) <=>
           &0 < (&1 - u) * x + u * y) /\
          ((&1 - u) * (a - x) + u * (a - y) < a <=>
           &0 < (&1 - u) * x + u * y)`] THEN
        REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_MUL_RID] THEN
        REWRITE_TAC[REAL_ARITH `&0 < (&1 - u) * x + u * y <=>
                                (&1 - u) * --x + u * --y < &0`] THEN
        MATCH_MP_TAC REAL_CONVEX_BOUND_LT THEN ASM_REAL_ARITH_TAC;
        REWRITE_TAC[ARC_LINEPATH_EQ; VECTOR_MUL_EQ_0;
                    VECTOR_ARITH `a - k:complex = a + k <=> k = vec 0`] THEN
        ASM_SIMP_TAC[REAL_LT_IMP_NZ; BASIS_NONZERO; DIMINDEX_2; ARITH];
        MATCH_MP_TAC(SET_RULE
          `kk INTER p = {} /\ kk INTER ke = {kp} /\ dk INTER kk = {kn}
           ==> (ke UNION p UNION dk) INTER kk SUBSET {kp,kn}`) THEN
        CONJ_TAC THENL
         [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
           `b INTER p = {} ==> s SUBSET b ==> s INTER p = {}`)) THEN
          SIMP_TAC[SUBSET; IN_SEGMENT; IN_BALL; LEFT_IMP_EXISTS_THM] THEN
          REWRITE_TAC[VECTOR_ARITH
            `(&1 - u) % (a - d) + u % (a + d):complex = a - (&1 - &2 * u) % d`;
           NORM_ARITH `dist(a:complex,a - d) = norm d`] THEN
          REPEAT STRIP_TAC THEN
          SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
          MATCH_MP_TAC(REAL_ARITH
           `&0 < kd /\ a * kd <= &1 * kd /\ kd < k
            ==> a * abs kd * &1 < k`) THEN
          ASM_SIMP_TAC[REAL_LE_RMUL_EQ] THEN ASM_REAL_ARITH_TAC;
          CONJ_TAC THEN MATCH_MP_TAC INTER_SEGMENT THEN DISJ1_TAC THEN
          REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
          REWRITE_TAC[NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e) /\
                                  dist(a + d,a - e) = norm(d + e) /\
                                  dist(a - d,a - e) = norm(d - e) /\
                                  dist(a + d,a + e) = norm(d - e)`] THEN
          REWRITE_TAC[GSYM VECTOR_ADD_RDISTRIB; GSYM VECTOR_SUB_RDISTRIB] THEN
          ASM_SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
          ASM_REAL_ARITH_TAC];
        REWRITE_TAC[UNION_OVER_INTER; EMPTY_UNION] THEN
        ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN CONJ_TAC THENL
         [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
           `b INTER p = {} ==> c SUBSET b ==> c INTER p = {}`)) THEN
          MATCH_MP_TAC SUBSET_BALL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE];
          ALL_TAC] THEN
        REWRITE_TAC[SET_RULE `s INTER t = {} <=>
                              !x. x IN t ==> ~(x IN s)`] THEN
        SIMP_TAC[IN_SEGMENT; LEFT_IMP_EXISTS_THM; IN_BALL] THEN
        REWRITE_TAC[VECTOR_ARITH
        `(&1 - u) % (a - d) + u % (a - e):complex =
         a - ((&1 - u) % d + u % e) /\
         (&1 - u) % (a + d) + u % (a + e):complex =
         a + ((&1 - u) % d + u % e)`;
        NORM_ARITH
         `dist(a:complex,a + d) = norm d /\ dist(a,a - e) = norm e`] THEN
        REWRITE_TAC[VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_RDISTRIB] THEN
        SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
        REWRITE_TAC[REAL_NOT_LT; REAL_MUL_RID] THEN REPEAT STRIP_TAC THEN
        MATCH_MP_TAC(REAL_ARITH `x <= y ==> x <= abs y`) THEN
        REWRITE_TAC[REAL_ARITH
         `(k <= (&1 - u) * k + u * e <=> &0 <= u * (e - k)) /\
          (k <= (&1 - u) * d + u * k <=> &0 <= (&1 - u) * (d - k))`] THEN
        MATCH_MP_TAC REAL_LE_MUL THEN ASM_REAL_ARITH_TAC];
      ALL_TAC] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:complex` THEN
    MATCH_MP_TAC(TAUT
     `(p <=> p') /\ (p /\ p' ==> (q <=> q')) ==> p /\ q ==> p' /\ q'`) THEN
    CONJ_TAC THENL
     [AP_TERM_TAC THEN AP_TERM_TAC THEN
      ONCE_REWRITE_TAC[SET_RULE
       `(c UNION p UNION a) UNION b = p UNION (a UNION b UNION c)`] THEN
      AP_TERM_TAC THEN
      W(MP_TAC o PART_MATCH (lhand o rand) UNION_SEGMENT o
         rand o lhand o snd) THEN
      REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between;
                  NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e)`;
                  NORM_ARITH `dist(a + d:complex,a + e) = norm(d - e)`] THEN
      ASM_SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; GSYM VECTOR_SUB_RDISTRIB;
                   NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
      ANTS_TAC THENL [ASM_REAL_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN
      MATCH_MP_TAC UNION_SEGMENT THEN
      REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between;
                  NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e)`;
                  NORM_ARITH `dist(a - d:complex,a - e) = norm(d - e)`] THEN
      ASM_SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; GSYM VECTOR_SUB_RDISTRIB;
                   NORM_MUL; NORM_BASIS; DIMINDEX_2; ARITH] THEN
      ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    DISCH_THEN(CONJUNCTS_THEN (MP_TAC o MATCH_MP
     (MESON[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY]
       `z IN inside s ==> ~(z IN s)`))) THEN
    REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN REPEAT STRIP_TAC THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
    ASM_SIMP_TAC[WINDING_NUMBER_JOIN; PATH_JOIN; ARC_IMP_PATH; PATH_LINEPATH;
      PATH_IMAGE_JOIN; IN_UNION; PATH_IMAGE_LINEPATH; PATHSTART_JOIN;
      PATHFINISH_JOIN; PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
    MATCH_MP_TAC(COMPLEX_RING
     `d + k + e:complex = z ==> (e + p + d) + k = p + z`) THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC
     `winding_number(linepath (a - d % basis 1:complex,a - kde % basis 1),z) +
      winding_number(linepath (a - kde % basis 1,a + e % basis 1),z)` THEN
    CONJ_TAC THENL [AP_TERM_TAC; ALL_TAC] THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC WINDING_NUMBER_SPLIT_LINEPATH THEN
    ASM_REWRITE_TAC[] THENL
     [CONJ_TAC THENL
       [ALL_TAC;
        SUBGOAL_THEN
         `~(z IN segment[a - kde % basis 1:complex,a + kde % basis 1]) /\
          ~(z IN segment[a + kde % basis 1,a + e % basis 1])`
        MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
        MATCH_MP_TAC(SET_RULE
         `s UNION t = u ==> ~(z IN s) /\ ~(z IN t) ==> ~(z IN u)`) THEN
        MATCH_MP_TAC UNION_SEGMENT];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
    REWRITE_TAC[NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e)`;
                NORM_ARITH `dist(a - d:complex,a - e) = norm(d - e)`;
                NORM_ARITH `dist(a + d:complex,a + e) = norm(d - e)`] THEN
    ASM_SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; GSYM VECTOR_SUB_RDISTRIB; NORM_MUL;
                   NORM_BASIS; DIMINDEX_2; ARITH] THEN
    ASM_REAL_ARITH_TAC) in
  let lemma3 = prove
   (`!p:real^1->complex.
          simple_path p /\ pathfinish p = pathstart p
          ==> ?z. z IN inside(path_image p) /\ norm(winding_number(p,z)) = &1`,
    GEN_TAC THEN STRIP_TAC THEN
    MP_TAC(ISPEC `p:real^1->complex` JORDAN_INSIDE_OUTSIDE) THEN
    ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
    UNDISCH_TAC `~(inside(path_image p):complex->bool = {})` THEN
    REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
    DISCH_THEN(X_CHOOSE_TAC `a:complex`) THEN
    MP_TAC(ISPECL [`inside(path_image p):complex->bool`;
                   `a:complex`; `basis 1:complex`]
          RAY_TO_FRONTIER) THEN
    MP_TAC(ISPECL [`inside(path_image p):complex->bool`;
                   `a:complex`; `--basis 1:complex`]
          RAY_TO_FRONTIER) THEN
    ASM_SIMP_TAC[INTERIOR_OPEN; VECTOR_NEG_EQ_0; BASIS_NONZERO;
                 DIMINDEX_2; ARITH] THEN
    REWRITE_TAC[VECTOR_ARITH `a + d % --b:complex = a - d % b`] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN
     `?t. t IN interval[vec 0,vec 1] /\
          (p:real^1->complex) t = a - d % basis 1`
    STRIP_ASSUME_TAC THENL
     [RULE_ASSUM_TAC(REWRITE_RULE[path_image; IN_IMAGE]) THEN
      ASM_MESON_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `?q. simple_path q /\
          pathstart q:complex = a - d % basis 1 /\
          pathfinish q = a - d % basis 1 /\
          path_image q = path_image p /\
          (!z. z IN inside(path_image p)
               ==> winding_number(q,z) = winding_number(p,z))`
    MP_TAC THENL
     [EXISTS_TAC `shiftpath t (p:real^1->complex)` THEN
      FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
      ASM_SIMP_TAC[PATHSTART_SHIFTPATH; PATHFINISH_SHIFTPATH; DROP_VEC;
                   SIMPLE_PATH_SHIFTPATH; PATH_IMAGE_SHIFTPATH] THEN
      REPEAT STRIP_TAC THEN MATCH_MP_TAC WINDING_NUMBER_SHIFTPATH THEN
      ASM_SIMP_TAC[SIMPLE_PATH_IMP_PATH] THEN
      ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY];
      DISCH_THEN(X_CHOOSE_THEN `q:real^1->complex` MP_TAC) THEN
      REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
      REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
      SUBGOAL_THEN
       `?z. z IN inside(path_image q) /\ norm(winding_number(q,z)) = &1`
       (fun th -> MESON_TAC[th]) THEN
      POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev o
          filter (fun tm -> not(free_in `t:real^1` (concl tm) or
                                free_in `p:real^1->complex` (concl tm)))) THEN
      STRIP_TAC] THEN
    SUBGOAL_THEN
     `?t. t IN interval[vec 0,vec 1] /\
          (q:real^1->complex) t = a + e % basis 1`
    STRIP_ASSUME_TAC THENL
     [RULE_ASSUM_TAC(REWRITE_RULE[path_image; IN_IMAGE]) THEN
      ASM_MESON_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN `~(a - d % basis 1:complex = a + e % basis 1)`
    ASSUME_TAC THENL
     [REWRITE_TAC[VECTOR_ARITH
       `a - d % l:complex = a + e % l <=> (e + d) % l = vec 0`] THEN
      SIMP_TAC[VECTOR_MUL_EQ_0; BASIS_NONZERO; DIMINDEX_2; ARITH] THEN
      ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN
      `path_image q INTER segment[a - d % basis 1,a + e % basis 1] =
       {a - d % basis 1:complex,a + e % basis 1}`
    ASSUME_TAC THENL
     [REWRITE_TAC[SEGMENT_CLOSED_OPEN] THEN
      MATCH_MP_TAC(SET_RULE
       `a IN p /\ b IN p /\ p INTER s = {}
        ==> p INTER (s UNION {a,b}) = {a,b}`) THEN
      CONJ_TAC THENL [ASM_MESON_TAC[PATHSTART_IN_PATH_IMAGE]; ALL_TAC] THEN
      CONJ_TAC THENL [ASM_MESON_TAC[path_image; IN_IMAGE]; ALL_TAC] THEN
      ASM_SIMP_TAC[PATH_IMAGE_SUBPATH_SUBSET; SIMPLE_PATH_IMP_PATH;
                   ENDS_IN_UNIT_INTERVAL] THEN
      REWRITE_TAC[SET_RULE `s INTER t = {} <=> !x. x IN t ==> ~(x IN s)`] THEN
      REWRITE_TAC[IN_SEGMENT; VECTOR_ARITH
       `(&1 - u) % (a - d % l) + u % (a + e % l):complex =
         a + (u * e - (&1 - u) * d) % l`] THEN
      X_GEN_TAC `y:complex` THEN
      DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC o CONJUNCT2) THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON
       [INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY]
       `x IN inside s ==> ~(x IN s)`) THEN
      ASM_CASES_TAC `&0 <= k * e - (&1 - k) * d` THENL
       [ALL_TAC;
        ONCE_REWRITE_TAC[VECTOR_ARITH
         `a + (s - t) % l:complex = a - (t - s) % l`]] THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_SIMP_TAC[REAL_ARITH `~(&0 <= a - b) ==> &0 <= b - a`] THEN
      REWRITE_TAC[REAL_ARITH `k * e - (&1 - k) * d < e <=>
                              &0 < (&1 - k) * (d + e)`] THEN
      REWRITE_TAC[REAL_ARITH `(&1 - k) * d - k * e < d <=>
                              &0 < k * (d + e)`] THEN
      MATCH_MP_TAC REAL_LT_MUL THEN ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    MP_TAC(ISPECL
     [`subpath t (vec 0) (q:real^1->complex)`;
      `a:complex`; `d:real`; `e:real`] lemma2) THEN
    ASM_SIMP_TAC[PATHSTART_SUBPATH; PATHFINISH_SUBPATH;
                 PATH_IMAGE_JOIN; PATHSTART_LINEPATH] THEN
    ANTS_TAC THENL
     [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[pathstart]] THEN
      MATCH_MP_TAC SIMPLE_PATH_JOIN_LOOP THEN
      ASM_REWRITE_TAC[PATHSTART_SUBPATH; PATHFINISH_SUBPATH;
                      PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
      ASM_REWRITE_TAC[ARC_LINEPATH_EQ] THEN REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC ARC_SIMPLE_PATH_SUBPATH THEN
        RULE_ASSUM_TAC(REWRITE_RULE[pathstart]) THEN
        ASM_REWRITE_TAC[ENDS_IN_UNIT_INTERVAL];
        RULE_ASSUM_TAC(REWRITE_RULE[pathstart]) THEN ASM_REWRITE_TAC[];
        REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
         `p INTER s = {a,b} ==> p' SUBSET p ==> p' INTER s SUBSET {b,a}`)) THEN
        ASM_SIMP_TAC[PATH_IMAGE_SUBPATH_SUBSET; SIMPLE_PATH_IMP_PATH;
                     ENDS_IN_UNIT_INTERVAL]];
      DISCH_THEN(X_CHOOSE_THEN `z:complex` STRIP_ASSUME_TAC)] THEN
    MP_TAC(ISPECL
     [`subpath (vec 0) t (q:real^1->complex)`;
      `subpath (vec 1) t (q:real^1->complex)`;
      `linepath(a - d % basis 1:complex,a + e % basis 1)`;
      `a - d % basis 1:complex`; `a + e % basis 1:complex`;
      `z:complex`;
      `--winding_number
          (subpath t (vec 0) q ++
           linepath (a - d % basis 1,a + e % basis 1),z)`]
      WINDING_NUMBER_FROM_INNERPATH) THEN
    ASM_REWRITE_TAC[PATHSTART_SUBPATH; PATHFINISH_SUBPATH;
                    PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
    REWRITE_TAC[REVERSEPATH_SUBPATH; REVERSEPATH_LINEPATH] THEN
    SUBGOAL_THEN
     `path_image (subpath (vec 0) t q) UNION
      path_image (subpath (vec 1) t q) :complex->bool =
      path_image q`
    SUBST1_TAC THENL
     [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
      SIMP_TAC[DROP_VEC; PATH_IMAGE_SUBPATH] THEN
      ONCE_REWRITE_TAC[GSYM PATH_IMAGE_REVERSEPATH] THEN
      REWRITE_TAC[REVERSEPATH_SUBPATH] THEN
      SIMP_TAC[DROP_VEC; PATH_IMAGE_SUBPATH] THEN STRIP_TAC THEN
      REWRITE_TAC[GSYM IMAGE_UNION; PATH_IMAGE_REVERSEPATH] THEN
      SUBGOAL_THEN `interval[vec 0:real^1,t] UNION interval[t,vec 1] =
                    interval[vec 0,vec 1]`
        (fun th -> ASM_REWRITE_TAC[th; GSYM path_image]) THEN
      REWRITE_TAC[EXTENSION; IN_UNION; IN_INTERVAL_1; DROP_VEC] THEN
      ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    ANTS_TAC THENL
     [RULE_ASSUM_TAC(REWRITE_RULE[pathstart; pathfinish]) THEN
      REPLICATE_TAC 2 (ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
       [MATCH_MP_TAC SIMPLE_PATH_SUBPATH THEN
        ASM_REWRITE_TAC[ENDS_IN_UNIT_INTERVAL] THEN ASM_MESON_TAC[];
        ALL_TAC]) THEN
      ASM_REWRITE_TAC[SIMPLE_PATH_LINEPATH_EQ; PATH_IMAGE_LINEPATH] THEN
      REPEAT CONJ_TAC THENL
       [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
        SIMP_TAC[DROP_VEC; PATH_IMAGE_SUBPATH] THEN
        ONCE_REWRITE_TAC[GSYM PATH_IMAGE_REVERSEPATH] THEN
        REWRITE_TAC[REVERSEPATH_SUBPATH] THEN
        SIMP_TAC[DROP_VEC; PATH_IMAGE_SUBPATH] THEN STRIP_TAC THEN
        MATCH_MP_TAC(SET_RULE
          `a IN s /\ a IN t /\ b IN s /\ b IN t /\
           (!x. x IN s ==> !y. y IN t ==> x = y ==> x = a \/ x = b)
           ==> s INTER t = {a,b}`) THEN
        REPEAT CONJ_TAC THENL
         [REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `vec 0:real^1` THEN
          ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN
          ASM_REAL_ARITH_TAC;
          REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `vec 1:real^1` THEN
          ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN
          ASM_REAL_ARITH_TAC;
          REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `t:real^1` THEN
          ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN
          ASM_REAL_ARITH_TAC;
          REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `t:real^1` THEN
          ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN
          ASM_REAL_ARITH_TAC;
          ALL_TAC] THEN
        REWRITE_TAC[FORALL_IN_IMAGE; IN_INTERVAL_1; DROP_VEC] THEN
        X_GEN_TAC `s:real^1` THEN STRIP_TAC THEN
        X_GEN_TAC `u:real^1` THEN STRIP_TAC THEN DISCH_TAC THEN
        FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [simple_path]) THEN
        DISCH_THEN(MP_TAC o SPECL [`s:real^1`; `u:real^1`] o CONJUNCT2) THEN
        ASM_REWRITE_TAC[IN_INTERVAL_1; DROP_VEC] THEN
        ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
        DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN
          (REPEAT_TCL CONJUNCTS_THEN SUBST_ALL_TAC)) THEN
        ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `drop u = drop t` MP_TAC THENL
         [ASM_REAL_ARITH_TAC; ASM_MESON_TAC[DROP_EQ]];
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
         `p INTER s = {a,b}
          ==> a IN q /\ b IN q /\ q SUBSET p ==> q INTER s = {a,b}`)) THEN
        ASM_SIMP_TAC[PATH_IMAGE_SUBPATH_SUBSET; SIMPLE_PATH_IMP_PATH;
                     ENDS_IN_UNIT_INTERVAL] THEN
        FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
        SIMP_TAC[DROP_VEC; PATH_IMAGE_SUBPATH] THEN STRIP_TAC THEN
        REWRITE_TAC[IN_IMAGE] THEN CONJ_TAC THENL
         [EXISTS_TAC `vec 0:real^1`; EXISTS_TAC `t:real^1`] THEN
        ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN
        ASM_REAL_ARITH_TAC;
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
         `p INTER s = {a,b}
          ==> a IN q /\ b IN q /\ q SUBSET p ==> q INTER s = {a,b}`)) THEN
        ASM_SIMP_TAC[PATH_IMAGE_SUBPATH_SUBSET; SIMPLE_PATH_IMP_PATH;
                     ENDS_IN_UNIT_INTERVAL] THEN
        ONCE_REWRITE_TAC[GSYM PATH_IMAGE_REVERSEPATH] THEN
        REWRITE_TAC[REVERSEPATH_SUBPATH] THEN
        FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN
        SIMP_TAC[DROP_VEC; PATH_IMAGE_SUBPATH] THEN STRIP_TAC THEN
        REWRITE_TAC[IN_IMAGE] THEN CONJ_TAC THENL
         [EXISTS_TAC `vec 1:real^1`; EXISTS_TAC `t:real^1`] THEN
        ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_EQ_EMPTY_1; DROP_VEC] THEN
        ASM_REAL_ARITH_TAC;
        REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_INTER] THEN
        EXISTS_TAC `a:complex` THEN
        ASM_REWRITE_TAC[GSYM BETWEEN_IN_SEGMENT; between] THEN
        REWRITE_TAC[NORM_ARITH `dist(a - d:complex,a + e) = norm(d + e)`;
              NORM_ARITH `dist(a - d:complex,a) = norm(d)`;
              NORM_ARITH `dist(a:complex,a + e) = norm e`] THEN
        ASM_SIMP_TAC[GSYM VECTOR_ADD_RDISTRIB; NORM_MUL;
                 NORM_BASIS; DIMINDEX_2; ARITH] THEN
        ASM_REAL_ARITH_TAC;
        ONCE_REWRITE_TAC[GSYM PATH_IMAGE_REVERSEPATH] THEN
        RULE_ASSUM_TAC(REWRITE_RULE[PATH_IMAGE_LINEPATH]) THEN
        ASM_REWRITE_TAC[REVERSEPATH_SUBPATH];
        W(MP_TAC o PART_MATCH (rand o rand) WINDING_NUMBER_REVERSEPATH o
          rand o snd) THEN
        ANTS_TAC THENL
         [ASM_SIMP_TAC[PATH_JOIN_EQ; PATH_IMAGE_JOIN; PATH_LINEPATH;
            SIMPLE_PATH_IMP_PATH; PATHSTART_LINEPATH; PATHFINISH_SUBPATH;
            PATH_SUBPATH; ENDS_IN_UNIT_INTERVAL] THEN
          ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY];
          DISCH_THEN(SUBST1_TAC o SYM) THEN
          ASM_SIMP_TAC[REVERSEPATH_JOINPATHS; REVERSEPATH_LINEPATH;
                       REVERSEPATH_SUBPATH; PATHFINISH_SUBPATH;
                       PATHSTART_LINEPATH] THEN
          MATCH_MP_TAC(MESON[COMPLEX_ADD_SYM]
           `winding_number(g ++ h,z) =
            winding_number(g,z) + winding_number(h,z) /\
            winding_number(h ++ g,z) =
            winding_number(h,z) + winding_number(g,z)
            ==> winding_number(g ++ h,z) =winding_number(h ++ g,z)`) THEN
          CONJ_TAC THEN MATCH_MP_TAC WINDING_NUMBER_JOIN THEN
          ASM_SIMP_TAC[PATH_LINEPATH; PATH_SUBPATH; PATH_SUBPATH;
                       SIMPLE_PATH_IMP_PATH; ENDS_IN_UNIT_INTERVAL;
                       PATHSTART_LINEPATH; PATHFINISH_LINEPATH;
                       PATHSTART_SUBPATH; PATHFINISH_SUBPATH]
          THENL [ALL_TAC; ONCE_REWRITE_TAC[CONJ_SYM]] THEN
          REWRITE_TAC[SET_RULE
           `~(z IN s) /\ ~(z IN t) <=> ~(z IN s UNION t)`] THEN
          ONCE_REWRITE_TAC[GSYM PATH_IMAGE_REVERSEPATH] THEN
          REWRITE_TAC[REVERSEPATH_LINEPATH; REVERSEPATH_SUBPATH] THEN
          ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY]];
        REWRITE_TAC[COMPLEX_NEG_EQ_0] THEN DISCH_THEN SUBST_ALL_TAC THEN
        RULE_ASSUM_TAC(REWRITE_RULE
         [COMPLEX_NORM_CX; REAL_OF_NUM_EQ; REAL_ABS_NUM; ARITH]) THEN
        FIRST_X_ASSUM CONTR_TAC];
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
      ONCE_REWRITE_TAC[COMPLEX_RING `a:complex = --b <=> --a = b`] THEN
      DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
      RULE_ASSUM_TAC(REWRITE_RULE[NORM_NEG])] THEN
    EXISTS_TAC `z:complex` THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN
     `winding_number(subpath (vec 0) t q ++ subpath t (vec 1) q,z) =
      winding_number(subpath (vec 0) (vec 1) q,z)`
     (fun th -> ASM_MESON_TAC[th; SUBPATH_TRIVIAL]) THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `winding_number(subpath (vec 0) t q,z) +
                winding_number(subpath t (vec 1) q,z)` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC WINDING_NUMBER_JOIN THEN
      ASM_SIMP_TAC[PATH_SUBPATH; ENDS_IN_UNIT_INTERVAL; SIMPLE_PATH_IMP_PATH;
                   PATHSTART_SUBPATH; PATHFINISH_SUBPATH] THEN
      SUBGOAL_THEN `~((z:complex) IN path_image q)` MP_TAC THENL
       [ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY];
        MATCH_MP_TAC(SET_RULE
          `s1 SUBSET s /\ s2 SUBSET s
           ==> ~(z IN s) ==> ~(z IN s1) /\ ~(z IN s2)`) THEN
        ASM_SIMP_TAC[PATH_IMAGE_SUBPATH_SUBSET; ENDS_IN_UNIT_INTERVAL;
                  SIMPLE_PATH_IMP_PATH]];
      MATCH_MP_TAC WINDING_NUMBER_SUBPATH_COMBINE THEN
      ASM_REWRITE_TAC[ENDS_IN_INTERVAL; GSYM IN_INTERVAL_1] THEN
      ASM_SIMP_TAC[UNIT_INTERVAL_NONEMPTY; SIMPLE_PATH_IMP_PATH] THEN
      ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY]]) in
  GEN_TAC THEN DISCH_TAC THEN
  ASM_CASES_TAC `pathfinish g:complex = pathstart g` THENL
   [ALL_TAC; ASM_MESON_TAC[INSIDE_SIMPLE_CURVE_IMP_CLOSED]] THEN
  MATCH_MP_TAC(MESON[]
   `(?k. !z. z IN s ==> f z = k) /\
    (?z. z IN s /\ (f z = a \/ f z = b))
    ==> (!z. z IN s ==> f z = a) \/ (!z. z IN s ==> f z = b)`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC WINDING_NUMBER_CONSTANT THEN
    ASM_SIMP_TAC[INSIDE_NO_OVERLAP; SIMPLE_PATH_IMP_PATH] THEN
    ASM_SIMP_TAC[JORDAN_INSIDE_OUTSIDE];
    MP_TAC(SPEC `g:real^1->complex` lemma3) THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:complex` THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN
    MP_TAC(ISPECL [`g:real^1->complex`; `z:complex`]
      INTEGER_WINDING_NUMBER) THEN
    ANTS_TAC THENL
     [ASM_SIMP_TAC[SIMPLE_PATH_IMP_PATH] THEN
      ASM_MESON_TAC[INSIDE_NO_OVERLAP; IN_INTER; NOT_IN_EMPTY];
      SIMP_TAC[complex_integer; COMPLEX_EQ; IM_NEG; IM_CX] THEN
      SIMP_TAC[GSYM real; REAL_NORM; RE_NEG; RE_CX] THEN REAL_ARITH_TAC]]);;  
 
(* ------------------------------------------------------------------------- *)
(* Partial circle path.                                                      *)
(* ------------------------------------------------------------------------- *)
let HAS_PATH_INTEGRAL_BOUND_PARTCIRCLEPATH_STRONG = prove
 (`!f i z r s t B k.
        
FINITE k /\
        (f 
has_path_integral i) (partcirclepath(z,r,s,t)) /\
        &0 <= B /\ &0 < r /\ s <= t /\
        (!x. x 
IN path_image(partcirclepath(z,r,s,t)) 
DIFF k
             ==> norm(f x) <= B)
        ==> norm(i) <= B * r * (t - s)`,
  let lemma1 = prove
   (`!b w. FINITE {z | norm(z) <= b /\ cexp(z) = w}`,
    REPEAT GEN_TAC THEN ASM_CASES_TAC `w = Cx(&0)` THEN
    ASM_REWRITE_TAC[CEXP_NZ; SET_RULE `{x | F} = {}`; FINITE_RULES] THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP CEXP_CLOG) THEN
    REWRITE_TAC[CEXP_EQ] THEN
    REWRITE_TAC[SET_RULE
     `{z | P z /\ ?n. Q n /\ z = f n} = IMAGE f {n | Q n /\ P(f n)}`] THEN
    MATCH_MP_TAC FINITE_IMAGE THEN
    MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `{n | integer n /\
                     norm(Cx(&2 * n * pi) * ii) <= b + norm(clog w)}` THEN
    CONJ_TAC THENL
     [ALL_TAC; SIMP_TAC[SUBSET; IN_ELIM_THM] THEN NORM_ARITH_TAC] THEN
    REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX; COMPLEX_NORM_II] THEN
    REWRITE_TAC[REAL_MUL_RID; REAL_ABS_MUL; REAL_ABS_NUM; REAL_ABS_PI] THEN
    ASM_SIMP_TAC[REAL_MUL_ASSOC; GSYM REAL_LE_RDIV_EQ; PI_POS] THEN
    REWRITE_TAC[REAL_ARITH `&2 * x <= a <=> x <= a / &2`] THEN
    REWRITE_TAC[GSYM REAL_BOUNDS_LE; FINITE_INTSEG]) in
  let lemma2 = prove
   (`!a b. ~(a = Cx(&0)) ==> FINITE {z | norm(z) <= b /\ cexp(a * z) = w}`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC
     `IMAGE (\z. z / a) {z | norm(z) <= b * norm(a) /\ cexp(z) = w}` THEN
    SIMP_TAC[lemma1; FINITE_IMAGE] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
    ASM_SIMP_TAC[COMPLEX_FIELD `~(a = Cx(&0)) ==> (x = y / a <=> a * x = y)`;
                 UNWIND_THM1; COMPLEX_NORM_MUL; REAL_LE_LMUL; NORM_POS_LE]) in
  REPEAT GEN_TAC THEN REWRITE_TAC[HAS_PATH_INTEGRAL] THEN STRIP_TAC THEN
  MP_TAC(ASSUME `s <= t`) THEN GEN_REWRITE_TAC LAND_CONV [REAL_LE_LT] THEN
  STRIP_TAC THENL
   [ALL_TAC;
    FIRST_X_ASSUM SUBST_ALL_TAC THEN
    REPEAT(POP_ASSUM MP_TAC) THEN
    REWRITE_TAC[VECTOR_DERIVATIVE_PARTCIRCLEPATH] THEN
    REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN
    SIMP_TAC[GSYM COMPLEX_VEC_0; HAS_INTEGRAL_0_EQ; NORM_0] THEN
    REAL_ARITH_TAC] THEN
  GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
  REWRITE_TAC[GSYM CONTENT_UNIT_1] THEN MATCH_MP_TAC HAS_INTEGRAL_BOUND THEN
  EXISTS_TAC `\x. if (partcirclepath(z,r,s,t) x) IN k then Cx(&0)
                  else f(partcirclepath(z,r,s,t) x) *
                       vector_derivative (partcirclepath(z,r,s,t)) (at x)` THEN
  ASM_SIMP_TAC[] THEN CONJ_TAC THENL
   [ASM_MESON_TAC[REAL_LE_MUL; REAL_POS; REAL_LT_IMP_LE; REAL_SUB_LE];
    ALL_TAC] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC HAS_INTEGRAL_SPIKE THEN
    EXISTS_TAC `\x. f(partcirclepath(z,r,s,t) x) *
                    vector_derivative (partcirclepath(z,r,s,t)) (at x)` THEN
    EXISTS_TAC `{x | x IN interval[vec 0,vec 1] /\
                     (partcirclepath(z,r,s,t) x) IN k}` THEN
    ASM_SIMP_TAC[IN_DIFF; IN_ELIM_THM; IMP_CONJ] THEN
    MATCH_MP_TAC NEGLIGIBLE_FINITE THEN
    MATCH_MP_TAC FINITE_FINITE_PREIMAGE_GENERAL THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `y:complex` THEN DISCH_TAC THEN
    REWRITE_TAC[partcirclepath] THEN
    ASM_SIMP_TAC[CX_INJ; REAL_LT_IMP_NZ; COMPLEX_FIELD
     `~(r = Cx(&0)) ==> (z + r * e = y <=> e = (y - z) / r)`] THEN
    REWRITE_TAC[linepath; COMPLEX_CMUL] THEN
    REWRITE_TAC[GSYM CX_MUL; GSYM CX_ADD] THEN
    REWRITE_TAC[REAL_ARITH `(&1 - t) * x + t * y = x + t * (y - x)`] THEN
    REWRITE_TAC[CX_ADD; COMPLEX_ADD_LDISTRIB; CEXP_ADD] THEN
    SIMP_TAC[CEXP_NZ; COMPLEX_FIELD
     `~(e = Cx(&0)) ==> (e * x = y <=> x = y / e)`] THEN
    ABBREV_TAC `w = (y - z) / Cx r / cexp(ii * Cx s)` THEN
    REWRITE_TAC[CX_MUL; COMPLEX_RING
     `ii * Cx x * Cx(t - s) = (ii * Cx(t - s)) * Cx x`] THEN
    MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC
     `{x | Cx(drop x) IN
           {z | norm(z) <= &1 /\ cexp((ii * Cx(t - s)) * z) = w}}` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_IMAGE_INJ THEN REWRITE_TAC[CX_INJ; DROP_EQ] THEN
      MATCH_MP_TAC lemma2 THEN
      REWRITE_TAC[COMPLEX_RING `ii * x = Cx(&0) <=> x = Cx(&0)`] THEN
      ASM_SIMP_TAC[CX_INJ; REAL_SUB_0; REAL_LT_IMP_NE];
      SIMP_TAC[SUBSET; IN_ELIM_THM; IN_INTERVAL_1; DROP_VEC] THEN
      SIMP_TAC[COMPLEX_NORM_CX] THEN REAL_ARITH_TAC];
    ALL_TAC] THEN
  X_GEN_TAC `x:real^1` THEN DISCH_TAC THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[COMPLEX_NORM_0] THEN
  ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LE] THEN
  REWRITE_TAC[VECTOR_DERIVATIVE_PARTCIRCLEPATH] THEN
  REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX; COMPLEX_NORM_II] THEN
  REWRITE_TAC[REAL_ABS_NUM; REAL_MUL_LID] THEN
  REWRITE_TAC[NORM_CEXP; RE_MUL_II; IM_LINEPATH_CX] THEN
  REWRITE_TAC[REAL_EXP_0; REAL_NEG_0; REAL_MUL_RID] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL
   [FIRST_X_ASSUM MATCH_MP_TAC THEN
    REWRITE_TAC[path_image] THEN ASM SET_TAC[];
    ALL_TAC] THEN
  SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; REAL_ABS_POS] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN
  ASM_SIMP_TAC[NORM_POS_LE; GSYM CX_SUB; COMPLEX_NORM_CX] THEN
  ASM_REAL_ARITH_TAC);;  
 
let ARC_PARTCIRCLEPATH = prove
 (`!z r s t. ~(r = &0) /\ ~(s = t) /\ abs(s - t) < &2 * pi
             ==> arc(partcirclepath(z,r,s,t))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[arc; 
PATH_PARTCIRCLEPATH] THEN
  REWRITE_TAC[partcirclepath] THEN
  SIMP_TAC[COMPLEX_RING `z + r * x = z + r * y <=> r * (x - y) = Cx(&0)`] THEN
  ASM_REWRITE_TAC[
COMPLEX_ENTIRE; 
CX_INJ] THEN
  REWRITE_TAC[
COMPLEX_SUB_0; 
CEXP_EQ] THEN
  REWRITE_TAC[COMPLEX_RING
   `ii * x = ii * y + z * ii <=> ii * (x - (y + z)) = Cx(&0)`] THEN
  REWRITE_TAC[
COMPLEX_ENTIRE; 
II_NZ; 
LINEPATH_CX] THEN
  REWRITE_TAC[GSYM 
CX_SUB; GSYM 
CX_ADD; 
CX_INJ] THEN
  REWRITE_TAC[REAL_ARITH
   `((&1 - x) * s + x * t) - (((&1 - y) * s + y * t) + z) = &0 <=>
    (x - y) * (t - s) = z`] THEN
  REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `n:real` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  ASM_CASES_TAC `n = &0` THEN
  ASM_REWRITE_TAC[
REAL_MUL_LZERO; 
REAL_MUL_RZERO; 
REAL_ENTIRE; 
REAL_SUB_0;
                  
DROP_EQ] THEN
  MP_TAC(SPEC `n:real` 
REAL_ABS_INTEGER_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  MATCH_MP_TAC(REAL_ARITH `abs x < abs y ==> ~(x = y)`) THEN
  REWRITE_TAC[
REAL_ABS_MUL; 
REAL_ABS_NUM; 
REAL_ABS_PI] THEN
  MATCH_MP_TAC 
REAL_LTE_TRANS THEN EXISTS_TAC `&1 * &2 * pi` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[REAL_ARITH `&2 * n * pi = n * &2 * pi`] THEN
    MATCH_MP_TAC 
REAL_LE_RMUL THEN ASM_REWRITE_TAC[] THEN
    MP_TAC 
PI_POS THEN REAL_ARITH_TAC] THEN
  MATCH_MP_TAC 
REAL_LET_TRANS THEN EXISTS_TAC `&1 * abs(t - s)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    ASM_REWRITE_TAC[REAL_MUL_LID] THEN ASM_MESON_TAC[
REAL_ABS_SUB]] THEN
  MATCH_MP_TAC 
REAL_LE_RMUL THEN REWRITE_TAC[
REAL_ABS_POS] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_INTERVAL_1])) THEN
  REWRITE_TAC[
DROP_VEC] THEN REAL_ARITH_TAC);;
 
 
(* ------------------------------------------------------------------------- *)
(* Special case of one complete circle.                                      *)
(* ------------------------------------------------------------------------- *)
let CIRCLEPATH = prove
 (`circlepath(z,r) = \x. z + Cx(r) * cexp(Cx(&2) * Cx pi * ii * Cx(drop x))`,
 
 
(* ------------------------------------------------------------------------- *)
(* Hence the Cauchy formula for points inside a circle.                      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Uniform convergence of path integral when the derivative of the path is   *)
(* bounded, and in particular for the special case of a circle.              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* General stepping result for derivative formulas.                          *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* In particular, the first derivative formula.                              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Existence of all higher derivatives.                                      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Morera's theorem.                                                         *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Combining theorems for higher derivatives including Leibniz rule.         *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Nonexistence of isolated singularities and a stronger integral formula.   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Formula for higher derivatives.                                           *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A holomorphic function is analytic, i.e. has local power series.          *)
(* ------------------------------------------------------------------------- *)
let HOLOMORPHIC_POWER_SERIES = prove
 (`!f z w r.
     f 
holomorphic_on ball(z,r) /\ w 
IN ball(z,r)
     ==> ((\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) * (w - z) pow n)
          sums f(w)) (from 0)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `?r. &0 < r /\ f 
holomorphic_on cball(z,r) /\ w 
IN ball(z,r)`
  MP_TAC THENL
   [EXISTS_TAC `(r + dist(w:complex,z)) / &2` THEN REPEAT CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
      EXISTS_TAC `ball(z:complex,r)` THEN ASM_REWRITE_TAC[
SUBSET];
      ALL_TAC] THEN
    UNDISCH_TAC `(w:complex) 
IN ball(z,r)` THEN
    REWRITE_TAC[
IN_BALL; 
IN_CBALL] THEN NORM_ARITH_TAC;
    ALL_TAC] THEN
  POP_ASSUM_LIST(K ALL_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `f 
holomorphic_on ball(z,r) /\ f 
continuous_on cball(z,r)`
  STRIP_ASSUME_TAC THENL
   [ASM_SIMP_TAC[
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON] THEN
    MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN ASM_MESON_TAC[
BALL_SUBSET_CBALL];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `((\k. 
path_integral (circlepath(z,r)) (\u. f u / (u - z) pow (k + 1)) *
          (w - z) pow k)
     sums 
path_integral (circlepath(z,r)) (\u. f u / (u - w))) (from 0)`
  MP_TAC THENL
   [ALL_TAC;
    DISCH_THEN(MP_TAC o SPEC `inv(Cx(&2) * Cx(pi) * ii)` o
        MATCH_MP 
SERIES_COMPLEX_LMUL) THEN
    MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN BINOP_TAC THENL
     [REWRITE_TAC[
FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN
      MP_TAC(SPECL [`f:complex->complex`; `z:complex`; `r:real`; `k:num`;
       `z:complex`] 
CAUCHY_HAS_PATH_INTEGRAL_HIGHER_DERIVATIVE_CIRCLEPATH) THEN
      ASM_REWRITE_TAC[
CENTRE_IN_BALL] THEN
      DISCH_THEN(SUBST1_TAC o MATCH_MP 
PATH_INTEGRAL_UNIQUE) THEN
      MATCH_MP_TAC(COMPLEX_FIELD
       `~(pit = Cx(&0)) /\ ~(fact = Cx(&0))
        ==> inv(pit) * ((pit / fact) * d) * wz = d / fact * wz`) THEN
      REWRITE_TAC[
CX_2PII_NZ; 
CX_INJ; REAL_OF_NUM_EQ; 
FACT_NZ];
      MP_TAC(SPECL [`f:complex->complex`; `z:complex`; `r:real`; `w:complex`]
        
CAUCHY_INTEGRAL_CIRCLEPATH_SIMPLE) THEN
      ASM_REWRITE_TAC[] THEN
      DISCH_THEN(SUBST1_TAC o MATCH_MP 
PATH_INTEGRAL_UNIQUE) THEN
      MATCH_MP_TAC(COMPLEX_FIELD
       `~(x * y * z = Cx(&0)) ==> inv(x * y * z) * x * y * z * w = w`) THEN
      REWRITE_TAC[
CX_2PII_NZ]]] THEN
  REWRITE_TAC[sums; 
FROM_0; 
INTER_UNIV] THEN
  MATCH_MP_TAC 
LIM_TRANSFORM_EVENTUALLY THEN
  EXISTS_TAC `\n. 
path_integral (circlepath(z,r))
                   (\u. vsum (0..n)
                         (\k. f u * (w - z) pow k / (u - z) pow (k + 1)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC 
ALWAYS_EVENTUALLY THEN
    X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN
    W(MP_TAC o PART_MATCH (lhs o rand) 
PATH_INTEGRAL_VSUM o lhand o snd) THEN
    ANTS_TAC THENL
     [REWRITE_TAC[
FINITE_NUMSEG] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
      ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH
       `a * b / c:complex = b * a / c`] THEN
      MATCH_MP_TAC 
PATH_INTEGRABLE_COMPLEX_LMUL THEN
      ASM_SIMP_TAC[
CAUCHY_HIGHER_DERIVATIVE_INTEGRAL_CIRCLEPATH;
                   
CENTRE_IN_BALL];
      ALL_TAC] THEN
    DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC 
VSUM_EQ THEN
    X_GEN_TAC `m:num` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
    ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `a * b / c:complex = a / c * b`] THEN
    MATCH_MP_TAC 
PATH_INTEGRAL_COMPLEX_RMUL THEN
    ASM_SIMP_TAC[
CAUCHY_HIGHER_DERIVATIVE_INTEGRAL_CIRCLEPATH; 
CENTRE_IN_BALL];
    ALL_TAC] THEN
  MATCH_MP_TAC(CONJUNCT2
   (REWRITE_RULE[
FORALL_AND_THM; TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`]
        
PATH_INTEGRAL_UNIFORM_LIMIT_CIRCLEPATH)) THEN
  ASM_REWRITE_TAC[
TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL
   [MATCH_MP_TAC 
ALWAYS_EVENTUALLY THEN
    X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC 
PATH_INTEGRABLE_VSUM THEN
    REWRITE_TAC[
FINITE_NUMSEG] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
    ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `a * b / c:complex = b * a / c`] THEN
    MATCH_MP_TAC 
PATH_INTEGRABLE_COMPLEX_LMUL THEN
    ASM_SIMP_TAC[
CAUCHY_HIGHER_DERIVATIVE_INTEGRAL_CIRCLEPATH; 
CENTRE_IN_BALL];
    ALL_TAC] THEN
  X_GEN_TAC `e:real` THEN STRIP_TAC THEN
  ASM_SIMP_TAC[
PATH_IMAGE_CIRCLEPATH; 
REAL_LT_IMP_LE; 
IN_ELIM_THM] THEN
  SIMP_TAC[
VSUM_COMPLEX_LMUL; 
FINITE_NUMSEG; 
complex_div] THEN
  REWRITE_TAC[GSYM 
COMPLEX_SUB_LDISTRIB; 
COMPLEX_NORM_MUL] THEN
  REWRITE_TAC[
COMPLEX_POW_ADD; 
COMPLEX_INV_MUL; 
COMPLEX_POW_1] THEN
  SIMP_TAC[
COMPLEX_MUL_ASSOC; 
VSUM_COMPLEX_RMUL; 
FINITE_NUMSEG] THEN
  REWRITE_TAC[GSYM 
complex_div; GSYM 
COMPLEX_POW_DIV] THEN
  REWRITE_TAC[
VSUM_GP; CONJUNCT1 
LT; CONJUNCT1 
complex_pow] THEN
  REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY] THEN
  SUBGOAL_THEN
   `?B. &0 < B /\
        !u:complex. u 
IN cball(z,r) ==> norm(f u:complex) <= B`
  STRIP_ASSUME_TAC THENL
   [MP_TAC(ISPEC `
IMAGE (f:complex->complex) (cball(z,r))`
      
COMPACT_IMP_BOUNDED) THEN
    ASM_SIMP_TAC[
COMPACT_CONTINUOUS_IMAGE; 
COMPACT_CBALL] THEN
    REWRITE_TAC[
BOUNDED_POS; 
FORALL_IN_IMAGE];
    ALL_TAC] THEN
  SUBGOAL_THEN `?k. &0 < k /\ k <= r /\ norm(w - z) <= r - k /\
                    !u. norm(u - z) = r ==> k <= norm(u - w)`
  STRIP_ASSUME_TAC THENL
   [EXISTS_TAC `r - dist(z:complex,w)` THEN
    REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[
IN_BALL] THEN
    NORM_ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[
IN_SPHERE; NORM_ARITH `dist(z,x) = r <=> norm(x - z) = r`] THEN
  MP_TAC(SPECL [`(r - k) / r:real`; `e / B * k:real`] 
REAL_ARCH_POW_INV) THEN
  ASM_SIMP_TAC[
REAL_LT_LDIV_EQ; 
REAL_LT_DIV; 
REAL_HALF; 
REAL_LT_MUL] THEN
  ASM_REWRITE_TAC[REAL_ARITH `r - k < &1 * r <=> &0 < k`] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  X_GEN_TAC `u:complex` THEN DISCH_TAC THEN
  SUBGOAL_THEN `~(u:complex = z) /\ ~(u = w)` STRIP_ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_BALL]) THEN
    MAP_EVERY UNDISCH_TAC [`&0 < r`; `norm(u - z:complex) = r`] THEN
    NORM_ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[COMPLEX_FIELD
   `~(u = z) /\ ~(u = w) ==> ~((w - z) / (u - z) = Cx(&1))`] THEN
  ASM_SIMP_TAC[COMPLEX_FIELD
   `~(u = z) /\ ~(u = w)
    ==> x / (Cx(&1) - (w - z) / (u - z)) / (u - z) = x / (u - w)`] THEN
  ASM_SIMP_TAC[COMPLEX_FIELD
   `~(u = w)
    ==> (Cx(&1) - e) / (u - w) - inv(u - w) = --(e / (u - w))`] THEN
  REWRITE_TAC[
COMPLEX_NORM_DIV; 
NORM_NEG; 
COMPLEX_NORM_POW] THEN
  MATCH_MP_TAC 
REAL_LET_TRANS THEN
  EXISTS_TAC `B * ((r - k) / r) pow N / k:real` THEN CONJ_TAC THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    ASM_SIMP_TAC[GSYM 
REAL_LT_RDIV_EQ; 
REAL_LT_LDIV_EQ]] THEN
  MATCH_MP_TAC 
REAL_LE_MUL2 THEN ASM_SIMP_TAC[
NORM_POS_LE] THEN
  REPEAT CONJ_TAC THENL
   [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[
IN_CBALL] THEN
    ONCE_REWRITE_TAC[
DIST_SYM] THEN ASM_REWRITE_TAC[dist; 
REAL_LE_REFL];
    MATCH_MP_TAC 
REAL_LE_DIV THEN REWRITE_TAC[
NORM_POS_LE] THEN
    MATCH_MP_TAC 
REAL_POW_LE THEN MATCH_MP_TAC 
REAL_LE_DIV THEN
    ASM_SIMP_TAC[
REAL_LT_IMP_LE; 
NORM_POS_LE];
    ALL_TAC] THEN
  REWRITE_TAC[
real_div] THEN MATCH_MP_TAC 
REAL_LE_MUL2 THEN
  REWRITE_TAC[GSYM 
real_div] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC 
REAL_POW_LE THEN MATCH_MP_TAC 
REAL_LE_DIV THEN
    ASM_SIMP_TAC[
REAL_LT_IMP_LE; 
NORM_POS_LE];
    ALL_TAC;
    REWRITE_TAC[
REAL_LE_INV_EQ; 
NORM_POS_LE];
    MATCH_MP_TAC 
REAL_LE_INV2 THEN ASM_SIMP_TAC[]] THEN
  MATCH_MP_TAC 
REAL_LE_TRANS THEN
  EXISTS_TAC `((r - k) / r:real) pow (SUC n)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC 
REAL_POW_LE2 THEN
    ASM_SIMP_TAC[
REAL_LE_DIV2_EQ; 
REAL_LE_DIV; 
NORM_POS_LE; 
REAL_LT_IMP_LE];
    MATCH_MP_TAC 
REAL_POW_MONO_INV THEN
    ASM_SIMP_TAC[
REAL_LE_RDIV_EQ; 
REAL_LE_LDIV_EQ] THEN
    ASM_SIMP_TAC[ARITH_RULE `N <= n ==> N <= SUC n`] THEN
    ASM_REAL_ARITH_TAC]);;
 
 
(* ------------------------------------------------------------------------- *)
(* These weak Liouville versions don't even need the derivative formula.     *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* In particular we get the Fundamental Theorem of Algebra.                  *)
(* ------------------------------------------------------------------------- *)
let FTA = prove
 (`!a n. a(0) = Cx(&0) \/ ~(!k. k 
IN 1..n ==> a(k) = Cx(&0))
         ==> ?z. vsum(0..n) (\i. a(i) * z pow i) = Cx(&0)`,
 
 
(* ------------------------------------------------------------------------- *)
(* Weierstrass convergence theorem.                                          *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Version showing that the limit is the limit of the derivatives.           *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Some more simple/convenient versions for applications.                    *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A one-stop shop for an analytic function defined by a series.             *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A version where we only have local uniform/comparative convergence.       *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Sometimes convenient to compare with a complex series of +ve reals.       *)
(* ------------------------------------------------------------------------- *)
let SERIES_AND_DERIVATIVE_COMPARISON_COMPLEX = prove
 (`!f f' s k.
     open s /\
     (!n x. n 
IN k /\ x 
IN s ==> (f n 
has_complex_derivative f' n x) (at x)) /\
     (!x. x 
IN s
          ==> ?d h N. &0 < d /\ summable k h /\
                      (!n. n 
IN k ==> real(h n) /\ &0 <= Re(h n)) /\
                      (!n y. N <= n /\ n 
IN k /\ y 
IN ball(x,d)
                             ==> norm(f n y) <= norm(h n)))
     ==> ?g g'. !x. x 
IN s
                    ==> ((\n. f n x) sums g x) k /\
                        ((\n. f' n x) sums g' x) k /\
                        (g 
has_complex_derivative g' x) (at x)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC 
SERIES_AND_DERIVATIVE_COMPARISON_LOCAL THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:complex` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC 
MONO_EXISTS THEN
  X_GEN_TAC `d:real` THEN ONCE_REWRITE_TAC[
SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
  DISCH_THEN(X_CHOOSE_THEN `h:num->complex` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\n. norm((h:num->complex) n)` THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [summable]) THEN
  DISCH_THEN(X_CHOOSE_THEN `l:complex` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `lift(Re l)` THEN MATCH_MP_TAC 
SUMS_EQ THEN
  EXISTS_TAC `\i:num. lift(Re(h i))` THEN
  ASM_SIMP_TAC[
REAL_NORM_POS; 
o_DEF] THEN
  REWRITE_TAC[
RE_DEF] THEN MATCH_MP_TAC 
SERIES_COMPONENT THEN
  ASM_REWRITE_TAC[DIMINDEX_2; ARITH]);;
 
 
(* ------------------------------------------------------------------------- *)
(* In particular, a power series is analytic inside circle of convergence.   *)
(* ------------------------------------------------------------------------- *)
let POWER_SERIES_AND_DERIVATIVE = prove
 (`!k a r w.
        summable k (\n. a(n) * Cx(r) pow n)
        ==> ?g g'.
             !z. z 
IN ball(w,r)
                 ==> ((\n. a(n) * (z - w) pow n) sums g(z)) k /\
                     ((\n. Cx(&n) * a(n) * (z - w) pow (n - 1)) sums g'(z)) k /\
                     (g 
has_complex_derivative g' z) (at z)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
POWER_SERIES_AND_DERIVATIVE_0) THEN
  REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`g:complex->complex`; `g':complex->complex`] THEN
  DISCH_TAC THEN
  EXISTS_TAC `(\z. g(z - w)):complex->complex` THEN
  EXISTS_TAC `(\z. g'(z - w)):complex->complex` THEN
  REWRITE_TAC[
IN_BALL; dist] THEN X_GEN_TAC `z:complex` THEN
  DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z - w:complex`) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[
NORM_SUB]; ALL_TAC] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM 
o_DEF] THEN
  GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [GSYM 
COMPLEX_MUL_RID] THEN
  MATCH_MP_TAC 
COMPLEX_DIFF_CHAIN_AT THEN ASM_REWRITE_TAC[] THEN
  COMPLEX_DIFF_TAC THEN REWRITE_TAC[
COMPLEX_SUB_RZERO]);;
 
 
let POWER_SERIES_HOLOMORPHIC = prove
 (`!a k f z r. (!w. w 
IN ball(z,r) ==> ((\n. a(n) * (w - z) pow n) sums f w) k)
               ==> f 
holomorphic_on ball(z,r)`,
  REPEAT STRIP_TAC THEN SIMP_TAC[
HOLOMORPHIC_ON_OPEN; 
OPEN_BALL] THEN
  X_GEN_TAC `w:complex` THEN REWRITE_TAC[
IN_BALL; dist] THEN DISCH_TAC THEN
  MP_TAC(ISPECL [`k:num->bool`; `a:num->complex`;
                 `(norm(z - w:complex) + r) / &2`; `z:complex`]
                
POWER_SERIES_AND_DERIVATIVE) THEN
  ANTS_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o SPEC `z + Cx((norm(z - w) + r) / &2)`) THEN
    REWRITE_TAC[
IN_BALL; dist; COMPLEX_RING `(z + w) - z:complex = w`;
                NORM_ARITH `norm(z - (z + w)) = norm w`; summable] THEN
    ANTS_TAC THENL [REWRITE_TAC[
COMPLEX_NORM_CX]; MESON_TAC[]] THEN
    POP_ASSUM MP_TAC THEN NORM_ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `g':complex->complex` (LABEL_TAC "*")) THEN
  EXISTS_TAC `(g':complex->complex) w` THEN
  MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_TRANSFORM_AT THEN
  MAP_EVERY EXISTS_TAC
   [`g:complex->complex`; `(r - norm(z - w:complex)) / &2`] THEN
  REPEAT CONJ_TAC THENL
   [UNDISCH_TAC `norm(z - w:complex) < r` THEN NORM_ARITH_TAC;
    ALL_TAC;
    REMOVE_THEN "*" (MP_TAC o SPEC `w:complex`) THEN ANTS_TAC THENL
     [ALL_TAC; SIMP_TAC[]] THEN REWRITE_TAC[
IN_BALL] THEN
    UNDISCH_TAC `norm(z - w:complex) < r` THEN NORM_ARITH_TAC] THEN
  X_GEN_TAC `u:complex` THEN REWRITE_TAC[dist] THEN DISCH_TAC THEN
  MATCH_MP_TAC 
SERIES_UNIQUE THEN
  EXISTS_TAC `(\n. a(n) * (u - z) pow n):num->complex` THEN
  EXISTS_TAC `k:num->bool` THEN CONJ_TAC THENL
   [REMOVE_THEN "*" (MP_TAC o SPEC `u:complex`) THEN
    ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]];
    FIRST_X_ASSUM MATCH_MP_TAC] THEN
  REWRITE_TAC[
IN_BALL] THEN ASM_NORM_ARITH_TAC);;
 
 
(* ------------------------------------------------------------------------- *)
(* Taylor series for arctan. So we can do term-by-term integration of        *)
(* geometric series, this ends up quite late in the development.             *)
(* ------------------------------------------------------------------------- *)
let CATAN_CONVERGS = prove
 (`!z. norm(z) < &1
       ==> ((\n. --(Cx(&1)) pow n / Cx(&(2 * n + 1)) * z pow (2 * n + 1))
            sums catn(z)) (from 0)`,
 
 
let TAYLOR_CATN = prove
 (`!n z. norm(z) < &1
          ==> norm(catn z -
                   vsum(0..n) (\k. --(Cx(&1)) pow k / Cx(&(2 * k + 1)) *
                                   z pow (2 * k + 1)))
              <= norm(z) pow (2 * n + 3) /
                 ((&2 * &n + &3) * (&1 - norm z pow 2))`,
 
 
(* ------------------------------------------------------------------------- *)
(* Taylor series for log. It's this late because we can more easily get      *)
(* a good error bound given the convergence of the series.                   *)
(* ------------------------------------------------------------------------- *)
let CLOG_CONVERGES = prove
 (`!z. norm(z) < &1
       ==> ((\n. --Cx(&1) pow (n + 1) * z pow n / Cx(&n)) sums clog(Cx(&1) + z))
           (from 1)`,
 
 
let TAYLOR_CLOG = prove
 (`!n z. norm(z) < &1
         ==> norm(clog(Cx(&1) + z) -
                  vsum(1..n) (\k. --Cx(&1) pow (k + 1) * z pow k / Cx(&k)))
             <= norm z pow (n + 1) / (&1 - norm z)`,
 
 
let TAYLOR_CLOG_NEG = prove
 (`!n z. norm(z) < &1
         ==> norm(clog(Cx(&1) - z) + vsum(1..n) (\k. z pow k / Cx(&k)))
              <= norm z pow (n + 1) / (&1 - norm z)`,
 
 
(* ------------------------------------------------------------------------- *)
(* The classical limit for e and other useful limits.                        *)
(* ------------------------------------------------------------------------- *)
let CEXP_LIMIT = prove
 (`!z. ((\n. (Cx(&1) + z / Cx(&n)) pow n) --> cexp(z)) sequentially`,
 
 
let LIM_N_MUL_SUB_CLOG = prove
 (`!w z. ((\n. Cx(&n) * (clog(Cx(&n) + w) - clog(Cx(&n) + z))) --> w - z)
         sequentially`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `w:complex = z` THEN
  ASM_REWRITE_TAC[
COMPLEX_SUB_REFL; 
LIM_CONST; 
COMPLEX_MUL_RZERO] THEN
  MATCH_MP_TAC 
LIM_TRANSFORM_EVENTUALLY THEN
  EXISTS_TAC `\n. (Cx(&n) + z) / (Cx(&1) + z / Cx(&n)) *
                  clog(Cx(&1) + (w - z) / (Cx(&n) + z))` THEN
  REWRITE_TAC[] THEN CONJ_TAC THENL
   [REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY] THEN
    MP_TAC(SPEC `max (norm(w:complex)) (norm(z:complex)) + &1`
     
REAL_ARCH_SIMPLE) THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN
    X_GEN_TAC `n:num` THEN DISCH_TAC THEN
    SUBGOAL_THEN `&0 < Re(Cx(&n) + w) /\ &0 < Re(Cx(&n) + z)` MP_TAC THENL
     [REWRITE_TAC[
RE_ADD; 
RE_CX] THEN
      RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN CONJ_TAC THEN
      MATCH_MP_TAC(REAL_ARITH
       `norm z < n /\ abs(Re z) <= norm z ==> &0 < n + Re z`) THEN
      REWRITE_TAC[
COMPLEX_NORM_GE_RE_IM] THEN ASM_REAL_ARITH_TAC;
      MAP_EVERY ASM_CASES_TAC
       [`Cx(&n) + w = Cx(&0)`; `Cx(&n) + z = Cx(&0)`] THEN
      ASM_REWRITE_TAC[
RE_CX; 
REAL_LT_REFL] THEN STRIP_TAC] THEN
    SUBGOAL_THEN `~(Cx(&n) = Cx(&0))` ASSUME_TAC THENL
     [REWRITE_TAC[
CX_INJ; REAL_OF_NUM_EQ] THEN DISCH_THEN SUBST_ALL_TAC THEN
      UNDISCH_TAC `max (norm(w:complex)) (norm (z:complex)) + &1 <= &N` THEN
      RULE_ASSUM_TAC(REWRITE_RULE[CONJUNCT1 
LE]) THEN
      ASM_REWRITE_TAC[] THEN CONV_TAC NORM_ARITH;
      ASM_SIMP_TAC[COMPLEX_FIELD
       `~(n + z = Cx(&0)) /\ ~(n = Cx(&0))
        ==> (n + z) / (Cx(&1) + z / n) = n`] THEN
      AP_TERM_TAC THEN ASM_SIMP_TAC[COMPLEX_FIELD
       `~(n + z = Cx(&0))
        ==> Cx(&1) + (w - z) / (n + z) = (n + w) / (n + z)`] THEN
      REWRITE_TAC[
complex_div] THEN IMP_REWRITE_TAC[
CLOG_MUL_SIMPLE] THEN
      ASM_REWRITE_TAC[
COMPLEX_INV_EQ_0] THEN ASM_SIMP_TAC[
CLOG_INV] THEN
      CONJ_TAC THENL [CONV_TAC COMPLEX_RING; REWRITE_TAC[
IM_NEG]] THEN
      MATCH_MP_TAC(REAL_ARITH
       `abs(x) < pi / &2 /\ abs(y) < pi / &2
        ==> --pi < x + --y /\ x + --y <= pi`) THEN
      ASM_SIMP_TAC[
RE_CLOG_POS_LT]];
    REWRITE_TAC[SIMPLE_COMPLEX_ARITH `a / b * c:complex = inv b * a * c`] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM 
COMPLEX_MUL_LID] THEN
    MATCH_MP_TAC 
LIM_COMPLEX_MUL THEN CONJ_TAC THENL
     [GEN_REWRITE_TAC LAND_CONV [GSYM 
COMPLEX_INV_1] THEN
      MATCH_MP_TAC 
LIM_COMPLEX_INV THEN
      CONJ_TAC THENL [ALL_TAC; CONV_TAC COMPLEX_RING] THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM 
COMPLEX_ADD_RID] THEN
      MATCH_MP_TAC 
LIM_ADD THEN REWRITE_TAC[
LIM_CONST; 
complex_div] THEN
      SIMP_TAC[
LIM_NULL_COMPLEX_LMUL; 
LIM_INV_N];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `(\n. (Cx(&n) + z) * clog (Cx(&1) + (w - z) / (Cx(&n) + z))) =
      (\x. (w - z) * clog(Cx(&1) + x) / x) o (\n. (w - z) / (Cx(&n) + z))`
    SUBST1_TAC THENL
     [REWRITE_TAC[
FUN_EQ_THM; 
o_THM; 
complex_div] THEN
      REWRITE_TAC[
COMPLEX_INV_MUL; 
COMPLEX_INV_INV] THEN
      POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD;
      ALL_TAC] THEN
    MATCH_MP_TAC 
LIM_COMPOSE_AT THEN EXISTS_TAC `Cx(&0)` THEN
    REPEAT CONJ_TAC THENL
     [REWRITE_TAC[
complex_div] THEN
      SIMP_TAC[
LIM_INV_N_OFFSET; 
LIM_NULL_COMPLEX_LMUL];
      REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY] THEN
      MP_TAC(SPEC `norm(z:complex) + &1` 
REAL_ARCH_SIMPLE) THEN
      MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN
      REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN X_GEN_TAC `n:num` THEN
      STRIP_TAC THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN
      ASM_REWRITE_TAC[
COMPLEX_DIV_EQ_0; 
COMPLEX_SUB_0] THEN
      REWRITE_TAC[COMPLEX_RING `n + z = Cx(&0) <=> z = --n`] THEN
      DISCH_TAC THEN UNDISCH_TAC `norm(z:complex) + &1 <= &N` THEN
      ASM_REWRITE_TAC[
NORM_NEG; 
COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC;
      GEN_REWRITE_TAC LAND_CONV [GSYM 
COMPLEX_MUL_RID] THEN              
      SIMP_TAC[
LIM_COMPLEX_LMUL; 
LIM_LOGPLUS1_OVER_X]]]);;
 
                      
let LIM_SUB_CLOG = prove                                              
 (`!w z. ((\n. clog(Cx(&n) + w) - clog(Cx(&n) + z)) --> Cx(&0)) sequentially`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC 
LIM_TRANSFORM_EVENTUALLY THEN
  SUBST1_TAC(COMPLEX_RING `Cx(&0) = Cx(&0) * (w - z)`) THEN EXISTS_TAC
   `\n. inv(Cx(&n)) * Cx(&n) * (clog(Cx(&n) + w) - clog(Cx(&n) + z))` THEN
  CONJ_TAC THENL                             
   [REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN
    REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; GSYM REAL_OF_NUM_EQ] THEN
    REWRITE_TAC[GSYM 
CX_INJ] THEN CONV_TAC COMPLEX_FIELD;              
    MATCH_MP_TAC 
LIM_COMPLEX_MUL THEN    
    REWRITE_TAC[
LIM_INV_N; 
LIM_N_MUL_SUB_CLOG]]);;
 
                         
                                     
(* ------------------------------------------------------------------------- *)
(* Equality between holomorphic functions, on open ball then connected set.  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Some basic lemmas about poles/singularities.                              *)
(* ------------------------------------------------------------------------- *)
let POLE_THEOREM = prove
 (`!f g s a.
        g 
holomorphic_on s /\ a 
IN interior(s) /\
        (!z. z 
IN s /\ ~(z = a) ==> g(z) = (z - a) * f(z))
        ==> (\z. if z = a then 
complex_derivative g a
                 else f(z) - g(a) / (z - a)) 
holomorphic_on s`,
  REPEAT GEN_TAC THEN REWRITE_TAC[
CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
POLE_LEMMA) THEN
  MATCH_MP_TAC(REWRITE_RULE[
IMP_CONJ] 
HOLOMORPHIC_TRANSFORM) THEN
  X_GEN_TAC `z:complex` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `z:complex` o last o CONJUNCTS) THEN
  ASM_REWRITE_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN
  CONV_TAC COMPLEX_FIELD);;
 
 
let POLE_THEOREM_OPEN = prove
 (`!f g s a.
        open s /\ g 
holomorphic_on s /\
        (!z. z 
IN s /\ ~(z = a) ==> g(z) = (z - a) * f(z))
        ==> (\z. if z = a then 
complex_derivative g a
                 else f(z) - g(a) / (z - a)) 
holomorphic_on s`,
  REPEAT GEN_TAC THEN REWRITE_TAC[
CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP 
POLE_LEMMA_OPEN) THEN
  MATCH_MP_TAC(REWRITE_RULE[
IMP_CONJ] 
HOLOMORPHIC_TRANSFORM) THEN
  X_GEN_TAC `z:complex` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `z:complex` o last o CONJUNCTS) THEN
  ASM_REWRITE_TAC[] THEN REPEAT(POP_ASSUM MP_TAC) THEN
  CONV_TAC COMPLEX_FIELD);;
 
 
let HOLOMORPHIC_ON_EXTEND_LIM,HOLOMORPHIC_ON_EXTEND_BOUNDED =
 (CONJ_PAIR o prove)
 (`(!f a s.
      f holomorphic_on (s DELETE a) /\ a IN interior s
      ==> ((?g. g holomorphic_on s /\ (!z. z IN s DELETE a ==> g z = f z)) <=>
           ((\z. (z - a) * f(z)) --> Cx(&0)) (at a))) /\
   (!f a s.
      f holomorphic_on (s DELETE a) /\ a IN interior s
      ==> ((?g. g holomorphic_on s /\ (!z. z IN s DELETE a ==> g z = f z)) <=>
           (?B. eventually (\z. norm(f z) <= B) (at a))))`,
  REWRITE_TAC[AND_FORALL_THM] THEN
  REWRITE_TAC[TAUT `(p ==> q) /\ (p ==> r) <=> (p ==> q /\ r)`] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT
   `(p ==> r) /\ (r ==> q) /\ (q ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(X_CHOOSE_THEN `g:complex->complex`
     (CONJUNCTS_THEN2
       (MP_TAC o MATCH_MP HOLOMORPHIC_ON_IMP_CONTINUOUS_ON) ASSUME_TAC)) THEN
    DISCH_THEN(MP_TAC o SPEC `interior s:complex->bool` o
     MATCH_MP(REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN
    REWRITE_TAC[INTERIOR_SUBSET; CONTINUOUS_ON] THEN
    DISCH_THEN(MP_TAC o SPEC `a:complex`) THEN
    ASM_SIMP_TAC[LIM_WITHIN_OPEN; OPEN_INTERIOR; tendsto] THEN
    DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01] THEN
    DISCH_THEN(fun th -> EXISTS_TAC `norm((g:complex->complex) a) + &1` THEN
                         MP_TAC th) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN
    FIRST_ASSUM(fun th ->
     REWRITE_TAC[GSYM(MATCH_MP EVENTUALLY_WITHIN_INTERIOR th)]) THEN
    ASM_SIMP_TAC[EVENTUALLY_WITHIN; GSYM DIST_NZ] THEN
    EXISTS_TAC `&1` THEN CONV_TAC NORM_ARITH;
    DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
    MATCH_MP_TAC LIM_NULL_COMPLEX_RMUL_BOUNDED THEN EXISTS_TAC `B:real` THEN
    SUBST1_TAC(COMPLEX_RING `Cx(&0) = a - a`) THEN
    SIMP_TAC[LIM_AT_ID; LIM_CONST; LIM_SUB] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT]
        EVENTUALLY_MONO)) THEN
    SIMP_TAC[];
    DISCH_TAC THEN ABBREV_TAC `h = \z. (z - a) pow 2 * f z` THEN
    SUBGOAL_THEN `(h has_complex_derivative Cx(&0)) (at a)` ASSUME_TAC THENL
     [EXPAND_TAC "h" THEN REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_AT] THEN
      MATCH_MP_TAC LIM_TRANSFORM_AT THEN
      MAP_EVERY EXISTS_TAC [`\z:complex. (z - a) * f z`; `&1`] THEN
      ASM_SIMP_TAC[REAL_LT_01; GSYM DIST_NZ] THEN CONV_TAC COMPLEX_FIELD;
      ALL_TAC] THEN
    SUBGOAL_THEN `h holomorphic_on s` ASSUME_TAC THENL
     [REWRITE_TAC[holomorphic_on; GSYM complex_differentiable] THEN
      X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
      ASM_CASES_TAC `z:complex = a` THENL
       [ASM_MESON_TAC[complex_differentiable; COMPLEX_DIFFERENTIABLE_AT_WITHIN];
        ALL_TAC] THEN
      EXPAND_TAC "h" THEN MATCH_MP_TAC COMPLEX_DIFFERENTIABLE_MUL_WITHIN THEN
      CONJ_TAC THENL [COMPLEX_DIFFERENTIABLE_TAC; ALL_TAC] THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [holomorphic_on]) THEN
      DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN
      ASM_REWRITE_TAC[IN_DELETE; complex_differentiable] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:complex` THEN
      REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_WITHIN] THEN
      MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC LIM_TRANSFORM_WITHIN_SET THEN
      REWRITE_TAC[EVENTUALLY_AT] THEN EXISTS_TAC `dist(a:complex,z)` THEN
      ASM_REWRITE_TAC[IN_DELETE; NORM_ARITH `&0 < dist(a,b) <=> ~(a = b)`] THEN
      MESON_TAC[REAL_LT_REFL];
      MP_TAC(SPECL [`h:complex->complex`; `s:complex->bool`; `a:complex`]
            POLE_LEMMA) THEN ASM_REWRITE_TAC[] THEN
      ABBREV_TAC
       `g = \z. if z = a then complex_derivative h a
                else (h z - h a) / (z - a)` THEN
      DISCH_TAC THEN
      EXISTS_TAC
       `\z. if z = a then complex_derivative g a
            else (g z - g a) / (z - a)` THEN
      ASM_SIMP_TAC[POLE_LEMMA; IN_DELETE] THEN EXPAND_TAC "g" THEN
      FIRST_ASSUM(fun th ->
        REWRITE_TAC[MATCH_MP HAS_COMPLEX_DERIVATIVE_DERIVATIVE th]) THEN
      SIMP_TAC[COMPLEX_SUB_RZERO] THEN
      EXPAND_TAC "h" THEN SIMP_TAC[] THEN CONV_TAC COMPLEX_FIELD]]);;
(* ------------------------------------------------------------------------- *)
(* General, homology form of Cauchy's theorem. Proof is based on Dixon's,    *)
(* as presented in Lang's "Complex Analysis" book.                           *)
(* ------------------------------------------------------------------------- *)
let CAUCHY_INTEGRAL_FORMULA_GLOBAL = prove
 (`!f s g z.
        open s /\ f 
holomorphic_on s /\ z 
IN s /\
        
valid_path g /\ pathfinish g = pathstart g /\
        
path_image g 
SUBSET s 
DELETE z /\
        (!w. ~(w 
IN s) ==> 
winding_number(g,w) = Cx(&0))
        ==> ((\w. f(w) / (w - z)) 
has_path_integral
             (Cx(&2) * Cx(pi) * ii * 
winding_number(g,z) * f(z))) g`,
  MATCH_MP_TAC(MESON[]
   `((!f s g. 
vector_polynomial_function g ==> P f s g) ==> !f s g. P f s g) /\
    (!f s g. 
vector_polynomial_function g ==> P f s g)
    ==> !f s g. P f s g`) THEN
  CONJ_TAC THENL
   [REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL [`s 
DELETE (z:complex)`; `g:real^1->complex`]
      PATH_INTEGRAL_NEARBY_ENDS) THEN
    ASM_SIMP_TAC[
VALID_PATH_IMP_PATH; 
OPEN_DELETE] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
    MP_TAC(ISPECL [`g:real^1->complex`; `d:real`]
      
PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION) THEN
    ASM_SIMP_TAC[
VALID_PATH_IMP_PATH] THEN
    DISCH_THEN(X_CHOOSE_THEN `p:real^1->complex` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL
     [`g:real^1->complex`; `p:real^1->complex`]) THEN
    ASM_SIMP_TAC[
VECTOR_SUB_REFL; 
NORM_0;
                 
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN
    STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
     [`f:complex->complex`; `s:complex->bool`; `p:real^1->complex`]) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN
    SUBGOAL_THEN
     `
winding_number(p,z) = 
winding_number(g,z) /\
      !w. ~(w 
IN s) ==> 
winding_number(p,w) = 
winding_number(g,w)`
     (fun th -> SIMP_TAC[th])
    THENL
     [FIRST_X_ASSUM(K ALL_TAC o SPEC `z:complex`) THEN
      REPEAT(FIRST_X_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (SET_RULE
       `g 
SUBSET s 
DELETE z
        ==> ~(z 
IN g) /\ (!y. ~(y 
IN s) ==> ~(y 
IN g))`))) THEN
      ASM_SIMP_TAC[
WINDING_NUMBER_VALID_PATH;
                   
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN
      REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN
      REWRITE_TAC[
complex_div; 
COMPLEX_MUL_LID] THEN
      MATCH_MP_TAC 
HOLOMORPHIC_ON_INV THEN
      SIMP_TAC[
HOLOMORPHIC_ON_SUB; 
HOLOMORPHIC_ON_ID; 
HOLOMORPHIC_ON_CONST;
               
IN_DELETE; 
COMPLEX_SUB_0] THEN ASM SET_TAC[];
      ALL_TAC] THEN
    ASM_SIMP_TAC[
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN
    MATCH_MP_TAC(MESON[
HAS_PATH_INTEGRAL_INTEGRAL; 
path_integrable_on;
                       
PATH_INTEGRAL_UNIQUE]
     `f 
path_integrable_on g /\ 
path_integral p f = 
path_integral g f
      ==> (f 
has_path_integral y) p ==> (f 
has_path_integral y) g`) THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC 
PATH_INTEGRABLE_HOLOMORPHIC_SIMPLE THEN
      EXISTS_TAC `s 
DELETE (z:complex)` THEN ASM_SIMP_TAC[
OPEN_DELETE];
      FIRST_X_ASSUM MATCH_MP_TAC] THEN
    MATCH_MP_TAC 
HOLOMORPHIC_ON_DIV THEN
    SIMP_TAC[
HOLOMORPHIC_ON_SUB; 
HOLOMORPHIC_ON_ID; 
HOLOMORPHIC_ON_CONST;
             
IN_DELETE; 
COMPLEX_SUB_0] THEN
    ASM_MESON_TAC[
HOLOMORPHIC_ON_SUBSET; 
DELETE_SUBSET];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC
   [`f:complex->complex`; `u:complex->bool`; `g:real^1->complex`] THEN
  DISCH_TAC THEN X_GEN_TAC `z:complex` THEN STRIP_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `g':real^1->complex` STRIP_ASSUME_TAC o
      MATCH_MP 
HAS_VECTOR_DERIVATIVE_VECTOR_POLYNOMIAL_FUNCTION) THEN
  SUBGOAL_THEN
   `bounded(
IMAGE (g':real^1->complex) (interval[vec 0,vec 1]))`
  MP_TAC THENL
   [MATCH_MP_TAC 
COMPACT_IMP_BOUNDED THEN
    MATCH_MP_TAC 
COMPACT_CONTINUOUS_IMAGE THEN
    REWRITE_TAC[
COMPACT_INTERVAL] THEN
    ASM_MESON_TAC[
CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION;
                  
CONTINUOUS_AT_IMP_CONTINUOUS_ON];
    REWRITE_TAC[
BOUNDED_POS; 
FORALL_IN_IMAGE] THEN
    DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC)] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
VALID_PATH_IMP_PATH) THEN
  MAP_EVERY ABBREV_TAC
   [`d = \z w. if w = z then 
complex_derivative f z
              else (f(w) - f(z)) / (w - z)`;
    `v = {w | ~(w 
IN path_image g) /\ 
winding_number(g,w) = Cx(&0)}`] THEN
  SUBGOAL_THEN `open(v:complex->bool)` ASSUME_TAC THENL
   [EXPAND_TAC "v" THEN MATCH_MP_TAC 
OPEN_WINDING_NUMBER_LEVELSETS THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `u 
UNION v = (:complex)` ASSUME_TAC THENL
   [ASM SET_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `!y:complex. y 
IN u ==> (d y) 
holomorphic_on u` ASSUME_TAC THENL
   [X_GEN_TAC `y:complex` THEN STRIP_TAC THEN EXPAND_TAC "d" THEN
    MATCH_MP_TAC 
NO_ISOLATED_SINGULARITY THEN EXISTS_TAC `{y:complex}` THEN
    ASM_REWRITE_TAC[
FINITE_SING] THEN CONJ_TAC THENL
     [ASM_SIMP_TAC[
CONTINUOUS_ON_EQ_CONTINUOUS_AT] THEN
      X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
      ASM_CASES_TAC `w:complex = y` THENL
       [UNDISCH_THEN `w:complex = y` SUBST_ALL_TAC THEN
        REWRITE_TAC[
CONTINUOUS_AT] THEN
        MATCH_MP_TAC 
LIM_TRANSFORM_AWAY_AT THEN
        EXISTS_TAC `\w:complex. (f w - f y) / (w - y)` THEN SIMP_TAC[] THEN
        EXISTS_TAC `y + Cx(&1)` THEN
        CONJ_TAC THENL [CONV_TAC COMPLEX_RING; ALL_TAC] THEN
        REWRITE_TAC[GSYM 
HAS_COMPLEX_DERIVATIVE_AT] THEN
        REWRITE_TAC[
HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
        ASM_MESON_TAC[
HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT];
        MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_IMP_CONTINUOUS_AT];
      ASM_SIMP_TAC[
HOLOMORPHIC_ON_OPEN; 
OPEN_DELETE; 
IN_DELETE;
        SET_RULE `s 
DIFF {x} = s 
DELETE x`; GSYM 
complex_differentiable] THEN
      X_GEN_TAC `w:complex` THEN STRIP_TAC] THEN
     MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_TRANSFORM_AT THEN
     EXISTS_TAC `\w:complex. (f w - f y) / (w - y)` THEN
     EXISTS_TAC `dist(w:complex,y)` THEN ASM_SIMP_TAC[
DIST_POS_LT] THEN
     (CONJ_TAC THENL [MESON_TAC[
DIST_SYM; 
REAL_LT_REFL]; ALL_TAC]) THEN
     MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_DIV_AT THEN
     ASM_REWRITE_TAC[
COMPLEX_SUB_0] THEN CONJ_TAC THEN
     MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_SUB THEN
     ASM_SIMP_TAC[ETA_AX; 
COMPLEX_DIFFERENTIABLE_CONST;
                  
COMPLEX_DIFFERENTIABLE_ID] THEN
     ASM_MESON_TAC[
HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT];
     ALL_TAC] THEN
  SUBGOAL_THEN
   `!y. ~(y 
IN path_image g)
        ==> (\x. (f x - f y) / (x - y)) 
path_integrable_on g`
  ASSUME_TAC THENL
   [X_GEN_TAC `y:complex` THEN DISCH_TAC THEN
    MATCH_MP_TAC 
PATH_INTEGRABLE_HOLOMORPHIC_SIMPLE THEN
    EXISTS_TAC `u 
DELETE (y:complex)` THEN ASM_SIMP_TAC[
OPEN_DELETE] THEN
    CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    MATCH_MP_TAC 
HOLOMORPHIC_ON_DIV THEN
    SIMP_TAC[
IN_DELETE; 
COMPLEX_SUB_0] THEN
    CONJ_TAC THEN MATCH_MP_TAC 
HOLOMORPHIC_ON_SUB THEN
    ASM_REWRITE_TAC[
HOLOMORPHIC_ON_CONST; 
HOLOMORPHIC_ON_ID] THEN
    MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
    EXISTS_TAC `u:complex->bool` THEN ASM_REWRITE_TAC[
DELETE_SUBSET];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!y:complex. d y 
path_integrable_on g`
  ASSUME_TAC THENL
   [X_GEN_TAC `y:complex` THEN
    ASM_CASES_TAC `(y:complex) 
IN path_image g` THENL
     [MATCH_MP_TAC 
PATH_INTEGRABLE_HOLOMORPHIC_SIMPLE THEN
      EXISTS_TAC `u:complex->bool` THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[];
      MATCH_MP_TAC 
PATH_INTEGRABLE_EQ THEN
      EXISTS_TAC `\x:complex. (f x - f y) / (x - y)` THEN
      ASM_SIMP_TAC[] THEN EXPAND_TAC "d" THEN ASM_MESON_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `?h. (!z. z 
IN u ==> ((d z) 
has_path_integral h(z)) g) /\
        (!z. z 
IN v ==> ((\w. f(w) / (w - z)) 
has_path_integral h(z)) g)`
   (CHOOSE_THEN (CONJUNCTS_THEN2 (LABEL_TAC "u") (LABEL_TAC "v")))
  THENL
   [EXISTS_TAC `\z. if z 
IN u then 
path_integral g (d z)
                    else 
path_integral g (\w. f(w) / (w - z))` THEN
    SIMP_TAC[] THEN CONJ_TAC THEN X_GEN_TAC `w:complex` THEN DISCH_TAC THENL
     [ASM_MESON_TAC[
HAS_PATH_INTEGRAL_INTEGRAL]; ALL_TAC] THEN
    ASM_CASES_TAC `(w:complex) 
IN u` THEN ASM_REWRITE_TAC[] THENL
     [ALL_TAC;
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_INTEGRAL THEN
      MATCH_MP_TAC 
PATH_INTEGRABLE_HOLOMORPHIC_SIMPLE THEN
      EXISTS_TAC `u:complex->bool` THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL
       [MATCH_MP_TAC 
HOLOMORPHIC_ON_DIV THEN
        ASM_SIMP_TAC[
COMPLEX_SUB_0; 
HOLOMORPHIC_ON_SUB; 
HOLOMORPHIC_ON_CONST;
                     
HOLOMORPHIC_ON_ID] THEN
        ASM_MESON_TAC[];
        ASM SET_TAC[]]] THEN
    MATCH_MP_TAC 
HAS_PATH_INTEGRAL_EQ THEN
    EXISTS_TAC `\x:complex. (f x - f w) / (x - w) + f(w) / (x - w)` THEN
    CONJ_TAC THENL
     [X_GEN_TAC `x:complex` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
      SIMPLE_COMPLEX_ARITH_TAC;
      ALL_TAC] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM 
COMPLEX_ADD_RID] THEN
    MATCH_MP_TAC 
HAS_PATH_INTEGRAL_ADD THEN
    UNDISCH_TAC `(w:complex) 
IN v` THEN EXPAND_TAC "v" THEN
    REWRITE_TAC[
IN_ELIM_THM] THEN REPEAT STRIP_TAC THENL
     [MATCH_MP_TAC(MESON[
PATH_INTEGRAL_UNIQUE; 
HAS_PATH_INTEGRAL_INTEGRAL;
                   
path_integrable_on; 
PATH_INTEGRAL_EQ; 
PATH_INTEGRABLE_EQ]
       `g 
path_integrable_on p /\
        (!x. x 
IN path_image p ==> f x = g x)
        ==> (f 
has_path_integral path_integral p g) p`) THEN
      ASM_REWRITE_TAC[] THEN EXPAND_TAC "d" THEN ASM_MESON_TAC[];
      SUBGOAL_THEN
       `Cx(&0) = (f w) * Cx(&2) * Cx pi * ii * 
winding_number(g,w)`
      SUBST1_TAC THENL [ASM_REWRITE_TAC[
COMPLEX_MUL_RZERO]; ALL_TAC] THEN
      ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH `x / y = x * Cx(&1) / y`] THEN
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_COMPLEX_LMUL THEN
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_WINDING_NUMBER THEN
      ASM_REWRITE_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN `!z. (h:complex->complex) z = Cx(&0)` ASSUME_TAC THENL
   [ALL_TAC;
    REMOVE_THEN "u" (MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
    EXPAND_TAC "d" THEN REWRITE_TAC[] THEN
    DISCH_THEN(MP_TAC o SPEC `\w. (f w - f z) / (w - z)` o
     MATCH_MP (REWRITE_RULE[
IMP_CONJ_ALT] 
HAS_PATH_INTEGRAL_EQ)) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
    MP_TAC(SPECL [`g:real^1->complex`; `z:complex`]
      
HAS_PATH_INTEGRAL_WINDING_NUMBER) THEN ASM_REWRITE_TAC[] THEN
    ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP 
HAS_PATH_INTEGRAL_COMPLEX_RMUL) THEN
    DISCH_THEN(MP_TAC o SPEC `(f:complex->complex) z`) THEN
    REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(MP_TAC o MATCH_MP 
HAS_PATH_INTEGRAL_ADD) THEN
    REWRITE_TAC[
complex_div; 
COMPLEX_ADD_RID; COMPLEX_RING
     `(Cx(&1) * i) * fz + (fx - fz) * i = fx * i`] THEN
    REWRITE_TAC[GSYM 
COMPLEX_MUL_ASSOC]] THEN
  UNDISCH_THEN `(z:complex) 
IN u` (K ALL_TAC) THEN
  FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE
   `p 
SUBSET u 
DELETE z ==> p 
SUBSET u`)) THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN STRIP_TAC THEN
  MATCH_MP_TAC 
LIOUVILLE_WEAK THEN
  MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL
   [SUBGOAL_THEN
     `?t:complex->bool.
        compact t /\ 
path_image g 
SUBSET interior t /\ t 
SUBSET u`
    STRIP_ASSUME_TAC THENL
     [SUBGOAL_THEN
       `?dd. &0 < dd /\
            {y + k | y 
IN path_image g /\ k 
IN ball(vec 0,dd)} 
SUBSET u`
      STRIP_ASSUME_TAC THENL
       [ASM_CASES_TAC `u = (:complex)` THENL
         [EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[
REAL_LT_01; 
SUBSET_UNIV];
          ALL_TAC] THEN
        MP_TAC(ISPECL [`
path_image g:complex->bool`; `(:complex) 
DIFF u`]
          
SEPARATE_COMPACT_CLOSED) THEN
        ASM_SIMP_TAC[
COMPACT_PATH_IMAGE; GSYM 
OPEN_CLOSED] THEN
        ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
        DISCH_THEN(X_CHOOSE_THEN `dd:real` STRIP_ASSUME_TAC) THEN
        EXISTS_TAC `dd / &2` THEN ASM_REWRITE_TAC[
REAL_HALF] THEN
        REWRITE_TAC[
SUBSET; 
FORALL_IN_GSPEC] THEN
        MAP_EVERY X_GEN_TAC [`y:complex`; `k:complex`] THEN
        MATCH_MP_TAC(TAUT `(a /\ ~c ==> ~b) ==> a /\ b ==> c`) THEN
        STRIP_TAC THEN
        FIRST_X_ASSUM(MP_TAC o SPECL [`y:complex`; `y + k:complex`]) THEN
        ASM_REWRITE_TAC[
IN_DIFF; 
IN_UNIV; 
IN_BALL] THEN CONV_TAC NORM_ARITH;
        ALL_TAC] THEN
      EXISTS_TAC `{y + k:complex |
                   y 
IN path_image g /\ k 
IN cball(vec 0,dd / &2)}` THEN
      ASM_SIMP_TAC[
COMPACT_SUMS; 
COMPACT_PATH_IMAGE; 
COMPACT_CBALL] THEN
      CONJ_TAC THENL
       [REWRITE_TAC[
SUBSET; 
IN_INTERIOR; 
IN_ELIM_THM] THEN
        X_GEN_TAC `y:complex` THEN DISCH_TAC THEN
        EXISTS_TAC `dd / &2` THEN ASM_REWRITE_TAC[
REAL_HALF] THEN
        X_GEN_TAC `x:complex` THEN REWRITE_TAC[
IN_BALL] THEN DISCH_TAC THEN
        MAP_EVERY EXISTS_TAC [`y:complex`; `x - y:complex`] THEN
        ASM_REWRITE_TAC[
IN_CBALL] THEN
        UNDISCH_TAC `dist(y:complex,x) < dd / &2` THEN CONV_TAC NORM_ARITH;
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
         `{x + y:real^N | x 
IN s /\ y 
IN t} 
SUBSET u
          ==> t' 
SUBSET t ==> {x + y | x 
IN s /\ y 
IN t'} 
SUBSET u`)) THEN
        REWRITE_TAC[
SUBSET; 
IN_BALL; 
IN_CBALL] THEN
        UNDISCH_TAC `&0 < dd` THEN CONV_TAC NORM_ARITH];
      ALL_TAC] THEN
    MP_TAC(ISPECL [`interior t:complex->bool`; `g:real^1->complex`]
        
PATH_INTEGRAL_BOUND_EXISTS) THEN
    ASM_REWRITE_TAC[
OPEN_INTERIOR] THEN
    DISCH_THEN(X_CHOOSE_THEN `L:real` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `bounded(
IMAGE (f:complex->complex) t)` MP_TAC THENL
     [MATCH_MP_TAC 
COMPACT_IMP_BOUNDED THEN
      MATCH_MP_TAC 
COMPACT_CONTINUOUS_IMAGE THEN
      ASM_MESON_TAC[
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON; 
CONTINUOUS_ON_SUBSET];
      REWRITE_TAC[
BOUNDED_POS; 
FORALL_IN_IMAGE] THEN
      DISCH_THEN(X_CHOOSE_THEN `D:real` STRIP_ASSUME_TAC)] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP 
COMPACT_IMP_BOUNDED) THEN
    REWRITE_TAC[
BOUNDED_POS] THEN
    DISCH_THEN(X_CHOOSE_THEN `C:real` STRIP_ASSUME_TAC) THEN
    REWRITE_TAC[
LIM_AT_INFINITY] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    EXISTS_TAC `(D * L) / (e / &2) + C:real` THEN REWRITE_TAC[
real_ge] THEN
    X_GEN_TAC `y:complex` THEN DISCH_TAC THEN
    REWRITE_TAC[dist; 
COMPLEX_SUB_RZERO] THEN
    SUBGOAL_THEN `h y = 
path_integral g (\w. f w / (w - y))` SUBST1_TAC THENL
     [CONV_TAC SYM_CONV THEN MATCH_MP_TAC 
PATH_INTEGRAL_UNIQUE THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN EXPAND_TAC "v" THEN
      REWRITE_TAC[
IN_ELIM_THM] THEN CONJ_TAC THENL
       [DISCH_TAC THEN
        UNDISCH_TAC `(D * L) / (e / &2) + C <= norm(y:complex)` THEN
        MATCH_MP_TAC(REAL_ARITH `&0 < d /\ x <= c ==> d + c <= x ==> F`) THEN
        ASM_SIMP_TAC[
REAL_LT_MUL; 
REAL_LT_DIV; 
REAL_HALF] THEN
        ASM_MESON_TAC[
INTERIOR_SUBSET; 
SUBSET];
        MATCH_MP_TAC 
WINDING_NUMBER_ZERO_OUTSIDE THEN
        EXISTS_TAC `cball(Cx(&0),C)` THEN
        ASM_REWRITE_TAC[
CONVEX_CBALL; 
SUBSET; 
IN_CBALL; dist;
                        
COMPLEX_SUB_LZERO; 
NORM_NEG] THEN
        CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[
INTERIOR_SUBSET; 
SUBSET]] THEN
        UNDISCH_TAC `(D * L) / (e / &2) + C <= norm(y:complex)` THEN
        MATCH_MP_TAC(REAL_ARITH `&0 < d ==> d + c <= x ==> ~(x <= c)`) THEN
        ASM_SIMP_TAC[
REAL_LT_MUL; 
REAL_LT_DIV; 
REAL_HALF]];
      ALL_TAC] THEN
    MATCH_MP_TAC 
REAL_LET_TRANS THEN EXISTS_TAC `L * (e / &2 / L)` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      ASM_SIMP_TAC[
REAL_DIV_LMUL; 
REAL_LT_IMP_NZ; 
REAL_HALF] THEN
      ASM_REAL_ARITH_TAC] THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[] THEN CONJ_TAC THENL
     [MATCH_MP_TAC 
HOLOMORPHIC_ON_DIV THEN CONJ_TAC THENL
       [ASM_MESON_TAC[
HOLOMORPHIC_ON_SUBSET; 
SUBSET_TRANS; 
INTERIOR_SUBSET];
        SIMP_TAC[
HOLOMORPHIC_ON_SUB; 
HOLOMORPHIC_ON_ID;
                 
HOLOMORPHIC_ON_CONST; 
COMPLEX_SUB_0]] THEN
      X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
       `d + c <= norm y ==> &0 < d /\ norm w <= c ==> ~(w = y)`)) THEN
      ASM_SIMP_TAC[
REAL_LT_MUL; 
REAL_LT_DIV; 
REAL_HALF] THEN
      ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET];
      ALL_TAC] THEN
    X_GEN_TAC `w:complex` THEN DISCH_TAC THEN SIMP_TAC[
COMPLEX_NORM_DIV] THEN
    SUBGOAL_THEN `&0 < norm(w - y)` ASSUME_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
       `d + c <= norm y ==> &0 < d /\ norm w <= c ==> &0 < norm(w - y)`)) THEN
      ASM_SIMP_TAC[
REAL_LT_MUL; 
REAL_LT_DIV; 
REAL_HALF] THEN
      ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET];
      ASM_SIMP_TAC[
REAL_LE_LDIV_EQ]] THEN
    MATCH_MP_TAC 
REAL_LE_TRANS THEN EXISTS_TAC `D:real` THEN CONJ_TAC THENL
     [ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET]; ALL_TAC] THEN
    REWRITE_TAC[REAL_ARITH `e / &2 / L * x = (x * (e / &2)) / L`] THEN
    ASM_SIMP_TAC[
REAL_LE_RDIV_EQ; GSYM 
REAL_LE_LDIV_EQ; 
REAL_HALF] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
       `d + c <= norm y ==> norm w <= c ==> d <= norm(w - y)`)) THEN
    ASM_MESON_TAC[
SUBSET; 
INTERIOR_SUBSET];
    DISCH_TAC] THEN
  SUBGOAL_THEN
   `(\y. (d:complex->complex->complex) (fstcart y) (sndcart y)) 
continuous_on
    {pastecart x z | x 
IN u /\ z 
IN u}`
  ASSUME_TAC THENL
   [REWRITE_TAC[
CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN EXPAND_TAC "d" THEN
    REWRITE_TAC[
FORALL_IN_GSPEC; 
continuous_within; 
IMP_CONJ] THEN
    MAP_EVERY X_GEN_TAC [`x:complex`; `z:complex`] THEN REPEAT DISCH_TAC THEN
    X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    REWRITE_TAC[
FSTCART_PASTECART; 
SNDCART_PASTECART; 
FORALL_PASTECART] THEN
    REWRITE_TAC[dist; IMP_IMP; GSYM 
CONJ_ASSOC; 
PASTECART_SUB] THEN
    ASM_CASES_TAC `z:complex = x` THEN ASM_REWRITE_TAC[] THENL
     [UNDISCH_THEN `z:complex = x` (SUBST_ALL_TAC o SYM);
      SUBGOAL_THEN
        `(\y. (f(sndcart y) - f(fstcart y)) / (sndcart y - fstcart y))
         continuous at (pastecart x z)`
      MP_TAC THENL
       [MATCH_MP_TAC 
CONTINUOUS_COMPLEX_DIV_AT THEN
        ASM_SIMP_TAC[
FSTCART_PASTECART; 
SNDCART_PASTECART; 
COMPLEX_SUB_0] THEN
        CONJ_TAC THEN MATCH_MP_TAC 
CONTINUOUS_SUB THEN
        SIMP_TAC[
LINEAR_CONTINUOUS_AT; 
LINEAR_FSTCART; 
LINEAR_SNDCART] THEN
        CONJ_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM 
o_DEF] THEN
        MATCH_MP_TAC 
CONTINUOUS_AT_COMPOSE THEN
        SIMP_TAC[
LINEAR_CONTINUOUS_AT; 
LINEAR_FSTCART; 
LINEAR_SNDCART] THEN
        REWRITE_TAC[
FSTCART_PASTECART; 
SNDCART_PASTECART] THEN
        ASM_MESON_TAC[
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
                      
CONTINUOUS_ON_EQ_CONTINUOUS_AT];
        ALL_TAC] THEN
      REWRITE_TAC[
continuous_at; dist; 
FORALL_PASTECART] THEN
      REWRITE_TAC[
FSTCART_PASTECART; 
SNDCART_PASTECART; 
PASTECART_SUB] THEN
      DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `k1:real` STRIP_ASSUME_TAC) THEN
      SUBGOAL_THEN
       `open({pastecart x z | x 
IN u /\ z 
IN u} 
DIFF
             {y | y 
IN UNIV /\ fstcart y - sndcart y = Cx(&0)})`
      MP_TAC THENL
       [MATCH_MP_TAC 
OPEN_DIFF THEN
        ASM_SIMP_TAC[REWRITE_RULE[
PCROSS] 
OPEN_PCROSS] THEN
        MATCH_MP_TAC 
CONTINUOUS_CLOSED_PREIMAGE_CONSTANT THEN
        REWRITE_TAC[
CLOSED_UNIV] THEN MATCH_MP_TAC 
CONTINUOUS_ON_SUB THEN
        SIMP_TAC[
LINEAR_CONTINUOUS_ON; 
LINEAR_FSTCART; 
LINEAR_SNDCART];
        SIMP_TAC[
OPEN_CONTAINS_BALL; 
IN_DIFF; 
IMP_CONJ; 
FORALL_IN_GSPEC] THEN
        DISCH_THEN(MP_TAC o SPECL [`x:complex`; `z:complex`]) THEN
        ASM_REWRITE_TAC[
IN_ELIM_THM; 
IN_UNIV; 
COMPLEX_SUB_0] THEN
        ASM_REWRITE_TAC[
SUBSET; 
IN_BALL; 
FORALL_PASTECART; 
IN_DIFF;
          
IN_ELIM_PASTECART_THM; 
FSTCART_PASTECART; 
SNDCART_PASTECART] THEN
        REWRITE_TAC[
IN_ELIM_THM; IMP_IMP; GSYM 
CONJ_ASSOC] THEN
        REWRITE_TAC[ONCE_REWRITE_RULE[
NORM_SUB] dist; 
PASTECART_SUB;
               
FSTCART_PASTECART; 
SNDCART_PASTECART] THEN
        DISCH_THEN(X_CHOOSE_THEN `k2:real` STRIP_ASSUME_TAC)] THEN
      EXISTS_TAC `min k1 k2:real` THEN
      ASM_SIMP_TAC[
REAL_LT_MIN; 
COMPLEX_NORM_NZ; 
COMPLEX_SUB_0]] THEN
    SUBGOAL_THEN `(
complex_derivative f) continuous at z` MP_TAC THENL
     [MATCH_MP_TAC 
CONTINUOUS_ON_INTERIOR THEN
      EXISTS_TAC `u:complex->bool` THEN ASM_SIMP_TAC[
INTERIOR_OPEN] THEN
      MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
      MATCH_MP_TAC 
HOLOMORPHIC_COMPLEX_DERIVATIVE THEN
      ASM_REWRITE_TAC[];
      REWRITE_TAC[
continuous_at] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN
      ASM_REWRITE_TAC[dist; 
REAL_HALF]] THEN
    DISCH_THEN(X_CHOOSE_THEN `k1:real` STRIP_ASSUME_TAC) THEN
    MP_TAC(ISPEC `u:complex->bool` 
OPEN_CONTAINS_BALL) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `k2:real` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `min k1 k2:real` THEN ASM_REWRITE_TAC[
REAL_LT_MIN] THEN
    MAP_EVERY X_GEN_TAC [`x':complex`; `z':complex`] THEN STRIP_TAC THEN
    MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x <= e / &2 ==> x < e`) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
     [ASM_MESON_TAC[
NORM_LE_PASTECART; 
REAL_LET_TRANS; 
REAL_LT_IMP_LE];
      ALL_TAC] THEN
    SUBGOAL_THEN `e / &2 = e / &2 / norm(z' - x') * norm(z' - x':complex)`
    SUBST1_TAC THENL
     [ASM_SIMP_TAC[
REAL_DIV_RMUL; 
NORM_EQ_0; 
VECTOR_SUB_EQ]; ALL_TAC] THEN
    MATCH_MP_TAC 
HAS_PATH_INTEGRAL_BOUND_LINEPATH THEN
    EXISTS_TAC `\u. (
complex_derivative f u - 
complex_derivative f z) /
                    (z' - x')` THEN
    ASM_SIMP_TAC[
REAL_LE_DIV; 
NORM_POS_LE; 
REAL_LT_IMP_LE; 
REAL_HALF] THEN
    CONJ_TAC THENL
     [ASM_SIMP_TAC[COMPLEX_FIELD
       `~(z:complex = x)
         ==> a / (z - x) - b = (a - b * (z - x)) / (z - x)`] THEN
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_COMPLEX_DIV THEN
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_SUB THEN
      REWRITE_TAC[
HAS_PATH_INTEGRAL_CONST_LINEPATH] THEN
      MP_TAC(ISPECL [`f:complex->complex`; `
complex_derivative f`;
                     `linepath(x':complex,z')`; `u:complex->bool`]
                
PATH_INTEGRAL_PRIMITIVE) THEN
      REWRITE_TAC[ETA_AX; 
PATHSTART_LINEPATH; 
PATHFINISH_LINEPATH] THEN
      DISCH_THEN MATCH_MP_TAC THEN
      REWRITE_TAC[
VALID_PATH_LINEPATH] THEN CONJ_TAC THENL
       [ASM_MESON_TAC[
HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE;
                      GSYM 
HOLOMORPHIC_ON_DIFFERENTIABLE;
                      
HAS_COMPLEX_DERIVATIVE_AT_WITHIN; 
HOLOMORPHIC_ON_OPEN;
                      
complex_differentiable];
        MATCH_MP_TAC 
SUBSET_TRANS THEN EXISTS_TAC `ball(z:complex,k2)`];
      X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
      REWRITE_TAC[
COMPLEX_NORM_DIV; 
real_div] THEN
      MATCH_MP_TAC 
REAL_LE_RMUL THEN
      REWRITE_TAC[
REAL_LE_INV_EQ; 
NORM_POS_LE] THEN
      MATCH_MP_TAC(REAL_ARITH `x < e / &2 ==> x <= e * inv(&2)`) THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN
      REWRITE_TAC[REWRITE_RULE[ONCE_REWRITE_RULE[
NORM_SUB] dist]
       (GSYM 
IN_BALL)] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
       `w 
IN s ==> s 
SUBSET t ==> w 
IN t`))] THEN
    ASM_REWRITE_TAC[
PATH_IMAGE_LINEPATH; 
SEGMENT_CONVEX_HULL] THEN
    MATCH_MP_TAC 
HULL_MINIMAL THEN REWRITE_TAC[
CONVEX_BALL] THEN
    REWRITE_TAC[
INSERT_SUBSET; 
EMPTY_SUBSET; 
IN_BALL; dist] THEN
    ONCE_REWRITE_TAC[
NORM_SUB] THEN
    ASM_MESON_TAC[
NORM_LE_PASTECART; 
REAL_LET_TRANS];
    ALL_TAC] THEN
  SIMP_TAC[
HOLOMORPHIC_ON_OPEN; 
OPEN_UNIV; 
IN_UNIV;
           GSYM 
complex_differentiable] THEN
  X_GEN_TAC `z0:complex` THEN ASM_CASES_TAC `(z0:complex) 
IN v` THENL
   [MP_TAC(ISPECL
    [`f:complex->complex`; `h:complex->complex`; `g:real^1->complex`;
     `v:complex->bool`; `1`; `B:real`]
        
CAUCHY_NEXT_DERIVATIVE) THEN
    ASM_SIMP_TAC[
IN_DIFF; 
ARITH_EQ; 
COMPLEX_POW_1] THEN ANTS_TAC THENL
     [CONJ_TAC THENL
       [ASM_MESON_TAC[
HAS_VECTOR_DERIVATIVE_UNIQUE_AT]; ALL_TAC] THEN
      MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
      MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
      EXISTS_TAC `u:complex->bool` THEN ASM SET_TAC[];
      DISCH_THEN(MP_TAC o SPEC `z0:complex`) THEN
      UNDISCH_TAC `(z0:complex) 
IN v` THEN EXPAND_TAC "v" THEN
      SIMP_TAC[
IN_ELIM_THM; 
complex_differentiable] THEN MESON_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN `(z0:complex) 
IN u` ASSUME_TAC THENL
   [ASM SET_TAC[]; ALL_TAC] THEN
  MP_TAC(ISPEC `u:complex->bool` 
OPEN_CONTAINS_BALL) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `z0:complex`) THEN
  ASM_SIMP_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
  EXISTS_TAC `ball(z0:complex,e)` THEN
  ASM_REWRITE_TAC[
OPEN_BALL; 
CENTRE_IN_BALL] THEN
  MATCH_MP_TAC 
ANALYTIC_IMP_HOLOMORPHIC THEN MATCH_MP_TAC 
MORERA_TRIANGLE THEN
  REWRITE_TAC[
OPEN_BALL] THEN
  SUBGOAL_THEN `(h:complex->complex) 
continuous_on u` ASSUME_TAC THENL
   [REWRITE_TAC[
CONTINUOUS_ON_SEQUENTIALLY] THEN
    MAP_EVERY X_GEN_TAC [`a:num->complex`; `x:complex`] THEN STRIP_TAC THEN
    MP_TAC(ISPECL
     [`sequentially`; `\n:num x. (d:complex->complex->complex) (a n) x`;
      `B:real`; `g:real^1->complex`; `(d:complex->complex->complex) x`]
      
PATH_INTEGRAL_UNIFORM_LIMIT) THEN
    ASM_REWRITE_TAC[
TRIVIAL_LIMIT_SEQUENTIALLY; ETA_AX; 
EVENTUALLY_TRUE] THEN
    ANTS_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN BINOP_TAC THEN
      REWRITE_TAC[
FUN_EQ_THM; 
o_THM] THEN REPEAT GEN_TAC THEN
      MATCH_MP_TAC 
PATH_INTEGRAL_UNIQUE THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN
    CONJ_TAC THENL
     [ASM_MESON_TAC[
HAS_VECTOR_DERIVATIVE_UNIQUE_AT]; ALL_TAC] THEN
    X_GEN_TAC `ee:real` THEN DISCH_TAC THEN
    MP_TAC(ISPEC `u:complex->bool` 
OPEN_CONTAINS_CBALL) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `x:complex`) THEN
    ASM_SIMP_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `dd:real` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN
     `(\y. (d:complex->complex->complex) (fstcart y) (sndcart y))
      
uniformly_continuous_on
      {pastecart w z | w 
IN cball(x,dd) /\ z 
IN path_image g}`
    MP_TAC THENL
     [MATCH_MP_TAC 
COMPACT_UNIFORMLY_CONTINUOUS THEN
      ASM_SIMP_TAC[REWRITE_RULE[
PCROSS] 
COMPACT_PCROSS; 
COMPACT_CBALL;
                   
COMPACT_VALID_PATH_IMAGE] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
      REWRITE_TAC[
SUBSET; 
FORALL_IN_GSPEC; 
IN_ELIM_PASTECART_THM] THEN
      ASM SET_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[
uniformly_continuous_on] THEN
    DISCH_THEN(MP_TAC o SPEC `ee:real`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `kk:real`
      (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o GENL [`w:complex`; `z:complex`] o
     SPECL [`pastecart (x:complex) (z:complex)`;
            `pastecart (w:complex) (z:complex)`]) THEN
    SIMP_TAC[
IN_ELIM_PASTECART_THM; 
FSTCART_PASTECART; 
SNDCART_PASTECART] THEN
    ASM_SIMP_TAC[
CENTRE_IN_CBALL; 
REAL_LT_IMP_LE; dist; 
PASTECART_SUB] THEN
    REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0; 
NORM_PASTECART] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[TAUT `b /\ (a /\ b) /\ c ==> d <=> a /\ b /\ c ==> d`] THEN
    SIMP_TAC[
REAL_ADD_RID; 
POW_2_SQRT; 
NORM_POS_LE] THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
LIM_SEQUENTIALLY]) THEN
    DISCH_THEN(MP_TAC o SPEC `min dd kk:real`) THEN
    ASM_REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY; 
REAL_LT_MIN] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[
DIST_SYM] 
IN_CBALL; GSYM dist;
                 
REAL_LT_IMP_LE];
    ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
CONTINUOUS_ON_SUBSET]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!w. w 
IN u ==> (\z. d z w) 
holomorphic_on u`
  ASSUME_TAC THENL
   [EXPAND_TAC "d" THEN X_GEN_TAC `y:complex` THEN STRIP_TAC THEN
    MATCH_MP_TAC 
NO_ISOLATED_SINGULARITY THEN EXISTS_TAC `{y:complex}` THEN
    ASM_REWRITE_TAC[
FINITE_SING] THEN CONJ_TAC THENL
     [SUBGOAL_THEN
       `((\y. (d:complex->complex->complex) (fstcart y) (sndcart y)) o
        (\z. pastecart y z))
        
continuous_on u`
      MP_TAC THENL
       [MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
        SIMP_TAC[
CONTINUOUS_ON_PASTECART; 
CONTINUOUS_ON_ID;
                 
CONTINUOUS_ON_CONST] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
          
CONTINUOUS_ON_SUBSET)) THEN
        ASM_SIMP_TAC[
SUBSET; 
FORALL_IN_IMAGE; 
IN_ELIM_PASTECART_THM];
        EXPAND_TAC "d" THEN
        REWRITE_TAC[
o_DEF; 
FSTCART_PASTECART; 
SNDCART_PASTECART] THEN
        MATCH_MP_TAC(REWRITE_RULE[
IMP_CONJ] 
CONTINUOUS_ON_EQ) THEN
        GEN_TAC THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN
        ASM_REWRITE_TAC[] THEN
        DISCH_TAC THEN REWRITE_TAC[
complex_div] THEN MATCH_MP_TAC(COMPLEX_RING
         `x':complex = --x /\ y' = --y ==> x * y = x' * y'`) THEN
        REWRITE_TAC[GSYM 
COMPLEX_INV_NEG; 
COMPLEX_NEG_SUB]];
      ASM_SIMP_TAC[
HOLOMORPHIC_ON_OPEN; 
OPEN_DELETE; 
IN_DELETE;
        SET_RULE `s 
DIFF {x} = s 
DELETE x`; GSYM 
complex_differentiable] THEN
      X_GEN_TAC `w:complex` THEN STRIP_TAC THEN
      MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_TRANSFORM_AT THEN
      EXISTS_TAC `\w:complex. (f y - f w) / (y - w)` THEN
      EXISTS_TAC `dist(w:complex,y)` THEN ASM_SIMP_TAC[
DIST_POS_LT] THEN
      (CONJ_TAC THENL [MESON_TAC[
DIST_SYM; 
REAL_LT_REFL]; ALL_TAC]) THEN
      MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_DIV_AT THEN
      ASM_REWRITE_TAC[
COMPLEX_SUB_0] THEN CONJ_TAC THEN
      MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_SUB THEN
      ASM_SIMP_TAC[ETA_AX; 
COMPLEX_DIFFERENTIABLE_CONST;
                   
COMPLEX_DIFFERENTIABLE_ID] THEN
      ASM_MESON_TAC[
HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!w a b:complex. w 
IN u /\ segment[a,b] 
SUBSET u
                    ==> (\z. d z w) 
path_integrable_on (linepath(a,b))`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN
    MATCH_MP_TAC 
PATH_INTEGRABLE_CONTINUOUS_LINEPATH THEN
    ASM_MESON_TAC[
CONTINUOUS_ON_SUBSET; 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a b:complex.
        segment[a,b] 
SUBSET u
        ==> (\w. 
path_integral (linepath(a,b)) (\z. d z w))
            
continuous_on u`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN ASM_CASES_TAC `a:complex = b` THENL
     [ASM_SIMP_TAC[
PATH_INTEGRAL_TRIVIAL; 
CONTINUOUS_ON_CONST]; ALL_TAC] THEN
    REWRITE_TAC[
continuous_on] THEN X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
    X_GEN_TAC `ee:real` THEN DISCH_TAC THEN
    ASM_SIMP_TAC[dist; GSYM 
PATH_INTEGRAL_SUB] THEN
    MP_TAC(ISPEC `u:complex->bool` 
OPEN_CONTAINS_CBALL) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `w:complex`) THEN
    ASM_SIMP_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `dd:real` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN
     `(\y. (d:complex->complex->complex) (fstcart y) (sndcart y))
      
uniformly_continuous_on
      {pastecart z t | z 
IN segment[a,b] /\ t 
IN cball(w,dd)}`
    MP_TAC THENL
     [MATCH_MP_TAC 
COMPACT_UNIFORMLY_CONTINUOUS THEN
      ASM_SIMP_TAC[REWRITE_RULE[
PCROSS] 
COMPACT_PCROSS;
                   
COMPACT_CBALL; 
COMPACT_SEGMENT] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
      REWRITE_TAC[
SUBSET; 
FORALL_IN_GSPEC; 
IN_ELIM_PASTECART_THM] THEN
      ASM SET_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[
uniformly_continuous_on] THEN
    DISCH_THEN(MP_TAC o SPEC `ee / &2 / norm(b - a:complex)`) THEN
    ASM_SIMP_TAC[
REAL_HALF; 
REAL_LT_DIV; 
COMPLEX_NORM_NZ; 
COMPLEX_SUB_0] THEN
    DISCH_THEN(X_CHOOSE_THEN `kk:real`
      (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(MP_TAC o GENL [`z:complex`; `r:complex`] o
     SPECL [`pastecart (r:complex) (z:complex)`;
            `pastecart (r:complex) (w:complex)`]) THEN
    SIMP_TAC[
IN_ELIM_PASTECART_THM; 
FSTCART_PASTECART; 
SNDCART_PASTECART] THEN
    ASM_SIMP_TAC[
CENTRE_IN_CBALL; 
REAL_LT_IMP_LE; dist; 
PASTECART_SUB] THEN
    REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0; 
NORM_PASTECART] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[TAUT `(a /\ b) /\ a /\ c ==> d <=> a /\ b /\ c ==> d`] THEN
    SIMP_TAC[REAL_ADD_LID; 
POW_2_SQRT; 
NORM_POS_LE] THEN DISCH_TAC THEN
    EXISTS_TAC `min dd kk:real` THEN ASM_REWRITE_TAC[
REAL_LT_MIN] THEN
    X_GEN_TAC `x:complex` THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x <= e / &2 ==> x < e`) THEN
    ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `ee / &2 = ee / &2 / norm(b - a) * norm(b - a:complex)`
    SUBST1_TAC THENL
     [ASM_SIMP_TAC[
REAL_DIV_RMUL; 
NORM_EQ_0; 
VECTOR_SUB_EQ]; ALL_TAC] THEN
    MATCH_MP_TAC 
HAS_PATH_INTEGRAL_BOUND_LINEPATH THEN
    EXISTS_TAC `\r. (d:complex->complex->complex) r x - d r w` THEN
    ASM_SIMP_TAC[
REAL_LE_DIV; 
NORM_POS_LE; 
REAL_LT_IMP_LE; 
REAL_HALF] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC 
HAS_PATH_INTEGRAL_INTEGRAL THEN
      MATCH_MP_TAC 
PATH_INTEGRABLE_SUB THEN ASM_SIMP_TAC[];
      REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [
NORM_SUB] THEN
      MATCH_MP_TAC 
REAL_LT_IMP_LE THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_REWRITE_TAC[
IN_CBALL; dist] THEN
      ASM_MESON_TAC[
NORM_SUB; 
REAL_LT_IMP_LE]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a b. segment[a,b] 
SUBSET u
          ==> (\w. 
path_integral (linepath (a,b)) (\z. d z w))
              
path_integrable_on g`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN REWRITE_TAC[
PATH_INTEGRABLE_ON] THEN
    MATCH_MP_TAC 
INTEGRABLE_CONTINUOUS THEN
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPLEX_MUL THEN CONJ_TAC THENL
     [SUBGOAL_THEN
       `((\w. 
path_integral (linepath(a,b)) (\z. d z w)) o (g:real^1->complex))
        
continuous_on interval[vec 0,vec 1]`
      MP_TAC THENL
       [MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
        ASM_SIMP_TAC[GSYM path; 
VALID_PATH_IMP_PATH] THEN
        MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
        EXISTS_TAC `u:complex->bool` THEN ASM_SIMP_TAC[GSYM 
path_image];
        REWRITE_TAC[
o_DEF]];
      FIRST_ASSUM(fun th -> REWRITE_TAC
       [MATCH_MP 
HAS_VECTOR_DERIVATIVE_UNIQUE_AT (SPEC_ALL th)]) THEN
      ASM_SIMP_TAC[ETA_AX; GSYM path; 
VALID_PATH_IMP_PATH;
                   
VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!a b. segment[a,b] 
SUBSET u
          ==> 
path_integral (linepath(a,b)) h =
              
path_integral g (\w. 
path_integral (linepath (a,b)) (\z. d z w))`
  ASSUME_TAC THENL
   [ALL_TAC;
    MAP_EVERY X_GEN_TAC [`a:complex`; `b:complex`; `c:complex`] THEN
    DISCH_TAC THEN
    SUBGOAL_THEN
     `segment[a:complex,b] 
SUBSET u /\
      segment[b,c] 
SUBSET u /\ segment[c,a] 
SUBSET u`
    STRIP_ASSUME_TAC THENL
     [ASM_MESON_TAC[
SEGMENTS_SUBSET_CONVEX_HULL; 
SUBSET_TRANS]; ALL_TAC] THEN
    ASM_SIMP_TAC[] THEN
    ASM_SIMP_TAC[GSYM 
PATH_INTEGRAL_ADD; 
PATH_INTEGRABLE_ADD] THEN
    MATCH_MP_TAC 
PATH_INTEGRAL_EQ_0 THEN
    X_GEN_TAC `w:complex` THEN REWRITE_TAC[] THEN DISCH_TAC THEN
    SUBGOAL_THEN `(w:complex) 
IN u` ASSUME_TAC THENL
     [ASM SET_TAC[]; ALL_TAC] THEN
    ASM_SIMP_TAC[GSYM 
PATH_INTEGRAL_JOIN; 
VALID_PATH_LINEPATH;
     
VALID_PATH_JOIN; 
PATHSTART_JOIN;
     
PATH_INTEGRABLE_JOIN; 
PATHSTART_LINEPATH; 
PATHFINISH_LINEPATH] THEN
    MATCH_MP_TAC 
PATH_INTEGRAL_UNIQUE THEN
    MATCH_MP_TAC 
CAUCHY_THEOREM_TRIANGLE THEN
    MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN EXISTS_TAC `u:complex->bool` THEN
    ASM_SIMP_TAC[] THEN ASM SET_TAC[]] THEN
  MAP_EVERY X_GEN_TAC [`a:complex`; `b:complex`] THEN DISCH_TAC THEN
  MATCH_MP_TAC 
EQ_TRANS THEN
  EXISTS_TAC `
path_integral (linepath(a,b)) (\z. 
path_integral g (d z))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC 
PATH_INTEGRAL_EQ THEN
    REWRITE_TAC[
PATH_IMAGE_LINEPATH] THEN
    REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC 
PATH_INTEGRAL_UNIQUE THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[
SUBSET];
    MATCH_MP_TAC(REWRITE_RULE[
PCROSS] 
PATH_INTEGRAL_SWAP) THEN
    REWRITE_TAC[
VALID_PATH_LINEPATH; 
VECTOR_DERIVATIVE_LINEPATH_AT;
                
CONTINUOUS_ON_CONST] THEN
    FIRST_ASSUM(fun th -> REWRITE_TAC
     [MATCH_MP 
HAS_VECTOR_DERIVATIVE_UNIQUE_AT (SPEC_ALL th)]) THEN
    ASM_SIMP_TAC[ETA_AX; 
CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION;
                 
CONTINUOUS_AT_IMP_CONTINUOUS_ON] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
    REWRITE_TAC[
SUBSET; 
FORALL_IN_GSPEC; 
IN_ELIM_PASTECART_THM] THEN
    REWRITE_TAC[
PATH_IMAGE_LINEPATH] THEN ASM SET_TAC[]]);;
 
 
(* ------------------------------------------------------------------------- *)
(* First Cartan Theorem.                                                     *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Second Cartan Theorem.                                                    *)
(* ------------------------------------------------------------------------- *)
let SECOND_CARTAN_THM_DIM_1 = prove
 (`!g f r.
     &0 < r /\
     g 
holomorphic_on ball(Cx(&0),r) /\
     (!z. z 
IN ball(Cx(&0),r) ==> g z 
IN ball(Cx(&0),r)) /\
     g(Cx(&0)) = Cx(&0) /\
     f 
holomorphic_on ball(Cx(&0),r) /\
     (!z. z 
IN ball(Cx(&0),r) ==> f z 
IN ball(Cx(&0),r)) /\
     f (Cx(&0)) = Cx(&0) /\
     (!z. z 
IN ball(Cx(&0),r) ==> g (f z) = z) /\
     (!z. z 
IN ball(Cx(&0),r) ==> f (g z) = z)
     ==> ?t. !z. z 
IN ball(Cx(&0),r) ==> g z = cexp(ii * Cx t) * z`,
  let COMPLEX_DERIVATIVE_LEFT_INVERSE = prove
    (`!s t f g w.
       open s /\ open t /\
       (!z. z IN s ==> f z IN t) /\ f holomorphic_on s /\
       (!z. z IN t ==> g z IN s) /\ g holomorphic_on t /\
       (!z. z IN s ==> g (f z) = z) /\ w IN s
       ==> complex_derivative f w * complex_derivative g (f w) = Cx(&1)`,
     REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC [COMPLEX_MUL_SYM] THEN
     SUBGOAL_THEN `complex_derivative g (f w) * complex_derivative f w =
                   complex_derivative (g o f) w ` SUBST1_TAC THENL
     [ASM_MESON_TAC [HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT;
                     COMPLEX_DERIVATIVE_CHAIN];
      EQ_TRANS_TAC `complex_derivative (\u. u) w` THENL
      [MATCH_MP_TAC COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN THEN
       EXISTS_TAC `s:complex->bool` THEN
       ASM_SIMP_TAC[HOLOMORPHIC_ON_ID;o_THM] THEN
       ASM_MESON_TAC [HOLOMORPHIC_ON_COMPOSE_GEN];
       ASM_SIMP_TAC[COMPLEX_DERIVATIVE_ID]]]) in
  let LEMMA_1 = prove
    (`!s f.
        open s /\ connected s /\ f holomorphic_on s /\ Cx(&0) IN s /\
        (!u z. norm u = &1 /\ z IN s ==> u * z IN s) /\
        (!u z. norm u = &1 /\ z IN s ==> f (u * z) = u * f z)
        ==> ?c. !z. z IN s ==> f z = c * z`,
     REPEAT STRIP_TAC THEN ABBREV_TAC `c = complex_derivative f (Cx(&0))` THEN
     EXISTS_TAC `c : complex` THEN
     SUBGOAL_THEN `f(Cx(&0)) = Cx(&0)` ASSUME_TAC THENL
     [FIRST_X_ASSUM (MP_TAC o SPECL [`--Cx(&1)`;`Cx(&0)`]) THEN
      ASM_REWRITE_TAC [NORM_NEG; COMPLEX_NORM_NUM; COMPLEX_MUL_RZERO] THEN
      CONV_TAC COMPLEX_RING; ALL_TAC] THEN
     SUBGOAL_THEN
       `!n u z.
          norm u = &1 /\ z IN s ==>
          u pow n * higher_complex_derivative n f (u * z) =
       u * higher_complex_derivative n f z`
       ASSUME_TAC THENL
     [REPEAT STRIP_TAC THEN
      EQ_TRANS_TAC `higher_complex_derivative n (\w. f (u * w)) z` THENL
      [MATCH_MP_TAC EQ_SYM THEN
       MATCH_MP_TAC HIGHER_COMPLEX_DERIVATIVE_COMPOSE_LINEAR THEN
       EXISTS_TAC `s:complex->bool` THEN EXISTS_TAC `s:complex->bool` THEN
       ASM_SIMP_TAC[]; ALL_TAC] THEN
      EQ_TRANS_TAC `higher_complex_derivative n (\w. u * f w) z` THENL
      [MATCH_MP_TAC HIGHER_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN THEN
       EXISTS_TAC `s:complex->bool` THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL
       [MATCH_MP_TAC
         (REWRITE_RULE [o_DEF]
           (SPECL [`\w:complex. u*w`; `f:complex->complex`]
               HOLOMORPHIC_ON_COMPOSE_GEN)) THEN
        EXISTS_TAC `s:complex->bool` THEN
        ASM_SIMP_TAC [HOLOMORPHIC_ON_LINEAR];
        MATCH_MP_TAC
          (REWRITE_RULE [o_DEF]
            (SPECL [`f:complex->complex`; `\w:complex. u*w`]
                   HOLOMORPHIC_ON_COMPOSE_GEN)) THEN
        EXISTS_TAC `(:complex)` THEN
        ASM_REWRITE_TAC [HOLOMORPHIC_ON_LINEAR; IN_UNIV]];
        POP_ASSUM MP_TAC THEN SPEC_TAC (`z:complex`,`z:complex`) THEN
       SPEC_TAC (`n:num`,`n:num`) THEN INDUCT_TAC THEN
       REWRITE_TAC [higher_complex_derivative] THEN GEN_TAC THEN
       DISCH_TAC THEN EQ_TRANS_TAC
         `complex_derivative (\w. u * higher_complex_derivative n f w) z`
       THENL
       [MATCH_MP_TAC COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN THEN
        EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
        [MATCH_MP_TAC HOLOMORPHIC_HIGHER_COMPLEX_DERIVATIVE THEN
         ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HOLOMORPHIC_ON_MUL THEN
         ASM_REWRITE_TAC [HOLOMORPHIC_ON_CONST];
         MATCH_MP_TAC HOLOMORPHIC_ON_MUL THEN
         ASM_REWRITE_TAC [HOLOMORPHIC_ON_CONST; ETA_AX] THEN
         MATCH_MP_TAC HOLOMORPHIC_HIGHER_COMPLEX_DERIVATIVE THEN
         ASM_REWRITE_TAC[]];
        MATCH_MP_TAC COMPLEX_DERIVATIVE_LMUL THEN
        MATCH_MP_TAC HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
        ASM_MESON_TAC [HOLOMORPHIC_HIGHER_COMPLEX_DERIVATIVE]]];
      SUBGOAL_THEN
        `!n. 2 <= n ==> higher_complex_derivative n f (Cx(&0)) = Cx(&0)`
        ASSUME_TAC THENL
      [GEN_TAC THEN  DISCH_TAC THEN SUBGOAL_THEN
         `!n z. 2 <= n /\
                (!u. norm u = &1 ==> u pow n * z = u * z) ==> z = Cx(&0)`
         MATCH_MP_TAC THENL
       [REPEAT STRIP_TAC THEN MATCH_MP_TAC
         (COMPLEX_RING
           `!u. ~(u pow n' = u) /\ u pow n' * z = u * z ==> z = Cx(&0)`) THEN
        SUBGOAL_THEN `2 <= n' ==> ?u. norm u = &1 /\ ~(u pow n' = u)`
          (fun th -> ASM_MESON_TAC [th]) THEN
        STRUCT_CASES_TAC (SPEC `n':num` num_CASES) THEN
        REWRITE_TAC
          [ARITH_LE; ARITH_RULE `2 <= SUC n'' <=> 1 <= n''`; complex_pow] THEN
        DISCH_TAC THEN MP_TAC (SPEC `n'':num` COMPLEX_NOT_ROOT_UNITY) THEN
        ASM_REWRITE_TAC [] THEN STRIP_TAC THEN EXISTS_TAC `u:complex` THEN
        ASM_REWRITE_TAC [] THEN POP_ASSUM MP_TAC THEN
        REWRITE_TAC [CONTRAPOS_THM] THEN
        SUBGOAL_THEN `~(u = Cx(&0))` MP_TAC THENL
        [ASM_REWRITE_TAC [GSYM COMPLEX_NORM_ZERO; REAL_OF_NUM_EQ; ARITH_EQ];
         CONV_TAC COMPLEX_FIELD];
        EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
        FIRST_X_ASSUM (MP_TAC o SPECL [`n:num`;`u:complex`;`Cx(&0)`]) THEN
        ASM_REWRITE_TAC[COMPLEX_MUL_RZERO]];
       REPEAT STRIP_TAC THEN MATCH_MP_TAC
        (REWRITE_RULE []
          (SPECL [`f:complex->complex`; `\z. c*z`; `Cx(&0)`;
                  `s:complex->bool`]
             HOLOMORPHIC_FUN_EQ_ON_CONNECTED)) THEN
       ASM_REWRITE_TAC [COMPLEX_MUL_RZERO; HOLOMORPHIC_ON_LINEAR;
                        HIGHER_COMPLEX_DERIVATIVE_LINEAR] THEN
       GEN_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `n:num`) THEN
       STRUCT_CASES_TAC (ARITH_RULE `n = 0 \/ n = 1 \/ 2 <= n`) THEN
       ASM_SIMP_TAC [higher_complex_derivative; ARITH_EQ; ARITH_LE; ONE] THEN
       ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n=0)`] THEN
       ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n=SUC 0)`]]]) in
  let LEMMA_2 = prove
    (`!r c. &0 < r /\ &0 <= c /\
            (!x. &0 <= x /\ x < r ==> c * x < r)
            ==> c <= &1`,
     REPEAT STRIP_TAC THEN REWRITE_TAC [GSYM REAL_NOT_LT] THEN STRIP_TAC THEN
     FIRST_X_ASSUM (MP_TAC o SPEC `r * (c + &1) / (&2 * c)`) THEN
     REWRITE_TAC [MESON [] `((a ==> b) ==> F) <=> (a /\ ~b)`] THEN
     CONJ_TAC THENL
     [CONJ_TAC THENL
      [MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL
       [ASM_REAL_ARITH_TAC; MATCH_MP_TAC REAL_LE_DIV THEN ASM_REAL_ARITH_TAC];
       ALL_TAC] THEN
      MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `r * &1` THEN
      CONJ_TAC THENL [ALL_TAC; REWRITE_TAC [REAL_MUL_RID; REAL_LE_REFL]] THEN
      MATCH_MP_TAC REAL_LT_LMUL THEN ASM_REWRITE_TAC[] THEN
      SUBGOAL_THEN `&0 < &2 * c` ASSUME_TAC THENL
      [ASM_REAL_ARITH_TAC;
       ASM_SIMP_TAC [REAL_LT_LDIV_EQ] THEN ASM_REAL_ARITH_TAC];
      REWRITE_TAC [REAL_NOT_LT] THEN
      ONCE_REWRITE_TAC [REAL_RING `!a b c:real. a * b * c = b * a * c`] THEN
      MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `r * &1` THEN CONJ_TAC THENL
      [REWRITE_TAC [REAL_MUL_RID; REAL_LE_REFL]; ALL_TAC] THEN
      MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL
      [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
      SUBGOAL_THEN `&0 < &2 * c` ASSUME_TAC THENL
      [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
       ASM_SIMP_TAC [REAL_ARITH `&0 < c ==> a * b / c = (a * b) / c`] THEN
       SUBGOAL_THEN `(c * (c + &1)) / (&2 * c) = (c + &1) / &2`
         SUBST1_TAC THENL
       [ASM_SIMP_TAC [RAT_LEMMA5; REAL_ARITH `&0 < &2`] THEN
        ASM_REAL_ARITH_TAC;
        ASM_REAL_ARITH_TAC]]) in
  REPEAT STRIP_TAC THEN SUBGOAL_THEN
    `!u z. norm u = &1 /\ z IN ball(Cx(&0),r) ==> u * g z = g (u * z)`
    ASSUME_TAC THENL
  [REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(u = Cx(&0))` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[GSYM COMPLEX_NORM_NZ] THEN REAL_ARITH_TAC; ALL_TAC] THEN
   SUBGOAL_THEN `!w. w IN ball(Cx(&0),r) ==> f (u * g w) / u = w`
     ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN MATCH_MP_TAC FIRST_CARTAN_THM_DIM_1 THEN
    EXISTS_TAC `ball(Cx(&0),r)` THEN EXISTS_TAC `Cx(&0)` THEN
    ASM_REWRITE_TAC [OPEN_BALL;CONNECTED_BALL;BOUNDED_BALL;
                    COMPLEX_MUL_RZERO; CENTRE_IN_BALL] THEN
    ASSERT_TAC `!z. norm (u * z) = norm z` THENL
    [ASM_REWRITE_TAC [COMPLEX_NORM_MUL; REAL_MUL_LID]; ALL_TAC] THEN
    ASSERT_TAC `!z. z IN ball(Cx(&0),r) ==> u * z IN ball(Cx(&0),r)` THENL
    [ASM_REWRITE_TAC [COMPLEX_IN_BALL_0]; ALL_TAC] THEN
    ASSERT_TAC `!z. z IN ball(Cx(&0),r) ==> z / u IN ball(Cx(&0),r)` THENL
    [ASM_REWRITE_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_DIV; REAL_DIV_1];
     ALL_TAC] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN CONJ_TAC THENL
    [MATCH_MP_TAC HOLOMORPHIC_ON_DIV THEN CONJ_TAC THENL
     [ALL_TAC; ASM_REWRITE_TAC[HOLOMORPHIC_ON_CONST]] THEN
     SUBGOAL_THEN `(\w:complex. f (u * g w) : complex) = f o (\w. u * g w)`
       SUBST1_TAC THENL
     [REWRITE_TAC [o_DEF]; MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE_GEN] THEN
     EXISTS_TAC `ball(Cx(&0),r)` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [MATCH_MP_TAC HOLOMORPHIC_ON_MUL THEN
      ASM_REWRITE_TAC[HOLOMORPHIC_ON_CONST];
      ASM_SIMP_TAC[]];
     ALL_TAC] THEN
    CONJ_TAC THENL
    [REWRITE_TAC [complex_div; COMPLEX_MUL_LZERO]; ALL_TAC] THEN
    SUBGOAL_THEN `Cx(&1) = u / u` SUBST1_TAC THENL
    [ASM_SIMP_TAC [COMPLEX_DIV_REFL]; ALL_TAC] THEN
    MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN
    MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CDIV_AT THEN
    SUBGOAL_THEN `(\w:complex. f (u * g w) : complex) = f o (\w. u * g w)`
    SUBST1_TAC THENL [REWRITE_TAC [o_DEF]; ALL_TAC] THEN
    SUBGOAL_THEN
    `((\w. f (u * g w)) has_complex_derivative
      complex_derivative f (u * g(Cx(&0))) *
      (u * complex_derivative g (Cx(&0))))
     (at (Cx(&0)))` MP_TAC THENL
    [MATCH_MP_TAC (REWRITE_RULE [o_DEF]
      (SPECL [`\w:complex. u * g(w):complex`; `f:complex->complex`]
      COMPLEX_DIFF_CHAIN_AT)) THEN CONJ_TAC THENL
     [MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_LMUL_AT THEN
      REWRITE_TAC [HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
      MATCH_MP_TAC HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
      EXISTS_TAC `ball(Cx(&0),r)` THEN
      ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL];
      REWRITE_TAC [HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
      MATCH_MP_TAC HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
      EXISTS_TAC `ball(Cx(&0),r)` THEN
      ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL; COMPLEX_MUL_RZERO]];
     SUBGOAL_THEN
       `complex_derivative f (u * g (Cx(&0))) *
        (u * complex_derivative g (Cx(&0))) = u`
       SUBST1_TAC THENL
     [ALL_TAC; REWRITE_TAC[o_DEF]] THEN
     ABBREV_TAC `g' = complex_derivative g (Cx(&0))` THEN
     ABBREV_TAC `f' = complex_derivative f (Cx(&0))` THEN
     SUBGOAL_THEN `f' * g' = Cx(&1)` ASSUME_TAC THENL
     [EXPAND_TAC "g'" THEN EXPAND_TAC "f'" THEN
      SUBGOAL_THEN `complex_derivative g (Cx(&0)) =
                    complex_derivative g (f (Cx(&0)))` SUBST1_TAC THENL
      [ASM_REWRITE_TAC [];
       MATCH_MP_TAC COMPLEX_DERIVATIVE_LEFT_INVERSE THEN
       EXISTS_TAC `ball(Cx(&0),r)` THEN EXISTS_TAC `ball(Cx(&0),r)` THEN
       ASM_REWRITE_TAC [OPEN_BALL; CENTRE_IN_BALL]];
      ASM_REWRITE_TAC [COMPLEX_MUL_RZERO] THEN
      POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_RING]];
    SUBGOAL_THEN `f(u*g(z)) = f (g (u * z)) : complex` MP_TAC THENL
    [MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `u * z:complex` THEN CONJ_TAC THENL
     [SUBGOAL_THEN `!x y:complex. x / u = y ==> x = u * y` MATCH_MP_TAC THENL
      [REWRITE_TAC [complex_div] THEN GEN_TAC THEN GEN_TAC THEN
       DISCH_THEN (SUBST1_TAC o GSYM) THEN
       SUBGOAL_THEN `x = (inv u * u) * x` MP_TAC THENL
       [ASM_SIMP_TAC [COMPLEX_MUL_LINV; COMPLEX_MUL_LID];
        REWRITE_TAC [COMPLEX_MUL_AC]];
       POP_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC []];
      MATCH_MP_TAC EQ_SYM THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_REWRITE_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_MUL; REAL_MUL_LID] THEN
      ASM_REWRITE_TAC [GSYM COMPLEX_IN_BALL_0]];
     DISCH_TAC THEN SUBGOAL_THEN
       `g (f (u * g z)) = g (f (g (u * z : complex))) : complex` MP_TAC THENL
     [POP_ASSUM SUBST1_TAC THEN REWRITE_TAC [];
      SUBGOAL_THEN `u * g z IN ball (Cx(&0),r) /\ u * z IN ball(Cx(&0),r)`
      MP_TAC THENL
      [ASM_REWRITE_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_MUL; REAL_MUL_LID] THEN
       REWRITE_TAC [GSYM COMPLEX_IN_BALL_0] THEN ASM_SIMP_TAC[];
       ASM_SIMP_TAC[]]]]];
   SUBGOAL_THEN `?c. !z. z IN ball(Cx(&0),r) ==> g z = c * z`
     STRIP_ASSUME_TAC THENL
   [MATCH_MP_TAC LEMMA_1 THEN
    ASM_SIMP_TAC [OPEN_BALL; CONNECTED_BALL; CENTRE_IN_BALL] THEN
    SIMP_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_MUL; REAL_MUL_LID];
    ALL_TAC] THEN
   SUBGOAL_THEN `norm (c:complex) = &1` ASSUME_TAC THENL
   [ALL_TAC; ASM_MESON_TAC [COMPLEX_NORM_EQ_1_CEXP]] THEN
   SUBGOAL_THEN `~(norm (c:complex) = &0)` ASSUME_TAC THENL
   [REWRITE_TAC [COMPLEX_NORM_ZERO] THEN STRIP_TAC THEN
    SUBGOAL_THEN `Cx(&0) = Cx(r / &2)` MP_TAC THENL
    [ALL_TAC; REWRITE_TAC [CX_INJ] THEN ASM_REAL_ARITH_TAC] THEN
    SUBGOAL_THEN `Cx(r / &2) IN ball(Cx(&0),r)` ASSUME_TAC THENL
    [REWRITE_TAC [COMPLEX_IN_BALL_0; CX_DIV; COMPLEX_NORM_DIV;
                  COMPLEX_NORM_NUM] THEN
     REWRITE_TAC [COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC;
     EQ_TRANS_TAC `g (f (Cx(r / &2)):complex):complex` THENL
     [EQ_TRANS_TAC `c * (f (Cx(r / &2)):complex)` THENL
      [ASM_REWRITE_TAC [COMPLEX_MUL_LZERO]; ASM_MESON_TAC[]];
      ASM_MESON_TAC[]]];
    ALL_TAC] THEN SUBGOAL_THEN `&0 < norm (c:complex)` ASSUME_TAC THENL
   [POP_ASSUM MP_TAC THEN CONV_TAC NORM_ARITH; ALL_TAC] THEN
    REWRITE_TAC [GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL
   [MATCH_MP_TAC LEMMA_2 THEN EXISTS_TAC `r : real` THEN
    ASM_REWRITE_TAC [NORM_POS_LE] THEN GEN_TAC THEN STRIP_TAC THEN
    ABBREV_TAC `p = Cx x` THEN
    SUBGOAL_THEN `x = norm (p:complex)` SUBST_ALL_TAC THENL
    [EXPAND_TAC "p" THEN REWRITE_TAC [COMPLEX_NORM_CX] THEN
     ASM_REAL_ARITH_TAC;
     REWRITE_TAC [GSYM COMPLEX_NORM_MUL] THEN
     SUBGOAL_THEN `c * p = g p` SUBST1_TAC THENL
     [ALL_TAC; ASM_MESON_TAC [COMPLEX_IN_BALL_0]] THEN
     FIRST_X_ASSUM (MATCH_MP_TAC o GSYM) THEN
     ASM_MESON_TAC [COMPLEX_IN_BALL_0]];
    ALL_TAC] THEN
   SUBST1_TAC (GSYM (SPEC `norm (c:complex)` REAL_INV_INV)) THEN
   MATCH_MP_TAC REAL_INV_1_LE THEN CONJ_TAC THENL
   [ASM_MESON_TAC [REAL_LT_INV]; ALL_TAC] THEN
   MATCH_MP_TAC LEMMA_2 THEN EXISTS_TAC `r:real` THEN ASM_REWRITE_TAC [] THEN
   CONJ_TAC THENL
   [MATCH_MP_TAC REAL_LE_INV THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN
   GEN_TAC THEN STRIP_TAC THEN
   SUBGOAL_THEN `x = norm (g (f (Cx x):complex):complex)` SUBST1_TAC THENL
   [SUBGOAL_THEN `g (f (Cx x):complex) = Cx x` SUBST1_TAC THENL
    [FIRST_X_ASSUM MATCH_MP_TAC THEN
     REWRITE_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_CX] THEN
     ASM_REAL_ARITH_TAC;
     REWRITE_TAC [COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC];
    SUBGOAL_THEN `g (f (Cx x):complex) = c * f (Cx x) : complex`
      SUBST1_TAC THENL
    [FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
     REWRITE_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_CX] THEN
     ASM_REAL_ARITH_TAC;
     REWRITE_TAC [COMPLEX_NORM_MUL; REAL_MUL_ASSOC] THEN
     ASM_SIMP_TAC [REAL_MUL_LINV; REAL_MUL_LID; GSYM COMPLEX_IN_BALL_0] THEN
     FIRST_X_ASSUM MATCH_MP_TAC THEN
     REWRITE_TAC [COMPLEX_IN_BALL_0; COMPLEX_NORM_CX] THEN
     ASM_REAL_ARITH_TAC]]]);;  
 
(* ------------------------------------------------------------------------- *)
(* Cauchy's inequality and more versions of Liouville.                       *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A holomorphic function f has only isolated zeros unless f is 0.           *)
(* ------------------------------------------------------------------------- *)
let ISOLATED_ZEROS = prove
 (`!f a z w.
     open a /\ connected a /\ f 
holomorphic_on a /\ z 
IN a /\ f z = Cx(&0) /\
     w 
IN a /\ ~(f w = Cx(&0))
     ==> (?r. &0 < r /\ ball(z,r) 
SUBSET a /\
              (!w. w 
IN ball(z,r) /\ ~(w=z) ==> ~(f w = Cx(&0))))`,
  REPEAT STRIP_TAC THEN ASSERT_TAC `?k.
         ~(
higher_complex_derivative k f z = Cx(&0)) /\
         (!n. n < k ==> 
higher_complex_derivative n f z = Cx(&0))` THENL
  [EXISTS_TAC `minimal n. (~(
higher_complex_derivative n f z = Cx(&0)))`
  THEN SUBGOAL_THEN `?k'. ~(
higher_complex_derivative k' f z = Cx(&0))`
  (fun th-> ASM_MESON_TAC[th;
MINIMAL]) THEN REWRITE_TAC[GSYM 
NOT_FORALL_THM]
  THEN STRIP_TAC THEN ASM_MESON_TAC[
HOLOMORPHIC_FUN_EQ_0_ON_CONNECTED];
  ALL_TAC] THEN SUBGOAL_THEN `~(k = 0)`ASSUME_TAC THENL
  [STRIP_TAC THEN MP_TAC(ASSUME `~(
higher_complex_derivative k f z = Cx(&0))`)
  THEN ASM_MESON_TAC[
higher_complex_derivative];
  STRIP_ASSUME_TAC (MESON [
OPEN_CONTAINS_BALL;ASSUME `open (a:complex->bool)`;
  ASSUME `z:complex 
IN a`] `?s. &0 < s /\ ball (z:complex,s) 
SUBSET a`)
  THEN ASSUME_TAC (MESON [
HOLOMORPHIC_POWER_SERIES;
  ASSUME `f 
holomorphic_on a`;ASSUME `ball (z:complex,s)
  
SUBSET a`;
HOLOMORPHIC_ON_SUBSET] `!w:complex. w 
IN ball(z,s) ==>
  ((\n. 
higher_complex_derivative n f z / Cx(&(
FACT n))*(w -z) pow n) sums f w)
  (from 0)`) THEN ASSERT_TAC `?g:complex->complex. !x:complex.
                x 
IN ball(z,s) ==>
        (((\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
          (x - z) pow (n-k))) sums g x) (from k)` THENL
  [EXISTS_TAC `\x:complex. lim sequentially
  (\m. vsum (k..m) (\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
  (x - z) pow (n-k)))` THEN GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `!m. k..m = (0..m) 
INTER from k` ASSUME_TAC THENL
  [REWRITE_TAC[
EXTENSION; 
IN_FROM; 
IN_INTER; 
IN_ELIM_THM; 
IN_NUMSEG] THEN
  ARITH_TAC;ASM_REWRITE_TAC[] THEN REWRITE_TAC
  [SET_RULE `!m. (0..m) 
INTER from k = from k 
INTER (0..m)`;
SUMS_LIM]] THEN
  ASM_CASES_TAC `x:complex = z` THENL
  [ASM_REWRITE_TAC[
COMPLEX_SUB_REFL;summable] THEN
  EXISTS_TAC `
higher_complex_derivative k f z / Cx(&(
FACT k))` THEN
  MATCH_MP_TAC 
SUMS_EQ THEN EXISTS_TAC `\n. if n = k then
  
higher_complex_derivative k f z / Cx(&(
FACT k)) else Cx(&0)`
  THEN CONJ_TAC THENL [REWRITE_TAC [
IN_FROM] THEN GEN_TAC THEN DISCH_TAC
  THEN COND_CASES_TAC THENL
  [ASM_REWRITE_TAC[
COMPLEX_POW_ZERO;
SUB_REFL;
COMPLEX_MUL_RID];
  ASM_SIMP_TAC[
COMPLEX_POW_ZERO; ARITH_RULE `k <= x' /\ ~(x' = k) ==>
  ~(x' - k = 0)`;
COMPLEX_MUL_RZERO]]; MATCH_MP_TAC 
SERIES_VSUM THEN
  EXISTS_TAC `{k:num}` THEN SIMP_TAC [
FINITE_SING;from;
IN_SING;
  
COMPLEX_VEC_0;
VSUM_SING] THEN SET_TAC[
LE_REFL]];
  MATCH_MP_TAC 
SUMMABLE_EQ THEN EXISTS_TAC
  `\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
  (x - z) pow n / (x-z) pow k` THEN CONJ_TAC THENL [REWRITE_TAC [
IN_FROM]
  THEN GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `(x:complex - z) pow (x' - k)
  = (x - z) pow x' / (x - z) pow k` (fun th->
  REWRITE_TAC[th;
COMPLEX_EQ_MUL_LCANCEL]) THEN MATCH_MP_TAC
  
COMPLEX_DIV_POW THEN ASM_SIMP_TAC [
COMPLEX_SUB_0];
  SUBGOAL_THEN `(\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
  (x - z) pow n / (x - z) pow k) = (\n. (
higher_complex_derivative n f z /
  Cx(&(
FACT n)) *(x - z) pow n) / (x - z) pow k) ` SUBST1_TAC
  THENL [REWRITE_TAC [
FUN_EQ_THM] THEN GEN_TAC THEN CONV_TAC COMPLEX_FIELD;
  MATCH_MP_TAC 
SUMMABLE_COMPLEX_DIV THEN MATCH_MP_TAC 
SUMMABLE_FROM_ELSEWHERE
  THEN EXISTS_TAC `0` THEN ASM_MESON_TAC[summable]]]];ALL_TAC] THEN
  ASSERT_TAC `~(g (z:complex) = Cx(&0)) /\
  (!x. x 
IN ball(z,s) ==> f x = (x - z) pow k * g(x))` THENL
  [CONJ_TAC THENL [MATCH_MP_TAC
  (COMPLEX_FIELD `!x y:complex. x = y /\ ~(y= Cx(&0)) ==> ~(x=Cx(&0))`) THEN
  EXISTS_TAC `
higher_complex_derivative k f z / Cx(&(
FACT k))` THEN
  CONJ_TAC THENL [ONCE_REWRITE_TAC [GSYM 
COMPLEX_SUB_0] THEN
  MATCH_MP_TAC 
SERIES_UNIQUE THEN EXISTS_TAC
  `(\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
  Cx(&0) pow (n-k))` THEN EXISTS_TAC `from (k +1)` THEN
  CONJ_TAC THENL [SUBST1_TAC (MESON [
VSUM_SING_NUMSEG]
  `
higher_complex_derivative k f z / Cx(&(
FACT k)) =
  vsum (k..k) (\n. 
higher_complex_derivative n f z / Cx(&(
FACT n))) `)
  THEN SUBGOAL_THEN  `vsum (k..k)  (\n. 
higher_complex_derivative n f z
  / Cx(&(
FACT n))) = vsum (k..((k+1)-1)) (\n. 
higher_complex_derivative n f z
  / Cx(&(
FACT n)) * Cx(&0) pow (n - k))` SUBST1_TAC THENL [
  REWRITE_TAC[
VSUM_SING_NUMSEG; 
COMPLEX_POW_ZERO;
SUB_REFL;
COMPLEX_MUL_RID;
  ARITH_RULE `((k:num) + 1) -1 = k`];
  MATCH_MP_TAC 
SUMS_OFFSET THEN
  ASM_REWRITE_TAC[ARITH_RULE `k:num <= k+1 /\ 0 < k+1`]
  THEN POP_ASSUM (MP_TAC o SPEC `z:complex`) THEN
  ASM_REWRITE_TAC[
CENTRE_IN_BALL;
COMPLEX_SUB_REFL]];MATCH_MP_TAC
  
SUMS_COMPLEX_0 THEN GEN_TAC THEN SIMP_TAC [
IN_FROM;
COMPLEX_POW_ZERO;
  ARITH_RULE `k + 1 <= n <=> ~(n-k= 0)`;
COMPLEX_MUL_RZERO]];
  MATCH_MP_TAC (COMPLEX_FIELD `!x y. ~(x = Cx(&0)) /\ ~(y = Cx(&0))
  ==> ~(x / y = Cx(&0))`) THEN ASM_REWRITE_TAC[GSYM 
COMPLEX_NORM_ZERO] THEN
  SUBST1_TAC (MESON [
COMPLEX_NORM_CX]
  `norm (Cx(&(
FACT k))) = abs ((&(
FACT k)))`) THEN
  SIMP_TAC [
REAL_ABS_ZERO;
FACT_LT;
REAL_OF_NUM_LT;
REAL_LT_IMP_NZ]]; ALL_TAC]
  THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC 
SERIES_UNIQUE THEN
  EXISTS_TAC `(\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
  (x - z) pow n)`THEN EXISTS_TAC `(from 0)` THEN
  CONJ_TAC  THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
  ASM_CASES_TAC `x:complex = z` THENL [
  ASM_REWRITE_TAC[
COMPLEX_SUB_REFL] THEN MATCH_MP_TAC 
SUMS_EQ THEN
  EXISTS_TAC `\n:num. Cx(&0)` THEN  CONJ_TAC THENL
  [REWRITE_TAC[
IN_FROM;
COMPLEX_POW_ZERO] THEN X_GEN_TAC `n:num` THEN
  DISCH_TAC THEN  COND_CASES_TAC THENL [
  ASM_REWRITE_TAC[
higher_complex_derivative] THEN CONV_TAC COMPLEX_FIELD;
  REWRITE_TAC[
COMPLEX_MUL_RZERO]];
  ASM_REWRITE_TAC[
COMPLEX_POW_ZERO;
COMPLEX_MUL_LZERO] THEN
  ASM_REWRITE_TAC[
SERIES_0;GSYM 
COMPLEX_VEC_0]];ALL_TAC] THEN
  MATCH_MP_TAC 
SUMS_EQ THEN EXISTS_TAC `\n.(x-z) pow k *
  
higher_complex_derivative n f z / Cx(&(
FACT n)) *(x - z) pow (n - k)`
  THEN CONJ_TAC THENL [REWRITE_TAC[
IN_FROM] THEN X_GEN_TAC `n:num`
  THEN DISCH_TAC THEN ASM_CASES_TAC `n:num < k` THENL [ASM_SIMP_TAC[]
  THEN CONV_TAC COMPLEX_FIELD;
  SUBGOAL_THEN `(x:complex-z) pow (n-k) = (x-z) pow n / (x-z) pow k`
  SUBST1_TAC THENL [MATCH_MP_TAC 
COMPLEX_DIV_POW THEN
  ASM_SIMP_TAC[
COMPLEX_SUB_0; ARITH_RULE `~(n:num < k) ==> k <= n`];
  SUBST1_TAC (COMPLEX_FIELD `(x - z) pow k *
     
higher_complex_derivative n f z / Cx(&(
FACT n)) *
     (x - z) pow n / (x - z) pow k =
         
higher_complex_derivative n f z / Cx(&(
FACT n)) * (x-z) pow k *
     (x - z) pow n / (x - z) pow k`) THEN MESON_TAC [ASSUME `~(x:complex = z)`;
  
COMPLEX_DIV_LMUL;
COMPLEX_SUB_0;
COMPLEX_POW_EQ_0]]];
  MATCH_MP_TAC 
SERIES_COMPLEX_LMUL THEN SUBST1_TAC
  (MESON [
COMPLEX_ADD_RID] `(g:complex->complex) x = g x + Cx(&0)`) THEN
  SUBGOAL_THEN `Cx(&0) = vsum (0.. (k-1))
  (\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) * (x - z) pow (n - k))`
  SUBST1_TAC THENL [ONCE_REWRITE_TAC[
EQ_SYM_EQ] THEN
  REWRITE_TAC [GSYM 
COMPLEX_VEC_0] THEN MATCH_MP_TAC 
VSUM_EQ_0 THEN
  REWRITE_TAC [
IN_NUMSEG] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  ASM_SIMP_TAC[ARITH_RULE ` ~(k = 0) /\ n <= k - 1 ==> n < k`] THEN
  REWRITE_TAC[
COMPLEX_VEC_0] THEN CONV_TAC COMPLEX_FIELD;
  MATCH_MP_TAC 
SUMS_OFFSET_REV THEN
  ASM_SIMP_TAC[ARITH_RULE `0 <= k /\ ~(k = 0) ==> 0 < k`;
LE_0]]]];ALL_TAC] THEN
  ASSERT_TAC `?r. &0 < r /\ (!x:complex. dist (z,x) < r ==>
                ~((g:complex->complex) x = Cx(&0)))` THENL [
  MATCH_MP_TAC 
CONTINUOUS_ON_OPEN_AVOID THEN
  EXISTS_TAC `ball(z:complex, s)` THEN
  ASM_REWRITE_TAC[
OPEN_BALL;
CENTRE_IN_BALL]
  THEN MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
  MATCH_MP_TAC 
ANALYTIC_IMP_HOLOMORPHIC THEN MATCH_MP_TAC 
POWER_SERIES_ANALYTIC
  THEN EXISTS_TAC `\n. 
higher_complex_derivative (n+k) f z / Cx(&(
FACT (n+k)))`
  THEN EXISTS_TAC `from 0` THEN REWRITE_TAC[] THEN GEN_TAC THEN DISCH_TAC
  THEN REWRITE_TAC[
SERIES_FROM] THEN MATCH_MP_TAC 
LIM_TRANSFORM THEN
  EXISTS_TAC `(\n.vsum (k..(k+n))
  (\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *(w' - z) pow (n-k)))`
  THEN CONJ_TAC THENL [SIMP_TAC [
VSUM_OFFSET_0;ARITH_RULE
  `!k n :num.(k + n) - k = n`; ARITH_RULE `!k n:num. k <= k + n`;
ADD_ASSOC;
  ARITH_RULE `!k n :num.(n + k) - k = n`] THEN
  SUBGOAL_THEN `(\x. vsum (0..x) (\i. 
higher_complex_derivative (i + k)
         f z / Cx(&(
FACT (i + k))) * (w' - z) pow i)
         - vsum (0..x) (\n. 
higher_complex_derivative (n + k) f z
        / Cx(&(
FACT (n + k))) * (w' - z) pow n)) = (\x. Cx(&0))`
        (fun th-> SIMP_TAC[th;
COMPLEX_VEC_0;
LIM_CONST]) THEN
  REWRITE_TAC[
FUN_EQ_THM] THEN GEN_TAC THEN REWRITE_TAC[
COMPLEX_SUB_0];
  SUBGOAL_THEN `(\n. vsum (k..k + n)
  (\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *(w' - z) pow (n - k)))
  = (\n. vsum (k..n+k)(\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
  (w' - z) pow (n - k)))` SUBST1_TAC THENL [
  REWRITE_TAC[
FUN_EQ_THM] THEN GEN_TAC THEN REWRITE_TAC[
ADD_SYM];
  MP_TAC (ISPECL [`(\n. vsum (k..n)
        (\n. 
higher_complex_derivative n f z / Cx(&(
FACT n)) *
        (w' - z) pow (n - k)))`;`(g:complex->complex) w'`;`k:num`]
  
SEQ_OFFSET) THEN ONCE_REWRITE_TAC[GSYM 
SERIES_FROM] THEN ASM_SIMP_TAC[]]];
  ALL_TAC] THEN EXISTS_TAC `min r s` THEN CONJ_TAC THENL
  [MP_TAC (CONJ (ASSUME `&0 < r`) (ASSUME `&0 < s`)) THEN REAL_ARITH_TAC;
  CONJ_TAC THENL [REWRITE_TAC[
real_min] THEN COND_CASES_TAC
  THENL [MATCH_MP_TAC 
SUBSET_TRANS THEN EXISTS_TAC `ball(z:complex,s)`
  THEN ASM_REWRITE_TAC[ball] THEN SET_TAC[ASSUME `r:real <= s`;
REAL_LTE_TRANS];
  ASM_REWRITE_TAC[]];GEN_TAC THEN STRIP_TAC THEN
  SUBGOAL_THEN `(f:complex->complex) w' =
                (w' - z) pow k * (g:complex->complex) w'` SUBST1_TAC
   THENL [FIRST_ASSUM MATCH_MP_TAC THEN
  MP_TAC (ASSUME `w':complex 
IN ball (z,min r s)`) THEN REWRITE_TAC [
real_min]
  THEN COND_CASES_TAC THENL [ASM_MESON_TAC[
IN_BALL;
REAL_LTE_TRANS];
  REWRITE_TAC[]];SIMP_TAC [
COMPLEX_ENTIRE;DE_MORGAN_THM] THEN
  CONJ_TAC THENL  [REWRITE_TAC[
COMPLEX_POW_EQ_0;DE_MORGAN_THM]
  THEN DISJ1_TAC THEN ASM_REWRITE_TAC [
COMPLEX_SUB_0];
  FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC (ASSUME `w':complex 
IN
  ball (z,min r s)`) THEN REWRITE_TAC [
real_min] THEN COND_CASES_TAC
  THENL [REWRITE_TAC[
IN_BALL];
  ASM_MESON_TAC[
REAL_NOT_LE;
IN_BALL;
REAL_LT_TRANS]]]]]]]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Analytic continuation.                                                    *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Open mapping theorem.                                                     *)
(* ------------------------------------------------------------------------- *)
let OPEN_MAPPING_THM = prove
  (`!a f.
     open a /\ connected a /\ f 
holomorphic_on a /\
     ~(?c:complex. !z:complex. z 
IN a ==> f z = c)
     ==> (!u. open u /\ u 
SUBSET a ==> open(
IMAGE f u))`,
  let LEMMA_ZERO = prove
  (`!f z r. f continuous_on cball(z,r) /\ f holomorphic_on ball(z,r) /\
      &0 < r /\ (!w. norm(z-w) =r ==> norm(f z) < norm(f w))
      ==> (?w. w IN ball(z,r) /\ f w = Cx(&0))`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN  ` ((!x:complex. x IN ball(z,r) ==>
  ~((f:complex->complex) x = Cx(&0))) ==> F ) ==> ( ?w:complex. w IN ball(z,r)
  /\ f w = Cx(&0))` MATCH_MP_TAC THENL [MESON_TAC[];
  STRIP_TAC THEN SUBGOAL_THEN `&0 < norm ((f:complex->complex) z)` ASSUME_TAC
  THENL [ASM_SIMP_TAC[COMPLEX_NORM_NZ; CENTRE_IN_BALL; SPEC `z:complex`
  (ASSUME`!x:complex. x IN ball(z,r) ==> ~((f:complex->complex) x = Cx(&0))`)];
  ALL_TAC] THEN SUBGOAL_THEN
    `(!x:complex. x IN cball(z,r) ==> ~((f:complex->complex) x = Cx(&0)))`
  ASSUME_TAC THENL [GEN_TAC THEN REWRITE_TAC [IN_CBALL;dist]
  THEN REWRITE_TAC[REAL_ARITH `a <= b <=> a < b \/ a = b`] THEN
  REWRITE_TAC [TAUT `((p \/ q) ==> r ) <=> ((p ==> r ) /\ (q ==> r))`] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[IN_BALL;dist];
  DISCH_TAC THEN REWRITE_TAC[GSYM COMPLEX_NORM_ZERO] THEN MATCH_MP_TAC
  REAL_LT_IMP_NZ THEN MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC
  `norm ((f:complex->complex) z)` THEN
  ASM_SIMP_TAC [SPEC `z':complex` (ASSUME `!w:complex. norm (w - z) = r
                ==> norm ((f:complex->complex) z) < norm (f w)`)]];
  ALL_TAC] THEN SUBGOAL_THEN `~(frontier(cball(z:complex,r))={})` ASSUME_TAC
  THENL [REWRITE_TAC[FRONTIER_CBALL;sphere;dist] THEN SUBGOAL_THEN `?x:complex.
  norm(z-x) = r` (fun th-> SET_TAC [MEMBER_NOT_EMPTY;th]) THEN EXISTS_TAC
  `z + Cx r` THEN ASM_SIMP_TAC[COMPLEX_ADD_SUB2;NORM_NEG;COMPLEX_NORM_CX;
  REAL_ABS_REFL;REAL_LT_IMP_LE];ALL_TAC] THEN
  ABBREV_TAC `g = \z. inv ((f:complex->complex) z)` THEN ASSERT_TAC
  `(g:complex->complex) continuous_on cball(z,r) /\ g holomorphic_on ball(z,r)`
   THENL [CONJ_TAC THENL [EXPAND_TAC "g" THEN
   REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN GEN_TAC THEN DISCH_TAC
  THEN MATCH_MP_TAC CONTINUOUS_COMPLEX_INV_WITHIN THEN ASM_MESON_TAC
  [CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN];EXPAND_TAC "g" THEN MATCH_MP_TAC
  HOLOMORPHIC_ON_INV THEN ASM_REWRITE_TAC[]];ALL_TAC] THEN
  SUBGOAL_THEN `?w:complex. w IN frontier(cball(z,r)) /\
                (!x:complex. x IN frontier(cball(z,r)) ==>
                norm ((f:complex->complex) w) <= norm (f x))`
  STRIP_ASSUME_TAC THENL [MATCH_MP_TAC CONTINUOUS_ATTAINS_INF
  THEN ASM_SIMP_TAC[COMPACT_FRONTIER;COMPACT_CBALL;CBALL_EQ_EMPTY;
  REAL_ARITH `!r:real. &0 < r ==> ~(r < &0)` ] THEN
  SUBGOAL_THEN `lift o (\x. norm ((f:complex->complex) x)) =
                 (lift o norm) o (\x. f x) ` SUBST1_TAC THENL
  [REWRITE_TAC[o_DEF]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE
  THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN EXISTS_TAC
  `cball(z:complex,r)` THEN ASM_REWRITE_TAC[ETA_AX] THEN
  ASM_SIMP_TAC[SUBSET_TRANS;CLOSED_CBALL;FRONTIER_SUBSET_CLOSED];
  ASM_MESON_TAC [CONTINUOUS_ON_LIFT_NORM; HOLOMORPHIC_ON_SUBSET;
  HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;SUBSET_TRANS;CLOSED_CBALL;
  FRONTIER_SUBSET_CLOSED]]];ALL_TAC] THEN
  SUBGOAL_THEN `?w:complex. norm (z-w) = r /\
                norm ((f:complex->complex) w) <= norm (f z)`
                (fun thm -> ASM_MESON_TAC[thm;REAL_NOT_LE])
  THEN EXISTS_TAC `w:complex` THEN CONJ_TAC
  THENL [MP_TAC (ASSUME `w:complex IN frontier (cball (z,r))`) THEN
  REWRITE_TAC[FRONTIER_CBALL;sphere;dist] THEN SET_TAC[];ALL_TAC] THEN
  SUBGOAL_THEN `&0 < norm ((f:complex->complex) w)` ASSUME_TAC THENL
  [REWRITE_TAC[NORM_POS_LT;COMPLEX_VEC_0] THEN MATCH_MP_TAC (ASSUME `!x.
  x:complex IN cball (z,r) ==> ~(f x = Cx(&0))`) THEN MATCH_MP_TAC
  (SET_RULE `!x:complex u s. x IN u /\ u SUBSET s ==> x IN s `) THEN
  EXISTS_TAC `frontier(cball(z:complex,r))` THEN
  ASM_SIMP_TAC[CLOSED_CBALL;FRONTIER_SUBSET_CLOSED];ALL_TAC] THEN
  SUBGOAL_THEN `inv (norm ((f:complex-> complex) w)) = &1/ (norm (f w))`
  ASSUME_TAC THENL [MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN MATCH_MP_TAC
  REAL_DIV_LMUL THEN ASM_REWRITE_TAC[COMPLEX_NORM_ZERO;GSYM COMPLEX_NORM_NZ];
  ASSERT_TAC `?x:complex. x IN frontier(cball(z,r)) /\ (!y. y IN
  frontier(cball(z,r)) ==> norm ((g:complex->complex) y) <= norm (g x))`
  THENL [MATCH_MP_TAC CONTINUOUS_ATTAINS_SUP THEN
  ASM_SIMP_TAC[COMPACT_FRONTIER;
  COMPACT_CBALL;CBALL_EQ_EMPTY; REAL_ARITH `!r:real. &0 < r ==> ~(r < &0)`]
  THEN SUBGOAL_THEN `lift o (\x. norm ((g:complex->complex) x)) =
                          (lift o norm) o (\x. g x) ` SUBST1_TAC
  THENL [REWRITE_TAC[o_DEF]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
  CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN
  EXISTS_TAC `cball(z:complex,r)` THEN ASM_REWRITE_TAC[ETA_AX]
  THEN ASM_SIMP_TAC[SUBSET_TRANS;CLOSED_CBALL;
  FRONTIER_SUBSET_CLOSED]; ASM_MESON_TAC [CONTINUOUS_ON_LIFT_NORM;
  HOLOMORPHIC_ON_SUBSET; HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;SUBSET_TRANS;
  CLOSED_CBALL; FRONTIER_SUBSET_CLOSED]]];ALL_TAC] THEN SUBGOAL_THEN
  `&0 < norm ((f:complex->complex) x)` ASSUME_TAC THENL
  [REWRITE_TAC[NORM_POS_LT;COMPLEX_VEC_0] THEN MATCH_MP_TAC
  (ASSUME `!x. x:complex IN cball (z,r) ==> ~(f x = Cx(&0))`)
  THEN MATCH_MP_TAC (SET_RULE `!x:complex u s. x IN u /\ u SUBSET s
                ==> x IN s `) THEN  EXISTS_TAC `frontier(cball(z:complex,r))`
  THEN ASM_SIMP_TAC[CLOSED_CBALL;FRONTIER_SUBSET_CLOSED];
  ABBREV_TAC `B = norm ((g:complex->complex) x)`
  THEN SUBGOAL_THEN `norm (higher_complex_derivative 0 g z) <=
                (&(FACT 0)) * B / (r pow 0) `
  MP_TAC THENL[MATCH_MP_TAC CAUCHY_INEQUALITY THEN
  ASM_REWRITE_TAC[] THEN MP_TAC
  (ASSUME `!y:complex. y IN frontier (cball (z,r)) ==>
                 norm ((g:complex ->complex) y) <= B`)
  THEN SIMP_TAC [FRONTIER_CBALL;sphere;dist] THEN SET_TAC[];
  REWRITE_TAC [higher_complex_derivative;FACT;real_pow;
  REAL_MUL_LID;REAL_DIV_1] THEN DISCH_TAC THEN SUBGOAL_THEN
        `inv (norm ((f:complex->complex) z)) <=
        inv (norm (f w)) ==> norm (f w) <= norm (f z)` MATCH_MP_TAC
  THENL [SUBGOAL_THEN `inv (norm ((f:complex-> complex) z)) =
                         &1/ (norm (f z))` SUBST1_TAC
  THENL [MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN MATCH_MP_TAC REAL_DIV_LMUL THEN
  ASM_SIMP_TAC[REAL_ARITH `&0 < norm ((f:complex->complex) z) ==>
  ~(norm (f z) = &0) `]; ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBST1_TAC
  (REAL_ARITH `norm ((f:complex->complex) w)= &1 * norm (f w)`) THEN
   SUBST1_TAC(REAL_ARITH `norm ((f:complex->complex) z)=
                        &1 * norm (f z)`) THEN POP_ASSUM
  MP_TAC THEN MATCH_MP_TAC (TAUT `(p <=> q ) ==> ( p ==> q)`)
  THEN MATCH_MP_TAC RAT_LEMMA4 THEN ASM_REWRITE_TAC[]];
  REWRITE_TAC[GSYM COMPLEX_NORM_INV] THEN
  SUBGOAL_THEN `inv ((f:complex->complex) z) = g z /\ inv (f w) = g w`
                (fun thm -> REWRITE_TAC[thm])
  THENL [ASM_MESON_TAC[];MATCH_MP_TAC (REAL_ARITH
  `!x y z:real. x <= y /\ y = z ==> x <= z`) THEN  EXISTS_TAC `B:real` THEN
  ASM_REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL [EXPAND_TAC "B"
  THEN REWRITE_TAC[SYM (ASSUME`(\z. inv ((f:complex->complex) z)) =
  g`);COMPLEX_NORM_INV] THEN SUBGOAL_THEN `inv (norm ((f:complex->complex) x))
  = &1 / norm (f x)` (fun thm -> REWRITE_TAC[thm]) THENL [MATCH_MP_TAC
  REAL_MUL_RINV_UNIQ THEN MATCH_MP_TAC REAL_DIV_LMUL THEN
  ASM_SIMP_TAC[REAL_LT_IMP_NZ]; ASM_REWRITE_TAC[] THEN
  MP_TAC (SPEC `x:complex`(ASSUME`!x:complex. x IN frontier (cball (z,r))
                ==> norm ((f:complex->complex) w) <= norm (f x)`))
  THEN REWRITE_TAC [ASSUME`x:complex IN frontier
  (cball (z,r))`] THEN SUBST1_TAC
  (REAL_ARITH `norm ((f:complex->complex) w)= &1* norm (f w)`) THEN
  SUBST1_TAC (REAL_ARITH `norm ((f:complex->complex) x)= &1 * norm (f x)`)
  THEN  DISCH_TAC THEN REWRITE_TAC[REAL_MUL_LID] THEN POP_ASSUM
  MP_TAC THEN MATCH_MP_TAC (TAUT `(q <=> p ) ==> ( p ==> q)`) THEN MATCH_MP_TAC
  (RAT_LEMMA4) THEN ASM_REWRITE_TAC[]];ASM_MESON_TAC[]]]]]]]]) in
  REPEAT STRIP_TAC THEN ASSUME_TAC (MESON [HOLOMORPHIC_ON_SUBSET;
  ASSUME `(u:complex->bool) SUBSET a`;ASSUME `f holomorphic_on a`]
  `f holomorphic_on u`) THEN ASM_CASES_TAC `(u:complex->bool)={}` THENL [
  ASM_MESON_TAC[SUBSET_EMPTY;IMAGE_EQ_EMPTY;OPEN_EMPTY];ALL_TAC] THEN
  SUBGOAL_THEN `!f u. ~(u={}) /\ open u /\ connected u /\
                 f holomorphic_on u /\
         ~(?c:complex. !z:complex. z IN u ==> f z=c) ==>
                         open (IMAGE f u)` ASSUME_TAC
  THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[OPEN_CONTAINS_BALL;IN_IMAGE]
  THEN GEN_TAC THEN STRIP_TAC THEN
  ASSERT_TAC `(\z:complex.(f':complex->complex)z - f' x') holomorphic_on
  (u':complex->bool) /\ (\z:complex. f' z - f' x')x' = Cx(&0)` THENL [
  ASM_SIMP_TAC[HOLOMORPHIC_ON_CONST;HOLOMORPHIC_ON_SUB;
  BETA_THM;COMPLEX_SUB_REFL];ALL_TAC] THEN
  ASSERT_TAC `?s:real. &0 < s /\ ball(x',s) SUBSET u' /\
        (!z:complex. z IN ball(x',s) /\ ~(z = x') ==>
        ~((\z:complex.(f':complex->complex)z - f' x') z = Cx(&0)))` THENL [
  MATCH_MP_TAC ISOLATED_ZEROS THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[COMPLEX_SUB_0];
  ASSERT_TAC `?r. &0 < r /\ cball(x':complex,r) SUBSET ball(x',s)` THENL[
  EXISTS_TAC `s:real / &2` THEN ASM_SIMP_TAC [REAL_ARITH `&0 < s
  ==> &0 < s/ &2`;SUBSET;IN_CBALL;IN_BALL] THEN MP_TAC (ASSUME `&0 < s`)
  THEN REAL_ARITH_TAC;ALL_TAC] THEN
  ASSERT_TAC `cball(x',r) SUBSET u' /\
     (!z:complex. z IN cball(x',r) /\
        ~(z=x')==> ~((\z:complex.(f':complex->complex)z - f' x') z = Cx(&0)))`
  THENL [CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_TRANS];
  MESON_TAC[ASSUME `!z:complex. z IN ball (x',s) /\ ~(z = x')
  ==> ~((\z. (f':complex->complex) z - f' x') z = Cx(&0))`;
  ASSUME `cball (x':complex,r) SUBSET ball (x',s)`;SUBSET]];ALL_TAC]
  THEN SUBGOAL_THEN `frontier (cball (x':complex,r)) SUBSET u'` ASSUME_TAC
  THENL [MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `cball(x':complex,r)`
  THEN ASM_MESON_TAC[CLOSED_CBALL;FRONTIER_SUBSET_CLOSED];ALL_TAC] THEN
  ASSERT_TAC `?w. w IN frontier(cball(x':complex,r)) /\
        (!z. z IN frontier(cball(x',r)) ==>
        norm ((f':complex->complex)w - f' x') <= norm(f' z - f' x'))`
  THENL [MATCH_MP_TAC CONTINUOUS_ATTAINS_INF THEN
  ASM_SIMP_TAC[COMPACT_FRONTIER;COMPACT_CBALL;CBALL_EQ_EMPTY;
  REAL_ARITH `!r:real. &0 < r ==> ~(r < &0)` ] THEN
  CONJ_TAC THENL [REWRITE_TAC[REWRITE_RULE[sphere] FRONTIER_CBALL;dist] THEN
  SUBGOAL_THEN `?x:complex. norm(x'-x) = r` (fun th-> SET_TAC
   [MEMBER_NOT_EMPTY;th]) THEN EXISTS_TAC `x' + Cx r` THEN
  ASM_SIMP_TAC[COMPLEX_ADD_SUB2;NORM_NEG;COMPLEX_NORM_CX;
  REAL_ABS_REFL;REAL_LT_IMP_LE];
  SUBGOAL_THEN `lift o (\z. norm ((f':complex->complex) z - f' x')) =
        (lift o norm) o (\z. f' z - f' x') ` SUBST1_TAC THENL [
  REWRITE_TAC[o_DEF]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
  ASM_MESON_TAC [CONTINUOUS_ON_LIFT_NORM; HOLOMORPHIC_ON_SUBSET;
  HOLOMORPHIC_ON_IMP_CONTINUOUS_ON]]];ALL_TAC] THEN
  ABBREV_TAC `e = (norm ((f':complex->complex) w - f' x'))*(&1/ &3)`
  THEN SUBGOAL_THEN `&0<e` ASSUME_TAC THENL [
  EXPAND_TAC "e" THEN MATCH_MP_TAC REAL_LT_MUL THEN
  REWRITE_TAC [REAL_ARITH `&0 < &1 / &3`; COMPLEX_NORM_NZ] THEN
  SUBST1_TAC (MESON [BETA_THM] `(f':complex->complex) w - f' x' =
  (\w. f' w - f' x')w `) THEN FIRST_ASSUM MATCH_MP_TAC THEN
  CONJ_TAC THENL[MESON_TAC[ASSUME `w:complex IN frontier (cball (x',r))`;
  FRONTIER_SUBSET_CLOSED; CLOSED_CBALL;SET_RULE `!x:complex s t. x IN s /\
  s SUBSET t ==> x IN t` ];ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0] THEN
  REWRITE_TAC[GSYM COMPLEX_NORM_ZERO] THEN MATCH_MP_TAC REAL_LT_IMP_NZ
  THEN MATCH_MP_TAC (REAL_ARITH `&0 < r /\ r = norm (w:complex - x') ==>
  &0 < norm (w - x')`) THEN ASM_REWRITE_TAC[] THEN
  MP_TAC (ASSUME `w:complex IN frontier (cball (x',r))`) THEN
  SIMP_TAC[FRONTIER_CBALL; sphere; dist; IN_ELIM_THM; NORM_SUB]];
      ALL_TAC]
  THEN EXISTS_TAC `e:real` THEN REWRITE_TAC[ASSUME `&0<e`] THEN
  REWRITE_TAC[SUBSET;IN_IMAGE] THEN GEN_TAC THEN DISCH_TAC THEN
  ONCE_REWRITE_TAC [GSYM COMPLEX_SUB_0] THEN
  SUBGOAL_THEN `(?x:complex. x IN ball(x',r) /\
        x'' - (f':complex->complex) x = Cx(&0)) ==>
                ?x. x'' - f' x = Cx(&0) /\ x IN u'` MATCH_MP_TAC THENL [
  STRIP_TAC THEN EXISTS_TAC `x''':complex` THEN
  ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC (SET_RULE `!x:complex u s. x IN u /\ u SUBSET s ==> x IN s`)
  THEN EXISTS_TAC `ball(x':complex,r)` THEN ASM_REWRITE_TAC[]
  THEN ASM_MESON_TAC[BALL_SUBSET_CBALL;SUBSET_TRANS];
  MATCH_MP_TAC LEMMA_ZERO THEN CONJ_TAC THENL
  [MATCH_MP_TAC HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
  MATCH_MP_TAC HOLOMORPHIC_ON_SUB THEN ASM_MESON_TAC
  [HOLOMORPHIC_ON_CONST; HOLOMORPHIC_ON_SUBSET];
  CONJ_TAC THENL [MATCH_MP_TAC HOLOMORPHIC_ON_SUB THEN ASM_MESON_TAC[
  HOLOMORPHIC_ON_CONST;HOLOMORPHIC_ON_SUBSET;BALL_SUBSET_CBALL];
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `w':complex` THEN DISCH_TAC THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC  `e:real` THEN CONJ_TAC THENL
  [MESON_TAC [NORM_SUB;dist;IN_BALL; ASSUME`x'':complex IN ball (x,e)`;
  ASSUME `x:complex = (f':complex->complex) x'`];
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&2*e` THEN
  ASM_SIMP_TAC[REAL_ARITH `&0<e ==> e <= &2 * e`;NORM_SUB] THEN
  SUBST1_TAC (COMPLEX_RING `(f':complex->complex) w' - x'' =
                 f' w' -x + x - x''`) THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `norm ((f':complex->complex) w' - x) - norm (x-x'')` THEN
  CONJ_TAC THENL [SUBST1_TAC (REAL_ARITH `&2 * e = &3 *e - e`) THEN
  MATCH_MP_TAC (REAL_ARITH `!x y z w:real. x<=y /\ z<w ==> x-w <= y-z`)
  THEN CONJ_TAC THENL [EXPAND_TAC "e" THEN
  ASM_REWRITE_TAC[REAL_ARITH `&3 * norm ((f':complex->complex) w - f' x') *
  &1 / &3 = norm (f' w - f' x')`] THEN FIRST_ASSUM MATCH_MP_TAC THEN
  POP_ASSUM MP_TAC THEN
  REWRITE_TAC[FRONTIER_CBALL; sphere; NORM_SUB; IN_ELIM_THM; dist];
  UNDISCH_TAC `x'':complex IN ball (x,e)` THEN
  REWRITE_TAC [IN_BALL;dist;ASSUME`x:complex = (f':complex->complex) x'`]];
  MATCH_MP_TAC (REAL_ARITH `!x y z:real. x<=y+z ==> x-z<=y`) THEN
  REWRITE_TAC[COMPLEX_NORM_TRIANGLE_SUB]]]]]]];ALL_TAC] THEN
  ASM_CASES_TAC `connected (u:complex->bool)` THENL [
  SUBGOAL_THEN `~(?c:complex. !z:complex. z IN u ==> f z=c)`
          (fun th-> ASM_MESON_TAC [th]) THEN
  ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0]
  THEN STRIP_TAC THEN ABBREV_TAC `w:complex= CHOICE u` THEN
  ASSUME_TAC (MESON [CHOICE_DEF;GSYM (ASSUME `CHOICE u = w:complex`);
  ASSUME `~(u:complex->bool = {})`] `w:complex IN u`) THEN
  ASSERT_TAC `w:complex limit_point_of u` THENL
  [MATCH_MP_TAC INTERIOR_LIMIT_POINT THEN ASM_SIMP_TAC [INTERIOR_OPEN];
  SUBGOAL_THEN `(\z. (f:complex->complex) z - c) holomorphic_on a` ASSUME_TAC
  THENL [ASM_SIMP_TAC [HOLOMORPHIC_ON_SUB; HOLOMORPHIC_ON_CONST];
  ASSUME_TAC (MESON [ASSUME `w:complex IN u`;ASSUME `u:complex->bool SUBSET a`;
  SET_RULE `w:complex IN u /\ u SUBSET a ==> w IN a`] `w:complex IN a`) THEN
  MP_TAC(SPECL [`\z:complex.(f:complex->complex)z - c`;
        `a:complex->bool`; `u:complex->bool`; `w:complex`]
         ANALYTIC_CONTINUATION) THEN
  ASM_REWRITE_TAC [] THEN MP_TAC (ASSUME `~(?c:complex. !z. z IN a ==>
  (f:complex->complex) z = c)`) THEN ONCE_REWRITE_TAC [GSYM COMPLEX_SUB_0;
  GSYM COMPLEX_SUB_RZERO] THEN ONCE_REWRITE_TAC [COMPLEX_SUB_RZERO] THEN
  MESON_TAC[]]];ALL_TAC] THEN SUBST1_TAC (MESON [UNIONS_COMPONENTS]
  `u:complex->bool = UNIONS ( components u)`) THEN
  REWRITE_TAC [IMAGE_UNIONS] THEN MATCH_MP_TAC OPEN_UNIONS THEN
  REWRITE_TAC[IN_IMAGE] THEN GEN_TAC THEN STRIP_TAC THEN
  FIRST_X_ASSUM SUBST1_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  STRIP_ASSUME_TAC(MESON [IN_COMPONENTS;
  ASSUME `(x:complex->bool) IN components u`]
  `?w:complex. w IN u /\ x = connected_component u w`) THEN
  ASM_SIMP_TAC[CONNECTED_COMPONENT_EQ_EMPTY;OPEN_CONNECTED_COMPONENT;
  CONNECTED_CONNECTED_COMPONENT] THEN CONJ_TAC THENL
  [ASM_MESON_TAC [CONNECTED_COMPONENT_SUBSET;
  HOLOMORPHIC_ON_SUBSET]; ONCE_REWRITE_TAC[GSYM COMPLEX_SUB_0] THEN
  STRIP_TAC THEN ABBREV_TAC `y = CHOICE (x:complex->bool)` THEN
  SUBGOAL_THEN `y:complex IN x` ASSUME_TAC THENL
  [EXPAND_TAC "y" THEN MATCH_MP_TAC CHOICE_DEF THEN
  ASM_MESON_TAC [CONNECTED_COMPONENT_EQ_EMPTY];
  ASSUME_TAC (MESON [OPEN_COMPONENTS;ASSUME `open (u:complex->bool)`;
  ASSUME` x:complex->bool IN components u`] `open (x:complex->bool)`) THEN
  ASSERT_TAC `y:complex limit_point_of x` THENL [
  MATCH_MP_TAC INTERIOR_LIMIT_POINT THEN ASSUME_TAC
  (MESON [OPEN_COMPONENTS;ASSUME `open (u:complex->bool)`;
  ASSUME` x:complex->bool IN components u`] `open (x:complex->bool)`) THEN
  SIMP_TAC [INTERIOR_OPEN;ASSUME `open (x:complex->bool)`;
  ASSUME `y:complex IN x`]; SUBGOAL_THEN `(\z. (f:complex->complex) z - c)
  holomorphic_on a` ASSUME_TAC THENL [
  ASM_SIMP_TAC [HOLOMORPHIC_ON_SUB; HOLOMORPHIC_ON_CONST];
  SUBGOAL_THEN `x:complex->bool SUBSET a` ASSUME_TAC THENL [
  MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `u:complex->bool` THEN
  ASM_REWRITE_TAC[CONNECTED_COMPONENT_SUBSET];
  SUBGOAL_THEN `y:complex IN a` ASSUME_TAC THENL [
  MATCH_MP_TAC (SET_RULE `y:complex IN x /\ x SUBSET a ==> y IN a`)
  THEN ASM_REWRITE_TAC[]; MP_TAC(SPECL [`\z:complex.(f:complex->complex)z - c`;
  `a:complex->bool`; `x:complex->bool`; `y:complex`] ANALYTIC_CONTINUATION)
  THEN ASM_REWRITE_TAC [] THEN MP_TAC (ASSUME `~(?c:complex. !z. z IN a ==>
  (f:complex->complex) z = c)`) THEN
  ONCE_REWRITE_TAC [GSYM COMPLEX_SUB_0;GSYM COMPLEX_SUB_RZERO] THEN
  ONCE_REWRITE_TAC [COMPLEX_SUB_RZERO] THEN MESON_TAC[]]]]]]]);;  
 
(* ------------------------------------------------------------------------- *)
(* Maximum modulus principle.                                                *)
(* ------------------------------------------------------------------------- *)
let MAXIMUM_MODULUS_PRINCIPLE = prove
  (`!f a u w.
      open a /\ connected a /\ f 
holomorphic_on a /\
      open u /\ u 
SUBSET a /\ w 
IN u /\
      (!z. z 
IN u ==> norm(f z) <= norm(f w))
      ==> (?c. !z. z 
IN a ==> f z = c)`,
  REPEAT STRIP_TAC THEN SUBGOAL_THEN
    `~(open (
IMAGE (f:complex->complex) u))`
    (fun th -> ASM_MESON_TAC[th; 
OPEN_MAPPING_THM]) THEN
  REWRITE_TAC[
OPEN_CONTAINS_BALL;
NOT_FORALL_THM] THEN
  EXISTS_TAC `(f:complex->complex) w` THEN
  MATCH_MP_TAC (TAUT `!p q. (p /\ ~ q) ==> ~(p ==> q)`) THEN CONJ_TAC THENL
  [ASM_MESON_TAC[
IN_IMAGE]; ALL_TAC] THEN
  REWRITE_TAC[
NOT_EXISTS_THM;DE_MORGAN_THM;
SUBSET] THEN
  GEN_TAC THEN ASM_CASES_TAC `~(&0 < e)` THENL
  [ASM_REWRITE_TAC[]; ALL_TAC] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[] THEN
  DISCH_TAC THEN DISJ2_TAC THEN REWRITE_TAC[
NOT_FORALL_THM] THEN
  EXISTS_TAC `if &0 < Re((f:complex->complex) w)
              then f w + Cx(e / &2)
              else f w - Cx(e/ &2) ` THEN
  ABBREV_TAC `x = if &0<Re((f:complex->complex) w)
                  then f w + Cx(e / &2)
                  else f w - Cx(e / &2)` THEN
  MATCH_MP_TAC (TAUT `!p q. (p /\ ~ q) ==> ~(p ==> q)`) THEN CONJ_TAC THENL
  [REWRITE_TAC[
IN_BALL;dist] THEN
  MATCH_MP_TAC (REAL_ARITH `!x y z:real. x = y /\ y < z ==> x < z `) THEN
  EXISTS_TAC `e / &2` THEN EXPAND_TAC "x" THEN COND_CASES_TAC THENL
  [ASM_SIMP_TAC [
NORM_NEG;
COMPLEX_ADD_SUB2;REAL_ARITH `&0 < e ==> e / &2 <e`;
                  
COMPLEX_NORM_CX;
REAL_ABS_REFL;
                  REAL_ARITH `&0 < e ==> &0 <= e / &2`];
  ASM_SIMP_TAC [
COMPLEX_SUB_SUB2; REAL_ARITH `&0 < e ==> e / &2 <e`;
                  
COMPLEX_NORM_CX; 
REAL_ABS_REFL;
                  REAL_ARITH `&0 < e ==> &0 <= e / &2`]]; ALL_TAC] THEN
  REWRITE_TAC[
IN_IMAGE; 
NOT_EXISTS_THM; DE_MORGAN_THM] THEN
  GEN_TAC THEN ASM_CASES_TAC `~(x':complex 
IN u)` THENL
  [ASM_REWRITE_TAC[]; ALL_TAC] THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[] THEN DISCH_TAC THEN
  MATCH_MP_TAC (NORM_ARITH `!x y:complex. ~(norm x=norm y) ==> ~(x=y)`) THEN
  REWRITE_TAC[
REAL_NOT_EQ] THEN DISJ2_TAC THEN
  MATCH_MP_TAC 
REAL_LET_TRANS THEN
  EXISTS_TAC `norm ((f:complex->complex) w)` THEN ASM_SIMP_TAC[] THEN
  EXPAND_TAC "x" THEN COND_CASES_TAC THEN
  REWRITE_TAC [
complex_norm;
RE_ADD;
IM_ADD; 
IM_CX;
RE_CX;
REAL_ADD_RID] THENL
  [MATCH_MP_TAC 
SQRT_MONO_LT THEN
  MATCH_MP_TAC (REAL_ARITH `!x:real y z. x < y ==> x + z < y + z`) THEN
  REWRITE_TAC[GSYM 
REAL_LT_SQUARE_ABS] THEN
  ASM_SIMP_TAC [REAL_ARITH `!x y. &0 < x /\ &0 < y
                          ==> abs (x+y) = abs x + abs y`;
                REAL_ARITH `!x:real. &0 < x ==> &0 < x / &2`] THEN
  ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC [
complex_norm;
RE_SUB;
IM_SUB; 
IM_CX;
RE_CX;
REAL_SUB_RZERO] THEN
  MATCH_MP_TAC 
SQRT_MONO_LT THEN
  MATCH_MP_TAC (REAL_ARITH `!x:real y z. x < y ==> x + z < y + z`) THEN
  REWRITE_TAC[GSYM 
REAL_LT_SQUARE_ABS] THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[
REAL_NOT_LT] THEN DISCH_TAC THEN
  ASM_SIMP_TAC [REAL_ARITH `!x y. x <= &0 /\ &0 < y
                            ==> abs (x - y) = abs x + abs y`;
              REAL_ARITH `!x. &0 < x ==> &0 < x/ &2`] THEN
  ASM_REAL_ARITH_TAC);;
 
 
(* ------------------------------------------------------------------------- *)
(* Factoring out a zero according to its order.                              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Entire proper functions C->C are precisely the non-trivial polynomials.   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Relating invertibility and nonvanishing of derivative.                    *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Hence a nice clean inverse function theorem.                              *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Holomorphism of covering maps and lifts.                                  *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* The Schwarz lemma.                                                        *)
(* ------------------------------------------------------------------------- *)
let SCHWARZ_LEMMA = prove
 (`!f. f 
holomorphic_on ball(Cx(&0),&1) /\
       (!z:complex. norm z < &1 ==> norm (f z) < &1) /\
       f(Cx(&0)) = Cx(&0)
       ==> (!z. norm z < &1 ==> norm(f z) <= norm z) /\
           norm(
complex_derivative f(Cx(&0))) <= &1 /\
           ((?z. norm z < &1 /\ ~(z= Cx(&0)) /\ norm(f z) = norm z) \/
            norm(
complex_derivative f (Cx(&0))) = &1
            ==> ?c. (!z. norm z < &1 ==> f z = c*z) /\ norm c = &1)`,
  let LEMMA1 = prove
  (`!f a. open a /\ connected a /\ bounded a /\ ~(a = {}) /\
         f holomorphic_on a /\ f continuous_on (closure a)
         ==> (?w. w IN (frontier a) /\
                  (!z. z IN (closure a) ==> norm (f z) <= norm (f w)))`,
  REPEAT STRIP_TAC THEN ASSERT_TAC
    `?x. x IN closure a /\
         (!z. z IN closure a ==>
              norm((f:complex->complex) z) <= norm(f x))` THENL
  [MATCH_MP_TAC CONTINUOUS_ATTAINS_SUP THEN
  ASM_SIMP_TAC [COMPACT_CLOSURE;CLOSURE_EQ_EMPTY] THEN
  SUBGOAL_THEN `lift o (\x. norm((f:complex->complex) x)) =
                 (lift o norm) o (\x. f x) ` SUBST1_TAC THENL
  [REWRITE_TAC[o_DEF]; MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
  ASM_REWRITE_TAC [CONTINUOUS_ON_LIFT_NORM;ETA_AX]]; ALL_TAC] THEN
  ASM_CASES_TAC `x:complex IN frontier a` THENL
  [EXISTS_TAC `x:complex` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `x:complex IN interior a` MP_TAC THENL
  [POP_ASSUM MP_TAC THEN REWRITE_TAC[frontier;DIFF] THEN
  SET_TAC[ASSUME `x:complex IN closure a`]; ALL_TAC] THEN
  ASM_SIMP_TAC[INTERIOR_OPEN] THEN DISCH_TAC THEN
  SUBGOAL_THEN `?c. !z. z IN a ==> (f:complex->complex) z = c`
  STRIP_ASSUME_TAC THENL
  [MATCH_MP_TAC MAXIMUM_MODULUS_PRINCIPLE THEN
  EXISTS_TAC `a:complex->bool` THEN
  EXISTS_TAC `x:complex` THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN GEN_TAC THEN
  DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[closure;UNION] THEN
  SET_TAC[ASSUME `z:complex IN a`]; ALL_TAC] THEN
  SUBGOAL_THEN `CHOICE(frontier(a:complex->bool)) IN frontier a`
  ASSUME_TAC THENL
  [MATCH_MP_TAC CHOICE_DEF THEN MATCH_MP_TAC FRONTIER_NOT_EMPTY THEN
   CONJ_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[NOT_BOUNDED_UNIV]];
   ALL_TAC] THEN
  EXISTS_TAC `CHOICE(frontier(a:complex->bool))` THEN ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_EQ_IMP_LE THEN
  SUBGOAL_THEN `!z. z IN closure a ==> (f:complex->complex) z = c`
  ASSUME_TAC THENL
  [MP_TAC (ISPECL [`f:complex->complex`; `closure (a:complex->bool)`;
  `{c:complex}`] CONTINUOUS_CLOSED_PREIMAGE) THEN
  ASM_REWRITE_TAC [CLOSED_CLOSURE; CLOSED_SING] THEN
  ABBREV_TAC `s = {x | x IN closure(a:complex->bool) /\
  (f:complex->complex) x IN {c}}` THEN DISCH_TAC THEN
  SUBGOAL_THEN `closure a SUBSET (s:complex->bool)` ASSUME_TAC THENL
  [MATCH_MP_TAC CLOSURE_MINIMAL THEN CONJ_TAC THENL
  [REWRITE_TAC[SUBSET] THEN EXPAND_TAC "s" THEN
   ASSUME_TAC (MESON [CLOSURE_SUBSET;GSYM SUBSET]
       `!x:complex. x IN a ==> x IN closure a`) THEN
  SET_TAC [ASSUME `!x:complex. x IN a ==> x IN closure a`;
              ASSUME `!z:complex. z IN a ==> f z = c:complex`];
  ASM_REWRITE_TAC[]];
  POP_ASSUM MP_TAC THEN EXPAND_TAC "s" THEN SET_TAC[]];
  EQ_TRANS_TAC `norm(c:complex)` THENL
  [ASM_SIMP_TAC[]; ONCE_REWRITE_TAC [EQ_SYM_EQ] THEN
  MATCH_MP_TAC (NORM_ARITH `!x y:complex. x = y ==> norm x = norm y`) THEN
  FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[frontier;IN_DIFF]]])
  in
  let LEMMA2 = prove
  (`!(f:complex->complex) r w s.
      &0 < r /\ f holomorphic_on ball(Cx(&0),r) /\
      &0 < s /\ ball(w,s) SUBSET ball(Cx(&0),r) /\
      (!z. norm (w-z) < s ==> norm(f z) <= norm(f w))
      ==> (?c. !z. norm z < r ==> f z = c)`,
  REPEAT STRIP_TAC THEN
  MP_TAC (SPECL[`f:complex->complex`;`ball (Cx(&0),r)`; `ball (w:complex,s)`;
                `w:complex`] MAXIMUM_MODULUS_PRINCIPLE) THEN
  ASM_REWRITE_TAC[OPEN_BALL; CONNECTED_BALL; IN_BALL;DIST_REFL] THEN
  ASM_REWRITE_TAC[dist;COMPLEX_SUB_LZERO;NORM_NEG])
  in
  let LEMMA3 = prove
  (`!r:real f. f holomorphic_on (ball(Cx(&0),r)) /\ f (Cx(&0))=Cx(&0)
   ==> (?h. h holomorphic_on (ball(Cx(&0),r)) /\
  ((!z. norm z < r ==> f z=z*(h z)) /\
  (complex_derivative f (Cx(&0)))= h (Cx(&0))))`,
  REPEAT STRIP_TAC THEN ABBREV_TAC `h = \z. if z = Cx(&0) then
  complex_derivative f (Cx(&0)) else f z/z` THEN EXISTS_TAC
  `h:complex->complex` THEN ASSERT_TAC `(!z:complex. norm z < r ==>
  (f:complex->complex) z = z * h z) /\ complex_derivative f (Cx(&0))
  = h (Cx(&0))` THENL [CONJ_TAC THENL
  [GEN_TAC THEN DISCH_TAC THEN EXPAND_TAC "h" THEN
  COND_CASES_TAC THENL [ASM_REWRITE_TAC[COMPLEX_MUL_LZERO];
  POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD];
  EXPAND_TAC "h" THEN ASM_REWRITE_TAC[]];ALL_TAC] THEN ASM_REWRITE_TAC[]
  THEN MATCH_MP_TAC  POLE_THEOREM_OPEN_0 THEN  EXISTS_TAC `(f:complex->complex)`
  THEN EXISTS_TAC `Cx(&0)` THEN
  ASM_SIMP_TAC[OPEN_BALL;IN_BALL;COMPLEX_SUB_RZERO;
   dist;COMPLEX_SUB_LZERO;NORM_NEG])
  in
  GEN_TAC THEN STRIP_TAC THEN
  MP_TAC (SPECL [`&1`;`f:complex->complex`] LEMMA3) THEN ASM_REWRITE_TAC[] THEN
  STRIP_TAC THEN SUBGOAL_THEN
    `!z. norm z < &1 ==> norm ((h:complex->complex) z) <= &1`
    ASSUME_TAC THENL
  [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
  (prove
  (`!x y:real. (!a. y<a ==> x<a) ==> x <= y`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN
  ONCE_REWRITE_TAC[REAL_LT_BETWEEN] THEN REWRITE_TAC[NOT_EXISTS_THM;
  DE_MORGAN_THM] THEN X_GEN_TAC `z:real` THEN
  POP_ASSUM (MP_TAC o SPEC `z:real`) THEN REAL_ARITH_TAC)) THEN
  X_GEN_TAC `a:real` THEN
  DISCH_TAC THEN SUBGOAL_THEN
   `?r. norm (z:complex) < r /\ inv r < a /\ r < &1` MP_TAC THENL
  [SUBGOAL_THEN `max (inv a) (norm(z:complex)) < &1` MP_TAC THENL
  [ASM_SIMP_TAC[REAL_MAX_LT; REAL_INV_LT_1];
  GEN_REWRITE_TAC LAND_CONV [REAL_LT_BETWEEN] THEN
  DISCH_THEN (X_CHOOSE_TAC `r:real`) THEN EXISTS_TAC `r:real` THEN
  POP_ASSUM MP_TAC THEN ASM_REWRITE_TAC[REAL_MAX_LT] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_LINV THEN
  ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]; ALL_TAC] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL
  [ASM_MESON_TAC[REAL_LET_TRANS; NORM_POS_LE]; ALL_TAC] THEN
  SUBGOAL_THEN `inv (r:real) = &1/r` ASSUME_TAC THENL
  [MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN MATCH_MP_TAC REAL_DIV_LMUL THEN
  ASM_SIMP_TAC[REAL_LT_IMP_NZ]; ALL_TAC] THEN
  SUBGOAL_THEN `?w. norm w = r /\ (!z. norm z < r
                    ==> norm((h:complex->complex) z) <= norm(h w))`
                  STRIP_ASSUME_TAC THENL
  [MATCH_MP_TAC(prove (`!f r. &0 < r /\ f holomorphic_on ball(Cx(&0),r) /\
         f continuous_on cball(Cx(&0),r)
         ==> (?w. norm w = r /\ (!z. norm z < r ==> norm(f z) <= norm(f w)))`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(SPECL[`f:complex->complex`; `ball(Cx(&0),r)`] LEMMA1) THEN
  ASM_REWRITE_TAC[OPEN_BALL; CONNECTED_BALL; BOUNDED_BALL; BALL_EQ_EMPTY;
                  REAL_ARITH `!r:real. ~(r <= &0) <=> &0 < r`] THEN
  ASM_SIMP_TAC[CLOSURE_BALL] THEN STRIP_TAC THEN EXISTS_TAC `w:complex` THEN
  CONJ_TAC THENL
  [UNDISCH_TAC `w:complex IN frontier(ball(Cx(&0),r))` THEN
  ASM_SIMP_TAC[FRONTIER_BALL;sphere;dist;COMPLEX_SUB_LZERO;NORM_NEG] THEN
  SET_TAC[];
  POP_ASSUM MP_TAC THEN
  REWRITE_TAC[IN_CBALL;dist;COMPLEX_SUB_LZERO;NORM_NEG] THEN
  MESON_TAC [REAL_LT_IMP_LE]])) THEN ASM_REWRITE_TAC[] THEN
  CONJ_TAC THENL [MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET
  THEN EXISTS_TAC `ball(Cx(&0),&1)` THEN
  ASM_SIMP_TAC [SUBSET_BALL;REAL_LT_IMP_LE];
  MATCH_MP_TAC HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
  MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN EXISTS_TAC `ball(Cx(&0),&1)` THEN
  ASM_REWRITE_TAC[SUBSET; IN_CBALL; IN_BALL] THEN
  ASM_MESON_TAC[REAL_LET_TRANS]]; ALL_TAC] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `norm(h(w:complex):complex)` THEN CONJ_TAC THENL
  [ASM_SIMP_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `h w:complex = f w / w` SUBST1_TAC THENL
  [ASM_SIMP_TAC[] THEN
  MP_TAC (MESON [GSYM COMPLEX_NORM_ZERO;REAL_NOT_EQ;
                    ASSUME `norm(w:complex) =r`;
                    ASSUME `&0 < r`] `~(w=Cx(&0))`) THEN
  CONV_TAC(COMPLEX_FIELD);
  ASM_REWRITE_TAC[COMPLEX_NORM_DIV] THEN MATCH_MP_TAC REAL_LT_TRANS THEN
  EXISTS_TAC `&1/(r:real)` THEN ASM_SIMP_TAC [REAL_LT_DIV2_EQ] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `inv (r:real)` THEN
  ASM_REWRITE_TAC[REAL_LE_REFL]]; ALL_TAC] THEN
  CONJ_TAC THENL
  [GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `z = Cx(&0)` THENL
  [ASM_SIMP_TAC[COMPLEX_MUL_LZERO;REAL_LE_REFL];
  SUBST1_TAC (REAL_ARITH `norm (z:complex) = norm z * &1`) THEN
  ASM_SIMP_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN
  ASM_SIMP_TAC[NORM_POS_LE]]; ALL_TAC] THEN CONJ_TAC THENL
  [ASM_MESON_TAC [COMPLEX_NORM_ZERO;REAL_LT_01]; ALL_TAC] THEN
  REWRITE_TAC[TAUT `((p \/ q) ==> r) <=> ((p ==> r) /\ (q ==> r))`] THEN
  CONJ_TAC THENL [STRIP_TAC THEN SUBGOAL_THEN
   `norm ((h:complex->complex) z) = &1` ASSUME_TAC THENL
  [SUBGOAL_THEN `(h:complex->complex) z = f z/z` SUBST1_TAC THENL
  [UNDISCH_THEN `!z:complex. norm z < &1  ==> f z = z * h z`
  (MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `~(z = Cx(&0))` THEN CONV_TAC(COMPLEX_FIELD);
  ASM_SIMP_TAC[COMPLEX_NORM_ZERO;REAL_DIV_REFL;COMPLEX_NORM_DIV]];
  SUBGOAL_THEN `?c. (!z. norm z < &1 ==> (h:complex->complex) z = c)`
  STRIP_ASSUME_TAC THENL [MATCH_MP_TAC LEMMA2
  THEN EXISTS_TAC `z:complex` THEN EXISTS_TAC `&1 - norm(z:complex)`
  THEN ASM_REWRITE_TAC[REAL_LT_01] THEN CONJ_TAC THENL
  [ASM_MESON_TAC[REAL_SUB_LT]; CONJ_TAC THENL
  [REWRITE_TAC[SUBSET;IN_BALL] THEN GEN_TAC THEN DISCH_TAC THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `dist(Cx(&0), z) + dist(z,x)` THEN
  REWRITE_TAC[DIST_TRIANGLE] THEN POP_ASSUM MP_TAC THEN
  REWRITE_TAC[dist;COMPLEX_SUB_LZERO;NORM_NEG] THEN REAL_ARITH_TAC;
  GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `norm(z:complex) + norm(z' - z)` THEN
  REWRITE_TAC[NORM_TRIANGLE_SUB] THEN REWRITE_TAC[NORM_SUB] THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[NORM_SUB] THEN REAL_ARITH_TAC]];
  EXISTS_TAC `c:complex` THEN CONJ_TAC THENL
  [ASM_SIMP_TAC[COMPLEX_MUL_SYM];
  POP_ASSUM (MP_TAC o SPEC `z:complex`) THEN ASM_MESON_TAC[]]]];
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  SUBGOAL_THEN `?c. (!z. norm z < &1 ==> (h:complex->complex) z = c)`
  STRIP_ASSUME_TAC THENL[MATCH_MP_TAC LEMMA2 THEN EXISTS_TAC `Cx(&0)`
  THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < &1`;
  SUBSET_REFL; COMPLEX_SUB_LZERO; NORM_NEG];
  EXISTS_TAC `c:complex` THEN CONJ_TAC THENL
  [ASM_SIMP_TAC[COMPLEX_MUL_SYM];POP_ASSUM (MP_TAC o SPEC `Cx(&0)`) THEN
  ASM_MESON_TAC[COMPLEX_NORM_0; REAL_LT_01]]]]);;  
 
(* ------------------------------------------------------------------------- *)
(* The Schwarz reflection principle.                                         *)
(* ------------------------------------------------------------------------- *)
let HOLOMORPHIC_ON_PASTE_ACROSS_LINE = prove
 (`!f s a k.
        open s /\ ~(a = vec 0) /\
        f 
holomorphic_on {z | z 
IN s /\ k < a dot z} /\
        f 
holomorphic_on {z | z 
IN s /\ a dot z < k} /\
        f 
continuous_on s
        ==> f 
holomorphic_on s`,
  let lemma0 = prove
   (`!d a b:real^N k.
          d dot a <= k /\ k <= d dot b
          ==> ?c. c IN segment[a,b] /\ d dot c = k /\
                  (!z. z IN segment[a,c] ==> d dot z <= k) /\
                  (!z. z IN segment[c,b] ==> k <= d dot z)`,
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL [`segment[a:real^N,b]`; `a:real^N`; `b:real^N`;
                   `d:real^N`; `k:real`] CONNECTED_IVT_HYPERPLANE) THEN
    ASM_REWRITE_TAC[CONNECTED_SEGMENT; ENDS_IN_SEGMENT] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N` THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[SET_RULE
     `(!z. z IN s ==> P z) <=> s SUBSET {x | P x}`] THEN
    REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN CONJ_TAC THEN
    MATCH_MP_TAC HULL_MINIMAL THEN
    REWRITE_TAC[CONVEX_HALFSPACE_LE; REWRITE_RULE[real_ge] CONVEX_HALFSPACE_GE;
                SUBSET; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
    ASM_REWRITE_TAC[IN_ELIM_THM; REAL_LE_REFL]) in
  let lemma1 = prove
   (`!f s d k a b c.
          convex s /\ open s /\ a IN s /\ b IN s /\ c IN s /\ ~(d = vec 0) /\
          d dot a <= k /\ d dot b <= k /\ d dot c <= k /\
          f holomorphic_on {z | z IN s /\ d dot z < k} /\
          f holomorphic_on {z | z IN s /\ k < d dot z} /\
          f continuous_on s
          ==> path_integral (linepath (a,b)) f +
              path_integral (linepath (b,c)) f +
              path_integral (linepath (c,a)) f = Cx(&0)`,
    REPEAT STRIP_TAC THEN
    MP_TAC(SPECL [`f:complex->complex`; `a:complex`; `b:complex`; `c:complex`]
          CAUCHY_THEOREM_TRIANGLE_INTERIOR) THEN
    ANTS_TAC THENL
     [CONJ_TAC THENL
       [MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN
        EXISTS_TAC `s:complex->bool` THEN
        ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM SET_TAC[];
        MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN
        EXISTS_TAC `{z:complex | z IN s /\ d dot z < k}` THEN
        ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN
        EXISTS_TAC `interior(s INTER {x:complex | d dot x <= k})` THEN
        CONJ_TAC THENL
         [MATCH_MP_TAC SUBSET_INTERIOR THEN MATCH_MP_TAC HULL_MINIMAL THEN
          ASM_SIMP_TAC[CONVEX_INTER; CONVEX_HALFSPACE_LE] THEN ASM SET_TAC[];
          ASM_SIMP_TAC[INTERIOR_INTER; INTERIOR_HALFSPACE_LE;
                       INTERIOR_OPEN] THEN
          SET_TAC[]]];
      REWRITE_TAC[HAS_CHAIN_INTEGRAL_CHAIN_INTEGRAL]]) in
  let lemma2 = prove
   (`!f s d k a b c.
          convex s /\ open s /\ a IN s /\ b IN s /\ c IN s /\ ~(d = vec 0) /\
          d dot a <= k /\ d dot b <= k /\
          f holomorphic_on {z | z IN s /\ d dot z < k} /\
          f holomorphic_on {z | z IN s /\ k < d dot z} /\
          f continuous_on s
          ==> path_integral (linepath (a,b)) f +
              path_integral (linepath (b,c)) f +
              path_integral (linepath (c,a)) f = Cx(&0)`,
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `(d:complex) dot c <= k` THENL
     [MATCH_MP_TAC lemma1 THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[REAL_NOT_LE]) THEN
    MP_TAC(ISPECL [`d:complex`; `b:complex`; `c:complex`; `k:real`]
          lemma0) THEN
    MP_TAC(ISPECL [`d:complex`; `a:complex`; `c:complex`; `k:real`]
          lemma0) THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN
    DISCH_THEN(X_CHOOSE_THEN `a':complex` STRIP_ASSUME_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `b':complex` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `(a':complex) IN s /\ b' IN s` STRIP_ASSUME_TAC THENL
     [ASM_MESON_TAC[CONVEX_CONTAINS_SEGMENT; SEGMENT_SYM; SUBSET];
      ALL_TAC] THEN
    MP_TAC(SPECL
     [`f:complex->complex`; `c:complex`; `a:complex`; `a':complex`]
          PATH_INTEGRAL_SPLIT_LINEPATH) THEN
    MP_TAC(SPECL
     [`f:complex->complex`; `b:complex`; `c:complex`; `b':complex`]
          PATH_INTEGRAL_SPLIT_LINEPATH) THEN
    ASM_REWRITE_TAC[] THEN REPEAT(ANTS_TAC THENL
     [ASM_MESON_TAC[CONVEX_CONTAINS_SEGMENT; SEGMENT_SYM;
                    CONTINUOUS_ON_SUBSET];
      ONCE_REWRITE_TAC[TAUT `p ==> q ==> r <=> q ==> p ==> r`]]) THEN
    MP_TAC(ISPECL [`f:complex->complex`; `linepath(a':complex,b')`]
          PATH_INTEGRAL_REVERSEPATH) THEN
    REWRITE_TAC[REVERSEPATH_LINEPATH; VALID_PATH_LINEPATH] THEN ANTS_TAC THENL
     [MATCH_MP_TAC PATH_INTEGRABLE_CONTINUOUS_LINEPATH THEN
      ASM_MESON_TAC[CONVEX_CONTAINS_SEGMENT; CONTINUOUS_ON_SUBSET];
      ALL_TAC] THEN
    MP_TAC(ISPECL [`f:complex->complex`; `s INTER {x:complex | d dot x <= k}`;
                   `{}:complex->bool`;
                   `linepath(a:complex,b) ++ linepath(b,b') ++
                    linepath(b',a') ++ linepath(a',a)`]
          CAUCHY_THEOREM_CONVEX) THEN
    MP_TAC(ISPECL [`f:complex->complex`; `s INTER {x:complex | k <= d dot x}`;
                   `{}:complex->bool`;
                   `linepath(b':complex,c) ++ linepath(c,a') ++
                    linepath(a',b')`]
          CAUCHY_THEOREM_CONVEX) THEN
    MATCH_MP_TAC(TAUT
     `(q /\ q' ==> r) /\ (p /\ p') ==> (p ==> q) ==> (p' ==> q') ==> r`) THEN
    CONJ_TAC THENL
     [DISCH_THEN(CONJUNCTS_THEN
       (fun th -> MP_TAC(MATCH_MP PATH_INTEGRAL_UNIQUE th) THEN
                  MP_TAC(MATCH_MP HAS_PATH_INTEGRAL_INTEGRABLE th)));
      ASM_SIMP_TAC[DIFF_EMPTY; INTERIOR_INTER; INTERIOR_HALFSPACE_LE;
                   REWRITE_RULE[real_ge] INTERIOR_HALFSPACE_GE] THEN
      ASM_SIMP_TAC[CONVEX_INTER; CONVEX_HALFSPACE_LE; FINITE_EMPTY;
                   REWRITE_RULE[real_ge] CONVEX_HALFSPACE_GE]] THEN
    SIMP_TAC[PATH_INTEGRABLE_JOIN; VALID_PATH_JOIN_EQ;
             PATHSTART_JOIN; PATHFINISH_JOIN; PATH_IMAGE_JOIN;
             VALID_PATH_LINEPATH; PATHSTART_LINEPATH; PATHFINISH_LINEPATH;
             PATH_INTEGRAL_JOIN]
    THENL [CONV_TAC COMPLEX_RING; ALL_TAC] THEN
    REWRITE_TAC[PATH_IMAGE_LINEPATH; UNION_SUBSET; SUBSET_INTER] THEN
    ASM_SIMP_TAC[fst(EQ_IMP_RULE(SPEC_ALL CONVEX_CONTAINS_SEGMENT_EQ));
               CONVEX_HALFSPACE_LE; REWRITE_RULE[real_ge] CONVEX_HALFSPACE_GE;
                 IN_ELIM_THM; REAL_LT_IMP_LE; REAL_LE_REFL] THEN
    ASM_SIMP_TAC[complex_differentiable; GSYM HOLOMORPHIC_ON_OPEN;
                 OPEN_INTER; INTERIOR_OPEN; OPEN_HALFSPACE_LT;
                 OPEN_HALFSPACE_GT] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[SET_RULE
     `{x | x IN s /\ P x} = s INTER {x | P x}`]) THEN
    ASM_REWRITE_TAC[real_gt] THEN
    ASM_MESON_TAC[INTER_SUBSET; CONTINUOUS_ON_SUBSET]) in
  let lemma3 = prove
   (`!f s d k a b c.
          convex s /\ open s /\ a IN s /\ b IN s /\ c IN s /\ ~(d = vec 0) /\
          d dot a <= k /\
          f holomorphic_on {z | z IN s /\ d dot z < k} /\
          f holomorphic_on {z | z IN s /\ k < d dot z} /\
          f continuous_on s
          ==> path_integral (linepath (a,b)) f +
              path_integral (linepath (b,c)) f +
              path_integral (linepath (c,a)) f = Cx(&0)`,
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `(d:complex) dot b <= k` THENL
     [MATCH_MP_TAC lemma2 THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_CASES_TAC `(d:complex) dot c <= k` THENL
     [ONCE_REWRITE_TAC[COMPLEX_RING `a + b + c:complex = c + a + b`] THEN
      MATCH_MP_TAC(GEN_ALL lemma2) THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    ONCE_REWRITE_TAC[COMPLEX_RING `a + b + c:complex = b + c + a`] THEN
    MATCH_MP_TAC(GEN_ALL lemma2) THEN
    MAP_EVERY EXISTS_TAC
     [`s:complex->bool`; `--d:real^2`; `--k:real`] THEN
    ASM_REWRITE_TAC[DOT_LNEG; REAL_LE_NEG2; REAL_LT_NEG2; VECTOR_NEG_EQ_0] THEN
    ASM_REAL_ARITH_TAC) in
  let lemma4 = prove
   (`!f s d k a b c.
          convex s /\ open s /\ a IN s /\ b IN s /\ c IN s /\ ~(d = vec 0) /\
          f holomorphic_on {z | z IN s /\ d dot z < k} /\
          f holomorphic_on {z | z IN s /\ k < d dot z} /\
          f continuous_on s
          ==> path_integral (linepath (a,b)) f +
              path_integral (linepath (b,c)) f +
              path_integral (linepath (c,a)) f = Cx(&0)`,
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `(d:complex) dot a <= k` THENL
     [MATCH_MP_TAC lemma3 THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    MATCH_MP_TAC lemma3 THEN
    MAP_EVERY EXISTS_TAC
     [`s:complex->bool`; `--d:real^2`; `--k:real`] THEN
    ASM_REWRITE_TAC[DOT_LNEG; REAL_LE_NEG2; REAL_LT_NEG2; VECTOR_NEG_EQ_0] THEN
    ASM_REAL_ARITH_TAC) in
  REPEAT STRIP_TAC THEN MATCH_MP_TAC ANALYTIC_IMP_HOLOMORPHIC THEN
  MATCH_MP_TAC MORERA_LOCAL_TRIANGLE THEN
  X_GEN_TAC `p:complex` THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
  DISCH_THEN(MP_TAC o SPEC `p:complex`) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `ball(p:complex,e)` THEN
  ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]; ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC [`u:complex`; `v:complex`; `w:complex`] THEN
  SIMP_TAC[SUBSET_HULL; CONVEX_BALL; INSERT_SUBSET; EMPTY_SUBSET] THEN
  STRIP_TAC THEN MATCH_MP_TAC lemma4 THEN
  MAP_EVERY EXISTS_TAC [`ball(p:complex,e)`; `a:complex`; `k:real`] THEN
  ASM_REWRITE_TAC[CONVEX_BALL; OPEN_BALL] THEN REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN
    EXISTS_TAC `{z:complex | z IN s /\ a dot z < k}`;
    MATCH_MP_TAC HOLOMORPHIC_ON_SUBSET THEN
    EXISTS_TAC `{z:complex | z IN s /\ k < a dot z}`;
    MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN
    EXISTS_TAC `s:complex->bool`] THEN
  ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;  
 
(* ------------------------------------------------------------------------- *)
(* Bloch's theorem.                                                          *)
(* ------------------------------------------------------------------------- *)
let BLOCH_LEMMA = prove
 (`!f a r.
    &0 < r /\ f 
holomorphic_on cball(a,r) /\
    (!z. z 
IN ball(a,r)
         ==> norm(
complex_derivative f z) <= &2 * norm(
complex_derivative f a))
    ==> ball(f(a),(&3 - &2 * sqrt(&2)) * r * norm(
complex_derivative f a))
        
SUBSET IMAGE f (ball(a,r))`,
  SUBGOAL_THEN
   `!f r.
        &0 < r /\ f 
holomorphic_on cball(Cx(&0),r) /\ f(Cx(&0)) = Cx(&0) /\
        (!z. z 
IN ball(Cx(&0),r)
             ==> norm(
complex_derivative f z)
                 <= &2 * norm(
complex_derivative f (Cx(&0))))
        ==> ball(Cx(&0),
                 (&3 - &2 * sqrt(&2)) *
                 r * norm(
complex_derivative f (Cx(&0))))
            
SUBSET IMAGE f (ball(Cx(&0),r))`
  ASSUME_TAC THENL
   [ALL_TAC;
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
     [`\z. (f:complex->complex)(a + z) - f(a)`; `r:real`]) THEN
    ASM_REWRITE_TAC[
COMPLEX_ADD_RID; 
COMPLEX_SUB_REFL] THEN
    SUBGOAL_THEN
     `!z. z 
IN ball(Cx(&0),r)
          ==> 
complex_derivative (\w. f (a + w) - f a) z =
              
complex_derivative f (a + z)`
     (fun th -> ASM_SIMP_TAC[
CENTRE_IN_BALL; 
COMPLEX_ADD_RID; th])
    THENL
     [REWRITE_TAC[
COMPLEX_IN_BALL_0] THEN REPEAT STRIP_TAC THEN
      MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN
      ONCE_REWRITE_TAC [COMPLEX_RING
       `
complex_derivative f z =
        
complex_derivative f z * (Cx(&0) + Cx(&1)) - Cx(&0)`] THEN
      MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_SUB THEN
      REWRITE_TAC[
HAS_COMPLEX_DERIVATIVE_CONST] THEN
      GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM 
o_DEF] THEN
      MATCH_MP_TAC 
COMPLEX_DIFF_CHAIN_AT THEN
      SIMP_TAC[
HAS_COMPLEX_DERIVATIVE_ADD; 
HAS_COMPLEX_DERIVATIVE_CONST;
        
HAS_COMPLEX_DERIVATIVE_ID; 
HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
holomorphic_on]) THEN
      DISCH_THEN(MP_TAC o SPEC `a + z:complex`) THEN
      ASM_SIMP_TAC[
IN_CBALL; NORM_ARITH `norm z < r ==> dist(a,a+z) <= r`] THEN
      REWRITE_TAC[GSYM 
complex_differentiable] THEN
      DISCH_THEN(MP_TAC o SPEC `ball(a:complex,r)` o
        MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
COMPLEX_DIFFERENTIABLE_WITHIN_SUBSET)) THEN
      ASM_REWRITE_TAC[
BALL_SUBSET_CBALL] THEN MATCH_MP_TAC EQ_IMP THEN
      MATCH_MP_TAC 
COMPLEX_DIFFERENTIABLE_WITHIN_OPEN THEN
      ASM_REWRITE_TAC[
IN_BALL; 
OPEN_BALL; NORM_ARITH `dist(a,a + z) = norm z`];
      ANTS_TAC THENL
       [CONJ_TAC THENL
         [MATCH_MP_TAC 
HOLOMORPHIC_ON_SUB THEN
          REWRITE_TAC[
HOLOMORPHIC_ON_CONST] THEN
          GEN_REWRITE_TAC LAND_CONV [GSYM 
o_DEF] THEN
          MATCH_MP_TAC 
HOLOMORPHIC_ON_COMPOSE_GEN THEN
          EXISTS_TAC `cball(a:complex,r)` THEN
          ASM_SIMP_TAC[
HOLOMORPHIC_ON_ADD; 
HOLOMORPHIC_ON_ID;
                       
HOLOMORPHIC_ON_CONST; 
COMPLEX_IN_CBALL_0] THEN
          REWRITE_TAC[
IN_CBALL] THEN NORM_ARITH_TAC;
          X_GEN_TAC `z:complex` THEN REWRITE_TAC[
COMPLEX_IN_BALL_0] THEN
          STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
          ASM_REWRITE_TAC[
IN_BALL; NORM_ARITH `dist(a,a + z) = norm z`]];
        REWRITE_TAC[
SUBSET; 
COMPLEX_IN_BALL_0; 
IN_IMAGE] THEN
        REWRITE_TAC[
IN_BALL; ONCE_REWRITE_RULE[
DIST_SYM] dist] THEN
        DISCH_THEN(fun th ->
         X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
         MP_TAC(SPEC `z - (f:complex->complex) a` th)) THEN
        ASM_REWRITE_TAC[COMPLEX_RING `z - a:complex = w - a <=> z = w`] THEN
        DISCH_THEN(X_CHOOSE_TAC `x:complex`) THEN
        EXISTS_TAC `a + x:complex` THEN
        ASM_REWRITE_TAC[
COMPLEX_ADD_SUB]]]] THEN
  REPEAT GEN_TAC THEN
  SUBGOAL_THEN `&0 < &3 - &2 * sqrt(&2)` ASSUME_TAC THENL
   [REWRITE_TAC[REAL_ARITH `&0 < a - &2 * b <=> b < a / &2`] THEN
    MATCH_MP_TAC 
REAL_LT_LSQRT THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_CASES_TAC `&0 < r` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  ASM_CASES_TAC `
complex_derivative f (Cx(&0)) = Cx(&0)` THEN
  ASM_SIMP_TAC[
COMPLEX_NORM_0; 
REAL_MUL_RZERO; 
BALL_TRIVIAL; 
EMPTY_SUBSET] THEN
  ABBREV_TAC `C = &2 * norm(
complex_derivative f (Cx(&0)))` THEN
  SUBGOAL_THEN `&0 < C` ASSUME_TAC THENL
   [ASM_MESON_TAC[
COMPLEX_NORM_NZ; REAL_ARITH `&0 < &2 * x <=> &0 < x`];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!z. z 
IN ball(Cx(&0),r)
        ==> norm(
complex_derivative f z - 
complex_derivative f (Cx(&0)))
            <= norm(z) / (r - norm(z)) * C`
  (LABEL_TAC "+") THENL
   [REPEAT STRIP_TAC THEN
    SUBGOAL_THEN
     `!R. norm z < R /\ R < r
          ==> norm(
complex_derivative f z - 
complex_derivative f (Cx(&0)))
              <= norm(z) / (R - norm(z)) * C`
    MP_TAC THENL
     [REPEAT STRIP_TAC THEN
      MP_TAC(ISPECL
       [`
complex_derivative f`;
        `cball(Cx(&0),R)`;
        `circlepath(Cx(&0),R)`]
        
CAUCHY_INTEGRAL_FORMULA_CONVEX_SIMPLE) THEN
      REWRITE_TAC[
CONVEX_CBALL; 
VALID_PATH_CIRCLEPATH; 
INTERIOR_CBALL;
                  
PATHSTART_CIRCLEPATH; 
PATHFINISH_CIRCLEPATH] THEN
      SUBGOAL_THEN `&0 < R` ASSUME_TAC THENL
       [ASM_MESON_TAC[
REAL_LET_TRANS; 
NORM_POS_LE]; ALL_TAC] THEN
      ASM_SIMP_TAC[
PATH_IMAGE_CIRCLEPATH; 
REAL_LT_IMP_LE] THEN
      REWRITE_TAC[sphere; NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
      REWRITE_TAC[
SUBSET; 
FORALL_IN_GSPEC; 
IN_CBALL; 
IN_BALL; 
IN_DELETE] THEN
      SIMP_TAC[
WINDING_NUMBER_CIRCLEPATH; 
COMPLEX_SUB_RZERO; 
COMPLEX_SUB_LZERO;
               dist; 
NORM_NEG;  
REAL_LE_REFL; MESON[
REAL_LT_REFL]
          `norm z < R /\ (!w. norm w = R ==> ~(w = z)) <=> norm z < R`] THEN
      REWRITE_TAC[
RIGHT_FORALL_IMP_THM; 
IMP_CONJ] THEN ANTS_TAC THENL
       [MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
        EXISTS_TAC `ball(Cx(&0),r)` THEN CONJ_TAC THENL
         [MATCH_MP_TAC 
HOLOMORPHIC_COMPLEX_DERIVATIVE THEN
          REWRITE_TAC[
OPEN_BALL] THEN
          MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
          EXISTS_TAC `cball(Cx(&0),r)` THEN ASM_REWRITE_TAC[
BALL_SUBSET_CBALL];
          ASM_REWRITE_TAC[
SUBSET_BALLS; 
DIST_REFL; REAL_ADD_LID]];
        REWRITE_TAC[
COMPLEX_MUL_LID]] THEN
      DISCH_THEN(fun th ->
        MP_TAC (CONJ (SPEC `z:complex` th) (SPEC `Cx(&0)` th))) THEN
      ASM_REWRITE_TAC[
COMPLEX_NORM_0; 
COMPLEX_SUB_RZERO] THEN
      DISCH_THEN(MP_TAC o MATCH_MP 
HAS_PATH_INTEGRAL_SUB) THEN
      DISCH_THEN(MP_TAC o SPEC `C * norm(z) / (R * (R - norm(z:complex)))` o
        MATCH_MP (ONCE_REWRITE_RULE[
IMP_CONJ]
          
HAS_PATH_INTEGRAL_BOUND_CIRCLEPATH)) THEN
      ASM_REWRITE_TAC[GSYM 
COMPLEX_SUB_LDISTRIB] THEN
      REWRITE_TAC[
COMPLEX_NORM_MUL; 
COMPLEX_NORM_CX; 
COMPLEX_NORM_II] THEN
      REWRITE_TAC[
REAL_ABS_NUM; REAL_MUL_LID; 
REAL_ABS_PI] THEN
      ASM_SIMP_TAC[REAL_FIELD
       `&0 < R /\ z < R
        ==> (C * z / (R * (R - z))) * &2 * pi * R =
            &2 * pi * z / (R - z) * C`] THEN
      ASM_SIMP_TAC[
REAL_LE_LMUL_EQ; REAL_ARITH `&0 < &2`; 
PI_POS] THEN
      DISCH_THEN MATCH_MP_TAC THEN
      ASM_SIMP_TAC[
REAL_LE_MUL_EQ; 
REAL_LE_DIV; 
REAL_LE_MUL; 
REAL_SUB_LE;
                   
REAL_LT_IMP_LE; 
NORM_POS_LE; 
COMPLEX_SUB_RZERO] THEN
      X_GEN_TAC `x:complex` THEN DISCH_TAC THEN
      SUBGOAL_THEN `~(x = Cx(&0)) /\ ~(x = z)` STRIP_ASSUME_TAC THENL
       [ASM_MESON_TAC[
REAL_LT_REFL; 
COMPLEX_NORM_0]; ALL_TAC] THEN
      ASM_SIMP_TAC[COMPLEX_FIELD
       `~(x = Cx(&0)) /\ ~(x = z)
        ==> d / (x - z) - d / x = d * z / (x * (x - z))`] THEN
      REWRITE_TAC[
COMPLEX_NORM_MUL] THEN MATCH_MP_TAC 
REAL_LE_MUL2 THEN
      ASM_SIMP_TAC[
NORM_POS_LE; 
REAL_LT_IMP_LE; 
IN_BALL; dist; 
NORM_NEG;
                   
COMPLEX_SUB_LZERO] THEN
      REWRITE_TAC[
COMPLEX_NORM_DIV; 
real_div] THEN
      MATCH_MP_TAC 
REAL_LE_LMUL THEN REWRITE_TAC[
NORM_POS_LE] THEN
      MATCH_MP_TAC 
REAL_LE_INV2 THEN
      ASM_SIMP_TAC[
REAL_LT_MUL; 
REAL_SUB_LT; 
COMPLEX_NORM_MUL] THEN
      ASM_SIMP_TAC[
REAL_LE_LMUL_EQ] THEN
      UNDISCH_TAC `norm(x:complex) = R` THEN CONV_TAC NORM_ARITH;
      DISCH_TAC THEN MP_TAC(ISPECL
       [`\x. lift(norm(z:complex) / (drop x - norm z) * C)`;
        `interval(lift((norm(z:complex) + r) / &2),lift r)`; `lift r`;
        `norm(
complex_derivative f z - 
complex_derivative f (Cx(&0)))`;
        `1`] 
CONTINUOUS_ON_CLOSURE_COMPONENT_GE) THEN
      REWRITE_TAC[GSYM drop; 
LIFT_DROP; 
CLOSURE_INTERVAL] THEN
      DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[
INTERVAL_EQ_EMPTY_1] THEN
      FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_BALL]) THEN
      REWRITE_TAC[dist; 
COMPLEX_SUB_LZERO; 
NORM_NEG] THEN DISCH_TAC THEN
      ASM_SIMP_TAC[
ENDS_IN_INTERVAL; 
INTERVAL_EQ_EMPTY_1; 
LIFT_DROP; REAL_ARITH
        `z < r ==> ~(r <= (z + r) / &2) /\ ~(r < (z + r) / &2)`] THEN
      REWRITE_TAC[
FORALL_LIFT; 
LIFT_DROP; 
IN_INTERVAL_1] THEN
      CONJ_TAC THENL
       [ALL_TAC;
        ASM_MESON_TAC[REAL_ARITH `(z + r) / &2 < R /\ R < r ==> z < R`]] THEN
      REWRITE_TAC[
LIFT_CMUL; 
real_div] THEN
      MATCH_MP_TAC 
CONTINUOUS_ON_MUL THEN
      REWRITE_TAC[
CONTINUOUS_ON_CONST; 
o_DEF; 
LIFT_CMUL] THEN
      MATCH_MP_TAC 
CONTINUOUS_ON_MUL THEN
      REWRITE_TAC[
CONTINUOUS_ON_CONST; 
o_DEF; 
LIFT_CMUL] THEN
      MATCH_MP_TAC(REWRITE_RULE[
o_DEF] 
CONTINUOUS_ON_INV) THEN
      SIMP_TAC[
LIFT_SUB; 
CONTINUOUS_ON_SUB; 
CONTINUOUS_ON_CONST; 
LIFT_DROP;
               
CONTINUOUS_ON_LIFT_NORM_COMPOSE; 
CONTINUOUS_ON_ID] THEN
      REWRITE_TAC[
IN_INTERVAL_1; 
DROP_CMUL; 
LIFT_DROP] THEN
      ASM_REAL_ARITH_TAC];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!z.  z 
IN ball(Cx(&0),r)
         ==> (norm(z) - norm(z) pow 2 / (r - norm(z))) *
             norm(
complex_derivative f (Cx(&0)))
             <= norm(f z)`
  (LABEL_TAC "*") THENL
   [REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
IN_BALL]) THEN
    REWRITE_TAC[dist; 
COMPLEX_SUB_LZERO; 
NORM_NEG] THEN DISCH_TAC THEN
    MP_TAC(ISPECL[`\z. f(z) - 
complex_derivative f (Cx(&0)) * z`;
                  `\z. 
complex_derivative f z - 
complex_derivative f (Cx(&0))`;
                  `linepath(Cx(&0),z)`; `ball(Cx(&0),r)`]
        
PATH_INTEGRAL_PRIMITIVE) THEN
    REWRITE_TAC[
PATHSTART_LINEPATH; 
PATHFINISH_LINEPATH] THEN ANTS_TAC THENL
     [REWRITE_TAC[
VALID_PATH_LINEPATH; 
PATH_IMAGE_LINEPATH] THEN
      ONCE_REWRITE_TAC[COMPLEX_RING
       `a - 
complex_derivative f b = a - 
complex_derivative f b * Cx(&1)`] THEN
      CONJ_TAC THENL
       [X_GEN_TAC `x:complex` THEN STRIP_TAC THEN
        MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_SUB THEN
        SIMP_TAC[
HAS_COMPLEX_DERIVATIVE_LMUL_WITHIN;
                 
HAS_COMPLEX_DERIVATIVE_ID] THEN
        MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN
        REWRITE_TAC[
HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
        FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
holomorphic_on]) THEN
        DISCH_THEN(MP_TAC o SPEC `x:complex`) THEN
        ASM_SIMP_TAC[REWRITE_RULE[
SUBSET] 
BALL_SUBSET_CBALL] THEN
        REWRITE_TAC[GSYM 
complex_differentiable] THEN
        DISCH_THEN(MP_TAC o SPEC `ball(Cx(&0),r)` o
          MATCH_MP (REWRITE_RULE[
IMP_CONJ]
          
COMPLEX_DIFFERENTIABLE_WITHIN_SUBSET)) THEN
        ASM_SIMP_TAC[
COMPLEX_DIFFERENTIABLE_WITHIN_OPEN; 
OPEN_BALL] THEN
        REWRITE_TAC[
BALL_SUBSET_CBALL];
        MATCH_MP_TAC(REWRITE_RULE[
CONVEX_CONTAINS_SEGMENT] 
CONVEX_BALL) THEN
        ASM_REWRITE_TAC[
CENTRE_IN_BALL]];
      ALL_TAC] THEN
    SIMP_TAC[
HAS_INTEGRAL_INTEGRABLE_INTEGRAL; 
HAS_PATH_INTEGRAL_LINEPATH] THEN
    REWRITE_TAC[
COMPLEX_SUB_RZERO; 
COMPLEX_MUL_RZERO] THEN
    REWRITE_TAC[linepath; 
COMPLEX_CMUL; 
COMPLEX_MUL_RZERO; 
LIFT_DROP] THEN
    REWRITE_TAC[
COMPLEX_ADD_LID; 
FORALL_LIFT; 
IN_INTERVAL_1; 
LIFT_DROP] THEN
    STRIP_TAC THEN FIRST_ASSUM(MP_TAC o
     SPEC `\t. lift(norm(z:complex) pow 2 * drop t / (r - norm(z)) * C)` o
      MATCH_MP (REWRITE_RULE[
IMP_CONJ] 
INTEGRAL_NORM_BOUND_INTEGRAL)) THEN
    REWRITE_TAC[linepath; 
COMPLEX_CMUL; 
COMPLEX_MUL_RZERO; 
LIFT_DROP] THEN
    REWRITE_TAC[
COMPLEX_ADD_LID; 
FORALL_LIFT; 
IN_INTERVAL_1; 
LIFT_DROP] THEN
    REWRITE_TAC[REAL_ARITH `a * b / c * d:real = (a / c * d) * b`] THEN
    REWRITE_TAC[
LIFT_CMUL; 
LIFT_DROP; 
DROP_VEC] THEN
    MP_TAC(ISPECL
     [`\x. inv(&2) * x pow 2`; `\x:real. x`; `&0`; `&1`]
        
REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN
    REWRITE_TAC[
REAL_POS] THEN ANTS_TAC THENL
     [REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN CONV_TAC NUM_REDUCE_CONV THEN
      REAL_ARITH_TAC;
      REWRITE_TAC[
has_real_integral; 
o_DEF; 
IMAGE_LIFT_REAL_INTERVAL] THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[
LIFT_DROP; 
LIFT_NUM] THEN
      DISCH_THEN(MP_TAC o SPEC `norm(z:complex) pow 2 / (r - norm z) * C` o
        MATCH_MP 
HAS_INTEGRAL_CMUL) THEN
      REWRITE_TAC[
HAS_INTEGRAL_INTEGRABLE_INTEGRAL] THEN
      STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN
    ANTS_TAC THENL
     [X_GEN_TAC `t:real` THEN STRIP_TAC THEN
      REWRITE_TAC[REAL_ARITH
        `(z pow 2 / y * c) * t:real = (z / y * t * c) * z`] THEN
      REWRITE_TAC[
COMPLEX_NORM_MUL] THEN MATCH_MP_TAC 
REAL_LE_RMUL THEN
      REWRITE_TAC[
NORM_POS_LE] THEN
      REMOVE_THEN "+" (MP_TAC o SPEC `Cx(t) * z`) THEN
      REWRITE_TAC[
IN_BALL; dist; 
COMPLEX_SUB_LZERO; 
NORM_NEG] THEN
      SUBGOAL_THEN `norm(Cx t * z) <= norm z` ASSUME_TAC THENL
       [GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
        REWRITE_TAC[
COMPLEX_NORM_MUL] THEN MATCH_MP_TAC 
REAL_LE_RMUL THEN
        REWRITE_TAC[
NORM_POS_LE; 
COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC;
        ALL_TAC] THEN
      ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
      MATCH_MP_TAC(REWRITE_RULE[
IMP_CONJ_ALT] 
REAL_LE_TRANS) THEN
      ASM_SIMP_TAC[
REAL_LE_RMUL_EQ; REAL_MUL_ASSOC; 
real_div] THEN
      ASM_REWRITE_TAC[
COMPLEX_NORM_MUL; 
COMPLEX_NORM_CX; 
real_abs] THEN
      GEN_REWRITE_TAC LAND_CONV
       [REAL_ARITH `(t * z) * w:real = (z * w) * t`] THEN
      MATCH_MP_TAC 
REAL_LE_RMUL THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC 
REAL_LE_MUL2 THEN
      REWRITE_TAC[
NORM_POS_LE; 
REAL_LE_INV_EQ; 
REAL_SUB_LE] THEN
      REWRITE_TAC[
REAL_LE_REFL] THEN CONJ_TAC THENL
       [ALL_TAC; MATCH_MP_TAC 
REAL_LE_INV2] THEN
      ASM_REWRITE_TAC[
REAL_SUB_LT] THEN FIRST_X_ASSUM(MP_TAC o
        GEN_REWRITE_RULE LAND_CONV [
COMPLEX_NORM_MUL]) THEN
      REWRITE_TAC[
COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC;
      REWRITE_TAC[
COMPLEX_SUB_RZERO]] THEN
    MATCH_MP_TAC(NORM_ARITH
     `abc <= norm d - e ==> norm(f - d) <= e ==> abc <= norm f`) THEN
    REWRITE_TAC[
REAL_SUB_RDISTRIB;
                ONCE_REWRITE_RULE[
COMPLEX_MUL_SYM] 
COMPLEX_NORM_MUL] THEN
    MATCH_MP_TAC(REAL_ARITH `y <= x ==> a - x <= a - y`) THEN
    REWRITE_TAC[
DROP_CMUL; GSYM REAL_MUL_ASSOC; 
LIFT_DROP] THEN
    MATCH_MP_TAC 
REAL_LE_LMUL THEN
    ASM_SIMP_TAC[
REAL_LE_DIV; 
REAL_SUB_LE; 
REAL_LT_IMP_LE; 
REAL_LE_POW_2] THEN
    EXPAND_TAC "C" THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC 
SUBSET_TRANS THEN
  EXISTS_TAC `
IMAGE (f:complex->complex)
                    (ball(Cx(&0),(&1 - sqrt(&2) / &2) * r))` THEN
  SUBGOAL_THEN `&0 < &1 - sqrt(&2) / &2 /\  &1 - sqrt(&2) / &2 < &1`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[REAL_ARITH
     `&0 < &1 - s / &2 /\  &1 - s / &2 < &1 <=> &0 < s /\ s < &2`] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC 
REAL_LT_RSQRT; MATCH_MP_TAC 
REAL_LT_LSQRT] THEN
    REAL_ARITH_TAC;
    ALL_TAC] THEN
  CONJ_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC 
IMAGE_SUBSET THEN MATCH_MP_TAC 
SUBSET_BALL THEN
    REWRITE_TAC[REAL_ARITH `x * r <= r <=> &0 <= r * (&1 - x)`] THEN
    MATCH_MP_TAC 
REAL_LE_MUL THEN ASM_REAL_ARITH_TAC] THEN
  FIRST_ASSUM(fun th ->
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [SYM th]) THEN
  MATCH_MP_TAC 
BALL_SUBSET_OPEN_MAP_IMAGE THEN
  ASM_SIMP_TAC[
REAL_LT_MUL; 
BOUNDED_BALL; 
CLOSURE_BALL; 
CENTRE_IN_BALL] THEN
  REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC 
CONTINUOUS_ON_SUBSET THEN
    EXISTS_TAC `cball(Cx(&0),r)` THEN
    ASM_SIMP_TAC[
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON] THEN
    MATCH_MP_TAC 
SUBSET_CBALL THEN
    REWRITE_TAC[REAL_ARITH `x * r <= r <=> &0 <= r * (&1 - x)`] THEN
    MATCH_MP_TAC 
REAL_LE_MUL THEN ASM_REAL_ARITH_TAC;
    MATCH_MP_TAC(REWRITE_RULE[
RIGHT_IMP_FORALL_THM; IMP_IMP]
        
OPEN_MAPPING_THM) THEN
    EXISTS_TAC `ball(Cx(&0),r)` THEN
    ASM_SIMP_TAC[
OPEN_BALL; 
CONNECTED_BALL; 
INTERIOR_OPEN; 
SUBSET_REFL] THEN
    REPEAT CONJ_TAC THENL
     [ASM_MESON_TAC[
HOLOMORPHIC_ON_SUBSET; 
BALL_SUBSET_CBALL];
      ALL_TAC;
      MATCH_MP_TAC 
SUBSET_BALL THEN
      REWRITE_TAC[REAL_ARITH `x * r <= r <=> &0 <= r * (&1 - x)`] THEN
      MATCH_MP_TAC 
REAL_LE_MUL THEN ASM_REAL_ARITH_TAC] THEN
    DISCH_THEN(X_CHOOSE_TAC `y:complex`) THEN
    MP_TAC(ISPECL
     [`f:complex->complex`; `(\x. y):complex->complex`;
      `ball(Cx(&0),r)`; `Cx(&0)`]
     
COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN) THEN
    ASM_REWRITE_TAC[
OPEN_BALL; 
HOLOMORPHIC_ON_CONST; 
COMPLEX_DERIVATIVE_CONST;
                    
CENTRE_IN_BALL] THEN
    ASM_MESON_TAC[
HOLOMORPHIC_ON_SUBSET; 
BALL_SUBSET_CBALL];
    REPEAT(MATCH_MP_TAC 
REAL_LT_MUL THEN CONJ_TAC) THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < &3 - &2 * s <=> s < &3 / &2`] THEN
    ASM_REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[
FRONTIER_BALL; sphere; 
REAL_LT_MUL; dist; 
IN_ELIM_THM] THEN
  X_GEN_TAC `z:complex` THEN REWRITE_TAC[
COMPLEX_SUB_LZERO; 
NORM_NEG] THEN
  DISCH_TAC THEN REMOVE_THEN "*" (MP_TAC o SPEC `z:complex`) THEN
  ASM_REWRITE_TAC[
IN_BALL; dist; 
COMPLEX_SUB_LZERO; 
COMPLEX_SUB_RZERO] THEN
  ASM_REWRITE_TAC[
NORM_NEG] THEN ANTS_TAC THENL
   [REWRITE_TAC[REAL_ARITH `x * r < r <=> &0 < r * (&1 - x)`] THEN
    MATCH_MP_TAC 
REAL_LT_MUL THEN ASM_REAL_ARITH_TAC;
    MATCH_MP_TAC(REWRITE_RULE[
IMP_CONJ] 
REAL_LE_TRANS)] THEN
  REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC 
REAL_LE_RMUL THEN
  REWRITE_TAC[
NORM_POS_LE; REAL_ARITH `r - (&1 - s) * r = s * r`] THEN
  REWRITE_TAC[
real_div; 
REAL_INV_MUL; 
REAL_INV_INV] THEN
  ASM_SIMP_TAC[
REAL_LE_RMUL_EQ; REAL_FIELD
   `&0 < r
    ==> a * r - (b * r) pow 2 * x * inv r =  (a - b pow 2 * x) * r`] THEN
  MATCH_MP_TAC 
REAL_EQ_IMP_LE THEN
  MP_TAC(SPEC `&2` 
SQRT_WORKS) THEN CONV_TAC REAL_FIELD);;
 
 
(* ------------------------------------------------------------------------- *)
(* Schottky's theorem.                                                       *)
(* ------------------------------------------------------------------------- *)
let SCHOTTKY = prove
 (`!f r. f 
holomorphic_on cball(Cx(&0),&1) /\ norm(f(Cx(&0))) <= r /\
         (!z. z 
IN cball(Cx(&0),&1) ==> ~(f z = Cx(&0) \/ f z = Cx(&1)))
         ==> !t z. &0 < t /\ t < &1 /\ norm(z) <= t
                   ==> norm(f z)
                       <= exp(pi * exp(pi *
                                       (&2 + &2 * r + &12 * t / (&1 - t))))`,
  let lemma0 = prove
   (`!f s a.
          f holomorphic_on s /\
          contractible s /\
          a IN s /\
          (!z. z IN s ==> ~(f z = Cx(&1)) /\ ~(f z = --Cx(&1)))
          ==> (?g. g holomorphic_on s /\
                   norm(g a) <= &1 + norm(f a) / &3 /\
                   (!z. z IN s ==> f z = ccos(Cx pi * g z)))`,
    REPEAT GEN_TAC THEN
    DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC o MATCH_MP
          CONTRACTIBLE_IMP_HOLOMORPHIC_ACS_BOUNDED) THEN
    EXISTS_TAC `\z:complex. g z / Cx pi` THEN
    ASM_SIMP_TAC[COMPLEX_DIV_LMUL; CX_INJ; PI_NZ; COMPLEX_NORM_DIV;
                 HOLOMORPHIC_ON_DIV; HOLOMORPHIC_ON_CONST; REAL_LE_LDIV_EQ;
                 COMPLEX_NORM_CX; REAL_ABS_PI; PI_POS] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `x <= pi + a ==> a * &3 <= n * pi ==> x <= (&1 + n / &3) * pi`)) THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[NORM_POS_LE] THEN
    MP_TAC PI_APPROX_32 THEN REAL_ARITH_TAC) in
  let lemma1 = prove
   (`!n. 0 < n ==> &0 < &n + sqrt(&n pow 2 - &1)`,
    MESON_TAC[REAL_LTE_ADD; REAL_OF_NUM_LT; SQRT_POS_LE; REAL_POW_LE_1;
              REAL_SUB_LE; REAL_OF_NUM_LE; LE_1]) in
  let lemma2 = prove
   (`!x. &0 <= x
         ==> ?n. 0 < n /\
                 abs(x - log(&n + sqrt(&n pow 2 - &1)) / pi) < &1 / &2`,
    REPEAT STRIP_TAC THEN MP_TAC(SPEC
     `\n. 0 < n /\ log(&n + sqrt(&n pow 2 - &1)) / pi <= x` num_MAX) THEN
    SIMP_TAC[] THEN
    MATCH_MP_TAC(TAUT `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN
    REPEAT CONJ_TAC THENL
     [EXISTS_TAC `1` THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
      ASM_REWRITE_TAC[ARITH; SQRT_0; REAL_ADD_RID; LOG_1] THEN
      REWRITE_TAC[real_div; REAL_MUL_LZERO] THEN ASM_REAL_ARITH_TAC;
      MP_TAC(ISPEC `exp(x * pi)` REAL_ARCH_SIMPLE) THEN
      MATCH_MP_TAC MONO_EXISTS THEN
      X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `m:num` THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
      SIMP_TAC[REAL_LE_LDIV_EQ; PI_POS] THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM REAL_EXP_MONO_LE] THEN
      ASM_SIMP_TAC[lemma1; EXP_LOG] THEN
      REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN MATCH_MP_TAC(REAL_ARITH
       `e <= n /\ &0 <= x ==> m + x <= e ==> m <= n`) THEN
      ASM_SIMP_TAC[SQRT_POS_LE; REAL_POW_LE_1; REAL_SUB_LE;
                   REAL_OF_NUM_LE; LE_1];
      DISCH_THEN(X_CHOOSE_THEN `n:num`
       (CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)
                        (MP_TAC o SPEC `n + 1`))) THEN
      REWRITE_TAC[ARITH_RULE `~(n + 1 <= n) /\ 0 < n + 1`] THEN
      REWRITE_TAC[REAL_NOT_LE; IMP_IMP] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
       `x < b /\ a <= x ==> b - a < &1
        ==> abs(x - a) < &1 / &2 \/ abs(x - b) < &1 / &2`)) THEN
      ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[ARITH_RULE `0 < n + 1`]] THEN
      REWRITE_TAC[REAL_ARITH `x / pi - y / pi = (x - y) / pi`] THEN
      SIMP_TAC[PI_POS; REAL_LT_LDIV_EQ; REAL_MUL_LID] THEN
      MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `&3` THEN
      CONJ_TAC THENL [ALL_TAC; MP_TAC PI_APPROX_32 THEN REAL_ARITH_TAC] THEN
      ASM_SIMP_TAC[lemma1; GSYM LOG_DIV; ARITH_RULE `0 < n + 1`] THEN
      FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
       `0 < n ==> n = 1 \/ 2 <= n`))
      THENL
       [ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
        CONV_TAC REAL_RAT_REDUCE_CONV THEN
        REWRITE_TAC[SQRT_0; REAL_ADD_RID; REAL_DIV_1] THEN
        ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN
        SIMP_TAC[EXP_LOG; REAL_LTE_ADD; SQRT_POS_LE; REAL_POS; REAL_OF_NUM_LT;
                 ARITH] THEN
        MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1 + &3` THEN
        SIMP_TAC[REAL_EXP_LE_X; REAL_POS] THEN
        REWRITE_TAC[REAL_ARITH `&2 + s <= a <=> s <= a - &2`] THEN
        MATCH_MP_TAC REAL_LE_LSQRT THEN CONV_TAC REAL_RAT_REDUCE_CONV;
        MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `log(&2)` THEN
        CONJ_TAC THENL
         [MATCH_MP_TAC LOG_MONO_LE_IMP THEN
          ASM_SIMP_TAC[lemma1; ARITH_RULE `0 < n + 1`; REAL_LT_DIV;
                       REAL_LE_LDIV_EQ] THEN
          REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN MATCH_MP_TAC(REAL_ARITH
           `&1 <= n /\ s <= &2 * t ==> (n + &1) + s <= &2 * (n + t)`) THEN
          ASM_SIMP_TAC[REAL_OF_NUM_LE; LE_1] THEN
          MATCH_MP_TAC REAL_LE_LSQRT THEN
          ASM_SIMP_TAC[REAL_SUB_LE; REAL_POW_LE_1; REAL_ARITH `&1 <= &n + &1`;
            REAL_ARITH `&0 <= &2 * x <=> &0 <= x`; REAL_POW_MUL; SQRT_POW_2;
            REAL_LE_MUL; REAL_POS; SQRT_POS_LE; REAL_OF_NUM_LE; LE_1] THEN
          MATCH_MP_TAC(REAL_ARITH
           `&2 <= n /\ &2 * n <= n * n
            ==> (n + &1) pow 2 - &1 <= &2 pow 2 * (n pow 2 - &1)`) THEN
          ASM_SIMP_TAC[REAL_LE_RMUL; REAL_OF_NUM_LE; LE_0];
          ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN
          SIMP_TAC[EXP_LOG; REAL_OF_NUM_LT; ARITH] THEN
          MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&1 + &3` THEN
          SIMP_TAC[REAL_EXP_LE_X; REAL_POS] THEN REAL_ARITH_TAC]]]) in
  let lemma3 = prove
   (`!z.
      z IN
       ({complex(m,log(&n + sqrt(&n pow 2 - &1)) / pi) | integer m /\ 0 < n}
        UNION
        {complex(m,--log(&n + sqrt(&n pow 2 - &1)) / pi) | integer m /\ 0 < n})
         ==> ccos(Cx(pi) * ccos(Cx pi * z)) = Cx(&1) \/
             ccos(Cx(pi) * ccos(Cx pi * z)) = --Cx(&1)`,
    REWRITE_TAC[COMPLEX_RING
     `x = Cx(&1) \/ x = --Cx(&1) <=> Cx(&1) - x pow 2 = Cx(&0)`] THEN
    REWRITE_TAC[COMPLEX_POW_EQ_0; ARITH_EQ; CSIN_EQ_0;
     REWRITE_RULE[COMPLEX_RING
     `s pow 2 + c pow 2 = Cx(&1) <=>
      Cx(&1) - c pow 2 = s pow 2`] CSIN_CIRCLE] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[CX_MUL] THEN
    REWRITE_TAC[COMPLEX_EQ_MUL_LCANCEL; CX_INJ; PI_NZ] THEN
    REWRITE_TAC[IN_UNION; TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN
    REWRITE_TAC[FORALL_AND_THM; FORALL_IN_GSPEC] THEN
    REWRITE_TAC[complex_mul; RE; IM; RE_CX; IM_CX; REAL_MUL_LZERO] THEN
    ASM_SIMP_TAC[REAL_DIV_LMUL; PI_NZ; REAL_ADD_RID; REAL_SUB_RZERO] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    REWRITE_TAC[ccos; COMPLEX_MUL_LNEG; CEXP_NEG] THEN CONJ_TAC THENL
     [ASM_SIMP_TAC[CEXP_NZ; COMPLEX_FIELD
       `~(e = Cx(&0))
        ==> ((e + inv e) / Cx(&2) = n <=>
             inv e pow 2 - Cx(&2) * n * inv e + Cx(&1) = Cx(&0))`];
      ASM_SIMP_TAC[CEXP_NZ; COMPLEX_FIELD
       `~(e = Cx(&0))
        ==> ((e + inv e) / Cx(&2) = n <=>
             e pow 2 - Cx(&2) * n * e + Cx(&1) = Cx(&0))`]] THEN
    SIMP_TAC[COMPLEX_TRAD; COMPLEX_RING
      `ii * (a + ii * b) = --b + ii * a`] THEN
    REWRITE_TAC[GSYM COMPLEX_TRAD; GSYM CX_NEG; CEXP_COMPLEX] THEN
    SIMP_TAC[REAL_EXP_NEG; EXP_LOG; lemma1] THEN
    SIMP_TAC[SIN_INTEGER_PI; REAL_INV_INV] THEN
    REWRITE_TAC[COMPLEX_TRAD; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
    REWRITE_TAC[GSYM CX_POW; GSYM CX_MUL; GSYM CX_ADD; GSYM CX_ADD;
                GSYM CX_SUB; GSYM CX_INV; CX_INJ] THEN
    REWRITE_TAC[REAL_INV_MUL; REAL_INV_INV; REAL_POW_MUL] THEN
    ONCE_REWRITE_TAC[GSYM COS_ABS] THEN REWRITE_TAC[REAL_ABS_MUL] THEN
    MAP_EVERY X_GEN_TAC [`i:real`; `n:num`] THEN REWRITE_TAC[integer] THEN
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) ASSUME_TAC) THEN
    REWRITE_TAC[GSYM integer] THEN REWRITE_TAC[real_abs; PI_POS_LE] THEN
    REWRITE_TAC[COS_NPI; REAL_POW_INV; REAL_POW_POW] THEN
    REWRITE_TAC[REAL_POW_NEG; EVEN_MULT; ARITH; REAL_POW_ONE] THEN
    (ASM_CASES_TAC `EVEN m` THEN
     ASM_REWRITE_TAC[REAL_INV_NEG; REAL_INV_1; REAL_MUL_RID] THEN
     REWRITE_TAC[REAL_ARITH `a - &2 * n * x * --(&1) = a - &2 * --n * x`] THENL
      [EXISTS_TAC `&n:real`; EXISTS_TAC `--(&n):real`] THEN
     REWRITE_TAC[REAL_NEG_NEG; REAL_RING
     `(n + s) pow 2 - &2 * n * (n + s) + &1 = &0 <=>
      s pow 2 = n pow 2 - &1`] THEN
     SIMP_TAC[INTEGER_CLOSED] THEN MATCH_MP_TAC SQRT_POW_2 THEN
     ASM_SIMP_TAC[REAL_SUB_LE; REAL_POW_LE_1; REAL_OF_NUM_LE; LE_1])) in
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MP_TAC(ISPECL
   [`\z:complex. Cx(&2) * f z - Cx(&1)`; `cball(Cx(&0),&1)`; `Cx(&0)`]
        lemma0) THEN
  ASM_SIMP_TAC[HOLOMORPHIC_ON_SUB; HOLOMORPHIC_ON_MUL;
               HOLOMORPHIC_ON_CONST; CENTRE_IN_CBALL; REAL_POS;
               COMPLEX_RING `Cx(&2) * z - Cx(&1) = Cx(&1) <=> z = Cx(&1)`;
               COMPLEX_RING `Cx(&2) * z - Cx(&1) = --Cx(&1) <=> z = Cx(&0)`;
               CONVEX_IMP_CONTRACTIBLE; CONVEX_CBALL] THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `h:complex->complex` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL
   [`h:complex->complex`; `cball(Cx(&0),&1)`; `Cx(&0)`]
        lemma0) THEN
  ASM_SIMP_TAC[CENTRE_IN_CBALL; REAL_POS; CONVEX_IMP_CONTRACTIBLE;
               CONVEX_CBALL] THEN
  ANTS_TAC THENL
   [X_GEN_TAC `z:complex` THEN REPEAT STRIP_TAC THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`)) THEN
    ASM_REWRITE_TAC[COMPLEX_MUL_RID; COMPLEX_MUL_RNEG; CCOS_NEG;
                    GSYM CX_COS; COS_PI; CX_NEG] THEN
    CONV_TAC COMPLEX_RING;
    DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC)] THEN
  MAP_EVERY UNDISCH_TAC
   [`!z. z IN cball (Cx(&0),&1)
          ==> Cx(&2) * f z - Cx(&1) = ccos(Cx pi * h z)`;
    `!z. z IN cball(Cx(&0),&1) ==> h z = ccos(Cx pi * g z)`] THEN
  SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `norm(g(Cx(&0)):complex) <= &2 + norm(f(Cx(&0)):complex)`
  ASSUME_TAC THENL
   [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
      REAL_LE_TRANS)) THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `h <= p ==> p / &3 <= &1 + f ==> &1 + h / &3 <= &2 + f`)) THEN
    MP_TAC(ISPEC `&1` COMPLEX_NORM_CX) THEN
    REWRITE_TAC[GSYM COMPLEX_CMUL] THEN CONV_TAC NORM_ARITH;
    MAP_EVERY (C UNDISCH_THEN (K ALL_TAC))
     [`h holomorphic_on cball(Cx(&0),&1)`;
      `norm(g(Cx(&0)):complex) <= &1 + norm(h(Cx(&0)):complex) / &3`;
      `norm(h(Cx(&0)):complex) <=
       &1 + norm(Cx(&2) * f(Cx(&0)) - Cx(&1)) / &3`]] THEN
  MAP_EVERY X_GEN_TAC [`t:real`; `z:complex`] THEN STRIP_TAC THEN
  SUBGOAL_THEN `z IN ball(Cx(&0),&1)` ASSUME_TAC THENL
   [REWRITE_TAC[COMPLEX_IN_BALL_0] THEN ASM_REAL_ARITH_TAC;
    FIRST_ASSUM(ASSUME_TAC o MATCH_MP
      (REWRITE_RULE[SUBSET] BALL_SUBSET_CBALL))] THEN
  SUBGOAL_THEN
   `norm(g(z) - g(Cx(&0))) <= &12 * t / (&1 - t)`
  ASSUME_TAC THENL
   [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [holomorphic_on]) THEN
    REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    DISCH_THEN(X_CHOOSE_TAC `g':complex->complex`) THEN
    MP_TAC(ISPECL [`g:complex->complex`; `g':complex->complex`;
                   `linepath(Cx(&0),z)`; `cball(Cx(&0),&1)`]
        PATH_INTEGRAL_PRIMITIVE) THEN
    ASM_REWRITE_TAC[VALID_PATH_LINEPATH; PATH_IMAGE_LINEPATH;
                    PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
    ASM_SIMP_TAC[CONVEX_CONTAINS_SEGMENT_IMP; CONVEX_CBALL] THEN
    REWRITE_TAC[CENTRE_IN_CBALL; REAL_POS] THEN
    DISCH_THEN(MP_TAC o SPEC `&12 / (&1 - t)` o MATCH_MP
     (ONCE_REWRITE_RULE[IMP_CONJ] HAS_PATH_INTEGRAL_BOUND_LINEPATH)) THEN
    ANTS_TAC THENL
     [ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_SUB_LT; REAL_LT_IMP_LE] THEN
      X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
      MP_TAC(ISPECL [`Cx(&0)`; `z:complex`; `w:complex`] SEGMENT_BOUND) THEN
      ASM_REWRITE_TAC[COMPLEX_SUB_RZERO] THEN STRIP_TAC THEN
      MP_TAC(ISPECL
       [`g:complex->complex`; `cball(Cx(&0),&1)`; `w:complex`;
        `&1 - t`; `&1`] BLOCH_COROLLARY) THEN
      ASM_REWRITE_TAC[FRONTIER_CBALL; COMPLEX_IN_CBALL_0;
                      COMPLEX_IN_SPHERE_0] THEN
      MATCH_MP_TAC(TAUT
       `p /\ q /\ ~s /\ (~r ==> t) ==> (p /\ q /\ r ==> s) ==> t`) THEN
      REWRITE_TAC[REAL_NOT_LE] THEN REPEAT CONJ_TAC THENL
       [ASM_REAL_ARITH_TAC;
        MAP_EVERY UNDISCH_TAC
         [`norm(w:complex) <= norm(z:complex)`; `norm(z:complex) <= t`] THEN
        CONV_TAC NORM_ARITH;
        MATCH_MP_TAC(SET_RULE
         `!t u. (!b. (?w. w IN t /\ w IN ball(b,&1)) \/
                     (?w. w IN u /\ w IN ball(b,&1))) /\
                (!x. x IN d ==> ~(g x IN t UNION u))
                ==> ~(?b. ball(b,&1) SUBSET IMAGE g d)`) THEN
        MAP_EVERY EXISTS_TAC
         [`{ complex(m,log(&n + sqrt(&n pow 2 - &1)) / pi) |
              integer m /\ 0 < n}`;
          `{ complex(m,--log(&n + sqrt(&n pow 2 - &1)) / pi) |
             integer m /\ 0 < n}`] THEN
        REWRITE_TAC[EXISTS_IN_GSPEC] THEN CONJ_TAC THENL
         [X_GEN_TAC `b:complex` THEN REWRITE_TAC[OR_EXISTS_THM] THEN
          MP_TAC(ISPEC `Re b` INTEGER_ROUND) THEN
          MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:real` THEN
          STRIP_TAC THEN ASM_REWRITE_TAC[IN_BALL] THEN
          DISJ_CASES_TAC(REAL_ARITH `&0 <= Im b \/ &0 <= --(Im b)`) THENL
           [MP_TAC(SPEC `Im b` lemma2); MP_TAC(SPEC `--(Im b)` lemma2)] THEN
          ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
          X_GEN_TAC `n:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
           [DISJ1_TAC; DISJ2_TAC] THEN
          REWRITE_TAC[dist] THEN
          W(MP_TAC o PART_MATCH lhand COMPLEX_NORM_LE_RE_IM o lhand o snd) THEN
          MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN
          MATCH_MP_TAC(REAL_ARITH
           `x <= &1 / &2 /\ y < &1 / &2 ==> x + y < &1`) THEN
          ASM_REWRITE_TAC[RE_SUB; IM_SUB; RE; IM] THEN ASM_REAL_ARITH_TAC;
          X_GEN_TAC `v:complex` THEN DISCH_TAC THEN
          DISCH_THEN(DISJ_CASES_TAC o MATCH_MP lemma3) THEN
          REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `v:complex`)) THEN
          ASM_REWRITE_TAC[] THEN CONV_TAC COMPLEX_RING];
          REWRITE_TAC[REAL_ARITH `a * c / &12 < &1 <=> c * a < &12`] THEN
          ASM_SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_SUB_LT] THEN MATCH_MP_TAC
           (NORM_ARITH `x = y ==> norm(x) < d ==> norm(y) <= d`) THEN
          MATCH_MP_TAC COMPLEX_DERIVATIVE_UNIQUE_AT THEN
          MAP_EVERY EXISTS_TAC [`g:complex->complex`; `w:complex`] THEN
          REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
          MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN
          CONJ_TAC THENL [MESON_TAC[complex_differentiable]; ALL_TAC] THEN
          MATCH_MP_TAC(MESON[]
           `!s. (g has_complex_derivative g') (at x within s) /\
                ((g has_complex_derivative g') (at x within s) <=>
                 (g has_complex_derivative g') (at x))
                ==> (g has_complex_derivative g') (at x)`) THEN
          EXISTS_TAC `cball(Cx(&0),&1)` THEN CONJ_TAC THENL
           [FIRST_X_ASSUM MATCH_MP_TAC THEN
            REWRITE_TAC[COMPLEX_IN_CBALL_0] THEN ASM_REAL_ARITH_TAC;
            REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_WITHIN;
                        HAS_COMPLEX_DERIVATIVE_AT] THEN
            MATCH_MP_TAC LIM_WITHIN_INTERIOR THEN
            REWRITE_TAC[INTERIOR_CBALL; COMPLEX_IN_BALL_0] THEN
            ASM_REAL_ARITH_TAC]];
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
      ONCE_REWRITE_TAC[REAL_ARITH `&12 * t / s = &12 / s * t`] THEN
      MATCH_MP_TAC REAL_LE_LMUL THEN
      ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_SUB_LT; REAL_LT_IMP_LE] THEN
      ASM_REWRITE_TAC[COMPLEX_SUB_RZERO]];
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV)
     [COMPLEX_RING `y = (Cx(&1) + (Cx(&2) * y - Cx(&1))) / Cx(&2)`] THEN
    ASM_SIMP_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
    ONCE_REWRITE_TAC[REAL_ARITH `x / &2 <= y <=> x <= &2 * y`] THEN
    W(MP_TAC o PART_MATCH lhand NORM_CCOS_PLUS1_LE o lhand o snd) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN
    REWRITE_TAC[REAL_POS; REAL_EXP_MONO_LE; COMPLEX_NORM_MUL] THEN
    REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_PI] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[PI_POS_LE] THEN
    W(MP_TAC o PART_MATCH lhand NORM_CCOS_LE o lhand o snd) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
    REWRITE_TAC[REAL_EXP_MONO_LE; COMPLEX_NORM_MUL] THEN
    REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_PI] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[PI_POS_LE] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH
     `norm(z - w) <= c ==> norm w <= a + b ==> norm z <= a + b + c`)) THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
        REAL_LE_TRANS)) THEN
    UNDISCH_TAC `norm(f(Cx(&0)):complex) <= r` THEN
    CONV_TAC NORM_ARITH]);;  
 
(* ------------------------------------------------------------------------- *)
(* The Little Picard Theorem.                                                *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A couple of little applications of Little Picard.                         *)
(* ------------------------------------------------------------------------- *)
let HOLOMORPHIC_PERIODIC_FIXPOINT = prove
 (`!f p. f 
holomorphic_on (:complex) /\ ~(p = Cx(&0)) /\ (!z. f(z + p) = f(z))
         ==> ?x. f(x) = x`,
  REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL
   [`\z:complex. f(z) - z`; `Cx(&0)`; `p:complex`] 
LITTLE_PICARD) THEN
  ASM_SIMP_TAC[
HOLOMORPHIC_ON_SUB; 
HOLOMORPHIC_ON_ID; NOT_IMP] THEN
  REWRITE_TAC[SET_RULE `
IMAGE f 
UNIV INTER {a,b} = {} <=>
                          !x. ~(f x = a) /\ ~(f x = b)`] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[COMPLEX_RING `a - b:complex = c <=> a = b + c`;
                
COMPLEX_ADD_RID] THEN
    ASM_MESON_TAC[];
    REWRITE_TAC[
NOT_EXISTS_THM; 
FUN_EQ_THM] THEN GEN_TAC THEN
    DISCH_THEN(fun th ->
     MP_TAC(SPEC `p + p:complex` th) THEN
     MP_TAC(SPEC `p:complex` th)) THEN
    ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `~(p = Cx(&0))` THEN CONV_TAC COMPLEX_RING]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Montel's theorem: a sequence of holomorphic functions uniformly bounded   *)
(* on compact subsets of an open set S has a subsequence that converges to a *)
(* holomorphic function, and converges *uniformly* on compact subsets of S.  *)
(* ------------------------------------------------------------------------- *)
let MONTEL = prove
 (`!(f:num->complex->complex) p s.
    open s /\ (!h. h 
IN p ==> h 
holomorphic_on s) /\
    (!k. compact k /\ k 
SUBSET s
         ==> ?b. !h z. h 
IN p /\ z 
IN k ==> norm(h z) <= b) /\
    (!n. (f n) 
IN p)
    ==> ?g r. g 
holomorphic_on s /\
              (!m n:num. m < n ==> r m < r n) /\
              (!x. x 
IN s ==> ((\n. f (r n) x) --> g(x)) sequentially) /\
              (!k e. compact k /\ k 
SUBSET s /\ &0 < e
                     ==> ?N. !n x. n >= N /\ x 
IN k
                                   ==> norm(f (r n) x - g x) < e)`,
  REPEAT GEN_TAC THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  SPEC_TAC(`f:num->complex->complex`,`f:num->complex->complex`) THEN
  REWRITE_TAC[
LIM_SEQUENTIALLY] THEN
  REWRITE_TAC[
RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM 
GE; dist] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
OPEN_UNION_COMPACT_SUBSETS) THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num->complex->bool`
   (fun th -> FIRST_X_ASSUM(MP_TAC o GEN `i:num `o
                SPEC `(k:num->complex->bool) i`) THEN
              STRIP_ASSUME_TAC th)) THEN
  ASM_REWRITE_TAC[
SKOLEM_THM; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `B:num->real` THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `!(f:num->complex->complex) (i:num).
        (!n. f n 
IN p)
        ==>  ?r g. (!m n:num. m < n ==> r m < r n) /\
                   (!e. &0 < e ==> ?N. !n x. n >= N /\ x 
IN k i
                                             ==> norm((f o r) n x - g x) < e)`
  MP_TAC THENL
   [REPEAT STRIP_TAC THEN REWRITE_TAC[
o_THM] THEN
    MP_TAC(ISPECL [`f:num->complex->complex`; `(k:num->complex->bool) i`;
                   `(B:num->real) i`] 
ARZELA_ASCOLI) THEN
    ANTS_TAC THENL [ASM_SIMP_TAC[]; MESON_TAC[]] THEN
    MAP_EVERY X_GEN_TAC [`z:complex`; `e:real`] THEN STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
OPEN_CONTAINS_CBALL]) THEN
    DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN
    ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[
SUBSET; 
IN_CBALL]] THEN
    DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN
     `?M. &0 < M /\
          !n w. dist(z,w) <= &2 / &3 * r
                ==> norm((f:num->complex->complex) n w) <= M`
    STRIP_ASSUME_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o SPEC `cball(z:complex,&2 / &3 * r)`) THEN
      ASM_SIMP_TAC[
SUBSET; 
IN_CBALL; 
COMPACT_CBALL;
              NORM_ARITH `dist(a,b) <= &2 / &3 * r ==> dist(a,b) <= r`] THEN
      DISCH_THEN(X_CHOOSE_THEN `N:num` (MP_TAC o SPEC `N:num`)) THEN
      REWRITE_TAC[
GE; 
LE_REFL] THEN DISCH_TAC THEN
      EXISTS_TAC `abs(B(N:num)) + &1` THEN
      REWRITE_TAC[REAL_ARITH `&0 < abs x + &1`] THEN
      ASM_MESON_TAC[
SUBSET; REAL_ARITH `x <= b ==> x <= abs b + &1`];
      ALL_TAC] THEN
    EXISTS_TAC `min (r / &3) ((e * r) / (&6 * M))` THEN
    ASM_SIMP_TAC[
REAL_LT_MIN; 
REAL_LT_DIV;
                 
REAL_LT_MUL; 
REAL_OF_NUM_LT; ARITH] THEN
    MAP_EVERY X_GEN_TAC [`n:num`; `y:complex`] THEN STRIP_TAC THEN
    MP_TAC
     (ISPECL [`(f:num->complex->complex) n`;  `cball(z:complex,&2 / &3 * r)`;
              `circlepath(z:complex,&2 / &3 * r)`]
        
CAUCHY_INTEGRAL_FORMULA_CONVEX_SIMPLE) THEN
    REWRITE_TAC[
CONVEX_CBALL; 
VALID_PATH_CIRCLEPATH] THEN
    REWRITE_TAC[
PATHSTART_CIRCLEPATH; 
PATHFINISH_CIRCLEPATH] THEN
    SIMP_TAC[
INTERIOR_CBALL; 
IN_BALL; 
WINDING_NUMBER_CIRCLEPATH;
             NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
    ASM_SIMP_TAC[
PATH_IMAGE_CIRCLEPATH;
                 REAL_ARITH `&0 < r ==> &0 <= &2 / &3 * r`] THEN
    REWRITE_TAC[sphere; NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
    SIMP_TAC[
SUBSET; 
IN_CBALL; 
IN_DELETE; 
IN_ELIM_THM; 
REAL_LE_REFL;
             NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
    ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN
    SIMP_TAC[
FORALL_UNWIND_THM2; 
IMP_CONJ; 
REAL_LT_IMP_NE] THEN
    REWRITE_TAC[
RIGHT_FORALL_IMP_THM; 
COMPLEX_MUL_LID] THEN ANTS_TAC THENL
     [MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
      EXISTS_TAC `s:complex->bool` THEN ASM_SIMP_TAC[
SUBSET; 
IN_CBALL] THEN
      ASM_SIMP_TAC[NORM_ARITH `dist(a,b) <= &2 / &3 * r ==> dist(a,b) <= r`];
      ALL_TAC] THEN
    DISCH_THEN(fun th ->
      MP_TAC(SPEC `y:complex` th) THEN MP_TAC(SPEC `z:complex` th)) THEN
    ASM_SIMP_TAC[
VECTOR_SUB_REFL; 
NORM_0; 
REAL_LT_MUL; 
REAL_LT_DIV;
      
REAL_OF_NUM_LT; ARITH; NORM_ARITH
       `norm(z - y) < r / &3 ==> norm(y - z) < &2 / &3 * r`] THEN
    REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(MP_TAC o MATCH_MP 
HAS_PATH_INTEGRAL_SUB) THEN
    DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[
IMP_CONJ]
        
HAS_PATH_INTEGRAL_BOUND_CIRCLEPATH)) THEN
    REWRITE_TAC[GSYM 
COMPLEX_SUB_LDISTRIB; 
COMPLEX_NORM_MUL] THEN
    REWRITE_TAC[
COMPLEX_NORM_II; 
COMPLEX_NORM_CX; 
REAL_ABS_PI;
                
REAL_ABS_NUM; REAL_MUL_LID] THEN
    DISCH_THEN(MP_TAC o SPEC `e / r:real`) THEN
    ASM_SIMP_TAC[REAL_FIELD
     `&0 < r ==> e / r * &2 * pi * c * r = &2 * pi * e * c`] THEN
    SIMP_TAC[
REAL_LE_LMUL_EQ; 
REAL_OF_NUM_LT; ARITH; 
PI_POS] THEN
    ANTS_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN
    ASM_SIMP_TAC[
REAL_LT_IMP_LE; 
REAL_LT_DIV; 
REAL_OF_NUM_LT; ARITH;
                 
REAL_LT_MUL] THEN
    X_GEN_TAC `w:complex` THEN STRIP_TAC THEN
    SUBGOAL_THEN `~(w:complex = z) /\ ~(w = y)` STRIP_ASSUME_TAC THENL
     [CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
      RULE_ASSUM_TAC(REWRITE_RULE[
NORM_0; 
VECTOR_SUB_REFL]) THEN
      RULE_ASSUM_TAC(REWRITE_RULE[
NORM_SUB]) THEN ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    ASM_SIMP_TAC[COMPLEX_FIELD
     `~(w:complex = z) /\ ~(w = y)
      ==> (a / (w - z) - a / (w - y) =
           (a * (z - y)) / ((w - z) * (w - y)))`] THEN
    REWRITE_TAC[
COMPLEX_NORM_MUL; 
COMPLEX_NORM_DIV] THEN
    ASM_SIMP_TAC[
REAL_LE_LDIV_EQ; 
REAL_LT_MUL; 
NORM_POS_LT; 
VECTOR_SUB_EQ;
     REAL_FIELD `&0 < r ==> e / r * (&2 / &3 * r) * x = &2 / &3 * e * x`] THEN
    MATCH_MP_TAC 
REAL_LE_TRANS THEN
    EXISTS_TAC `M * (e * r) / (&6 * M)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC 
REAL_LE_MUL2 THEN
      ASM_SIMP_TAC[
REAL_LT_IMP_LE; 
NORM_POS_LE] THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_REWRITE_TAC[NORM_ARITH `dist(x,y) = norm(y - x)`; 
REAL_LE_REFL];
      ASM_SIMP_TAC[REAL_FIELD `&0 < M ==> M * e / (&6 * M) = e / &6`] THEN
      MATCH_MP_TAC(REAL_ARITH
       `&0 < x /\ x <= y * &3 ==> x / &6 <= &2 / &3 * y`) THEN
      ASM_SIMP_TAC[
REAL_LT_MUL; GSYM REAL_MUL_ASSOC; 
REAL_LE_LMUL_EQ] THEN
      MAP_EVERY UNDISCH_TAC
       [`norm(w - z:complex) = &2 / &3 * r`;
        `norm(z - y:complex) < r / &3`] THEN
      CONV_TAC NORM_ARITH];
    ALL_TAC] THEN
  REWRITE_TAC[
RIGHT_EXISTS_AND_THM] THEN
  DISCH_THEN(fun th -> X_GEN_TAC `f:num->complex->complex` THEN
                       DISCH_TAC THEN MP_TAC th) THEN
  DISCH_THEN(MP_TAC o GENL [`i:num`; `r:num->num`] o
    SPECL [`(f:num->complex->complex) o (r:num->num)`; `i:num`]) THEN
  GEN_REWRITE_TAC
   (LAND_CONV o funpow 2 BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV)
   [
o_THM] THEN ASM_REWRITE_TAC[GSYM 
o_ASSOC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[
IMP_CONJ]
    
SUBSEQUENCE_DIAGONALIZATION_LEMMA)) THEN
  ANTS_TAC THENL
   [SIMP_TAC[
o_THM; 
GE] THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `g:complex->complex` THEN
    MATCH_MP_TAC 
MONO_FORALL THEN X_GEN_TAC `e:real` THEN
    MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_TAC `M:num`) THEN
    EXISTS_TAC `
MAX M N` THEN
    REWRITE_TAC[ARITH_RULE `
MAX m n <= x <=> m <= x /\ n <= x`] THEN
    ASM_MESON_TAC[
LE_TRANS];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC `I:num->num`) THEN
  REWRITE_TAC[
I_O_ID; 
RIGHT_AND_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[
SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `r:num->num` THEN
  REWRITE_TAC[
o_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `!x. x 
IN s
        ==> ?l. !e. &0 < e
                    ==> ?N:num. !n. n >= N
                                ==> norm((f:num->complex->complex) (r n) x - l)
                                    < e`
  MP_TAC THENL
   [X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `{z:complex}`) THEN
    ASM_REWRITE_TAC[
COMPACT_SING; 
SING_SUBSET] THEN
    DISCH_THEN(X_CHOOSE_THEN `N:num` STRIP_ASSUME_TAC) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
SKOLEM_THM]) THEN
    DISCH_THEN(X_CHOOSE_THEN `G:num->complex->complex` MP_TAC) THEN
    DISCH_THEN(LABEL_TAC "*" o SPEC `N:num`) THEN
    EXISTS_TAC `(G:num->complex->complex) N z` THEN
    X_GEN_TAC `e:real` THEN DISCH_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPEC `e:real`) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `M:num` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `
MAX M N` THEN
    REWRITE_TAC[ARITH_RULE `a >= 
MAX m n <=> a >= m /\ a >= n`] THEN
    ASM_MESON_TAC[
GE_REFL];
    ALL_TAC] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [
RIGHT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[
SKOLEM_THM; 
RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `g:complex->complex` THEN
  DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL
   [MAP_EVERY X_GEN_TAC [`t:complex->bool`; `e:real`] THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `t:complex->bool`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_TAC `N:num`) THEN
    FIRST_X_ASSUM(X_CHOOSE_THEN `h:complex->complex` (LABEL_TAC "*") o
      SPEC `N:num`) THEN
    SUBGOAL_THEN
     `!w. w 
IN t ==> g w = (h:complex->complex) w`
     (fun th -> ASM_MESON_TAC[
GE_REFL; 
SUBSET; th]) THEN
    X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
    MATCH_MP_TAC(ISPEC `sequentially` 
LIM_UNIQUE) THEN
    EXISTS_TAC `\n:num. (f:num->complex->complex)(r n) w` THEN
    ASM_REWRITE_TAC[
TRIVIAL_LIMIT_SEQUENTIALLY; 
LIM_SEQUENTIALLY] THEN
    REWRITE_TAC[GSYM 
GE; dist; 
o_THM] THEN
    ASM_MESON_TAC[
SUBSET; 
GE_REFL];
    DISCH_THEN(LABEL_TAC "*")] THEN
  MATCH_MP_TAC 
HOLOMORPHIC_UNIFORM_SEQUENCE THEN
  EXISTS_TAC `(f:num->complex->complex) o (r:num->num)` THEN
  ASM_SIMP_TAC[
o_THM] THEN X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
OPEN_CONTAINS_CBALL]) THEN
  DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
  REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY] THEN ASM_MESON_TAC[
COMPACT_CBALL; 
GE]);;
 
 
(* ------------------------------------------------------------------------- *)
(* Moebius functions are biholomorphisms of the unit disc.                   *)
(* ------------------------------------------------------------------------- *)
let BALL_BIHOLOMORPHISM_EXISTS = prove
 (`!a. a 
IN ball(Cx(&0),&1)
       ==> ?f g. f(a) = Cx(&0) /\
                 f 
holomorphic_on ball (Cx(&0),&1) /\
                 (!z. z 
IN ball (Cx(&0),&1) ==> f z 
IN ball (Cx(&0),&1)) /\
                 g 
holomorphic_on ball (Cx(&0),&1) /\
                 (!z. z 
IN ball (Cx(&0),&1) ==> g z 
IN ball (Cx(&0),&1)) /\
                 (!z. z 
IN ball (Cx(&0),&1) ==> f (g z) = z) /\
                 (!z. z 
IN ball (Cx(&0),&1) ==> g (f z) = z)`,
 
 
let BALL_BIHOLOMORPHISM_MOEBIUS_FUNCTION = prove
  (`!f g.
      f 
holomorphic_on ball (Cx(&0),&1) /\
      (!z. z 
IN ball (Cx(&0),&1) ==> f z 
IN ball (Cx(&0),&1)) /\
      g 
holomorphic_on ball (Cx(&0),&1) /\
      (!z. z 
IN ball (Cx(&0),&1) ==> g z 
IN ball (Cx(&0),&1)) /\
      (!z. z 
IN ball (Cx(&0),&1) ==> f (g z) = z) /\
      (!z. z 
IN ball (Cx(&0),&1) ==> g (f z) = z)
      ==> ?t w. w 
IN ball (Cx(&0),&1) /\
                (!z. z 
IN ball (Cx(&0),&1) ==> f z = 
moebius_function t w z)`,
 
 
(* ------------------------------------------------------------------------- *)
(* Some simple but useful cases of Hurwitz's theorem.                        *)
(* ------------------------------------------------------------------------- *)
let HURWITZ_NO_ZEROS = prove
 (`!f:num->complex->complex g s.
        open s /\ connected s /\
        (!n. (f n) 
holomorphic_on s) /\ g 
holomorphic_on s /\
        (!k e. compact k /\ k 
SUBSET s /\ &0 < e
               ==> ?N. !n x. n >= N /\ x 
IN k ==> norm(f n x - g x) < e) /\
        ~(?c. !z. z 
IN s ==> g z = c) /\
        (!n z. z 
IN s ==> ~(f n z = Cx(&0)))
        ==> (!z. z 
IN s ==> ~(g z = Cx(&0)))`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `z0:complex` THEN
  REPEAT DISCH_TAC THEN
  MP_TAC(ISPECL [`g:complex->complex`; `s:complex->bool`; `z0:complex`]
   
HOLOMORPHIC_FACTOR_ZERO_NONCONSTANT) THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[
NOT_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`h:complex->complex`; `r:real`; `m:num`] THEN
  STRIP_TAC THEN
  MP_TAC(ISPECL
   [`sequentially`; `\n:num z. 
complex_derivative (f n) z / f n z`;
    `\z. 
complex_derivative g z / g z`;  `z0:complex`; `r / &2`]
   
PATH_INTEGRAL_UNIFORM_LIMIT_CIRCLEPATH) THEN
  ASM_REWRITE_TAC[
REAL_HALF; 
TRIVIAL_LIMIT_SEQUENTIALLY; NOT_IMP] THEN
  SUBGOAL_THEN
   `!n:num. ((\z. 
complex_derivative (f n) z / f n z)
             
has_path_integral (Cx(&0))) (circlepath(z0,r / &2))`
  ASSUME_TAC THENL
   [X_GEN_TAC `n:num` THEN MATCH_MP_TAC 
CAUCHY_THEOREM_DISC_SIMPLE THEN
    MAP_EVERY EXISTS_TAC [`z0:complex`; `r:real`] THEN
    ASM_SIMP_TAC[
VALID_PATH_CIRCLEPATH; 
PATHSTART_CIRCLEPATH;
                 
PATHFINISH_CIRCLEPATH; 
PATH_IMAGE_CIRCLEPATH;
                 
REAL_HALF; 
REAL_LT_IMP_LE] THEN
    REWRITE_TAC[sphere; NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
    REWRITE_TAC[
SUBSET; 
IN_BALL; ONCE_REWRITE_RULE[
DIST_SYM] dist] THEN
    ASM_SIMP_TAC[
IN_ELIM_THM; REAL_ARITH `&0 < r ==> r / &2 < r`] THEN
    MATCH_MP_TAC 
HOLOMORPHIC_ON_DIV THEN REPEAT CONJ_TAC THENL
     [REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC 
HOLOMORPHIC_COMPLEX_DERIVATIVE THEN
      REWRITE_TAC[
OPEN_BALL];
      REWRITE_TAC[ETA_AX];
      ASM_MESON_TAC[
SUBSET]] THEN
    ASM_MESON_TAC[
HOLOMORPHIC_ON_SUBSET];
    ALL_TAC] THEN
  REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC 
ALWAYS_EVENTUALLY THEN
    REWRITE_TAC[
path_integrable_on] THEN ASM_MESON_TAC[];
    MATCH_MP_TAC 
UNIFORM_LIM_COMPLEX_DIV THEN
    REWRITE_TAC[
LEFT_EXISTS_AND_THM; 
CONJ_ASSOC] THEN
    REWRITE_TAC[
RIGHT_EXISTS_AND_THM; GSYM 
CONJ_ASSOC] THEN
    REWRITE_TAC[
LEFT_EXISTS_AND_THM] THEN
    ASM_SIMP_TAC[
PATH_IMAGE_CIRCLEPATH; 
REAL_HALF; 
REAL_LT_IMP_LE] THEN
    REWRITE_TAC[sphere; NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
    REWRITE_TAC[
IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL
     [MP_TAC(ISPEC `
IMAGE (
complex_derivative g) {w | norm(w - z0) = r / &2}`
        
COMPACT_IMP_BOUNDED) THEN
      ANTS_TAC THENL
       [MATCH_MP_TAC 
COMPACT_CONTINUOUS_IMAGE THEN
        REWRITE_TAC[
o_DEF;
         REWRITE_RULE[sphere; NORM_ARITH `dist(w:real^N,z) = norm(z - w)`]
                    
COMPACT_SPHERE] THEN
        MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
        MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
        EXISTS_TAC `s:complex->bool` THEN
        ASM_SIMP_TAC[
HOLOMORPHIC_COMPLEX_DERIVATIVE] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ_ALT]
          
SUBSET_TRANS)) THEN
        REWRITE_TAC[
SUBSET; 
IN_BALL; 
IN_ELIM_THM] THEN
        UNDISCH_TAC `&0 < r` THEN CONV_TAC NORM_ARITH;
        REWRITE_TAC[bounded; 
FORALL_IN_IMAGE; 
IN_ELIM_THM] THEN
        MATCH_MP_TAC 
MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN
        MATCH_MP_TAC 
ALWAYS_EVENTUALLY THEN ASM_SIMP_TAC[]];
      MP_TAC(ISPEC `
IMAGE (norm o (g:complex->complex))
          {w | norm(w - z0) = r / &2}`
          
COMPACT_ATTAINS_INF) THEN
      REWRITE_TAC[
EXISTS_IN_IMAGE; 
FORALL_IN_IMAGE; 
IMAGE_EQ_EMPTY] THEN
      REWRITE_TAC[GSYM 
IMAGE_o; 
FORALL_IN_GSPEC; 
EXISTS_IN_GSPEC; 
o_THM] THEN
      ANTS_TAC THENL
       [CONJ_TAC THENL
         [MATCH_MP_TAC 
COMPACT_CONTINUOUS_IMAGE THEN
          REWRITE_TAC[
o_DEF;
            REWRITE_RULE[sphere; NORM_ARITH `dist(w:real^N,z) = norm(z - w)`]
                        
COMPACT_SPHERE] THEN
          MATCH_MP_TAC 
CONTINUOUS_ON_LIFT_NORM_COMPOSE THEN
          MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON THEN
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
            
HOLOMORPHIC_ON_SUBSET)) THEN
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ_ALT]
            
SUBSET_TRANS)) THEN
          REWRITE_TAC[
SUBSET; 
IN_BALL; 
IN_ELIM_THM] THEN
          UNDISCH_TAC `&0 < r` THEN CONV_TAC NORM_ARITH;
          REWRITE_TAC[GSYM 
MEMBER_NOT_EMPTY; 
IN_ELIM_THM] THEN
          EXISTS_TAC `z0 + Cx(r / &2)` THEN
          REWRITE_TAC[VECTOR_ARITH `(a + b) - a:real^N = b`] THEN
          REWRITE_TAC[
COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC];
        DISCH_THEN(X_CHOOSE_THEN `ww:complex` MP_TAC) THEN
        STRIP_TAC THEN EXISTS_TAC `norm((g:complex->complex) ww)` THEN
        ASM_SIMP_TAC[
ALWAYS_EVENTUALLY; 
COMPLEX_NORM_NZ] THEN
        DISCH_THEN(ASSUME_TAC o REWRITE_RULE[
COMPLEX_NORM_ZERO]) THEN
        UNDISCH_TAC `!w. w 
IN ball(z0,r) ==> g w = (w - z0) pow m * h w` THEN
        DISCH_THEN(MP_TAC o SPEC `ww:complex`) THEN
        CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN
        ASM_SIMP_TAC[
COMPLEX_ENTIRE; 
COMPLEX_POW_EQ_0] THEN
        REWRITE_TAC[
IN_BALL; GSYM 
COMPLEX_NORM_ZERO] THEN
        ASM_REWRITE_TAC[ONCE_REWRITE_RULE[
DIST_SYM] dist] THEN
        ASM_REAL_ARITH_TAC];
      X_GEN_TAC `e:real` THEN DISCH_TAC THEN
      FIRST_ASSUM(MP_TAC o SPECL
       [`cball(z0:complex,&3 * r / &4)`; `r / &4 * e / &2`]) THEN
      REWRITE_TAC[
COMPACT_CBALL] THEN ANTS_TAC THENL
       [ASM_SIMP_TAC[
REAL_LT_MUL; 
REAL_LT_DIV; 
REAL_OF_NUM_LT; ARITH] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ_ALT]
          
SUBSET_TRANS)) THEN
        REWRITE_TAC[
SUBSET; 
IN_BALL; 
IN_CBALL; 
IN_ELIM_THM] THEN
        UNDISCH_TAC `&0 < r` THEN CONV_TAC NORM_ARITH;
        REWRITE_TAC[
GE; 
EVENTUALLY_SEQUENTIALLY; 
IN_CBALL; dist] THEN
        MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `N:num` THEN
        MATCH_MP_TAC 
MONO_FORALL THEN X_GEN_TAC `n:num` THEN
        DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
        ASM_REWRITE_TAC[] THEN DISCH_TAC] THEN
      X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
      MP_TAC(ISPECL
       [`\z. (f:num->complex->complex) n z - g z`;
        `w:complex`; `Cx(&0)`; `r / &4`; `r / &4 * e / &2`; `1`]
        
CAUCHY_HIGHER_COMPLEX_DERIVATIVE_BOUND) THEN
      REWRITE_TAC[
HIGHER_COMPLEX_DERIVATIVE_1; 
COMPLEX_IN_BALL_0] THEN
      ANTS_TAC THENL
       [CONJ_TAC THENL [ASM_REAL_ARITH_TAC; CONV_TAC NUM_REDUCE_CONV] THEN
        REPEAT CONJ_TAC THENL
         [ALL_TAC;
          MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
          X_GEN_TAC `y:complex` THEN REWRITE_TAC[
IN_BALL] THEN
          DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
          MAP_EVERY UNDISCH_TAC
           [`norm(w - z0:complex) = r / &2`; `dist(w:complex,y) < r / &4`] THEN
          CONV_TAC NORM_ARITH] THEN
        (MATCH_MP_TAC 
HOLOMORPHIC_ON_SUB THEN
         CONJ_TAC THEN MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
         EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[ETA_AX] THEN
         FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ_ALT]
          
SUBSET_TRANS)) THEN
         REWRITE_TAC[
SUBSET; 
IN_BALL; 
IN_CBALL; 
IN_ELIM_THM] THEN
         UNDISCH_TAC `norm(w - z0:complex) = r / &2` THEN
         UNDISCH_TAC `&0 < r` THEN CONV_TAC NORM_ARITH);
        CONV_TAC NUM_REDUCE_CONV THEN
        ASM_SIMP_TAC[REAL_FIELD
         `&0 < r /\ &0 < e
          ==> &1 * (r / &4 * e / &2) / (r / &4) pow 1 = e / &2`] THEN
        MATCH_MP_TAC(NORM_ARITH
         `x = y /\ &0 < e ==> norm(x) <= e / &2 ==> norm(y) < e`) THEN
        ASM_REWRITE_TAC[] THEN
        MATCH_MP_TAC 
COMPLEX_DERIVATIVE_SUB THEN CONJ_TAC THEN
        MATCH_MP_TAC 
HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
        EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [
SUBSET]) THEN
        ASM_REWRITE_TAC[
IN_BALL; ONCE_REWRITE_RULE[
DIST_SYM] dist] THEN
        ASM_REAL_ARITH_TAC];
      X_GEN_TAC `e:real` THEN DISCH_TAC THEN
      REWRITE_TAC[
EVENTUALLY_SEQUENTIALLY] THEN
      FIRST_X_ASSUM(MP_TAC o SPECL
       [`{w:complex | norm(w - z0) = r / &2}`; `e:real`]) THEN
      ASM_REWRITE_TAC[
GE; 
IN_ELIM_THM;
         REWRITE_RULE[sphere; NORM_ARITH `dist(w:real^N,z) = norm(z - w)`]
                    
COMPACT_SPHERE] THEN
      ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ_ALT]
          
SUBSET_TRANS)) THEN
      REWRITE_TAC[
SUBSET; 
IN_BALL; 
IN_ELIM_THM] THEN
      UNDISCH_TAC `&0 < r` THEN CONV_TAC NORM_ARITH];
    FIRST_ASSUM(ASSUME_TAC o GEN `n:num` o MATCH_MP 
PATH_INTEGRAL_UNIQUE o
        SPEC `n:num`) THEN
    DISCH_THEN(MP_TAC o CONJUNCT2) THEN
    ASM_REWRITE_TAC[
LIM_CONST_EQ; 
TRIVIAL_LIMIT_SEQUENTIALLY] THEN
    MATCH_MP_TAC(COMPLEX_RING
     `!q r. p = q /\ q = r /\ ~(r = Cx(&0)) ==> ~(Cx(&0) = p)`) THEN
    MAP_EVERY EXISTS_TAC
     [`
path_integral (circlepath(z0,r / &2))
                     (\z. Cx(&m) / (z - z0) +
                          
complex_derivative h z / h z)`;
      `Cx(&2) * Cx pi * ii * Cx(&m)`] THEN
    REPEAT CONJ_TAC THENL
     [MATCH_MP_TAC 
PATH_INTEGRAL_EQ THEN X_GEN_TAC `w:complex` THEN
      ASM_SIMP_TAC[
PATH_IMAGE_CIRCLEPATH; 
IN_ELIM_THM; 
REAL_HALF;
        
REAL_LT_IMP_LE; sphere; NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
      ASM_CASES_TAC `w:complex = z0` THEN
      ASM_REWRITE_TAC[
VECTOR_SUB_REFL; 
NORM_0] THENL
       [ASM_REAL_ARITH_TAC; DISCH_TAC] THEN
      SUBGOAL_THEN `w 
IN ball(z0:complex,r)` ASSUME_TAC THENL
       [REWRITE_TAC[
IN_BALL] THEN
        MAP_EVERY UNDISCH_TAC [`norm (w - z0) = r / &2`; `&0 < r`] THEN
        CONV_TAC NORM_ARITH;
        ALL_TAC] THEN
      ASM_SIMP_TAC[] THEN
      ASM_SIMP_TAC[
COMPLEX_ENTIRE; 
COMPLEX_POW_EQ_0; 
COMPLEX_SUB_0;
            COMPLEX_FIELD `~(y = Cx(&0)) ==> (x / y = w <=> x = y * w)`] THEN
      ASM_SIMP_TAC[COMPLEX_FIELD
       `~(h = Cx(&0)) ==> (m * h) * (x + y / h) = m * y + m * h * x`] THEN
      MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN
      MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN THEN
      EXISTS_TAC `\w:complex. (w - z0) pow m * h w` THEN
      EXISTS_TAC `ball(z0:complex,r)` THEN ASM_SIMP_TAC[
OPEN_BALL] THEN
      SUBGOAL_THEN
       `(w - z0) pow m * h w * Cx(&m) / (w - z0) =
        (Cx(&m) * (w - z0) pow (m - 1)) * h w`
      SUBST1_TAC THENL
       [MATCH_MP_TAC(COMPLEX_FIELD
         `w * mm = z /\ ~(w = Cx(&0))
          ==> z * h * m / w = (m * mm) * h`) THEN
        ASM_REWRITE_TAC[
COMPLEX_SUB_0; GSYM(CONJUNCT2 
complex_pow)] THEN
        AP_TERM_TAC THEN ASM_ARITH_TAC;
        MATCH_MP_TAC 
HAS_COMPLEX_DERIVATIVE_MUL_AT THEN CONJ_TAC THENL
         [COMPLEX_DIFF_TAC THEN CONV_TAC COMPLEX_RING;
          REWRITE_TAC[
HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
          ASM_MESON_TAC[
HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT; 
OPEN_BALL]]];
      GEN_REWRITE_TAC RAND_CONV [GSYM 
COMPLEX_ADD_RID] THEN
      MATCH_MP_TAC 
PATH_INTEGRAL_UNIQUE THEN
      MATCH_MP_TAC 
HAS_PATH_INTEGRAL_ADD THEN CONJ_TAC THENL
       [MATCH_MP_TAC 
CAUCHY_INTEGRAL_CIRCLEPATH_SIMPLE THEN
        ASM_REWRITE_TAC[
CENTRE_IN_BALL; 
REAL_HALF; 
HOLOMORPHIC_ON_CONST];
        MATCH_MP_TAC 
CAUCHY_THEOREM_DISC_SIMPLE THEN
        MAP_EVERY EXISTS_TAC [`z0:complex`; `r:real`] THEN
        ASM_SIMP_TAC[
VALID_PATH_CIRCLEPATH; 
PATHSTART_CIRCLEPATH;
                     
PATHFINISH_CIRCLEPATH; 
PATH_IMAGE_CIRCLEPATH;
                     
REAL_HALF; 
REAL_LT_IMP_LE] THEN
        REWRITE_TAC[sphere; NORM_ARITH `dist(z,w) = norm(w - z)`] THEN
        REWRITE_TAC[
SUBSET; 
IN_BALL; ONCE_REWRITE_RULE[
DIST_SYM] dist] THEN
        ASM_SIMP_TAC[
IN_ELIM_THM; REAL_ARITH `&0 < r ==> r / &2 < r`] THEN
        MATCH_MP_TAC 
HOLOMORPHIC_ON_DIV THEN ASM_REWRITE_TAC[ETA_AX] THEN
        MATCH_MP_TAC 
HOLOMORPHIC_COMPLEX_DERIVATIVE THEN
        ASM_REWRITE_TAC[
OPEN_BALL]];
      REWRITE_TAC[
COMPLEX_ENTIRE; 
CX_INJ; 
PI_NZ; 
II_NZ; REAL_OF_NUM_EQ] THEN
      ASM_SIMP_TAC[
LE_1; 
ARITH_EQ] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_REWRITE_TAC[
CENTRE_IN_BALL]]]);;
 
 
let HURWITZ_INJECTIVE = prove
 (`!f:num->complex->complex g s.
    open s /\ connected s /\
    (!n. (f n) 
holomorphic_on s) /\ g 
holomorphic_on s /\
    (!k e. compact k /\ k 
SUBSET s /\ &0 < e
           ==> ?N. !n x. n >= N /\ x 
IN k ==> norm(f n x - g x) < e) /\
    ~(?c. !z. z 
IN s ==> g z = c) /\
    (!n w z. w 
IN s /\ z 
IN s /\ f n w = f n z ==> w = z)
    ==> (!w z. w 
IN s /\ z 
IN s /\ g w = g z ==> w = z)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MAP_EVERY X_GEN_TAC [`z1:complex`; `z2:complex`] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REPEAT DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
NOT_EXISTS_THM]) THEN
  DISCH_THEN(MP_TAC o SPEC `(g:complex->complex) z2`) THEN
  REWRITE_TAC[] THEN X_GEN_TAC `z0:complex` THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REPEAT DISCH_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[MESON[]
   `(!x y. x 
IN s /\ y 
IN s /\ g x = g y ==> x = y) <=>
    (!x y. x 
IN s /\ y 
IN s ==> (g x = g y <=> x = y))`]) THEN
  MP_TAC(ISPECL
   [`\z. (g:complex->complex) z - g z1`; `s:complex->bool`;
    `z2:complex`; `z0:complex`]
        
ISOLATED_ZEROS) THEN
  ASM_SIMP_TAC[
COMPLEX_SUB_0; 
HOLOMORPHIC_ON_SUB; 
HOLOMORPHIC_ON_ID;
               
HOLOMORPHIC_ON_CONST] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL
   [`\n z. (f:num->complex->complex) n z - f n z1`;
    `\z. (g:complex->complex) z - g z1`; `s 
DELETE (z1:complex)`]
        
HURWITZ_NO_ZEROS) THEN
  REWRITE_TAC[NOT_IMP; 
COMPLEX_SUB_0] THEN REPEAT CONJ_TAC THENL
   [ASM_SIMP_TAC[
OPEN_DELETE];
    ASM_SIMP_TAC[
CONNECTED_OPEN_DELETE; DIMINDEX_2; 
LE_REFL];
    GEN_TAC THEN MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
    EXISTS_TAC `s:complex->bool` THEN
    ASM_SIMP_TAC[
HOLOMORPHIC_ON_SUB; ETA_AX; 
HOLOMORPHIC_ON_CONST] THEN
    SET_TAC[];
    MATCH_MP_TAC 
HOLOMORPHIC_ON_SUBSET THEN
    EXISTS_TAC `s:complex->bool` THEN
    ASM_SIMP_TAC[
HOLOMORPHIC_ON_SUB; ETA_AX; 
HOLOMORPHIC_ON_CONST] THEN
    SET_TAC[];
    MAP_EVERY X_GEN_TAC [`k:complex->bool`; `e:real`] THEN STRIP_TAC THEN
    FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE
     `k 
SUBSET s 
DELETE z ==> k 
SUBSET s`)) THEN
    FIRST_X_ASSUM(fun th ->
     MP_TAC(SPECL [`k:complex->bool`; `e / &2`] th) THEN
     MP_TAC(SPECL [`{z1:complex}`; `e / &2`] th)) THEN
    ASM_REWRITE_TAC[
COMPACT_SING; 
SING_SUBSET; 
REAL_HALF] THEN
    SIMP_TAC[
IMP_CONJ; 
RIGHT_FORALL_IMP_THM; 
IN_SING; 
FORALL_UNWIND_THM2] THEN
    REWRITE_TAC[IMP_IMP; 
RIGHT_IMP_FORALL_THM] THEN DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_TAC `N1:num`) (X_CHOOSE_TAC `N2:num`)) THEN
    EXISTS_TAC `
MAX N1 N2` THEN REPEAT STRIP_TAC THEN
    UNDISCH_THEN `(g:complex->complex) z1 = g z2` (SUBST1_TAC o SYM) THEN
    MATCH_MP_TAC(NORM_ARITH
     `norm(x1 - x2) < e / &2 /\ norm(y1 - y2) < e / &2
      ==> norm(x1 - y1 - (x2 - y2)) < e`) THEN
    ASM_MESON_TAC[ARITH_RULE `x >= 
MAX m n <=> x >= m /\ x >= n`];
    REWRITE_TAC[
IN_DELETE; 
COMPLEX_EQ_SUB_RADD] THEN DISCH_THEN(CHOOSE_THEN
     (fun th -> MAP_EVERY (MP_TAC o C SPEC th)
                 [`z0:complex`; `z1:complex`; `z2:complex`])) THEN
    ASM_MESON_TAC[];
    REWRITE_TAC[
IN_DELETE] THEN ASM_MESON_TAC[];
    REWRITE_TAC[
IN_DELETE] THEN ASM_MESON_TAC[]]);;
 
 
(* ------------------------------------------------------------------------- *)
(* The Great Picard theorem.                                                 *)
(* ------------------------------------------------------------------------- *)
let GREAT_PICARD = prove
 (`!f n a b z.
        open n /\ z 
IN n /\ ~(a = b) /\ f 
holomorphic_on (n 
DELETE z) /\
        (!w. w 
IN n 
DELETE z ==> ~(f w = a) /\ ~(f w = b))
        ==> ?l. (f --> l) (at z) \/ ((inv o f) --> l) (at z)`,
  let lemma1 = prove
   (`!p q r s w.
          open s /\ connected s /\ w IN s /\ &0 < r /\
          (!h. h IN p
               ==> h holomorphic_on s /\
                   !z. z IN s ==> ~(h z = Cx(&0)) /\ ~(h z = Cx(&1))) /\
          (!h. h IN q ==> h IN p /\ norm(h w) <= r)
          ==> ?B n. &0 < B /\ open n /\ w IN n /\ n SUBSET s /\
                    !h z. h IN q /\ z IN n ==> norm(h z) <= B`,
    REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN
    DISCH_THEN(MP_TAC o SPEC `w:complex`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
    MAP_EVERY EXISTS_TAC
     [`exp(pi * exp(pi * (&2 + &2 * r + &12)))`;
      `ball(w:complex,e / &2)`] THEN
    ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL; REAL_HALF] THEN
    REWRITE_TAC[REAL_EXP_POS_LT] THEN CONJ_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
          SUBSET_TRANS)) THEN
      REWRITE_TAC[SUBSET_BALLS; DIST_REFL] THEN ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`f:complex->complex`; `z:complex`] THEN
    STRIP_TAC THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `f:complex->complex`)) THEN
    ASM_CASES_TAC `(f:complex->complex) IN p` THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL
     [`\z. (f:complex->complex) (w + Cx e * z)`; `r:real`]
     SCHOTTKY) THEN
    ASM_REWRITE_TAC[DE_MORGAN_THM; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
    ANTS_TAC THENL
     [CONJ_TAC THENL
       [GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
        MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN
        SIMP_TAC[HOLOMORPHIC_ON_ADD; HOLOMORPHIC_ON_MUL;
                 HOLOMORPHIC_ON_CONST; HOLOMORPHIC_ON_ID] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          HOLOMORPHIC_ON_SUBSET)) THEN
        REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
        X_GEN_TAC `u:complex` THEN DISCH_TAC;
        X_GEN_TAC `u:complex` THEN DISCH_TAC THEN
        FIRST_X_ASSUM MATCH_MP_TAC] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
      REWRITE_TAC[IN_CBALL; NORM_ARITH `dist(w,w + z) = norm z`] THEN
      REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
      ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_ARITH
       `&0 < e ==> (abs e * u <= e <=> e * u <= e * &1)`] THEN
      ASM_MESON_TAC[COMPLEX_IN_CBALL_0];
      DISCH_THEN(MP_TAC o SPECL [`&1 / &2`; `Cx(inv e) * (z - w)`]) THEN
      REWRITE_TAC[COMPLEX_MUL_ASSOC; GSYM CX_MUL] THEN
      ASM_SIMP_TAC[REAL_MUL_RINV; COMPLEX_NORM_MUL; REAL_LT_IMP_NZ] THEN
      REWRITE_TAC[COMPLEX_RING `w + Cx(&1) * (z - w) = z`] THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN MATCH_MP_TAC THEN
      REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_INV] THEN
      ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE] THEN
      ONCE_REWRITE_TAC[REAL_ARITH `inv e * x:real = x / e`] THEN
      ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_BALL]) THEN
      CONV_TAC NORM_ARITH]) in
  let lemma2 = prove
   (`!s t:real^N->bool.
          connected t /\ ~(s = {}) /\ s SUBSET t /\ open s /\
          (!x. x limit_point_of s /\ x IN t ==> x IN s)
          ==> s = t`,
    REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONNECTED_CLOPEN]) THEN
    DISCH_THEN(MP_TAC o SPEC `s:real^N->bool`) THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
    ASM_REWRITE_TAC[CLOSED_IN_LIMPT] THEN ASM_SIMP_TAC[OPEN_SUBSET]) in
  let lemma3 = prove
   (`!p s w q.
          open s /\ connected s /\ w IN s /\
          (!h. h IN p
               ==> h holomorphic_on s /\
                   !z. z IN s ==> ~(h z = Cx(&0)) /\ ~(h z = Cx(&1))) /\
          (!h. h IN q ==> h IN p /\ norm(h w) <= &1)
          ==> !k. compact k /\ k SUBSET s
                  ==> ?b. !h z. h IN q /\ z IN k ==> norm(h z) <= b`,
    REPEAT GEN_TAC THEN STRIP_TAC THEN
    ABBREV_TAC
     `u = {z | z IN s /\
               ?B n. &0 < B /\ open n /\ z IN n /\ n SUBSET s /\
                     !h:complex->complex z'.
                       h IN q /\ z' IN n ==> norm(h z') <= B}` THEN
    SUBGOAL_THEN `(u:complex->bool) SUBSET s` ASSUME_TAC THENL
     [EXPAND_TAC "u" THEN REWRITE_TAC[SUBSET_RESTRICT]; ALL_TAC] THEN
    SUBGOAL_THEN `u:complex->bool = s` ASSUME_TAC THENL
     [MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
       [REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `w:complex` THEN
        EXPAND_TAC "u" THEN REWRITE_TAC[IN_ELIM_THM] THEN
        ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma1 THEN
        MAP_EVERY EXISTS_TAC [`p:(complex->complex)->bool`; `&1`] THEN
        ASM_REWRITE_TAC[REAL_LT_01];
        ALL_TAC] THEN
      CONJ_TAC THENL
       [ONCE_REWRITE_TAC[OPEN_SUBOPEN] THEN X_GEN_TAC `z:complex` THEN
        EXPAND_TAC "u" THEN REWRITE_TAC[IN_ELIM_THM] THEN
        DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
        DISCH_THEN(X_CHOOSE_THEN `B:real` MP_TAC) THEN
        MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:complex->bool` THEN
        STRIP_TAC THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "u" THEN
        ONCE_REWRITE_TAC[SUBSET] THEN REWRITE_TAC[IN_ELIM_THM] THEN
        X_GEN_TAC `v:complex` THEN DISCH_TAC THEN
        CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
        MAP_EVERY EXISTS_TAC [`B:real`; `n:complex->bool`] THEN
        ASM_REWRITE_TAC[];
        ALL_TAC] THEN
      REWRITE_TAC[SUBSET] THEN X_GEN_TAC `v:complex` THEN STRIP_TAC THEN
      EXPAND_TAC "u" THEN REWRITE_TAC[IN_ELIM_THM] THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma1 THEN
      EXISTS_TAC `p:(complex->complex)->bool` THEN
      ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[MESON[]
       `(?r. P r /\ Q r) <=> ~(!r. P r ==> ~Q r)`] THEN
      DISCH_THEN(MP_TAC o GEN `n:num` o SPEC `&n + &1:real`) THEN
      REWRITE_TAC[REAL_ARITH `&0 < &n + &1`] THEN
      GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [NOT_FORALL_THM] THEN
      ASM_SIMP_TAC[SKOLEM_THM] THEN
      REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; REAL_NOT_LE] THEN
      REWRITE_TAC[FORALL_AND_THM] THEN
      DISCH_THEN(X_CHOOSE_THEN `f:num->complex->complex` STRIP_ASSUME_TAC) THEN
      ABBREV_TAC `g:num->complex->complex = \n z. inv(f n z)` THEN
      SUBGOAL_THEN `!n:num. (g n) holomorphic_on s` ASSUME_TAC THENL
       [GEN_TAC THEN EXPAND_TAC "g" THEN MATCH_MP_TAC HOLOMORPHIC_ON_INV THEN
        REWRITE_TAC[ETA_AX] THEN ASM SET_TAC[];
        ALL_TAC] THEN
      SUBGOAL_THEN
       `!n:num z:complex. z IN s ==> ~(g n z = Cx(&0)) /\ ~(g n z = Cx(&1))`
      STRIP_ASSUME_TAC THENL
       [X_GEN_TAC `n:num` THEN EXPAND_TAC "g" THEN
        REWRITE_TAC[COMPLEX_INV_EQ_0; COMPLEX_INV_EQ_1] THEN
        ASM SET_TAC[];
        ALL_TAC] THEN
      SUBGOAL_THEN
       `?B n. &0 < B /\
              open n /\
              v IN n /\
              n SUBSET s /\
              !h z. h IN {(g:num->complex->complex) n | n IN (:num)} /\ z IN n
                     ==> norm(h z) <= B`
      MP_TAC THENL
       [MATCH_MP_TAC lemma1 THEN
        EXISTS_TAC `{h |  h holomorphic_on s /\
                       !z. z IN s ==> ~(h z = Cx(&0)) /\ ~(h z = Cx(&1))}` THEN
        ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN EXISTS_TAC `&1` THEN
        ASM_REWRITE_TAC[IN_ELIM_THM; IN_UNIV; REAL_LT_01] THEN
        X_GEN_TAC `n:num` THEN EXPAND_TAC "g" THEN
        REWRITE_TAC[COMPLEX_NORM_INV] THEN MATCH_MP_TAC REAL_INV_LE_1 THEN
        ASM_MESON_TAC[REAL_ARITH `&n + &1 < f ==> &1 <= f`];
        REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
        REWRITE_TAC[IN_UNIV] THEN STRIP_TAC] THEN
      UNDISCH_TAC `open(n:complex->bool)` THEN
      REWRITE_TAC[OPEN_CONTAINS_BALL] THEN
      DISCH_THEN(MP_TAC o SPEC `v:complex`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN
      MP_TAC(ISPECL [`g:num->complex->complex`;
                     `{(g:num->complex->complex) n | n IN (:num)}`;
                     `ball(v:complex,e)`] MONTEL) THEN
      ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
      REWRITE_TAC[IN_UNIV; IMP_IMP; OPEN_BALL; GSYM CONJ_ASSOC] THEN
      REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
       [CONJ_TAC THENL [ASM_MESON_TAC[HOLOMORPHIC_ON_SUBSET]; ASM SET_TAC[]];
        ALL_TAC] THEN
      REWRITE_TAC[NOT_EXISTS_THM] THEN
      MAP_EVERY X_GEN_TAC [`h:complex->complex`; `j:num->num`] THEN
      STRIP_TAC THEN
      SUBGOAL_THEN `h(v:complex) = Cx(&0)` ASSUME_TAC THENL
       [MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN
        EXISTS_TAC `\n:num. (g:num->complex->complex) (j n) v` THEN
        ASM_SIMP_TAC[CENTRE_IN_BALL; TRIVIAL_LIMIT_SEQUENTIALLY] THEN
        REWRITE_TAC[GSYM COMPLEX_VEC_0] THEN
        MATCH_MP_TAC LIM_NULL_COMPARISON THEN EXISTS_TAC `\n. inv(&n)` THEN
        REWRITE_TAC[SEQ_HARMONIC] THEN
        REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN
        X_GEN_TAC `i:num` THEN DISCH_TAC THEN EXPAND_TAC "g" THEN
        REWRITE_TAC[COMPLEX_NORM_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
        ASM_SIMP_TAC[REAL_OF_NUM_LT; LE_1] THEN
        TRANS_TAC REAL_LE_TRANS `&i + &1` THEN
        CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN
        TRANS_TAC REAL_LE_TRANS `&((j:num->num) i) + &1` THEN
        ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_RADD; REAL_OF_NUM_LE] THEN
        ASM_MESON_TAC[MONOTONE_BIGGER];
        ALL_TAC] THEN
      MP_TAC(ISPECL
       [`(g:num->complex->complex) o (j:num->num)`;
        `h:complex->complex`; `ball(v:complex,e)`]
          HURWITZ_NO_ZEROS) THEN
      ASM_REWRITE_TAC[OPEN_BALL; CONNECTED_BALL] THEN
      ASM_REWRITE_TAC[NOT_IMP; o_THM] THEN REPEAT CONJ_TAC THENL
       [ASM_MESON_TAC[HOLOMORPHIC_ON_SUBSET; SUBSET_TRANS];
        ASM_MESON_TAC[];
        ALL_TAC;
        ASM SET_TAC[];
        DISCH_THEN(MP_TAC o SPEC `v:complex`) THEN
        ASM_REWRITE_TAC[CENTRE_IN_BALL]] THEN
      DISCH_THEN(X_CHOOSE_THEN `c:complex` (fun th ->
        MP_TAC th THEN MP_TAC(SPEC `v:complex` th))) THEN
      ASM_REWRITE_TAC[CENTRE_IN_BALL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
      DISCH_TAC THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIMPT_APPROACHABLE]) THEN
      DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `y:complex` STRIP_ASSUME_TAC) THEN
      SUBGOAL_THEN `y IN ball(v:complex,e)` ASSUME_TAC THENL
       [REWRITE_TAC[IN_BALL] THEN ASM_MESON_TAC[DIST_SYM]; ALL_TAC] THEN
      UNDISCH_TAC `(y:complex) IN u` THEN EXPAND_TAC "u" THEN
      REWRITE_TAC[IN_ELIM_THM] THEN
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
        (X_CHOOSE_THEN `C:real` MP_TAC)) THEN
      DISCH_THEN(X_CHOOSE_THEN `nn:complex->bool` MP_TAC) THEN
      REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
      DISCH_THEN(MP_TAC o GEN `n:num` o
        SPECL [`(f:num->complex->complex) n`; `y:complex`]) THEN
      ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPEC `{y:complex}`) THEN
      ASM_REWRITE_TAC[COMPACT_SING; SING_SUBSET] THEN
      DISCH_THEN(MP_TAC o SPEC `inv(C:real)`) THEN
      ASM_REWRITE_TAC[REAL_LT_INV_EQ; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
      DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN
      ASM_SIMP_TAC[GE; LE_REFL; COMPLEX_SUB_RZERO; REAL_NOT_LT] THEN
      EXPAND_TAC "g" THEN REWRITE_TAC[COMPLEX_NORM_INV] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[COMPLEX_NORM_NZ] THEN
      ASM SET_TAC[];
      X_GEN_TAC `k:complex->bool` THEN STRIP_TAC THEN
      SUBGOAL_THEN
       `!x:complex. x IN k ==> x IN u` MP_TAC
      THENL [ASM SET_TAC[]; ALL_TAC] THEN
      EXPAND_TAC "u" THEN REWRITE_TAC[IN_ELIM_THM] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (MESON[]
      `(!x. P x ==> Q x /\ ?y z. R x y z) ==> !x. ?y z. P x ==> R x y z`)) THEN
      REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
      MAP_EVERY X_GEN_TAC [`b:complex->real`; `n:complex->complex->bool`] THEN
      DISCH_TAC THEN FIRST_ASSUM(MP_TAC o
        MATCH_MP COMPACT_IMP_HEINE_BOREL) THEN
      DISCH_THEN(MP_TAC o SPEC `IMAGE (n:complex->complex->bool) k`) THEN
      ASM_SIMP_TAC[FORALL_IN_IMAGE; UNIONS_IMAGE] THEN
      ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
      ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN
      REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE] THEN
      DISCH_THEN(X_CHOOSE_THEN `j:complex->bool` MP_TAC) THEN
      ASM_CASES_TAC `j:complex->bool = {}` THEN
      ASM_REWRITE_TAC[IMAGE_CLAUSES; UNIONS_0] THENL
       [SET_TAC[]; STRIP_TAC] THEN
      EXISTS_TAC `sup(IMAGE (b:complex->real) j)` THEN
      ASM_SIMP_TAC[REAL_LE_SUP_FINITE; IMAGE_EQ_EMPTY; FINITE_IMAGE] THEN
      REWRITE_TAC[EXISTS_IN_IMAGE] THEN ASM SET_TAC[]]) in
  let lemma4 = prove
   (`!f k B.
          &0 < k /\ f holomorphic_on ball(Cx(&0),k) DELETE Cx(&0) /\
          (!e. &0 < e /\ e < k
               ==> ?d. &0 < d /\ d < e /\
                       !z. z IN sphere(Cx(&0),d) ==> norm(f z) <= B)
          ==> ?e. &0 < e /\ e < k /\
                  !z. z IN ball(Cx(&0),e) DELETE Cx(&0) ==> norm(f z) <= B`,
    REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `k / &2`) THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS] THEN
    X_GEN_TAC `e:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    REWRITE_TAC[IN_DELETE; COMPLEX_IN_BALL_0] THEN
    X_GEN_TAC `z:complex` THEN STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `norm(z:complex)`) THEN
    REWRITE_TAC[COMPLEX_NORM_NZ] THEN ASM_REWRITE_TAC[] THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN
     `!w. w IN cball(Cx(&0),e) DIFF ball(Cx(&0),d) ==> norm(f w:complex) <= B`
    MATCH_MP_TAC THENL
     [MATCH_MP_TAC MAXIMUM_MODULUS_FRONTIER;
      ASM_REWRITE_TAC[IN_DIFF; COMPLEX_IN_BALL_0; COMPLEX_IN_CBALL_0] THEN
      ASM_REAL_ARITH_TAC] THEN
    SIMP_TAC[BOUNDED_CBALL; BOUNDED_DIFF; CONJ_ASSOC] THEN CONJ_TAC THENL
     [SIMP_TAC[CLOSURE_CLOSED; CLOSED_DIFF; CLOSED_CBALL; OPEN_BALL] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
       (MESON[INTERIOR_SUBSET; HOLOMORPHIC_ON_SUBSET; SUBSET_TRANS;
              HOLOMORPHIC_ON_IMP_CONTINUOUS_ON]
         `f holomorphic_on t ==> s SUBSET t
          ==> f holomorphic_on interior s /\ f continuous_on s`)) THEN
      MATCH_MP_TAC(SET_RULE
       `s SUBSET t /\ a IN u ==> s DIFF u SUBSET t DELETE a`) THEN
      ASM_REWRITE_TAC[CENTRE_IN_BALL; SUBSET_BALLS; DIST_REFL] THEN
      ASM_REAL_ARITH_TAC;
      X_GEN_TAC `w:complex` THEN
      ONCE_REWRITE_TAC[GSYM FRONTIER_COMPLEMENT] THEN
      REWRITE_TAC[SET_RULE `UNIV DIFF (s DIFF t) = (UNIV DIFF s) UNION t`] THEN
      DISCH_THEN(MP_TAC o MATCH_MP
       (REWRITE_RULE[SUBSET] FRONTIER_UNION_SUBSET)) THEN
      ASM_SIMP_TAC[FRONTIER_COMPLEMENT; FRONTIER_BALL; FRONTIER_CBALL] THEN
      ASM SET_TAC[]]) in
  let lemma5 = prove
   (`!f. f holomorphic_on (ball(Cx(&0),&1) DELETE (Cx(&0))) /\
         (!z. z IN ball(Cx(&0),&1) DELETE Cx(&0)
              ==> ~(f z = Cx(&0)) /\ ~(f z = Cx(&1)))
         ==> ?e b. &0 < e /\ e < &1 /\ &0 < b /\
                   ((!z. z IN ball(Cx(&0),e) DELETE Cx(&0)
                         ==> norm(f z) <= b) \/
                    (!z. z IN ball(Cx(&0),e) DELETE Cx(&0)
                              ==> norm(f z) >= b))`,
    REPEAT STRIP_TAC THEN
    ABBREV_TAC `h = \n z. (f:complex->complex) (z / Cx(&n + &1))` THEN
    SUBGOAL_THEN
     `(!n:num. (h n) holomorphic_on ball(Cx(&0),&1) DELETE Cx(&0)) /\
      (!n z. z IN ball(Cx(&0),&1) DELETE Cx(&0)
             ==> ~(h n z = Cx(&0)) /\ ~(h n z = Cx(&1)))`
    STRIP_ASSUME_TAC THENL
     [CONJ_TAC THEN X_GEN_TAC `n:num` THEN EXPAND_TAC "h" THEN SIMP_TAC[] THENL
       [ONCE_REWRITE_TAC[GSYM o_DEF] THEN
        MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN CONJ_TAC THENL
         [MATCH_MP_TAC HOLOMORPHIC_ON_DIV THEN
          REWRITE_TAC[HOLOMORPHIC_ON_ID; HOLOMORPHIC_ON_CONST; CX_INJ] THEN
          REAL_ARITH_TAC;
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
            HOLOMORPHIC_ON_SUBSET))];
        SUBGOAL_THEN
         `!z. z IN ball (Cx(&0),&1) DELETE Cx(&0)
              ==> z / Cx(&n + &1) IN ball (Cx(&0),&1) DELETE Cx(&0)`
         (fun th -> ASM_MESON_TAC[th])] THEN
      REWRITE_TAC[IN_DELETE; FORALL_IN_IMAGE; SUBSET; COMPLEX_IN_BALL_0] THEN
      SIMP_TAC[COMPLEX_DIV_EQ_0; CX_INJ; REAL_ARITH `~(&n + &1 = &0)`] THEN
      SIMP_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ARITH `&0 < &n + &1`;
               REAL_ARITH `abs(&n + &1) = &n + &1`; REAL_LT_LDIV_EQ] THEN
      REAL_ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `?w. w IN ball(Cx(&0),&1) DELETE Cx(&0)`
    STRIP_ASSUME_TAC THENL
     [EXISTS_TAC `Cx(&1 / &2)` THEN
      REWRITE_TAC[IN_DELETE; COMPLEX_IN_BALL_0; COMPLEX_NORM_CX; CX_INJ] THEN
      CONV_TAC REAL_RAT_REDUCE_CONV;
      ALL_TAC] THEN
    MP_TAC(ISPECL
     [`{g | g holomorphic_on ball(Cx(&0),&1) DELETE Cx(&0) /\
            !z. z IN ball(Cx(&0),&1) DELETE Cx(&0)
                ==> ~(g z = Cx(&0)) /\ ~(g z = Cx(&1))}`;
      `ball(Cx(&0),&1) DELETE Cx(&0)`; `w:complex`] lemma3) THEN
    ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN
    SIMP_TAC[OPEN_BALL; OPEN_DELETE; CONNECTED_BALL; DIMINDEX_2; LE_REFL;
             CONNECTED_OPEN_DELETE; IN_ELIM_THM] THEN
    SUBGOAL_THEN
     `INFINITE {n | norm((h:num->complex->complex) n w) <= &1} \/
      INFINITE {n | &1 <= norm((h:num->complex->complex) n w)}`
    MP_TAC THENL
     [MP_TAC num_INFINITE THEN
      REWRITE_TAC[INFINITE; GSYM DE_MORGAN_THM; GSYM FINITE_UNION] THEN
      REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC EQ_IMP THEN
      AP_TERM_TAC THEN SIMP_TAC[EXTENSION; IN_UNIV; IN_UNION; IN_ELIM_THM] THEN
      REAL_ARITH_TAC;
      ALL_TAC] THEN
    STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP INFINITE_ENUMERATE_WEAK) THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN
    X_GEN_TAC `r:num->num` THEN STRIP_TAC THENL
     [DISCH_THEN(MP_TAC o SPEC
       `{(h:num->complex->complex) (r n) | n IN (:num)}`);
      DISCH_THEN(MP_TAC o SPEC
       `{inv o (h:num->complex->complex) (r n) | n IN (:num)}`)] THEN
    ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN
    ASM_SIMP_TAC[o_DEF; COMPLEX_INV_EQ_0; COMPLEX_INV_EQ_1] THEN
    ASM_SIMP_TAC[COMPLEX_NORM_INV; REAL_INV_LE_1] THEN
    ASM_SIMP_TAC[HOLOMORPHIC_ON_INV; ETA_AX] THEN
    DISCH_THEN(MP_TAC o SPEC `sphere(Cx(&0),&1 / &2)`) THEN
    (ANTS_TAC THENL
      [REWRITE_TAC[SUBSET; COMPLEX_IN_SPHERE_0; IN_DELETE; COMPLEX_IN_BALL_0;
                   COMPACT_SPHERE; GSYM COMPLEX_NORM_NZ] THEN
       SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV;
       ALL_TAC]) THEN
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
    EXPAND_TAC "h" THEN REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_TAC `b:real`) THEN
    ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THENL
     [EXISTS_TAC `abs b + &1`; EXISTS_TAC `inv(abs b + &1)`] THEN
    REWRITE_TAC[REAL_LT_INV_EQ; REAL_ARITH `&0 < abs b + &1`] THEN
    REWRITE_TAC[LEFT_OR_DISTRIB; EXISTS_OR_THM] THENL
     [DISJ1_TAC THEN MATCH_MP_TAC lemma4 THEN
      ASM_REWRITE_TAC[REAL_LT_01];
      DISJ2_TAC THEN
      MP_TAC(ISPECL [`inv o (f:complex->complex)`; `&1`; `abs b + &1`]
          lemma4) THEN
      ASM_SIMP_TAC[HOLOMORPHIC_ON_INV; ETA_AX; o_DEF; REAL_LT_01] THEN
      ANTS_TAC THENL
       [ALL_TAC;
        MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `e:real` THEN
        REWRITE_TAC[COMPLEX_NORM_INV; real_ge;
                    IN_DELETE; COMPLEX_IN_BALL_0] THEN
        REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
        GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN
        MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_LT_INV_EQ] THEN
        REWRITE_TAC[COMPLEX_NORM_NZ] THEN
        MATCH_MP_TAC(TAUT `!q. ~p /\ ~q ==> ~p`) THEN
        EXISTS_TAC `f(z:complex) = Cx(&1)` THEN
        FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_REWRITE_TAC[IN_DELETE; COMPLEX_IN_BALL_0] THEN
        ASM_REAL_ARITH_TAC]] THEN
    (X_GEN_TAC `e:real` THEN STRIP_TAC THEN
     MP_TAC(ISPEC `e:real` REAL_ARCH_INV) THEN
     ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
     X_GEN_TAC `n:num` THEN STRIP_TAC THEN
     EXISTS_TAC `inv(&2 * (&(r(n:num)) + &1))` THEN
     REWRITE_TAC[REAL_LT_INV_EQ] THEN
     CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL
      [TRANS_TAC REAL_LET_TRANS `inv(&n)` THEN ASM_REWRITE_TAC[] THEN
       MATCH_MP_TAC REAL_LE_INV2 THEN
       ASM_SIMP_TAC[REAL_OF_NUM_LT; LE_1; REAL_OF_NUM_ADD] THEN
       REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
       MATCH_MP_TAC(ARITH_RULE `m <= n ==> m <= 2 * (n + 1)`) THEN
       ASM_MESON_TAC[MONOTONE_BIGGER];
       ALL_TAC] THEN
     X_GEN_TAC `z:complex` THEN REWRITE_TAC[COMPLEX_IN_SPHERE_0] THEN
     DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
      [`n:num`; `Cx(&(r(n:num)) + &1) * z`]) THEN
     ASM_REWRITE_TAC[COMPLEX_IN_SPHERE_0; COMPLEX_NORM_MUL; COMPLEX_NORM_CX;
                     REAL_ARITH `abs(&n + &1) = &n + &1`] THEN
     ANTS_TAC THENL [CONV_TAC REAL_FIELD; ALL_TAC] THEN
     MATCH_MP_TAC(NORM_ARITH
       `x = y ==> norm x <= b ==> norm y <= abs b + &1`) THEN
     REPEAT AP_TERM_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
      `~(z = Cx(&0)) ==> (z * w) / z = w`) THEN
     REWRITE_TAC[CX_INJ] THEN REAL_ARITH_TAC)) in
  let lemma6 = prove
   (`!f n a z.
          open n /\ z IN n /\ ~(a = Cx(&0)) /\ f holomorphic_on (n DELETE z) /\
          (!w. w IN n DELETE z ==> ~(f w = Cx(&0)) /\ ~(f w = a))
          ==> ?r. &0 < r /\ ball(z,r) SUBSET n /\
                  (bounded(IMAGE f (ball (z,r) DELETE z)) \/
                   bounded(IMAGE (inv o f) (ball (z,r) DELETE z)))`,
    REPEAT STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
    DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
    MP_TAC(ISPEC
     `\w. (f:complex->complex) (z + Cx r * w) / a` lemma5) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL
     [CONJ_TAC THENL
       [MATCH_MP_TAC HOLOMORPHIC_ON_DIV THEN
        ASM_REWRITE_TAC[HOLOMORPHIC_ON_CONST] THEN
        GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
        MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN
        SIMP_TAC[HOLOMORPHIC_ON_ADD; HOLOMORPHIC_ON_MUL;
                 HOLOMORPHIC_ON_ID; HOLOMORPHIC_ON_CONST] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
            HOLOMORPHIC_ON_SUBSET)) THEN
        REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; COMPLEX_IN_BALL_0; IN_DELETE] THEN
        GEN_TAC THEN STRIP_TAC;
        ASM_SIMP_TAC[COMPLEX_FIELD
         `~(a = Cx(&0)) ==> (x / a = z <=> x = a * z)`] THEN
        ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_MUL_RID] THEN
        REWRITE_TAC[COMPLEX_IN_BALL_0; IN_DELETE] THEN GEN_TAC THEN
        STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
        REWRITE_TAC[IN_DELETE]] THEN
      ASM_SIMP_TAC[CX_INJ; REAL_LT_IMP_NZ; COMPLEX_RING
       `z + a * b = z <=> a = Cx(&0) \/ b = Cx(&0)`] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
      REWRITE_TAC[IN_BALL; NORM_ARITH `dist(a,a + b) = norm b`] THEN
      ASM_SIMP_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX; real_abs; REAL_LT_IMP_LE;
                   REAL_ARITH `r * x < r <=> &0 < r * (&1 - x)`] THEN
      MATCH_MP_TAC REAL_LT_MUL THEN ASM_REAL_ARITH_TAC;
      REWRITE_TAC[LEFT_IMP_EXISTS_THM; bounded; FORALL_IN_IMAGE; o_THM]] THEN
    MAP_EVERY X_GEN_TAC [`e:real`; `b:real`] THEN
    DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
    EXISTS_TAC `e * r:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN
    MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT]
         SUBSET_TRANS)) THEN
      ASM_SIMP_TAC[SUBSET_BALLS; REAL_ADD_LID; DIST_REFL; REAL_LT_MUL;
       REAL_SUB_LT; REAL_ARITH `&0 < r * (&1 - e) ==> e * r <= r`];
      DISCH_TAC] THEN
    FIRST_X_ASSUM(DISJ_CASES_THEN (LABEL_TAC "*")) THENL
     [DISJ1_TAC THEN EXISTS_TAC `norm(a:complex) * b`;
      DISJ2_TAC THEN EXISTS_TAC `inv(norm(a:complex) * b)`] THEN
    X_GEN_TAC `w:complex` THEN REWRITE_TAC[IN_BALL; IN_DELETE] THEN
    STRIP_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPEC `(w - z) / Cx r`) THEN
    ASM_SIMP_TAC[IN_DELETE; COMPLEX_IN_BALL_0; COMPLEX_DIV_EQ_0;
                 COMPLEX_SUB_0; CX_INJ; REAL_LT_IMP_NZ; COMPLEX_NORM_DIV;
                 COMPLEX_NORM_CX; real_abs; REAL_LT_IMP_LE; REAL_LT_LDIV_EQ;
                 NORM_ARITH `norm(w - z) = dist(z,w)`; COMPLEX_DIV_LMUL] THEN
    REWRITE_TAC[real_ge; COMPLEX_RING `z + w - z:complex = w`] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; COMPLEX_NORM_NZ] THEN
    DISCH_TAC THEN REWRITE_TAC[COMPLEX_NORM_INV] THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN
    ASM_SIMP_TAC[REAL_LT_MUL; COMPLEX_NORM_NZ]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\z. (f:complex->complex) z - a`; `n:complex->bool`;
                 `b - a:complex`; `z:complex`]
        lemma6) THEN
  ASM_SIMP_TAC[COMPLEX_SUB_0; HOLOMORPHIC_ON_SUB; ETA_AX; HOLOMORPHIC_ON_CONST;
               COMPLEX_RING `x - a:complex = y - a <=> x = y`] THEN
  DISCH_THEN(X_CHOOSE_THEN `r:real` MP_TAC) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  REWRITE_TAC[EXISTS_OR_THM] THEN MATCH_MP_TAC(TAUT
   `(p ==> r) /\ (~r /\ q ==> s) ==> p \/ q ==> r \/ s`) THEN
  REPEAT STRIP_TAC THENL
   [MP_TAC(ISPECL [`f:complex->complex`; `z:complex`; `ball(z:complex,r)`]
        HOLOMORPHIC_ON_EXTEND_BOUNDED) THEN
    ASM_SIMP_TAC[INTERIOR_OPEN; OPEN_BALL; CENTRE_IN_BALL] THEN ANTS_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          HOLOMORPHIC_ON_SUBSET)) THEN
      ASM SET_TAC[];
      MATCH_MP_TAC(TAUT `q /\ (p ==> r) ==> (p <=> q) ==> r`)] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[EVENTUALLY_AT; FORALL_IN_IMAGE; IN_BALL; IN_DELETE] THEN
      ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN EXISTS_TAC `r:real` THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [bounded]) THEN
      REWRITE_TAC[FORALL_IN_IMAGE; IN_BALL; DIST_NZ; IN_DELETE] THEN
      ASM_MESON_TAC[NORM_ARITH `norm(x - y) <= B ==> norm(x) <= norm(y) + B`;
                    DIST_SYM];
      DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(g:complex->complex) z` THEN
      MATCH_MP_TAC LIM_TRANSFORM_WITHIN_OPEN THEN
      MAP_EVERY EXISTS_TAC [`g:complex->complex`; `ball(z:complex,r)`] THEN
      ASM_SIMP_TAC[OPEN_BALL; CENTRE_IN_BALL; IN_DELETE] THEN
      ASM_SIMP_TAC[GSYM CONTINUOUS_AT] THEN
      ASM_MESON_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON; OPEN_BALL;
                    CONTINUOUS_ON_EQ_CONTINUOUS_AT; CENTRE_IN_BALL]];
    MP_TAC(ISPECL [`\z. inv((f:complex->complex) z - a)`;
                   `z:complex`; `ball(z:complex,r)`]
        HOLOMORPHIC_ON_EXTEND_BOUNDED) THEN
    ASM_SIMP_TAC[INTERIOR_OPEN; OPEN_BALL; CENTRE_IN_BALL] THEN ANTS_TAC THENL
     [MATCH_MP_TAC HOLOMORPHIC_ON_INV THEN REWRITE_TAC[COMPLEX_SUB_0] THEN
      CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
      MATCH_MP_TAC HOLOMORPHIC_ON_SUB THEN
      REWRITE_TAC[HOLOMORPHIC_ON_CONST; ETA_AX] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
          HOLOMORPHIC_ON_SUBSET)) THEN
      ASM SET_TAC[];
      MATCH_MP_TAC(TAUT `q /\ (p ==> r) ==> (p <=> q) ==> r`)] THEN
    CONJ_TAC THENL
     [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [bounded]) THEN
      SIMP_TAC[EVENTUALLY_AT; o_DEF; FORALL_IN_IMAGE; IN_BALL; IN_DELETE] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `B:real` THEN STRIP_TAC THEN
      EXISTS_TAC `r:real` THEN ASM_MESON_TAC[DIST_NZ; DIST_SYM];
      DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC)] THEN
    SUBGOAL_THEN `((g:complex->complex) --> g z) (at z)` ASSUME_TAC THENL
     [ASM_SIMP_TAC[GSYM CONTINUOUS_AT] THEN
      ASM_MESON_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON; OPEN_BALL;
                    CONTINUOUS_ON_EQ_CONTINUOUS_AT; CENTRE_IN_BALL];
      ALL_TAC] THEN
    ASM_CASES_TAC `(g:complex->complex) z = Cx(&0)` THENL
     [EXISTS_TAC `Cx(&0)` THEN
      MATCH_MP_TAC LIM_TRANSFORM_WITHIN_OPEN THEN
      EXISTS_TAC `\w:complex. g(w) / (Cx(&1) + a * g w)` THEN
      EXISTS_TAC `ball(z:complex,r)` THEN
      ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL; o_DEF] THEN CONJ_TAC THENL
       [X_GEN_TAC `w:complex` THEN
        DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM COMPLEX_INV_DIV] THEN
        AP_TERM_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
         `~(g = Cx(&0)) /\ inv(g) = f - a
          ==> (Cx(&1) + a * g) / g = f`) THEN
        ASM_SIMP_TAC[IN_DELETE; COMPLEX_INV_INV; COMPLEX_INV_EQ_0] THEN
        REWRITE_TAC[COMPLEX_SUB_0] THEN ASM SET_TAC[];
        SUBST1_TAC(COMPLEX_FIELD
         `Cx(&0) = Cx(&0) / (Cx(&1) + a * Cx(&0))`) THEN
        MATCH_MP_TAC LIM_COMPLEX_DIV THEN REPEAT CONJ_TAC THENL
         [ASM_MESON_TAC[]; ALL_TAC; CONV_TAC COMPLEX_RING] THEN
        MATCH_MP_TAC LIM_ADD THEN REWRITE_TAC[LIM_CONST] THEN
        MATCH_MP_TAC LIM_COMPLEX_MUL THEN REWRITE_TAC[LIM_CONST] THEN
        ASM_MESON_TAC[]];
      EXISTS_TAC `g(z:complex) / (Cx(&1) + a * g z)` THEN
      MATCH_MP_TAC LIM_TRANSFORM_WITHIN_OPEN THEN
      EXISTS_TAC `\w:complex. g(w) / (Cx(&1) + a * g w)` THEN
      EXISTS_TAC `ball(z:complex,r)` THEN
      ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL; o_DEF] THEN CONJ_TAC THENL
       [X_GEN_TAC `w:complex` THEN
        DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM COMPLEX_INV_DIV] THEN
        AP_TERM_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
         `~(g = Cx(&0)) /\ inv(g) = f - a
          ==> (Cx(&1) + a * g) / g = f`) THEN
        ASM_SIMP_TAC[IN_DELETE; COMPLEX_INV_INV; COMPLEX_INV_EQ_0] THEN
        REWRITE_TAC[COMPLEX_SUB_0] THEN ASM SET_TAC[];
        ALL_TAC] THEN
      MATCH_MP_TAC LIM_COMPLEX_DIV THEN
      ASM_SIMP_TAC[LIM_ADD; LIM_COMPLEX_MUL; LIM_CONST] THEN DISCH_TAC THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
      DISCH_THEN(MP_TAC o SPEC `Cx(&0) / g(z:complex)`) THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC LIM_TRANSFORM_WITHIN_OPEN THEN
      EXISTS_TAC `\w:complex. (Cx(&1) + a * g w) / g w` THEN
      EXISTS_TAC `ball(z:complex,r)` THEN
      ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL; o_DEF] THEN CONJ_TAC THENL
       [X_GEN_TAC `w:complex` THEN
        DISCH_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
         `~(g = Cx(&0)) /\ inv(g) = f - a
          ==> (Cx(&1) + a * g) / g = f`) THEN
        ASM_SIMP_TAC[IN_DELETE; COMPLEX_INV_INV; COMPLEX_INV_EQ_0] THEN
        REWRITE_TAC[COMPLEX_SUB_0] THEN ASM SET_TAC[];
        ALL_TAC] THEN
      MATCH_MP_TAC LIM_COMPLEX_DIV THEN ASM_REWRITE_TAC[] THEN
      FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
      ASM_SIMP_TAC[LIM_ADD; LIM_CONST; LIM_COMPLEX_MUL]]]);;  
 
(* ------------------------------------------------------------------------- *)
(* A big chain of equivalents of simple connectedness for an open set.       *)
(* ------------------------------------------------------------------------- *)
let [SIMPLY_CONNECTED_EQ_WINDING_NUMBER_ZERO;
     SIMPLY_CONNECTED_EQ_PATH_INTEGRAL_ZERO;
     SIMPLY_CONNECTED_EQ_GLOBAL_PRIMITIVE;
     SIMPLY_CONNECTED_EQ_HOLOMORPHIC_LOG;
     SIMPLY_CONNECTED_EQ_HOLOMORPHIC_SQRT;
     SIMPLY_CONNECTED_EQ_INJECTIVE_HOLOMORPHIC_SQRT;
     SIMPLY_CONNECTED_EQ_BIHOLOMORPHIC_TO_DISC;
     SIMPLY_CONNECTED_EQ_HOMEOMORPHIC_TO_DISC] =
 (CONJUNCTS o prove)
 (`(!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !g z. path g /\ path_image g SUBSET s /\
                   pathfinish g = pathstart g /\ ~(z IN s)
                   ==> winding_number(g,z) = Cx(&0))) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !g f. valid_path g /\ path_image g SUBSET s /\
                   pathfinish g = pathstart g /\ f holomorphic_on s
                 ==> (f has_path_integral Cx(&0)) g)) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !f. f holomorphic_on s
                 ==> ?h. !z. z IN s
                             ==> (h has_complex_derivative f(z)) (at z))) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !f. f holomorphic_on s /\ (!z. z IN s ==> ~(f z = Cx(&0)))
                 ==> ?g. g holomorphic_on s /\
                         !z. z IN s ==> f z = cexp(g z))) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !f. f holomorphic_on s /\ (!z. z IN s ==> ~(f z = Cx(&0)))
                 ==> ?g. g holomorphic_on s /\
                         !z. z IN s ==> f z = g z pow 2)) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !f. f holomorphic_on s /\ (!z. z IN s ==> ~(f z = Cx(&0))) /\
                 (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
                 ==> ?g. g holomorphic_on s /\
                         !z. z IN s ==> f z = g z pow 2)) /\
   (!s. open s
        ==> (simply_connected s <=>
             s = {} \/ s = (:complex) \/
             ?f g. f holomorphic_on s /\ g holomorphic_on ball(Cx(&0),&1) /\
                   (!z. z IN s ==> f(z) IN ball(Cx(&0),&1) /\ g(f z) = z) /\
                   (!z. z IN ball(Cx(&0),&1) ==> g(z) IN s /\ f(g z) = z))) /\
   (!s. open s
        ==> (simply_connected(s:complex->bool) <=>
             s = {} \/ s homeomorphic ball(Cx(&0),&1)))`,
  REWRITE_TAC[AND_FORALL_THM; TAUT
   `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN
  X_GEN_TAC `s:complex->bool` THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT
   `(p0 ==> p1) /\ (p1 ==> p2) /\ (p2 ==> p3) /\ (p3 ==> p4) /\
    (p4 ==> p5) /\ (p5 ==> p6) /\ (p6 ==> p7) /\ (p7 ==> p8) /\ (p8 ==> p0)
    ==> (p0 <=> p1) /\ (p0 <=> p2) /\
        (p0 <=> p3) /\ (p0 <=> p4) /\
        (p0 <=> p5) /\ (p0 <=> p6) /\ (p0 <=> p7) /\ (p0 <=> p8)`) THEN
  REPEAT CONJ_TAC THENL
   [SIMP_TAC[SIMPLY_CONNECTED_IMP_CONNECTED] THEN
    MESON_TAC[SIMPLY_CONNECTED_IMP_WINDING_NUMBER_ZERO];
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC CAUCHY_THEOREM_GLOBAL THEN
    EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[] THEN
    REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_SIMP_TAC[VALID_PATH_IMP_PATH];
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `f:complex->complex` THEN
    ASM_CASES_TAC `s:complex->bool = {}` THENL
     [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; DISCH_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
    DISCH_THEN(X_CHOOSE_TAC `a:complex`) THEN EXISTS_TAC
     `\z. path_integral
           (@g. vector_polynomial_function g /\ path_image g SUBSET s /\
                pathstart g = a /\ pathfinish g = z)
           f` THEN
    X_GEN_TAC `x:complex` THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN
    DISCH_THEN(MP_TAC o SPEC `x:complex`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
    REWRITE_TAC[has_complex_derivative] THEN
    REWRITE_TAC[has_derivative_at; LINEAR_COMPLEX_MUL] THEN
    MATCH_MP_TAC LIM_TRANSFORM THEN
    EXISTS_TAC `\y. inv(norm(y - x)) % (path_integral(linepath(x,y)) f -
                     f x * (y - x))` THEN
    REWRITE_TAC[VECTOR_ARITH
     `i % (x - a) - i % (y - (z + a)) = i % (x + z - y)`] THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC LIM_EVENTUALLY THEN REWRITE_TAC[EVENTUALLY_AT] THEN
      EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN
      X_GEN_TAC `y:complex` THEN STRIP_TAC THEN
      REWRITE_TAC[VECTOR_MUL_EQ_0] THEN DISJ2_TAC THEN MP_TAC(ISPEC
        `s:complex->bool` CONNECTED_OPEN_VECTOR_POLYNOMIAL_CONNECTED) THEN
      ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `a:complex`) THEN ASM_REWRITE_TAC[] THEN
      SUBGOAL_THEN `(y:complex) IN s` ASSUME_TAC THENL
       [ASM_MESON_TAC[SUBSET; IN_CBALL; REAL_LT_IMP_LE; DIST_SYM];
        ALL_TAC] THEN
      DISCH_THEN(fun th ->
        MP_TAC(SPEC `y:complex` th) THEN MP_TAC(SPEC `x:complex` th)) THEN
      ASM_REWRITE_TAC[] THEN MAP_EVERY ABBREV_TAC
       [`g1 = @g. vector_polynomial_function g /\ path_image g SUBSET s /\
                  pathstart g = (a:complex) /\ pathfinish g = x`;
        `g2 = @g. vector_polynomial_function g /\ path_image g SUBSET s /\
                  pathstart g = (a:complex) /\ pathfinish g = y`] THEN
      DISCH_THEN(MP_TAC o SELECT_RULE) THEN ASM_REWRITE_TAC[] THEN
      STRIP_TAC THEN DISCH_THEN(MP_TAC o SELECT_RULE) THEN
      ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
      FIRST_X_ASSUM(MP_TAC o SPECL
       [`g1 ++ linepath (x:complex,y) ++ reversepath g2`;
        `f:complex->complex`]) THEN
      ASM_REWRITE_TAC[PATHSTART_JOIN; PATHFINISH_JOIN; PATHFINISH_REVERSEPATH;
                      PATHSTART_LINEPATH; PATHFINISH_LINEPATH] THEN
      SUBGOAL_THEN `segment[x:complex,y] SUBSET s` ASSUME_TAC THENL
       [MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `cball(x:complex,d)` THEN
        ASM_REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN
        MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONVEX_CBALL] THEN
        REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
        ASM_SIMP_TAC[IN_CBALL; DIST_REFL] THEN
        ASM_MESON_TAC[REAL_LT_IMP_LE; DIST_SYM];
        ALL_TAC] THEN
      SUBGOAL_THEN
       `f path_integrable_on g1 /\ f path_integrable_on g2 /\
        f path_integrable_on linepath(x,y)`
      STRIP_ASSUME_TAC THENL
       [REPEAT CONJ_TAC THEN
        MATCH_MP_TAC PATH_INTEGRABLE_HOLOMORPHIC_SIMPLE THEN
        EXISTS_TAC `s:complex->bool` THEN
        ASM_SIMP_TAC[VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN
        ASM_REWRITE_TAC[VALID_PATH_LINEPATH; PATH_IMAGE_LINEPATH];
        ALL_TAC] THEN
      ANTS_TAC THENL
       [ALL_TAC; DISCH_THEN(MP_TAC o MATCH_MP PATH_INTEGRAL_UNIQUE)] THEN
      ASM_SIMP_TAC[VALID_PATH_JOIN_EQ; PATHSTART_JOIN; PATHFINISH_JOIN;
                   PATHFINISH_REVERSEPATH; PATHSTART_LINEPATH;
                   PATHFINISH_LINEPATH; VALID_PATH_VECTOR_POLYNOMIAL_FUNCTION;
                   PATH_IMAGE_JOIN; PATH_IMAGE_LINEPATH;
                   PATH_IMAGE_REVERSEPATH; PATHSTART_REVERSEPATH;
                   VALID_PATH_LINEPATH; VALID_PATH_REVERSEPATH; UNION_SUBSET;
                   PATH_INTEGRAL_JOIN; PATH_INTEGRABLE_JOIN;
                   PATH_INTEGRABLE_REVERSEPATH; PATH_INTEGRAL_REVERSEPATH] THEN
      REWRITE_TAC[COMPLEX_VEC_0] THEN CONV_TAC COMPLEX_RING;
      REWRITE_TAC[LIM_AT] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN
      SUBGOAL_THEN `(f:complex->complex) continuous at x` MP_TAC THENL
       [ASM_MESON_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
                      CONTINUOUS_ON_EQ_CONTINUOUS_AT];
        ALL_TAC] THEN
      REWRITE_TAC[continuous_at; dist; VECTOR_SUB_RZERO] THEN
      DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN
      DISCH_THEN(X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
      DISCH_THEN(MP_TAC o SPEC `x:complex`) THEN
      ASM_REWRITE_TAC[SUBSET; IN_BALL; dist] THEN
      DISCH_THEN(X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `min d1 d2` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN
      X_GEN_TAC `y:complex` THEN STRIP_TAC THEN
      SUBGOAL_THEN `f path_integrable_on linepath(x,y)` MP_TAC THENL
       [MATCH_MP_TAC PATH_INTEGRABLE_CONTINUOUS_LINEPATH THEN
        MATCH_MP_TAC CONTINUOUS_ON_SUBSET THEN
        EXISTS_TAC `s:complex->bool` THEN CONJ_TAC THENL
         [ASM_MESON_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
                        CONTINUOUS_ON_EQ_CONTINUOUS_AT];
          MATCH_MP_TAC SUBSET_TRANS THEN
          EXISTS_TAC `ball(x:complex,d2)` THEN CONJ_TAC THENL
           [REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN
            MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONVEX_BALL] THEN
            REWRITE_TAC[SUBSET; IN_BALL; IN_INSERT; NOT_IN_EMPTY; dist] THEN
            REPEAT STRIP_TAC THEN
            ASM_REWRITE_TAC[dist; NORM_0; VECTOR_SUB_REFL] THEN
            ASM_MESON_TAC[NORM_SUB];
            ASM_REWRITE_TAC[SUBSET; dist; IN_BALL]]];
        ALL_TAC] THEN
      REWRITE_TAC[path_integrable_on; LEFT_IMP_EXISTS_THM] THEN
      X_GEN_TAC `z:complex` THEN
      MP_TAC(SPECL [`x:complex`; `y:complex`; `(f:complex->complex) x`]
                    HAS_PATH_INTEGRAL_CONST_LINEPATH) THEN
      REWRITE_TAC[IMP_IMP] THEN
      DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT2 th) THEN MP_TAC th) THEN
      FIRST_ASSUM(SUBST1_TAC o MATCH_MP PATH_INTEGRAL_UNIQUE) THEN
      DISCH_THEN(MP_TAC o MATCH_MP HAS_PATH_INTEGRAL_SUB) THEN
      DISCH_THEN(MP_TAC o MATCH_MP HAS_PATH_INTEGRAL_NEG) THEN
      REWRITE_TAC[COMPLEX_NEG_SUB] THEN STRIP_TAC THEN
      MATCH_MP_TAC(REAL_ARITH `x <= e / &2 /\ &0 < e ==> x < e`) THEN
      ASM_REWRITE_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN
      ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM real_div] THEN
      ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN
      MATCH_MP_TAC HAS_PATH_INTEGRAL_BOUND_LINEPATH THEN
      EXISTS_TAC `\w. (f:complex->complex) w - f x` THEN
      ASM_SIMP_TAC[REAL_ARITH `&0 < e ==> &0 <= e / &2`] THEN
      X_GEN_TAC `w:complex` THEN STRIP_TAC THEN
      MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_MESON_TAC[REAL_LET_TRANS; SEGMENT_BOUND]];
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `f:complex->complex` THEN
    ASM_CASES_TAC `s:complex->bool = {}` THENL
     [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; STRIP_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `\z. complex_derivative f z / f z`) THEN
    ASM_SIMP_TAC[HOLOMORPHIC_COMPLEX_DERIVATIVE;
                 HOLOMORPHIC_ON_DIV; ETA_AX] THEN
    DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
    MP_TAC(ISPECL [`\z:complex. cexp(g z) / f z`; `s:complex->bool`]
        HAS_COMPLEX_DERIVATIVE_ZERO_CONNECTED_CONSTANT) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
      SUBGOAL_THEN
       `Cx(&0) = ((complex_derivative f z / f z * cexp(g z)) * f z -
                  cexp(g z) * complex_derivative f z) / f z pow 2`
      SUBST1_TAC THENL
       [ASM_SIMP_TAC[COMPLEX_FIELD
         `~(z = Cx(&0)) ==> (d / z * e) * z = e * d`] THEN
        SIMPLE_COMPLEX_ARITH_TAC;
        MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DIV_AT THEN
        ASM_SIMP_TAC[] THEN CONJ_TAC THENL
         [GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN
          ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN
          MATCH_MP_TAC COMPLEX_DIFF_CHAIN_AT THEN
          ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_CEXP];
          ASM_MESON_TAC[HOLOMORPHIC_ON_OPEN; complex_differentiable;
                        HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE]]];
      DISCH_THEN(X_CHOOSE_THEN `c:complex` MP_TAC) THEN
      ASM_CASES_TAC `c = Cx(&0)` THENL
       [ASM_SIMP_TAC[CEXP_NZ; COMPLEX_FIELD
         `~(x = Cx(&0)) /\ ~(y = Cx(&0)) ==> ~(x / y = Cx(&0))`] THEN
        ASM_MESON_TAC[];
      ASM_SIMP_TAC[COMPLEX_FIELD
       `~(y = Cx(&0)) /\ ~(z = Cx(&0))
        ==> (x / y = z <=> y = inv(z) * x)`] THEN
      DISCH_TAC THEN EXISTS_TAC `\z:complex. clog(inv c) + g z` THEN
      ASM_SIMP_TAC[CEXP_CLOG; CEXP_ADD; COMPLEX_INV_EQ_0] THEN
      MATCH_MP_TAC HOLOMORPHIC_ON_ADD THEN
      REWRITE_TAC[HOLOMORPHIC_ON_CONST] THEN
      ASM_MESON_TAC[HOLOMORPHIC_ON_OPEN]]];
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `f:complex->complex` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `f:complex->complex`) THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `\z:complex. cexp(g z / Cx(&2))` THEN
    ASM_SIMP_TAC[GSYM CEXP_N; COMPLEX_RING `Cx(&2) * z / Cx(&2) = z`] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
    MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN
    REWRITE_TAC[HOLOMORPHIC_ON_CEXP] THEN
    MATCH_MP_TAC HOLOMORPHIC_ON_DIV THEN
    ASM_SIMP_TAC[HOLOMORPHIC_ON_CONST] THEN
    CONV_TAC COMPLEX_RING;
    MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[];
    POP_ASSUM MP_TAC THEN SPEC_TAC(`s:complex->bool`,`s:complex->bool`) THEN
    REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; FORALL_AND_THM] THEN
    SUBGOAL_THEN
     `!s:complex->bool.
          open s /\ connected s /\ Cx(&0) IN s /\ s SUBSET ball(Cx(&0),&1) /\
          (!f. f holomorphic_on s /\ (!z. z IN s ==> ~(f z = Cx(&0))) /\
               (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
               ==> ?g. g holomorphic_on s /\ (!z. z IN s ==> f z = g z pow 2))
          ==> ?f g. f holomorphic_on s /\
                    g holomorphic_on ball(Cx(&0),&1) /\
                    (!z. z IN s ==> f z IN ball(Cx(&0),&1) /\ g(f z) = z) /\
                    (!z. z IN ball(Cx(&0),&1) ==> g z IN s /\ f(g z) = z)`
    ASSUME_TAC THENL
     [ALL_TAC;
      REPEAT STRIP_TAC THEN
      ASM_CASES_TAC `s:complex->bool = {}` THEN ASM_REWRITE_TAC[] THEN
      ASM_CASES_TAC `s = (:complex)` THEN ASM_REWRITE_TAC[] THEN
      SUBGOAL_THEN `?a b:complex. a IN s /\ ~(b IN s)` STRIP_ASSUME_TAC THENL
       [ASM SET_TAC[]; ALL_TAC] THEN
      SUBGOAL_THEN
       `?f. f holomorphic_on s /\
            f(a) = Cx(&0) /\
            IMAGE f s SUBSET ball(Cx(&0),&1) /\
            (!w z. w IN s /\ z IN s /\ f w = f z ==> w = z)`
      MP_TAC THENL
       [FIRST_X_ASSUM(K ALL_TAC o SPEC `(:complex)`) THEN
        FIRST_X_ASSUM(MP_TAC o SPEC `\z:complex. z - b`) THEN ANTS_TAC THENL
         [SIMP_TAC[HOLOMORPHIC_ON_SUB; HOLOMORPHIC_ON_CONST; HOLOMORPHIC_ON_ID;
                   COMPLEX_RING `x - b:complex = y - b <=> x = y`] THEN
          ASM_MESON_TAC[COMPLEX_SUB_0];
         ALL_TAC] THEN
        REWRITE_TAC[COMPLEX_EQ_SUB_RADD] THEN
        DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
        MP_TAC(ISPECL [`s:complex->bool`; `g:complex->complex`]
          OPEN_MAPPING_THM) THEN ASM_REWRITE_TAC[] THEN
        FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
        DISCH_THEN(MP_TAC o SPEC `a:complex`) THEN ASM_REWRITE_TAC[SUBSET] THEN
        DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN ANTS_TAC THENL
         [SUBGOAL_THEN `a IN ball(a,d) /\ (a + Cx(d / &2)) IN ball(a,d) /\
                        ~(a + Cx(d / &2) = a)`
          MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
          ASM_REWRITE_TAC[CENTRE_IN_BALL;
                          COMPLEX_EQ_ADD_LCANCEL_0; CX_INJ] THEN
          REWRITE_TAC[IN_BALL; NORM_ARITH `dist(a,a + d) = norm d`] THEN
          REWRITE_TAC[COMPLEX_NORM_CX] THEN ASM_REAL_ARITH_TAC;
          ALL_TAC] THEN
        DISCH_THEN(MP_TAC o SPEC `ball(a:complex,d)`) THEN
        ASM_REWRITE_TAC[OPEN_BALL] THEN REWRITE_TAC[OPEN_CONTAINS_BALL] THEN
        DISCH_THEN(MP_TAC o SPEC `(g:complex->complex) a`) THEN
        ASM_SIMP_TAC[FUN_IN_IMAGE; CENTRE_IN_BALL] THEN
        DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
        SUBGOAL_THEN `!z:complex. z IN s ==> ~(g(z) IN ball(--(g a),r))`
        MP_TAC THENL
         [REWRITE_TAC[IN_BALL] THEN X_GEN_TAC `z:complex` THEN
          REPEAT DISCH_TAC THEN
          FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
          DISCH_THEN(MP_TAC o SPEC `--((g:complex->complex) z)`) THEN
          ASM_REWRITE_TAC[IN_BALL; NORM_ARITH `dist(w,--z) = dist(--w,z)`] THEN
          REWRITE_TAC[IN_IMAGE; NOT_EXISTS_THM] THEN X_GEN_TAC `w:complex` THEN
          ASM_CASES_TAC `w:complex = z` THENL
           [ASM_REWRITE_TAC[COMPLEX_RING `--z = z <=> z = Cx(&0)`] THEN
            ASM_MESON_TAC[COMPLEX_RING `Cx(&0) pow 2 + b = b`];
            ASM_MESON_TAC[COMPLEX_RING `(--z:complex) pow 2 = z pow 2`]];
          REWRITE_TAC[IN_BALL; NORM_ARITH `dist(--a,b) = norm(b + a)`] THEN
          ASM_CASES_TAC `!z:complex. z IN s ==> ~(g z + g a = Cx(&0))` THENL
           [REWRITE_TAC[REAL_NOT_LT] THEN DISCH_TAC;
            ASM_MESON_TAC[COMPLEX_NORM_0]] THEN
          EXISTS_TAC `\z:complex.
            Cx(r / &3) / (g z + g a) - Cx(r / &3) / (g a + g a)` THEN
          REWRITE_TAC[COMPLEX_SUB_REFL] THEN CONJ_TAC THENL
           [MATCH_MP_TAC HOLOMORPHIC_ON_SUB THEN
            REWRITE_TAC[HOLOMORPHIC_ON_CONST] THEN
            MATCH_MP_TAC HOLOMORPHIC_ON_DIV THEN
            ASM_SIMP_TAC[HOLOMORPHIC_ON_ADD; HOLOMORPHIC_ON_CONST; ETA_AX];
            ASM_SIMP_TAC[IMP_CONJ; CX_INJ; REAL_LT_IMP_NZ;
             REAL_ARITH `&0 < r ==> ~(r / &3 = &0)`;
             COMPLEX_FIELD
             `~(a = Cx(&0)) /\ ~(x + k = Cx(&0)) /\ ~(y + k = Cx(&0))
              ==> (a / (x + k) - c = a / (y + k) - c <=> x = y)`] THEN
            CONJ_TAC THENL [REWRITE_TAC[dist]; ASM_MESON_TAC[]] THEN
            REWRITE_TAC[FORALL_IN_IMAGE; COMPLEX_SUB_LZERO; NORM_NEG] THEN
            X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
            MATCH_MP_TAC(NORM_ARITH
             `norm(x) <= &1 / &3 /\ norm(y) <= &1 / &3
              ==> norm(x - y) < &1`) THEN
            REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; REAL_ABS_DIV] THEN
            ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_POS] THEN
            REWRITE_TAC[REAL_ARITH
             `r / &3 / x <= &1 / &3 <=> r / x <= &1`] THEN
            ASM_SIMP_TAC[REAL_LE_LDIV_EQ; NORM_POS_LT; COMPLEX_NORM_NZ] THEN
            ASM_SIMP_TAC[REAL_MUL_LID]]];
        REWRITE_TAC[MESON[]
         `(!x y. P x /\ P y /\ f x = f y ==> x = y) <=>
          (!x y. P x /\ P y ==> (f x = f y <=> x = y))`] THEN
        DISCH_THEN(X_CHOOSE_THEN `h:complex->complex` STRIP_ASSUME_TAC) THEN
        MP_TAC(ISPECL [`h:complex->complex`; `s:complex->bool`]
            HOLOMORPHIC_ON_INVERSE) THEN
        ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
        DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC
         (X_CHOOSE_THEN `k:complex->complex` STRIP_ASSUME_TAC)) THEN
        FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE (h:complex->complex) s`) THEN
        ANTS_TAC THENL
         [ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
           [MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE THEN
            ASM_SIMP_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON];
            ASM SET_TAC[];
            REWRITE_TAC[FORALL_IN_IMAGE]] THEN
          X_GEN_TAC `f:complex->complex` THEN STRIP_TAC THEN
          FIRST_X_ASSUM(MP_TAC o SPEC
           `(f:complex->complex) o (h:complex->complex)`) THEN
          ANTS_TAC THENL
           [CONJ_TAC THENL
             [ASM_MESON_TAC[HOLOMORPHIC_ON_COMPOSE]; ALL_TAC] THEN
            ASM_REWRITE_TAC[o_THM] THEN ASM SET_TAC[];
            ALL_TAC] THEN
          REWRITE_TAC[o_THM] THEN
          DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
          EXISTS_TAC `(g:complex->complex) o (k:complex->complex)` THEN
          ASM_SIMP_TAC[o_THM] THEN MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN
          ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN ASM SET_TAC[];
          ALL_TAC] THEN
        REWRITE_TAC[FORALL_IN_IMAGE] THEN
        DISCH_THEN(X_CHOOSE_THEN `f:complex->complex`
          (X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC)) THEN
        EXISTS_TAC `(f:complex->complex) o (h:complex->complex)` THEN
        EXISTS_TAC `(k:complex->complex) o (g:complex->complex)` THEN
        ASM_SIMP_TAC[o_THM; HOLOMORPHIC_ON_COMPOSE] THEN CONJ_TAC THENL
         [MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE; ASM SET_TAC[]] THEN
        ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN
        ASM SET_TAC[]]] THEN
    X_GEN_TAC `s:complex->bool` THEN STRIP_TAC THEN
    ABBREV_TAC
     `ff = { h | h holomorphic_on s /\
                 IMAGE h s SUBSET ball(Cx(&0),&1) /\
                 h(Cx(&0)) = Cx(&0) /\
                 (!x y. x IN s /\ y IN s ==> (h x = h y <=> x = y))}` THEN
    SUBGOAL_THEN `(\z:complex. z) IN ff` MP_TAC THENL
     [EXPAND_TAC "ff" THEN REWRITE_TAC[IN_ELIM_THM; IMAGE_ID] THEN
      ASM_REWRITE_TAC[HOLOMORPHIC_ON_ID];
      ASM_CASES_TAC `ff:(complex->complex)->bool = {}` THEN
      ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN DISCH_TAC] THEN
    SUBGOAL_THEN `!h. h IN ff ==> h holomorphic_on s` ASSUME_TAC THENL
     [EXPAND_TAC "ff" THEN SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN
    SUBGOAL_THEN
     `?f:complex->complex.
          f IN ff /\
          (!h. h IN ff
               ==> norm(complex_derivative h (Cx(&0)))
                   <= norm(complex_derivative f (Cx(&0))))`
    MP_TAC THENL
     [MP_TAC(ISPEC
       `{ norm(complex_derivative h (Cx(&0))) | h IN ff}` SUP) THEN
      ANTS_TAC THENL
       [ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
        ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; FORALL_IN_IMAGE] THEN
        FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_BALL]) THEN
        DISCH_THEN(MP_TAC o SPEC `Cx(&0)`) THEN
        ASM_REWRITE_TAC[SUBSET; IN_BALL; COMPLEX_SUB_LZERO;
                        dist; NORM_NEG] THEN
        DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC) THEN
        EXISTS_TAC `inv(r):real` THEN X_GEN_TAC `f:complex->complex` THEN
        EXPAND_TAC "ff" THEN
        REWRITE_TAC[IN_ELIM_THM; FORALL_IN_IMAGE; SUBSET] THEN
        ASM_REWRITE_TAC[SUBSET; IN_BALL; COMPLEX_SUB_LZERO;
                        dist; NORM_NEG] THEN
        STRIP_TAC THEN
        MP_TAC(ISPEC `\z. (f:complex->complex) (Cx(r) * z)`
          SCHWARZ_LEMMA) THEN
        ASM_REWRITE_TAC[COMPLEX_MUL_RZERO] THEN
        SUBGOAL_THEN
         `!z. z IN ball(Cx(&0),&1)
              ==> ((\z. f (Cx r * z)) has_complex_derivative
                   complex_derivative f (Cx(r) * z) * Cx(r)) (at z)`
         (LABEL_TAC "*")
        THENL
         [REPEAT STRIP_TAC THEN MATCH_MP_TAC
           (REWRITE_RULE[o_DEF] COMPLEX_DIFF_CHAIN_AT) THEN
          CONJ_TAC THENL
           [COMPLEX_DIFF_TAC THEN REWRITE_TAC[COMPLEX_MUL_RID];
            REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE]] THEN
          MATCH_MP_TAC HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
          EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[] THEN
          FIRST_X_ASSUM MATCH_MP_TAC THEN
          REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
          ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE] THEN
          GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
          ASM_SIMP_TAC[GSYM COMPLEX_IN_BALL_0; REAL_LT_LMUL_EQ];
          ALL_TAC] THEN
        ANTS_TAC THENL
         [CONJ_TAC THENL
           [REWRITE_TAC[holomorphic_on] THEN
            ASM_MESON_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN];
            REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
            FIRST_X_ASSUM MATCH_MP_TAC THEN
            REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
            ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE] THEN
            GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
            ASM_SIMP_TAC[GSYM COMPLEX_IN_BALL_0; REAL_LT_LMUL_EQ]];
          REMOVE_THEN "*" (MP_TAC o SPEC `Cx(&0)`) THEN
          REWRITE_TAC[CENTRE_IN_BALL; REAL_LT_01] THEN
          DISCH_THEN(SUBST1_TAC o
            MATCH_MP HAS_COMPLEX_DERIVATIVE_DERIVATIVE) THEN
          DISCH_THEN(MP_TAC o CONJUNCT1 o CONJUNCT2) THEN
          REWRITE_TAC[COMPLEX_MUL_RZERO; COMPLEX_NORM_MUL] THEN
          ASM_SIMP_TAC[COMPLEX_NORM_CX; real_abs; REAL_LT_IMP_LE] THEN
          ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; real_div; REAL_MUL_LID]];
        ALL_TAC] THEN
      ABBREV_TAC
       `l = sup { norm(complex_derivative h (Cx(&0))) | h IN ff}` THEN
      REWRITE_TAC[FORALL_IN_GSPEC] THEN DISCH_TAC THEN
      SUBGOAL_THEN
       `?f. (!n. (f n) IN ff) /\
            ((\n. Cx(norm(complex_derivative (f n) (Cx(&0))))) --> Cx(l))
            sequentially`
      STRIP_ASSUME_TAC THENL
       [SUBGOAL_THEN
         `!n. ?f. f IN ff /\
                  abs(norm(complex_derivative f (Cx(&0))) - l) < inv(&n + &1)`
        MP_TAC THENL
         [X_GEN_TAC `n:num` THEN
          FIRST_ASSUM(MP_TAC o SPEC `l - inv(&n + &1)` o CONJUNCT2) THEN
          REWRITE_TAC[REAL_ARITH `l <= l - i <=> ~(&0 < i)`; REAL_LT_INV_EQ;
             REAL_ARITH `&0 < &n + &1`; NOT_FORALL_THM; NOT_IMP] THEN
          MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:complex->complex` THEN
          ASM_CASES_TAC `(f:complex->complex) IN ff` THEN
          ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH
           `n <= l ==> ~(n <= l - e) ==> abs(n - l) < e`) THEN
          ASM_SIMP_TAC[];
          REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM] THEN
          MATCH_MP_TAC MONO_EXISTS THEN
          X_GEN_TAC `f:num->complex->complex` THEN
          STRIP_TAC THEN ASM_REWRITE_TAC[LIM_SEQUENTIALLY] THEN
          X_GEN_TAC `e:real` THEN
          DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [REAL_ARCH_INV]) THEN
          MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN
          X_GEN_TAC `m:num` THEN DISCH_TAC THEN REWRITE_TAC[dist] THEN
          MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `inv(&m + &1)` THEN
          ASM_REWRITE_TAC[COMPLEX_NORM_CX; GSYM CX_SUB] THEN
          MATCH_MP_TAC REAL_LT_TRANS THEN EXISTS_TAC `inv(&N)` THEN
          ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LT_INV2 THEN
          ASM_REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC];
        ALL_TAC] THEN
      MP_TAC(ISPECL [`f:num->complex->complex`; `ff:(complex->complex)->bool`;
                     `s:complex->bool`] MONTEL) THEN
      ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
       [EXPAND_TAC "ff" THEN SIMP_TAC[IN_ELIM_THM] THEN
        REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_BALL; COMPLEX_SUB_LZERO;
                    dist; NORM_NEG] THEN
        MESON_TAC[REAL_LT_IMP_LE];
        ALL_TAC] THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:complex->complex` THEN
      DISCH_THEN(X_CHOOSE_THEN `r:num->num` STRIP_ASSUME_TAC) THEN
      SUBGOAL_THEN
       `g complex_differentiable (at(Cx(&0))) /\
        norm(complex_derivative g (Cx(&0))) = l`
      STRIP_ASSUME_TAC THENL
       [MP_TAC(ISPECL [`(f:num->complex->complex) o (r:num->num)`;
                       `(\n:num z. complex_derivative (f n) z) o (r:num->num)`;
                       `g:complex->complex`; `s:complex->bool`]
                    HAS_COMPLEX_DERIVATIVE_UNIFORM_SEQUENCE) THEN
        ASM_REWRITE_TAC[o_THM] THEN ANTS_TAC THENL
         [CONJ_TAC THENL
           [REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
            REPEAT STRIP_TAC THEN
            MATCH_MP_TAC HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THEN
            EXISTS_TAC `s:complex->bool` THEN ASM_SIMP_TAC[];
            ALL_TAC] THEN
          X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
          FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [OPEN_CONTAINS_CBALL]) THEN
          DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
          MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN
          STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `e:real` THEN
          DISCH_TAC THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN
          FIRST_X_ASSUM(MP_TAC o SPECL [`cball(z:complex,d)`; `e:real`]) THEN
          ASM_REWRITE_TAC[COMPACT_CBALL; GE] THEN
          MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[];
          DISCH_THEN(X_CHOOSE_THEN `g':complex->complex` MP_TAC) THEN
          DISCH_THEN(MP_TAC o SPEC `Cx(&0)`) THEN
          ASM_REWRITE_TAC[IMP_CONJ_ALT] THEN
          DISCH_THEN(MP_TAC o ISPEC `\z:complex. Cx(norm z)` o MATCH_MP
           (REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN
          REWRITE_TAC[CONTINUOUS_AT_CX_NORM] THEN DISCH_TAC THEN DISCH_TAC THEN
          CONJ_TAC THENL [ASM_MESON_TAC[complex_differentiable]; ALL_TAC] THEN
          GEN_REWRITE_TAC I [GSYM CX_INJ] THEN
          FIRST_ASSUM(SUBST1_TAC o
            MATCH_MP HAS_COMPLEX_DERIVATIVE_DERIVATIVE) THEN
          MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN EXISTS_TAC
           `\n. Cx(norm(complex_derivative(f((r:num->num) n)) (Cx(&0))))` THEN
          ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN MP_TAC(ISPECL
           [`\n:num. Cx(norm(complex_derivative (f n) (Cx(&0))))`;
            `r:num->num`; `Cx l`] LIM_SUBSEQUENCE) THEN
          ASM_REWRITE_TAC[o_DEF]];
        ALL_TAC] THEN
      ASM_SIMP_TAC[] THEN
      SUBGOAL_THEN `~(?c. !z. z IN s ==> (g:complex->complex) z = c)`
      ASSUME_TAC THENL
       [DISCH_THEN(X_CHOOSE_TAC `c:complex`) THEN
        SUBGOAL_THEN `complex_derivative g (Cx(&0)) = Cx(&0)` MP_TAC THENL
         [MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN
          MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN THEN
          MAP_EVERY EXISTS_TAC
           [`(\z. c):complex->complex`; `s:complex->bool`] THEN
          ASM_REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_CONST] THEN ASM_MESON_TAC[];
          DISCH_THEN(MP_TAC o AP_TERM `norm:complex->real`) THEN
          ASM_REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
          DISCH_THEN SUBST_ALL_TAC THEN
          FIRST_ASSUM(MP_TAC o SPEC `\z:complex. z` o CONJUNCT1) THEN
          ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
          REWRITE_TAC[COMPLEX_DERIVATIVE_ID; COMPLEX_NORM_CX] THEN
          REAL_ARITH_TAC];
        ALL_TAC] THEN
      EXPAND_TAC "ff" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[] THEN
      REPEAT CONJ_TAC THENL
       [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; COMPLEX_IN_BALL_0] THEN
        SUBGOAL_THEN `!z. z IN s ==> norm((g:complex->complex) z) <= &1`
        ASSUME_TAC THENL
         [X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
          MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN
          EXISTS_TAC `\n:num. (f:num->complex->complex) (r n) z` THEN
          ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN
          MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `n:num` THEN
          SUBGOAL_THEN
           `(f:num->complex->complex) (r(n:num)) IN ff`
          MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
          EXPAND_TAC "ff" THEN REWRITE_TAC[IN_ELIM_THM] THEN
          ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; COMPLEX_IN_BALL_0;
                       REAL_LT_IMP_LE];
          X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
          ASM_SIMP_TAC[REAL_LT_LE] THEN DISCH_TAC THEN MP_TAC(ISPECL
           [`g:complex->complex`; `s:complex->bool`; `s:complex->bool`;
            `z:complex`] MAXIMUM_MODULUS_PRINCIPLE) THEN
          ASM_REWRITE_TAC[SUBSET_REFL]];
        MATCH_MP_TAC(ISPEC `sequentially` LIM_UNIQUE) THEN
        EXISTS_TAC `\n:num. (f:num->complex->complex) (r n) (Cx(&0))` THEN
        ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN
        MATCH_MP_TAC LIM_EVENTUALLY THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN
        X_GEN_TAC `n:num` THEN
        SUBGOAL_THEN `(f:num->complex->complex) (r(n:num)) IN ff`
        MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
        EXPAND_TAC "ff" THEN SIMP_TAC[IN_ELIM_THM];
        MATCH_MP_TAC(REWRITE_RULE
         [MESON[] `(!x y. P x /\ P y /\ f x = f y ==> x = y) <=>
                   (!x y. P x /\ P y ==> (f x = f y <=> x = y))`]
         HURWITZ_INJECTIVE) THEN
        EXISTS_TAC `(f:num->complex->complex) o (r:num->num)` THEN
        ASM_SIMP_TAC[o_THM] THEN X_GEN_TAC `n:num` THEN
        SUBGOAL_THEN `(f:num->complex->complex) (r(n:num)) IN ff`
        MP_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
        EXPAND_TAC "ff" THEN SIMP_TAC[IN_ELIM_THM]];
      ALL_TAC] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:complex->complex` THEN
    STRIP_TAC THEN
    MP_TAC(SPECL [`f:complex->complex`; `s:complex->bool`]
          HOLOMORPHIC_ON_INVERSE) THEN
    ANTS_TAC THENL
     [UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
      REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
      DISCH_THEN(MP_TAC o CONJUNCT2)] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:complex->complex` THEN
    ASM_CASES_TAC `IMAGE (f:complex->complex) s = ball(Cx(&0),&1)` THENL
     [ASM_SIMP_TAC[] THEN ASM SET_TAC[]; ALL_TAC] THEN
    STRIP_TAC THEN
    UNDISCH_TAC `~(IMAGE (f:complex->complex) s = ball(Cx(&0),&1))` THEN
    MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN
    MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
     [UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
      REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[SUBSET; COMPLEX_IN_BALL_0] THEN
    X_GEN_TAC `a:complex` THEN DISCH_TAC THEN
    REWRITE_TAC[IN_IMAGE; MESON[]
      `(?x. a = f x /\ x IN s) <=> ~(!x. x IN s ==> ~(f x = a))`] THEN
    DISCH_TAC THEN
    MP_TAC(ISPEC `a:complex` BALL_BIHOLOMORPHISM_EXISTS) THEN
    ASM_REWRITE_TAC[COMPLEX_IN_BALL_0; NOT_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`t:complex->complex`; `t':complex->complex`] THEN
    STRIP_TAC THEN
    SUBGOAL_THEN
     `!z. z IN s ==> norm((f:complex->complex) z) < &1`
    ASSUME_TAC THENL
     [UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
      SIMP_TAC[IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE; COMPLEX_IN_BALL_0];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `?sq. sq holomorphic_on (IMAGE (t o f) s) /\
           !z. z IN s
               ==> sq((t:complex->complex) ((f:complex->complex) z)) pow 2 =
                   t(f z)`
    STRIP_ASSUME_TAC THENL
     [UNDISCH_TAC
       `!f. f holomorphic_on s /\ (!z. z IN s ==> ~(f z = Cx(&0))) /\
            (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
            ==> ?g. g holomorphic_on s /\
                    (!z. z IN s ==> f z = g z pow 2)` THEN
      DISCH_THEN(MP_TAC o SPEC
       `(t:complex->complex) o (f:complex->complex)`) THEN
      ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM] THEN ANTS_TAC THENL
       [REPEAT CONJ_TAC THENL
         [MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN ASM_SIMP_TAC[] THEN
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN
          UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
          REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[];
          UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
          REWRITE_TAC[IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE] THEN
          RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; COMPLEX_IN_BALL_0]) THEN
          REWRITE_TAC[COMPLEX_IN_BALL_0] THEN STRIP_TAC THEN
          GEN_TAC THEN DISCH_TAC THEN
          DISCH_THEN(MP_TAC o AP_TERM `t':complex->complex`) THEN
          ASM_SIMP_TAC[] THEN ASM_MESON_TAC[];
          UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
          REWRITE_TAC[IN_ELIM_THM] THEN
          REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; COMPLEX_IN_BALL_0] THEN
          REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
          REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN ASM_MESON_TAC[]];
        DISCH_THEN(X_CHOOSE_THEN `q:complex->complex` STRIP_ASSUME_TAC) THEN
        EXISTS_TAC `(q:complex->complex) o (g:complex->complex) o
                    (t':complex->complex)` THEN
        ASM_REWRITE_TAC[o_THM] THEN CONJ_TAC THENL
         [MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN CONJ_TAC THENL
           [MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN CONJ_TAC;
            ALL_TAC] THEN
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN
          REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; COMPLEX_IN_BALL_0; o_THM] THENL
           [ASM_MESON_TAC[]; ASM SET_TAC[]; ASM_MESON_TAC[]];
          X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
          MATCH_MP_TAC EQ_TRANS THEN
          EXISTS_TAC `(q:complex->complex) z pow 2` THEN
          CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
          AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
          UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
          REWRITE_TAC[IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE] THEN
          REWRITE_TAC[COMPLEX_IN_BALL_0] THEN ASM_MESON_TAC[]]];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `!z. z IN s
          ==> norm((sq:complex->complex)
                   ((t:complex->complex)((f:complex->complex) z))) < &1`
    ASSUME_TAC THENL
     [REPEAT STRIP_TAC THEN
      GEN_REWRITE_TAC LAND_CONV [GSYM REAL_ABS_NORM] THEN
      REWRITE_TAC[GSYM ABS_SQUARE_LT_1; GSYM COMPLEX_NORM_POW] THEN
      ASM_SIMP_TAC[];
      ALL_TAC] THEN
    MP_TAC(ISPEC
     `(sq:complex->complex)
      ((t:complex->complex)((f:complex->complex) (Cx(&0))))`
      BALL_BIHOLOMORPHISM_EXISTS) THEN
    ASM_SIMP_TAC[COMPLEX_IN_BALL_0; NOT_IMP; NOT_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`r:complex->complex`; `r':complex->complex`] THEN
    STRIP_TAC THEN UNDISCH_TAC
     `!h. h IN ff
          ==> norm(complex_derivative h (Cx(&0))) <=
              norm(complex_derivative f (Cx(&0)))` THEN
    DISCH_THEN(fun th -> MP_TAC(SPEC
     `(r:complex->complex) o (sq:complex->complex) o
      (t:complex->complex) o (f:complex->complex)` th) THEN
     MP_TAC(SPEC `\z:complex. z` th)) THEN
    ASM_REWRITE_TAC[COMPLEX_DERIVATIVE_ID; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
    DISCH_TAC THEN REWRITE_TAC[NOT_IMP; REAL_NOT_LE] THEN
    EXPAND_TAC "ff" THEN REWRITE_TAC[IN_ELIM_THM] THEN
    MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN REPEAT CONJ_TAC THENL
     [REPEAT(MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN CONJ_TAC) THEN
      ASM_SIMP_TAC[] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN
      REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; COMPLEX_IN_BALL_0] THEN
      ASM_SIMP_TAC[];
      REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; COMPLEX_IN_BALL_0] THEN
      ASM_SIMP_TAC[];
      ASM_SIMP_TAC[o_THM];
      MAP_EVERY X_GEN_TAC [`w:complex`; `z:complex`] THEN STRIP_TAC THEN
      EQ_TAC THEN SIMP_TAC[] THEN
      DISCH_THEN(MP_TAC o AP_TERM `r':complex->complex`) THEN
      ASM_SIMP_TAC[o_THM] THEN
      DISCH_THEN(MP_TAC o AP_TERM `\z:complex. z pow 2`) THEN
      ASM_SIMP_TAC[] THEN
      DISCH_THEN(MP_TAC o AP_TERM `t':complex->complex`) THEN
      ASM_SIMP_TAC[] THEN ASM_MESON_TAC[];
      STRIP_TAC] THEN
    MP_TAC(ISPEC
     `(t':complex->complex) o (\z. z pow 2) o (r':complex->complex)`
     SCHWARZ_LEMMA) THEN
    REWRITE_TAC[] THEN ANTS_TAC THENL
     [REPEAT CONJ_TAC THENL
       [REPEAT(MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN CONJ_TAC) THEN
        SIMP_TAC[HOLOMORPHIC_ON_POW; HOLOMORPHIC_ON_ID] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN
        REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; COMPLEX_IN_BALL_0] THEN
        ASM_SIMP_TAC[COMPLEX_NORM_POW; ABS_SQUARE_LT_1; REAL_ABS_NORM];
        ASM_SIMP_TAC[COMPLEX_NORM_POW; ABS_SQUARE_LT_1; REAL_ABS_NORM; o_THM];
        UNDISCH_THEN `(r:complex->complex) ((sq:complex->complex)
                      ((t:complex->complex) (f(Cx(&0))))) = Cx(&0)`
         (fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN
        ASM_SIMP_TAC[o_THM] THEN
        UNDISCH_TAC `(f:complex->complex) IN ff` THEN EXPAND_TAC "ff" THEN
        SIMP_TAC[IN_ELIM_THM]];
      DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC
       (TAUT `~r /\ (p /\ ~q ==> s) ==> p /\ (q' \/ q ==> r) ==> s`) THEN
      CONJ_TAC THENL
       [REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `c:complex` THEN
        ASM_CASES_TAC `c = Cx(&0)` THEN
        ASM_SIMP_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_OF_NUM_EQ; ARITH] THEN
        DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
        DISCH_THEN(fun th ->
          MP_TAC(ISPEC `(r:complex->complex) (--(Cx(&1) / Cx(&2)))` th) THEN
          MP_TAC(ISPEC `(r:complex->complex) (Cx(&1) / Cx(&2))` th)) THEN
        MATCH_MP_TAC(TAUT `(p1 /\ p2) /\ (q1 /\ q2 ==> r)
                           ==> (p1 ==> q1) ==> (p2 ==> q2) ==> r`) THEN
        CONJ_TAC THENL
         [CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
          REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; NORM_NEG] THEN
          REAL_ARITH_TAC;
          ALL_TAC] THEN
        MATCH_MP_TAC(MESON[]
         `~(b1 = b2) /\ a1 = a2 ==> (a1 = b1 /\ a2 = b2 ==> F)`) THEN
        CONJ_TAC THENL
         [ASM_REWRITE_TAC[COMPLEX_EQ_MUL_LCANCEL] THEN
          DISCH_THEN(MP_TAC o AP_TERM `r':complex->complex`) THEN
          FIRST_ASSUM(fun th ->
            W(MP_TAC o PART_MATCH (lhand o rand) th o
               lhand o lhand o snd)) THEN
          REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; NORM_NEG] THEN
          CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_THEN SUBST1_TAC THEN
          MATCH_MP_TAC(COMPLEX_RING
           `x = --(Cx(&1) / Cx(&2)) ==> ~(Cx(&1) / Cx(&2) = x)`) THEN
          FIRST_X_ASSUM MATCH_MP_TAC THEN
          REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; NORM_NEG] THEN
          CONV_TAC REAL_RAT_REDUCE_CONV;
          REWRITE_TAC[o_DEF] THEN AP_TERM_TAC THEN
          MATCH_MP_TAC(COMPLEX_RING
           `x = Cx(&1) / Cx(&2) /\ y = --(Cx(&1) / Cx(&2))
            ==> x pow 2 = y pow 2`) THEN
          CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
          REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_CX; NORM_NEG] THEN
          CONV_TAC REAL_RAT_REDUCE_CONV];
        REWRITE_TAC[GSYM REAL_LT_LE] THEN DISCH_TAC THEN
        UNDISCH_TAC `&1 <= norm (complex_derivative f (Cx(&0)))` THEN
        SUBGOAL_THEN
         `complex_derivative f (Cx(&0)) =
          complex_derivative (t' o (\z:complex. z pow 2) o r') (Cx(&0)) *
          complex_derivative
            (r o (sq:complex->complex) o (t:complex->complex) o f) (Cx(&0))`
         (fun th -> REWRITE_TAC[th; COMPLEX_NORM_MUL])
        THENL
         [ALL_TAC;
          REWRITE_TAC[REAL_ARITH `a * b < b <=> &0 < (&1 - a) * b`] THEN
          DISCH_THEN(MP_TAC o MATCH_MP
           (REAL_ARITH `&1 <= x ==> ~(x = &0)`)) THEN
          SIMP_TAC[REAL_ENTIRE; NORM_EQ_0; GSYM NORM_POS_LT; DE_MORGAN_THM] THEN
          ASM_SIMP_TAC[REAL_LT_MUL_EQ] THEN ASM_REAL_ARITH_TAC] THEN
        MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_DERIVATIVE THEN
        MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN_OPEN THEN
        EXISTS_TAC `((t':complex->complex) o
                     (\z:complex. z pow 2) o (r':complex->complex)) o
                    ((r:complex->complex) o (sq:complex->complex) o
                     (t:complex->complex) o (f:complex->complex))` THEN
        EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
         [ASM_SIMP_TAC[o_THM]; ALL_TAC] THEN
        MATCH_MP_TAC COMPLEX_DIFF_CHAIN_AT THEN
        ASM_REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE] THEN
        CONJ_TAC THEN MATCH_MP_TAC HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT THENL
         [EXISTS_TAC `s:complex->bool` THEN ASM_REWRITE_TAC[];
          EXISTS_TAC `ball(Cx(&0),&1)` THEN
          ASM_REWRITE_TAC[OPEN_BALL; CENTRE_IN_BALL; REAL_LT_01] THEN
          REPEAT(MATCH_MP_TAC HOLOMORPHIC_ON_COMPOSE THEN CONJ_TAC) THEN
          SIMP_TAC[HOLOMORPHIC_ON_POW; HOLOMORPHIC_ON_ID] THEN
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REWRITE_RULE[IMP_CONJ] HOLOMORPHIC_ON_SUBSET)) THEN
          REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM; COMPLEX_IN_BALL_0] THEN
          ASM_SIMP_TAC[COMPLEX_NORM_POW; ABS_SQUARE_LT_1; REAL_ABS_NORM]]]];
    ASM_CASES_TAC `s:complex->bool = {}` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `s = (:complex)` THEN ASM_REWRITE_TAC[] THENL
     [ONCE_REWRITE_TAC[HOMEOMORPHIC_SYM] THEN
      MATCH_MP_TAC HOMEOMORPHIC_BALL_UNIV THEN REWRITE_TAC[REAL_LT_01];
      REWRITE_TAC[HOMEOMORPHIC_MINIMAL] THEN
      REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN
      MESON_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON]];
    STRIP_TAC THEN ASM_REWRITE_TAC[SIMPLY_CONNECTED_EMPTY] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP HOMEOMORPHIC_SIMPLY_CONNECTED_EQ) THEN
    SIMP_TAC[CONVEX_IMP_SIMPLY_CONNECTED; CONVEX_BALL]]);;
(* ------------------------------------------------------------------------- *)
(* A further chain of equivalents about components of the complement of a    *)
(* simply connected set (following 1.35 in Burckel's book).                  *)
(* ------------------------------------------------------------------------- *)
let [SIMPLY_CONNECTED_EQ_FRONTIER_PROPERTIES;
     SIMPLY_CONNECTED_EQ_UNBOUNDED_COMPLEMENT_COMPONENTS;
     SIMPLY_CONNECTED_EQ_EMPTY_INSIDE] = (CONJUNCTS o prove)
 (`(!s:complex->bool.
        open s
        ==> (simply_connected s <=>
             connected s /\
             if bounded s then connected(frontier s)
             else !c. c IN components(frontier s) ==> ~bounded c)) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !c. c IN components ((:complex) DIFF s) ==> ~bounded c)) /\
   (!s:complex->bool.
        open s ==> (simply_connected s <=> connected s /\ inside s = {}))`,
  REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `s:complex->bool` THEN
  ASM_CASES_TAC `open(s:complex->bool)` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT
   `(q3 ==> p) /\ (q2 ==> q3) /\ (q1 ==> q2) /\ (p ==> q1)
    ==> (p <=> q1) /\ (p <=> q2) /\ (p <=> q3)`) THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[INSIDE_OUTSIDE] THEN
    REWRITE_TAC[SET_RULE `UNIV DIFF (s UNION t) = {} <=>
                          !x. ~(x IN s) ==> x IN t`] THEN
    STRIP_TAC THEN ASM_SIMP_TAC[SIMPLY_CONNECTED_EQ_WINDING_NUMBER_ZERO] THEN
    GEN_TAC THEN X_GEN_TAC `z:complex` THEN STRIP_TAC THEN
    MATCH_MP_TAC WINDING_NUMBER_ZERO_IN_OUTSIDE THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP OUTSIDE_MONO) THEN ASM SET_TAC[];
    REWRITE_TAC[components; FORALL_IN_GSPEC; inside] THEN SET_TAC[];
    ASM_CASES_TAC `connected(s:complex->bool)` THEN ASM_REWRITE_TAC[] THEN
    COND_CASES_TAC THENL
     [DISCH_TAC THEN
      REWRITE_TAC[components; FORALL_IN_GSPEC; IN_DIFF; IN_UNIV] THEN
      ASM_CASES_TAC `s:complex->bool = {}` THEN
      ASM_SIMP_TAC[DIFF_EMPTY; CONNECTED_COMPONENT_EQ_SELF;
                   CONNECTED_UNIV; IN_UNIV; NOT_BOUNDED_UNIV] THEN
      ASM_CASES_TAC `s = (:complex)` THENL
       [ASM_MESON_TAC[NOT_BOUNDED_UNIV]; ALL_TAC] THEN
      X_GEN_TAC `w:complex` THEN DISCH_TAC THEN
      FIRST_ASSUM(MP_TAC o MATCH_MP OUTSIDE_BOUNDED_NONEMPTY) THEN
      REWRITE_TAC[outside; GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN
      DISCH_THEN(X_CHOOSE_THEN `z:complex` STRIP_ASSUME_TAC) THEN
      SUBGOAL_THEN
       `connected_component ((:complex) DIFF s) w =
        connected_component ((:complex) DIFF s) z`
       (fun th -> ASM_REWRITE_TAC[th]) THEN
      MATCH_MP_TAC JOINABLE_CONNECTED_COMPONENT_EQ THEN
      EXISTS_TAC `frontier s :complex->bool` THEN ASM_REWRITE_TAC[] THEN
      CONJ_TAC THENL
       [REWRITE_TAC[frontier] THEN MATCH_MP_TAC(SET_RULE
         `i = s ==> s' DIFF i SUBSET UNIV DIFF s`) THEN
        ASM_REWRITE_TAC[INTERIOR_EQ];
        ALL_TAC] THEN
      ONCE_REWRITE_TAC[GSYM FRONTIER_COMPLEMENT] THEN CONJ_TAC THEN
      MATCH_MP_TAC(SET_RULE
       `frontier c SUBSET c /\ frontier c SUBSET f /\ ~(frontier c = {})
        ==> ~(c INTER f = {})`) THEN
      REWRITE_TAC[FRONTIER_OF_CONNECTED_COMPONENT_SUBSET] THEN
      ASM_REWRITE_TAC[FRONTIER_EQ_EMPTY; CONNECTED_COMPONENT_EQ_EMPTY;
                      IN_DIFF; IN_UNIV; CONNECTED_COMPONENT_EQ_UNIV;
                      SET_RULE `UNIV DIFF s = UNIV <=> s = {}`] THEN
      REWRITE_TAC[frontier] THEN MATCH_MP_TAC(SET_RULE
       `c = s ==> c DIFF i SUBSET s`) THEN
      ASM_REWRITE_TAC[CLOSURE_EQ] THEN
      MATCH_MP_TAC CLOSED_CONNECTED_COMPONENT THEN
      ASM_REWRITE_TAC[GSYM OPEN_CLOSED];
      DISCH_TAC THEN REWRITE_TAC[components; FORALL_IN_GSPEC] THEN
      X_GEN_TAC `w:complex` THEN REWRITE_TAC[IN_DIFF; IN_UNIV] THEN
      DISCH_TAC THEN
      SUBGOAL_THEN
       `?z:complex. z IN frontier s /\
                    z IN connected_component ((:real^2) DIFF s) w`
      STRIP_ASSUME_TAC THENL
       [ONCE_REWRITE_TAC[GSYM FRONTIER_COMPLEMENT] THEN
        MATCH_MP_TAC(SET_RULE
         `frontier c SUBSET c /\ frontier c SUBSET f /\ ~(frontier c = {})
          ==> ?z. z IN f /\ z IN c`) THEN
        ASM_REWRITE_TAC[FRONTIER_OF_CONNECTED_COMPONENT_SUBSET] THEN
        CONJ_TAC THENL
         [REWRITE_TAC[frontier] THEN MATCH_MP_TAC(SET_RULE
           `c = s ==> c DIFF i SUBSET s`) THEN
          ASM_REWRITE_TAC[CLOSURE_EQ] THEN
          MATCH_MP_TAC CLOSED_CONNECTED_COMPONENT THEN
          ASM_REWRITE_TAC[GSYM OPEN_CLOSED];
          ASM_REWRITE_TAC[FRONTIER_EQ_EMPTY; CONNECTED_COMPONENT_EQ_EMPTY;
                          CONNECTED_COMPONENT_EQ_UNIV; IN_DIFF; IN_UNIV] THEN
          REWRITE_TAC[SET_RULE `UNIV DIFF s = UNIV <=> s = {}`] THEN
          ASM_MESON_TAC[BOUNDED_EMPTY]];
        FIRST_X_ASSUM(MP_TAC o SPEC
         `connected_component (frontier s) (z:complex)`) THEN
        REWRITE_TAC[components; IN_ELIM_THM] THEN
        ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[CONTRAPOS_THM]] THEN
        MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] BOUNDED_SUBSET) THEN
        SUBGOAL_THEN
         `connected_component ((:complex) DIFF s) w =
          connected_component ((:complex) DIFF s) z`
        SUBST1_TAC THENL
         [ASM_MESON_TAC[CONNECTED_COMPONENT_EQ];
          MATCH_MP_TAC CONNECTED_COMPONENT_MAXIMAL THEN
          ASM_REWRITE_TAC[IN; CONNECTED_COMPONENT_REFL_EQ] THEN
          REWRITE_TAC[CONNECTED_CONNECTED_COMPONENT] THEN
          MATCH_MP_TAC SUBSET_TRANS THEN
          EXISTS_TAC `frontier s :complex->bool` THEN
          REWRITE_TAC[CONNECTED_COMPONENT_SUBSET] THEN
          REWRITE_TAC[frontier] THEN MATCH_MP_TAC(SET_RULE
            `i = s ==> s' DIFF i SUBSET UNIV DIFF s`) THEN
          ASM_REWRITE_TAC[INTERIOR_EQ]]]];
    ALL_TAC] THEN
  DISCH_THEN(fun th ->
   ASSUME_TAC(MATCH_MP SIMPLY_CONNECTED_IMP_CONNECTED th) THEN MP_TAC th) THEN
  ASM_SIMP_TAC[SIMPLY_CONNECTED_EQ_HOMEOMORPHIC_TO_DISC] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[BOUNDED_EMPTY; FRONTIER_EMPTY; CONNECTED_EMPTY] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM; homeomorphism] THEN
  MAP_EVERY X_GEN_TAC [`g:real^2->real^2`; `f:real^2->real^2`] THEN
  STRIP_TAC THEN MAP_EVERY ABBREV_TAC
   [`D = \n. ball(vec 0:real^2,&1 - inv(&n + &2))`;
    `A = \n. {z:real^2 | &1 - inv(&n + &2) < norm z /\ norm z < &1}`;
    `X = \n:num. closure(IMAGE (f:real^2->real^2) (A n))`] THEN
  SUBGOAL_THEN
   `frontier s = INTERS {X n:real^2->bool | n IN (:num)}`
  SUBST1_TAC THENL
   [ASM_SIMP_TAC[frontier; INTERIOR_OPEN; INTERS_GSPEC; IN_UNIV] THEN
    MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL
     [REWRITE_TAC[SUBSET; IN_DIFF] THEN X_GEN_TAC `x:real^2` THEN
      STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:num` THEN
      UNDISCH_TAC `(x:real^2) IN closure s` THEN
      SUBGOAL_THEN
       `s = IMAGE (f:real^2->real^2) (closure (D(n:num))) UNION IMAGE f (A n)`
      SUBST1_TAC THENL
       [EXPAND_TAC "s" THEN MATCH_MP_TAC(SET_RULE
         `t UNION u = s /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
          ==> IMAGE f s = IMAGE f t UNION IMAGE f u`) THEN
        CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
        MAP_EVERY EXPAND_TAC ["A"; "D"] THEN
        SIMP_TAC[CLOSURE_BALL; REAL_SUB_LT; REAL_INV_LT_1;
                 REAL_ARITH `&1 < &n + &2`] THEN
        REWRITE_TAC[EXTENSION; IN_UNION; COMPLEX_IN_BALL_0; IN_CBALL_0;
                   IN_ELIM_THM] THEN GEN_TAC THEN
        MATCH_MP_TAC(REAL_ARITH
         `&0 < e /\ e <= &1
          ==> (x <= &1 - e \/ &1 - e < x /\ x < &1 <=> x < &1)`) THEN
        SIMP_TAC[REAL_LT_INV_EQ; REAL_INV_LE_1; REAL_ARITH `&1 <= &n + &2`;
                 REAL_ARITH `&0 < &n + &2`];
        EXPAND_TAC "X" THEN REWRITE_TAC[CLOSURE_UNION] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
         `~(x IN s) ==> t SUBSET s ==> x IN t UNION u ==> x IN u`)) THEN
        EXPAND_TAC "D" THEN
        SIMP_TAC[CLOSURE_BALL; REAL_SUB_LT; REAL_INV_LT_1;
                 REAL_ARITH `&1 < &n + &2`; COMPACT_CBALL] THEN
        MATCH_MP_TAC(SET_RULE
         `closure s = s /\ s SUBSET t ==> closure s SUBSET t`) THEN
        CONJ_TAC THENL
         [MATCH_MP_TAC CLOSURE_CLOSED THEN MATCH_MP_TAC COMPACT_IMP_CLOSED THEN
          MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN
          REWRITE_TAC[COMPACT_CBALL] THEN
          FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
            CONTINUOUS_ON_SUBSET));
          EXPAND_TAC "s" THEN MATCH_MP_TAC IMAGE_SUBSET] THEN
        REWRITE_TAC[SUBSET; COMPLEX_IN_BALL_0; IN_CBALL_0] THEN GEN_TAC THEN
        MATCH_MP_TAC(REAL_ARITH `&0 < x ==> a <= &1 - x ==> a < &1`) THEN
        REWRITE_TAC[REAL_LT_INV_EQ] THEN REAL_ARITH_TAC];
      MATCH_MP_TAC(SET_RULE
       `s SUBSET t /\ s INTER u = {} ==> s SUBSET t DIFF u`) THEN
      CONJ_TAC THENL
       [EXPAND_TAC "X" THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN
        X_GEN_TAC `x:real^2` THEN DISCH_THEN(MP_TAC o SPEC `0`) THEN
        SPEC_TAC(`x:real^2`,`x:real^2`) THEN REWRITE_TAC[GSYM SUBSET] THEN
        MATCH_MP_TAC SUBSET_CLOSURE THEN EXPAND_TAC "s" THEN
        MATCH_MP_TAC IMAGE_SUBSET THEN EXPAND_TAC "A" THEN
        REWRITE_TAC[SUBSET; IN_ELIM_THM; COMPLEX_IN_BALL_0] THEN
        REAL_ARITH_TAC;
        REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM; NOT_IN_EMPTY] THEN
        MAP_EVERY EXPAND_TAC ["s"; "X"] THEN
        REWRITE_TAC[TAUT `~(a /\ b) <=> b ==> ~a`; FORALL_IN_IMAGE] THEN
        X_GEN_TAC `x:real^2` THEN REWRITE_TAC[COMPLEX_IN_BALL_0] THEN
        DISCH_TAC THEN MP_TAC(SPEC `&1 - norm(x:real^2)` REAL_ARCH_INV) THEN
        ASM_REWRITE_TAC[REAL_SUB_LT; NOT_FORALL_THM] THEN
        MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
        MATCH_MP_TAC(SET_RULE
         `!s. y IN s /\ (s INTER t = {}) ==> ~(y IN t)`) THEN
        EXISTS_TAC `IMAGE (f:real^2->real^2) (D(n:num))` THEN CONJ_TAC THENL
         [MATCH_MP_TAC FUN_IN_IMAGE THEN EXPAND_TAC "D" THEN
          REWRITE_TAC[IN_BALL_0] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
           (REAL_ARITH `n < &1 - x ==> m < n ==> x < &1 - m`)) THEN
          MATCH_MP_TAC REAL_LT_INV2 THEN
          ASM_SIMP_TAC[REAL_OF_NUM_LT; LE_1] THEN REAL_ARITH_TAC;
          SUBGOAL_THEN `open(IMAGE (f:real^2->real^2) (D(n:num)))` MP_TAC THENL
           [MATCH_MP_TAC INVARIANCE_OF_DOMAIN THEN
            SUBGOAL_THEN `(D:num->real^2->bool) n SUBSET ball(Cx(&0),&1)`
            ASSUME_TAC THENL
             [EXPAND_TAC "D" THEN REWRITE_TAC[GSYM COMPLEX_VEC_0] THEN
              MATCH_MP_TAC SUBSET_BALL THEN
              REWRITE_TAC[REAL_ARITH `&1 - x <= &1 <=> &0 <= x`] THEN
              REWRITE_TAC[REAL_LE_INV_EQ] THEN REAL_ARITH_TAC;
              REPEAT CONJ_TAC THENL
               [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET];
                EXPAND_TAC "D" THEN REWRITE_TAC[OPEN_BALL];
                ASM SET_TAC[]]];
            SIMP_TAC[OPEN_INTER_CLOSURE_EQ_EMPTY] THEN DISCH_TAC THEN
            MATCH_MP_TAC(SET_RULE
             `!u. (!x y. x IN u /\ y IN u /\ f x = f y ==> x = y) /\
                  s UNION t SUBSET u /\ s INTER t = {}
                  ==> IMAGE f s INTER IMAGE f t = {}`) THEN
            EXISTS_TAC `ball(Cx(&0),&1)` THEN
            CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
            MAP_EVERY EXPAND_TAC ["D"; "A"] THEN
            REWRITE_TAC[COMPLEX_IN_BALL_0; IN_BALL_0; SUBSET; NOT_IN_EMPTY;
              IN_UNION; IN_ELIM_THM; IN_INTER; EXTENSION] THEN
            CONJ_TAC THENL [GEN_TAC; REAL_ARITH_TAC] THEN
            MATCH_MP_TAC(REAL_ARITH
             `&0 < e ==> x < &1 - e \/ &1 - e < x /\ x < &1 ==> x < &1`) THEN
            REWRITE_TAC[REAL_LT_INV_EQ] THEN REAL_ARITH_TAC]]]];
    ALL_TAC] THEN
  SUBGOAL_THEN `!n. closed((X:num->complex->bool) n)` ASSUME_TAC THENL
   [EXPAND_TAC "X" THEN REWRITE_TAC[CLOSED_CLOSURE]; ALL_TAC] THEN
  SUBGOAL_THEN `!n. connected((X:num->complex->bool) n)` ASSUME_TAC THENL
   [X_GEN_TAC `n:num` THEN EXPAND_TAC "X" THEN
    MATCH_MP_TAC CONNECTED_CLOSURE THEN
    MATCH_MP_TAC CONNECTED_CONTINUOUS_IMAGE THEN
    EXPAND_TAC "A" THEN CONJ_TAC THENL
     [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
            CONTINUOUS_ON_SUBSET)) THEN
      SIMP_TAC[SUBSET; COMPLEX_IN_BALL_0; IN_ELIM_THM];
      ONCE_REWRITE_TAC[NORM_ARITH `norm z = norm(z - vec 0)`] THEN
      SIMP_TAC[CONNECTED_ANNULUS; DIMINDEX_2; LE_REFL]];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!n. ((X:num->complex->bool) n) SUBSET closure s`
  ASSUME_TAC THENL
   [GEN_TAC THEN EXPAND_TAC "X" THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC SUBSET_CLOSURE THEN EXPAND_TAC "s" THEN
    MATCH_MP_TAC IMAGE_SUBSET THEN  EXPAND_TAC "A" THEN
    SIMP_TAC[SUBSET; COMPLEX_IN_BALL_0; IN_ELIM_THM];
    ALL_TAC] THEN
  SUBGOAL_THEN `!m n. m <= n ==> (X:num->complex->bool) n SUBSET X m`
  ASSUME_TAC THENL
   [MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
    EXPAND_TAC "X" THEN MATCH_MP_TAC SUBSET_CLOSURE THEN
    MATCH_MP_TAC IMAGE_SUBSET THEN EXPAND_TAC "A" THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN
    MATCH_MP_TAC(REAL_ARITH
     `n <= m ==> &1 - n < x /\ x < &1 ==> &1 - m < x /\ x < &1`) THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN
    ASM_REWRITE_TAC[REAL_LE_RADD; REAL_OF_NUM_LE] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  COND_CASES_TAC THENL
   [MATCH_MP_TAC CONNECTED_NEST THEN
    ASM_REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN
    ASM_MESON_TAC[BOUNDED_SUBSET; BOUNDED_CLOSURE];
    ALL_TAC] THEN
  SUBGOAL_THEN `!n. ~(bounded((X:num->complex->bool) n))` ASSUME_TAC THENL
   [X_GEN_TAC `n:num` THEN DISCH_TAC THEN
    UNDISCH_TAC `~bounded(s:complex->bool)` THEN EXPAND_TAC "s" THEN
    REWRITE_TAC[] THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC
      `IMAGE (f:complex->complex)
             (cball(Cx(&0),&1 - inv(&n + &2)) UNION A n)` THEN
    CONJ_TAC THENL
     [REWRITE_TAC[IMAGE_UNION; BOUNDED_UNION] THEN CONJ_TAC THENL
       [MATCH_MP_TAC COMPACT_IMP_BOUNDED THEN
        MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN SIMP_TAC[COMPACT_CBALL] THEN
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
            CONTINUOUS_ON_SUBSET)) THEN
        SIMP_TAC[SUBSET; COMPLEX_IN_CBALL_0; COMPLEX_IN_BALL_0] THEN
        GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH
         `&0 < e ==> x <= &1 - e ==> x < &1`) THEN
        ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN REAL_ARITH_TAC;
        FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ]
              BOUNDED_SUBSET)) THEN EXPAND_TAC "X" THEN
        REWRITE_TAC[CLOSURE_SUBSET]];
      MATCH_MP_TAC IMAGE_SUBSET THEN EXPAND_TAC "A" THEN
      REWRITE_TAC[SUBSET; IN_UNION; COMPLEX_IN_BALL_0; COMPLEX_IN_CBALL_0;
                  IN_ELIM_THM] THEN REAL_ARITH_TAC];
    ALL_TAC] THEN
  X_GEN_TAC `c:complex->bool` THEN REPEAT DISCH_TAC THEN
  SUBGOAL_THEN `closed(INTERS {X n:complex->bool | n IN (:num)})`
  ASSUME_TAC THENL
   [ASM_SIMP_TAC[CLOSED_INTERS; FORALL_IN_GSPEC]; ALL_TAC] THEN
  SUBGOAL_THEN `closed(c:complex->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[CLOSED_COMPONENTS]; ALL_TAC] THEN
  SUBGOAL_THEN `compact(c:complex->bool)` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED]; ALL_TAC] THEN
  SUBGOAL_THEN
   `?k:complex->bool.
        c SUBSET k /\ compact k /\
        k SUBSET INTERS {X n | n IN (:num)} /\
        closed(INTERS {X n | n IN (:num)} DIFF k)`
  STRIP_ASSUME_TAC THENL
   [MP_TAC(ISPECL[`INTERS {X n:complex->bool | n IN (:num)}`;`c:complex->bool`]
        SURA_BURA) THEN
    ASM_SIMP_TAC[OPEN_IN_CLOSED_IN_EQ; TOPSPACE_EUCLIDEAN_SUBTOPOLOGY;
                 CLOSED_IMP_LOCALLY_COMPACT] THEN
    MATCH_MP_TAC(MESON[]
     `~(c = i {}) /\ (~(f = {}) ==> P)
      ==> c = i f ==> P`) THEN
    CONJ_TAC THENL
     [REWRITE_TAC[INTERS_0] THEN ASM_MESON_TAC[NOT_BOUNDED_UNIV];
      REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN
      X_GEN_TAC `k:complex->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN
      ASM_MESON_TAC[CLOSED_IN_CLOSED_TRANS]];
    ALL_TAC] THEN
  MP_TAC(ISPECL [`k:complex->bool`;
                 `INTERS {X n:complex->bool | n IN (:num)} DIFF k`]
        SEPARATION_NORMAL_COMPACT) THEN
  ASM_SIMP_TAC[NOT_EXISTS_THM; SET_RULE `k INTER (s DIFF k) = {}`] THEN
  MAP_EVERY X_GEN_TAC [`v:complex->bool`; `v':complex->bool`] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN `v INTER (INTERS {X n:complex->bool | n IN (:num)} DIFF k) = {}`
  ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  MP_TAC(ISPECL
   [`closure(v) DIFF v:complex->bool`;
    `{X n INTER closure(v:complex->bool) | n IN (:num)}`]
   COMPACT_IMP_FIP) THEN
  ASM_SIMP_TAC[COMPACT_DIFF; FORALL_IN_GSPEC; CLOSED_INTER; CLOSED_CLOSURE;
               NOT_IMP] THEN
  CONJ_TAC THENL
   [ALL_TAC;
    SUBGOAL_THEN
     `INTERS {X n INTER closure v :complex->bool | n IN (:num)} =
      INTERS {X n | n IN (:num)} INTER closure v`
    SUBST1_TAC THENL
     [REWRITE_TAC[INTERS_GSPEC; EXTENSION; IN_ELIM_THM; IN_INTER; IN_UNIV] THEN
      MESON_TAC[];
      MP_TAC(ISPECL [`v':complex->bool`; `v:complex->bool`]
        OPEN_INTER_CLOSURE_EQ_EMPTY) THEN
      ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]] THEN
  ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN
  REWRITE_TAC[FINITE_SUBSET_IMAGE; SUBSET_UNIV; LEFT_IMP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN
  X_GEN_TAC `i:num->bool` THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  ASM_CASES_TAC `i:num->bool = {}` THENL
   [ASM_REWRITE_TAC[IMAGE_CLAUSES; INTERS_0; INTER_UNIV] THEN
    MP_TAC(ISPEC `v:complex->bool` FRONTIER_EQ_EMPTY) THEN
    ASM_SIMP_TAC[frontier; INTERIOR_OPEN] THEN DISCH_THEN SUBST1_TAC THEN
    DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL
     [FIRST_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN
      ASM SET_TAC[];
      ASM_MESON_TAC[CLOSURE_UNIV; COMPACT_IMP_BOUNDED; NOT_BOUNDED_UNIV]];
    ALL_TAC] THEN
  SUBGOAL_THEN `?n:num. n IN i /\ !m. m IN i ==> m <= n`
   (X_CHOOSE_TAC `p:num`) THENL
   [MAP_EVERY UNDISCH_TAC [`~(i:num->bool = {})`; `FINITE(i:num->bool)`] THEN
    POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`i:num->bool`,`i:num->bool`) THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    REWRITE_TAC[EXISTS_IN_INSERT; FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN
    MAP_EVERY X_GEN_TAC [`n:num`; `i:num->bool`] THEN
    ASM_CASES_TAC `i:num->bool = {}` THEN
    ASM_REWRITE_TAC[LE_REFL; NOT_IN_EMPTY] THEN
    DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o CONJUNCT1) THEN
    DISJ_CASES_TAC(ARITH_RULE `n:num <= p \/ p <= n`) THEN
    ASM_MESON_TAC[LE_TRANS];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `INTERS (IMAGE (\n:num. X n INTER closure v) i):complex->bool =
    X p INTER closure v`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; INTERS_IMAGE; IN_ELIM_THM; IN_INTER] THEN
    ASM SET_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(ASSUME_TAC o MATCH_MP (SET_RULE
    `(c DIFF v) INTER (x INTER c) = {} ==> x INTER c SUBSET v`)) THEN
  SUBGOAL_THEN `connected((X:num->complex->bool) p)` MP_TAC THENL
   [ASM_MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[CONNECTED_CLOPEN] THEN
  DISCH_THEN(MP_TAC o SPEC `(X:num->complex->bool) p INTER closure v`) THEN
  REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN REPEAT CONJ_TAC THENL
   [SUBGOAL_THEN `(X:num->complex->bool) p INTER closure v = X p INTER v`
    SUBST1_TAC THENL
     [MP_TAC(ISPEC `v:complex->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[];
      MATCH_MP_TAC OPEN_IN_OPEN_INTER THEN ASM_REWRITE_TAC[]];
    MATCH_MP_TAC CLOSED_IN_CLOSED_INTER THEN REWRITE_TAC[CLOSED_CLOSURE];
    MATCH_MP_TAC(SET_RULE `!k. k SUBSET s /\ ~(k = {}) ==> ~(s = {})`) THEN
    EXISTS_TAC `k:complex->bool` THEN CONJ_TAC THENL
     [MP_TAC(ISPEC `v:complex->bool` CLOSURE_SUBSET) THEN ASM SET_TAC[];
      FIRST_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN
      ASM SET_TAC[]];
    DISCH_THEN(MP_TAC o AP_TERM `bounded:(complex->bool)->bool`) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC BOUNDED_SUBSET THEN
    EXISTS_TAC `closure v:complex->bool` THEN
    ASM_SIMP_TAC[COMPACT_IMP_BOUNDED] THEN SET_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Yet another set of equivalences based on *continuous* logs and sqrts.     *)
(* ------------------------------------------------------------------------- *)
let SIMPLY_CONNECTED_EQ_CONTINUOUS_LOG,SIMPLY_CONNECTED_EQ_CONTINUOUS_SQRT =
  (CONJ_PAIR o prove)
 (`(!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !f. f continuous_on s /\ (!z:complex. z IN s ==> ~(f z = Cx(&0)))
                 ==> ?g. g continuous_on s /\
                         !z. z IN s ==> f z = cexp(g z))) /\
   (!s. open s
        ==> (simply_connected s <=>
             connected s /\
             !f. f continuous_on s /\ (!z:complex. z IN s ==> ~(f z = Cx(&0)))
                 ==> ?g. g continuous_on s /\
                         !z. z IN s ==> f z = g z pow 2))`,
  REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `s:complex->bool` THEN
  ASM_CASES_TAC `open(s:complex->bool)` THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `connected(s:complex->bool)` THEN ASM_REWRITE_TAC[] THENL
   [ALL_TAC; ASM_MESON_TAC[SIMPLY_CONNECTED_IMP_CONNECTED]] THEN
  MATCH_MP_TAC(TAUT
   `(p ==> q) /\ (q ==> r) /\ (r ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN
  REPEAT CONJ_TAC THENL
   [ASM_SIMP_TAC[SIMPLY_CONNECTED_EQ_HOMEOMORPHIC_TO_DISC] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[CONTINUOUS_ON_EMPTY; NOT_IN_EMPTY] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
    REWRITE_TAC[homeomorphism; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`k:complex->complex`; `h:complex->complex`] THEN
    STRIP_TAC THEN X_GEN_TAC `f:complex->complex` THEN STRIP_TAC THEN
    MP_TAC(ISPECL
     [`(f:complex->complex) o (h:complex->complex)`; `Cx(&0)`; `&1`]
        CONTINUOUS_LOGARITHM_ON_BALL) THEN
    ASM_REWRITE_TAC[o_THM] THEN ANTS_TAC THENL
     [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
      MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
      ASM_MESON_TAC[CONTINUOUS_ON_SUBSET];
      DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(g:complex->complex) o (k:complex->complex)` THEN
      REWRITE_TAC[o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
      MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
      ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]];
    DISCH_TAC THEN X_GEN_TAC `f:complex->complex` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `f:complex->complex`) THEN ASM_SIMP_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `\z:complex. cexp(g z / Cx(&2))` THEN
    ASM_SIMP_TAC[GSYM CEXP_N; COMPLEX_RING `Cx(&2) * z / Cx(&2) = z`] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM o_DEF] THEN
    MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN
    REWRITE_TAC[CONTINUOUS_ON_CEXP] THEN
    MATCH_MP_TAC CONTINUOUS_ON_COMPLEX_DIV THEN
    ASM_SIMP_TAC[CONTINUOUS_ON_CONST] THEN
    CONV_TAC COMPLEX_RING;
    DISCH_TAC THEN ASM_SIMP_TAC[SIMPLY_CONNECTED_EQ_HOLOMORPHIC_SQRT] THEN
    X_GEN_TAC `f:complex->complex` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `f:complex->complex`) THEN
    ASM_SIMP_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:complex->complex` THEN
    STRIP_TAC THEN ASM_SIMP_TAC[HOLOMORPHIC_ON_OPEN] THEN
    X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
    SUBGOAL_THEN `~((g:complex->complex) z = Cx(&0))` ASSUME_TAC THENL
     [ASM_MESON_TAC[COMPLEX_RING `Cx(&0) pow 2 = Cx(&0)`]; ALL_TAC] THEN
    EXISTS_TAC `complex_derivative f z / (Cx(&2) * g z)` THEN
    REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_AT] THEN
    MATCH_MP_TAC LIM_TRANSFORM_WITHIN_OPEN THEN
    EXISTS_TAC `\x:complex. (f(x) - f(z)) / (x - z) / (g(x) + g(z))` THEN
    SUBGOAL_THEN
      `?d. &0 < d /\
           !w:complex. w IN s /\ w IN ball(z,d) ==> ~(g w + g z = Cx(&0))`
    STRIP_ASSUME_TAC THENL
     [FIRST_ASSUM(MP_TAC o SPEC `z:complex` o
      GEN_REWRITE_RULE I [continuous_on]) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `norm((g:complex->complex) z)`) THEN
      ASM_REWRITE_TAC[COMPLEX_NORM_NZ] THEN MATCH_MP_TAC MONO_EXISTS THEN
      ONCE_REWRITE_TAC[DIST_SYM] THEN
      REWRITE_TAC[IN_BALL; GSYM COMPLEX_VEC_0] THEN
      MESON_TAC[NORM_ARITH `dist(z,x) < norm z ==> ~(x + z = vec 0)`];
      ALL_TAC] THEN
    EXISTS_TAC `ball(z:complex,d) INTER s` THEN
    ASM_REWRITE_TAC[IN_INTER; CENTRE_IN_BALL] THEN REPEAT CONJ_TAC THENL
     [ASM_SIMP_TAC[OPEN_INTER; OPEN_BALL];
      ASM_SIMP_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
       `~(x = z) /\ ~(gx + gz = Cx(&0))
        ==> (gx pow 2 - gz pow 2) / (x - z) / (gx + gz) =
             (gx - gz) / (x - z)`) THEN
      ASM_SIMP_TAC[];
      MATCH_MP_TAC LIM_COMPLEX_DIV THEN
      ASM_REWRITE_TAC[COMPLEX_ENTIRE; GSYM HAS_COMPLEX_DERIVATIVE_AT] THEN
      REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_DIFFERENTIABLE; CX_INJ] THEN
      REWRITE_TAC[COMPLEX_MUL_2; REAL_OF_NUM_EQ; ARITH_EQ] THEN CONJ_TAC THENL
       [ASM_MESON_TAC[HOLOMORPHIC_ON_IMP_DIFFERENTIABLE_AT]; ALL_TAC] THEN
      MATCH_MP_TAC LIM_ADD THEN REWRITE_TAC[LIM_CONST; GSYM CONTINUOUS_AT] THEN
      ASM_MESON_TAC[HOLOMORPHIC_ON_IMP_CONTINUOUS_ON;
                    CONTINUOUS_ON_INTERIOR; INTERIOR_OPEN]]]);;
(* ------------------------------------------------------------------------- *)
(* Relations to the borsukian property.                                      *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A per-function version for continuous logs, a kind of monodromy.          *)
(* ------------------------------------------------------------------------- *)
let MONODROMY_CONTINUOUS_LOG = prove
 (`!f:complex->complex s.
        open s /\ f 
continuous_on s /\
        (!z. z 
IN s ==> ~(f z = Cx(&0)))
        ==> ((!p. path p /\ 
path_image p 
SUBSET s /\
                  pathfinish p = pathstart p
                  ==> 
winding_number(f o p,Cx(&0)) = Cx(&0)) <=>
             (?g. g 
continuous_on s /\ !z. z 
IN s ==> f(z) = cexp(g z)))`,
  let lemma = prove
   (`!f g s p.
           f continuous_on s /\ g continuous_on s /\
           (!z:complex. z IN s ==> f(z) = cexp(g z)) /\
           path p /\ path_image p SUBSET s
           ==> winding_number(f o p,Cx(&0)) =
               Cx(&1) / (Cx(&2) * Cx pi * ii) *
               (pathfinish(g o p) - pathstart(g o p))`,
    REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `winding_number(cexp o g o (p:real^1->complex),Cx(&0))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC WINDING_NUMBER_NEARBY_PATHS_EQ THEN
      REPEAT CONJ_TAC THENL
       [MATCH_MP_TAC PATH_CONTINUOUS_IMAGE THEN
        REWRITE_TAC[CONTINUOUS_ON_CEXP] THEN
        MATCH_MP_TAC PATH_CONTINUOUS_IMAGE THEN
        ASM_MESON_TAC[CONTINUOUS_ON_SUBSET];
        MATCH_MP_TAC PATH_CONTINUOUS_IMAGE THEN
        ASM_MESON_TAC[CONTINUOUS_ON_SUBSET];
        REWRITE_TAC[PATHSTART_COMPOSE] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_MESON_TAC[SUBSET; PATHSTART_IN_PATH_IMAGE];
        REWRITE_TAC[PATHFINISH_COMPOSE] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_MESON_TAC[SUBSET; PATHFINISH_IN_PATH_IMAGE];
        GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_THM; COMPLEX_SUB_RZERO] THEN
        MATCH_MP_TAC(NORM_ARITH
         `x = y /\ ~(z = vec 0) ==> norm(x - y) < norm z`) THEN
        REWRITE_TAC[COMPLEX_VEC_0; CEXP_NZ] THEN
        FIRST_X_ASSUM MATCH_MP_TAC THEN
        ASM_MESON_TAC[SUBSET; path_image; IN_IMAGE]];
      MATCH_MP_TAC WINDING_NUMBER_COMPOSE_CEXP THEN
      ASM_REWRITE_TAC[PATHSTART_COMPOSE; PATHFINISH_COMPOSE] THEN
      MATCH_MP_TAC PATH_CONTINUOUS_IMAGE THEN
      ASM_MESON_TAC[CONTINUOUS_ON_SUBSET]]) in
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [ALL_TAC;
    DISCH_THEN(X_CHOOSE_THEN `g:complex->complex` STRIP_ASSUME_TAC) THEN
    X_GEN_TAC `p:real^1->complex` THEN STRIP_TAC THEN
    MP_TAC(ISPECL [`f:complex->complex`; `g:complex->complex`;
                   `s:complex->bool`; `p:real^1->complex`]
        lemma) THEN
    ASM_REWRITE_TAC[PATHSTART_COMPOSE; PATHFINISH_COMPOSE] THEN
    REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_MUL_RZERO]] THEN
  DISCH_TAC THEN
  EXISTS_TAC `\z. let c = connected_component s (z:complex) in
                  let z0 = (@) c in
                  let p = @p. path p /\ path_image p SUBSET c /\
                              pathstart p = z0 /\ pathfinish p = z in
                  Cx(&2) * Cx(pi) * ii * winding_number(f o p,Cx(&0)) +
                  clog(f z0)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    X_GEN_TAC `z:complex` THEN DISCH_TAC THEN REWRITE_TAC[] THEN
    REPEAT LET_TAC THEN
    SUBGOAL_THEN `(z:complex) IN c` ASSUME_TAC THENL
     [ASM_MESON_TAC[CONNECTED_COMPONENT_REFL; IN]; ALL_TAC] THEN
    SUBGOAL_THEN `(z0:complex) IN c` ASSUME_TAC THENL
     [EXPAND_TAC "z0" THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC SELECT_AX THEN
      ASM_MESON_TAC[IN];
      ALL_TAC] THEN
    SUBGOAL_THEN `(c:complex->bool) SUBSET s` ASSUME_TAC THENL
     [ASM_MESON_TAC[CONNECTED_COMPONENT_SUBSET]; ALL_TAC] THEN
    SUBGOAL_THEN `connected(c:complex->bool)` ASSUME_TAC THENL
     [ASM_MESON_TAC[CONNECTED_CONNECTED_COMPONENT]; ALL_TAC] THEN
    SUBGOAL_THEN `open(c:complex->bool)` ASSUME_TAC THENL
     [ASM_MESON_TAC[OPEN_CONNECTED_COMPONENT]; ALL_TAC] THEN
    SUBGOAL_THEN `path_connected(c:complex->bool)` ASSUME_TAC THENL
     [ASM_MESON_TAC[CONNECTED_OPEN_PATH_CONNECTED]; ALL_TAC] THEN
    SUBGOAL_THEN
     `path p /\ path_image p SUBSET c /\
      pathstart p = z0 /\ pathfinish p = (z:complex)`
    STRIP_ASSUME_TAC THENL
     [EXPAND_TAC "p" THEN CONV_TAC SELECT_CONV THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[path_connected]) THEN
      ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    MP_TAC(ISPECL [`(f:complex->complex) o (p:real^1->complex)`; `Cx(&0)`]
      WINDING_NUMBER_AHLFORS_FULL) THEN
    REWRITE_TAC[CEXP_ADD] THEN ANTS_TAC THENL
     [CONJ_TAC THENL
       [MATCH_MP_TAC PATH_CONTINUOUS_IMAGE THEN
        ASM_MESON_TAC[CONTINUOUS_ON_SUBSET];
        REWRITE_TAC[path_image; IMAGE_o] THEN
        REWRITE_TAC[GSYM path_image] THEN ASM SET_TAC[]];
      ASM_REWRITE_TAC[PATHSTART_COMPOSE; PATHFINISH_COMPOSE] THEN
      REWRITE_TAC[COMPLEX_SUB_RZERO] THEN DISCH_THEN SUBST1_TAC THEN
      AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CEXP_CLOG THEN
      ASM SET_TAC[]]] THEN
  MATCH_MP_TAC CONTINUOUS_ON_COMPONENTS_OPEN THEN
  ASM_REWRITE_TAC[] THEN X_GEN_TAC `c:complex->bool` THEN DISCH_TAC THEN
  ABBREV_TAC `z0:complex = (@) c` THEN
  MATCH_MP_TAC CONTINUOUS_ON_EQ THEN
  ABBREV_TAC
   `g = \z. let p = @p. path p /\ path_image p SUBSET c /\
                        pathstart p = z0 /\ pathfinish p = z in
            Cx(&2) * Cx(pi) * ii * winding_number(f o p,Cx(&0)) +
            clog(f(z0:complex))` THEN
  EXISTS_TAC `g:complex->complex` THEN REWRITE_TAC[] THEN CONJ_TAC THENL
   [X_GEN_TAC `z:complex` THEN DISCH_TAC THEN EXPAND_TAC "g" THEN
    CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN EXPAND_TAC "z0" THEN
    SUBGOAL_THEN `connected_component s (z:complex) = c`
     (fun th -> REWRITE_TAC[th]) THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_COMPONENTS]) THEN
    ASM_MESON_TAC[CONNECTED_COMPONENT_EQ];
    ALL_TAC] THEN
  SUBGOAL_THEN `(z0:complex) IN c` ASSUME_TAC THENL
   [EXPAND_TAC "z0" THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC SELECT_AX THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP IN_COMPONENTS_NONEMPTY) THEN SET_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `(c:complex->bool) SUBSET s` ASSUME_TAC THENL
   [ASM_MESON_TAC[IN_COMPONENTS_SUBSET]; ALL_TAC] THEN
  SUBGOAL_THEN `connected(c:complex->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[IN_COMPONENTS_CONNECTED]; ALL_TAC] THEN
  SUBGOAL_THEN `open(c:complex->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[OPEN_COMPONENTS]; ALL_TAC] THEN
  SUBGOAL_THEN `path_connected(c:complex->bool)` ASSUME_TAC THENL
   [ASM_MESON_TAC[CONNECTED_OPEN_PATH_CONNECTED]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!x. x IN c
        ==> ?p. path (p:real^1->complex) /\ path_image p SUBSET c /\
                pathstart p = z0 /\ pathfinish p = x /\
                g(x) = Cx(&2) * Cx pi * ii * winding_number(f o p,Cx(&0)) +
                       clog (f z0)`
   (LABEL_TAC "*")
  THENL
   [X_GEN_TAC `z:complex` THEN DISCH_TAC THEN EXPAND_TAC "g" THEN
    ABBREV_TAC `p = @p. path p /\ path_image p SUBSET c /\
                        pathstart p = z0 /\ pathfinish p = (z:complex)` THEN
    EXISTS_TAC `p:real^1->complex` THEN
    CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN REWRITE_TAC[] THEN
    EXPAND_TAC "p" THEN CONV_TAC SELECT_CONV THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [path_connected]) THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  ASM_SIMP_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT] THEN
  X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `z:complex` o GEN_REWRITE_RULE I
   [OPEN_CONTAINS_BALL]) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:real` THEN
  STRIP_TAC THEN
  MP_TAC(SPEC `ball(z:complex,e)` SIMPLY_CONNECTED_EQ_CONTINUOUS_LOG) THEN
  SIMP_TAC[OPEN_BALL; CONVEX_BALL; CONVEX_IMP_SIMPLY_CONNECTED] THEN
  DISCH_THEN(MP_TAC o SPEC `f:complex->complex` o CONJUNCT2) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET];
    DISCH_THEN(X_CHOOSE_THEN `l:complex->complex` STRIP_ASSUME_TAC)] THEN
  REWRITE_TAC[CONTINUOUS_AT] THEN ONCE_REWRITE_TAC[LIM_NULL] THEN
  MATCH_MP_TAC LIM_TRANSFORM_AT THEN
  ONCE_REWRITE_TAC[DIST_SYM] THEN EXISTS_TAC
   `\w. Cx(&2) * Cx pi * ii *
        winding_number((f:complex->complex) o linepath(z,w),Cx(&0))` THEN
  EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [X_GEN_TAC `w:complex` THEN STRIP_TAC THEN REMOVE_THEN "*"
     (fun th -> MP_TAC(SPEC `w:complex` th) THEN
                MP_TAC(SPEC `z:complex` th)) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `p:real^1->complex` THEN STRIP_TAC THEN
    ANTS_TAC THENL [ASM_MESON_TAC[SUBSET; IN_BALL; DIST_SYM]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `q:real^1->complex` STRIP_ASSUME_TAC) THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(COMPLEX_RING
     `(z + x) - y = Cx(&0)
      ==> a * b * c * x = (a * b * c * y + l) - (a * b * c * z + l)`) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC
     `p ++ linepath(z:complex,w) ++ reversepath q`) THEN
    ASM_SIMP_TAC[PATHSTART_JOIN; PATHFINISH_JOIN;
                 PATHSTART_REVERSEPATH; PATHFINISH_REVERSEPATH;
                 PATH_JOIN_EQ; PATH_LINEPATH; PATH_REVERSEPATH;
                 PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_IMAGE_JOIN] THEN
    ASM_REWRITE_TAC[UNION_SUBSET; PATH_IMAGE_REVERSEPATH] THEN ANTS_TAC THENL
     [REPEAT STRIP_TAC THEN
      MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `c:complex->bool` THEN
      ASM_REWRITE_TAC[PATH_IMAGE_LINEPATH] THEN
      MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `ball(z:complex,e)` THEN
      ASM_REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MINIMAL THEN
      ASM_REWRITE_TAC[INSERT_SUBSET; CENTRE_IN_BALL; EMPTY_SUBSET] THEN
      ASM_REWRITE_TAC[IN_BALL; CONVEX_BALL];
      DISCH_THEN(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
      REWRITE_TAC[PATH_COMPOSE_JOIN; PATH_COMPOSE_REVERSEPATH] THEN
      W(MP_TAC o PART_MATCH (lhand o rand) WINDING_NUMBER_JOIN o
        rand o snd) THEN
      ANTS_TAC THENL
       [ALL_TAC;
        DISCH_THEN SUBST1_TAC THEN
        REWRITE_TAC[VECTOR_SUB; GSYM VECTOR_ADD_ASSOC] THEN
        AP_TERM_TAC THEN
        W(MP_TAC o PART_MATCH (lhand o rand) WINDING_NUMBER_JOIN o
          rand o snd) THEN
        ANTS_TAC THENL
         [ALL_TAC;
          DISCH_THEN SUBST1_TAC THEN AP_TERM_TAC THEN
          MATCH_MP_TAC(GSYM WINDING_NUMBER_REVERSEPATH)]] THEN
      ASM_SIMP_TAC[PATHSTART_REVERSEPATH; PATHFINISH_REVERSEPATH;
                 PATHSTART_COMPOSE; PATHFINISH_COMPOSE; PATH_IMAGE_REVERSEPATH;
                 PATHSTART_JOIN; PATHFINISH_JOIN; PATH_REVERSEPATH;
                 PATHSTART_LINEPATH; PATHFINISH_LINEPATH; PATH_JOIN;
                 PATH_IMAGE_JOIN; IN_UNION; DE_MORGAN_THM] THEN
      REWRITE_TAC[PATH_IMAGE_COMPOSE; SET_RULE
       `~(z IN IMAGE f s) <=> !x. x IN s ==> ~(f x = z)`] THEN
      REPEAT CONJ_TAC THEN
      ((MATCH_MP_TAC PATH_CONTINUOUS_IMAGE)
       ORELSE
       (X_GEN_TAC `x:complex` THEN DISCH_TAC THEN
        FIRST_X_ASSUM MATCH_MP_TAC)) THEN
      ASM_REWRITE_TAC[PATH_LINEPATH] THEN
      TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
            CONTINUOUS_ON_SUBSET)) THEN
          REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:complex` THEN STRIP_TAC) THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
      TRY(FIRST_X_ASSUM(fun th ->
            MATCH_MP_TAC(GEN_REWRITE_RULE I [SUBSET] th) THEN
            FIRST_X_ASSUM ACCEPT_TAC)) THEN
      UNDISCH_TAC `(x:complex) IN path_image(linepath(z,w))` THEN
      SPEC_TAC(`x:complex`,`x:complex`) THEN
      REWRITE_TAC[GSYM SUBSET; PATH_IMAGE_LINEPATH; SEGMENT_CONVEX_HULL] THEN
      MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `ball(z:complex,e)` THEN
      ASM_REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MINIMAL THEN
      ASM_REWRITE_TAC[INSERT_SUBSET; CENTRE_IN_BALL; EMPTY_SUBSET] THEN
      ASM_REWRITE_TAC[IN_BALL; CONVEX_BALL]];
    MATCH_MP_TAC LIM_TRANSFORM THEN
    EXISTS_TAC `\w. Cx(&2) * Cx pi * ii *
                    Cx(&1) / (Cx(&2) * Cx pi * ii) *
                    (pathfinish(l o linepath(z:complex,w)) -
                     pathstart (l o linepath(z,w)))` THEN
    REWRITE_TAC[] THEN CONJ_TAC THENL
     [MATCH_MP_TAC LIM_EVENTUALLY THEN REWRITE_TAC[EVENTUALLY_AT] THEN
      EXISTS_TAC `e:real` THEN ONCE_REWRITE_TAC[DIST_SYM] THEN
      ASM_REWRITE_TAC[] THEN X_GEN_TAC `w:complex` THEN STRIP_TAC THEN
      REWRITE_TAC[VECTOR_ARITH `x - y = vec 0 <=> y = x`] THEN
      REPLICATE_TAC 3 AP_TERM_TAC THEN MATCH_MP_TAC lemma THEN
      EXISTS_TAC `ball(z:complex,e)` THEN ASM_REWRITE_TAC[PATH_LINEPATH] THEN
      CONJ_TAC THENL[ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET]; ALL_TAC] THEN
      REWRITE_TAC[PATH_IMAGE_LINEPATH; SEGMENT_CONVEX_HULL] THEN
      MATCH_MP_TAC HULL_MINIMAL THEN REWRITE_TAC[CONVEX_BALL] THEN
      ASM_REWRITE_TAC[INSERT_SUBSET; CENTRE_IN_BALL; EMPTY_SUBSET] THEN
      ASM_REWRITE_TAC[IN_BALL];
      REWRITE_TAC[COMPLEX_VEC_0] THEN
      REPEAT(MATCH_MP_TAC LIM_NULL_COMPLEX_LMUL) THEN
      REWRITE_TAC[PATHSTART_COMPOSE; PATHSTART_LINEPATH;
                  PATHFINISH_COMPOSE; PATHFINISH_LINEPATH] THEN
      REWRITE_TAC[GSYM COMPLEX_VEC_0; GSYM LIM_NULL; GSYM CONTINUOUS_AT] THEN
      ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_BALL;
                    CENTRE_IN_BALL]]]);;  
 
(* ------------------------------------------------------------------------- *)
(* The winding number defines a continuous logarithm for the path itself.    *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Winding number equality is the same as path/loop homotopy in C - {0}.     *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A few simple corollaries from the various equivalences.                   *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Pick out the Riemann Mapping Theorem from the earlier chain.              *)
(* ------------------------------------------------------------------------- *)