(* ========================================================================= *)
(* Naive quantifier elimination for complex numbers. *)
(* ========================================================================= *)
needs "Complex/fundamental.ml";;
let NULLSTELLENSATZ_LEMMA = prove
(`!n p q. (!x. (poly p x = Cx(&0)) ==> (poly q x = Cx(&0))) /\
(degree p = n) /\ ~(n = 0)
==> p divides (q exp n)`,
MATCH_MP_TAC
num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`p:complex list`; `q:complex list`] THEN
ASM_CASES_TAC `?a. poly p a = Cx(&0)` THENL
[ALL_TAC;
DISCH_THEN(K ALL_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
(ONCE_REWRITE_RULE[TAUT `a ==> b <=> ~b ==> ~a`]
FUNDAMENTAL_THEOREM_OF_ALGEBRA_ALT)) THEN
REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`k:complex`; `zeros:complex list`] THEN
STRIP_TAC THEN REWRITE_TAC[divides] THEN
EXISTS_TAC `[inv(k)] ** q exp n` THEN
ASM_REWRITE_TAC[
FUN_EQ_THM;
POLY_MUL] THEN X_GEN_TAC `z:complex` THEN
ASM_SIMP_TAC[
COMPLEX_MUL_ASSOC;
COMPLEX_MUL_RINV;
COMPLEX_MUL_LID;
poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID;
POLY_0]] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `a:complex` MP_TAC) THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
GEN_REWRITE_TAC LAND_CONV [
ORDER_ROOT] THEN
ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL
[ASM_SIMP_TAC[
DEGREE_ZERO] THEN MESON_TAC[]; ALL_TAC] THEN
STRIP_TAC THEN STRIP_TAC THEN
MP_TAC(SPECL [`p:complex list`; `a:complex`; `order a p`]
ORDER) THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex` o MATCH_MP
ORDER_DEGREE) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `a:complex`) THEN
REWRITE_TAC[ASSUME `poly p a = Cx(&0)`] THEN
REWRITE_TAC[
POLY_LINEAR_DIVIDES] THEN
ASM_CASES_TAC `q:complex list = []` THENL
[DISCH_TAC THEN MATCH_MP_TAC
POLY_DIVIDES_ZERO THEN
UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[
poly_exp] THEN DISCH_TAC THEN
REWRITE_TAC[
FUN_EQ_THM;
POLY_MUL;
COMPLEX_MUL_LZERO; poly];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` SUBST_ALL_TAC) THEN
UNDISCH_TAC `[--a; Cx (&1)] exp (order a p) divides p` THEN
GEN_REWRITE_TAC LAND_CONV [divides] THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` ASSUME_TAC) THEN
SUBGOAL_THEN `~(poly s = poly [])` ASSUME_TAC THENL
[DISCH_TAC THEN UNDISCH_TAC `~(poly p = poly [])` THEN
ASM_REWRITE_TAC[
POLY_ENTIRE]; ALL_TAC] THEN
ASM_CASES_TAC `degree s = 0` THENL
[SUBGOAL_THEN `?k. ~(k = Cx(&0)) /\ (poly s = poly [k])` MP_TAC THENL
[EXISTS_TAC `
LAST(normalize s)` THEN
ASM_SIMP_TAC[
NORMAL_NORMALIZE; GSYM
POLY_NORMALIZE_ZERO] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
POLY_NORMALIZE] THEN
UNDISCH_TAC `degree s = 0` THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
[
POLY_NORMALIZE_ZERO]) THEN
REWRITE_TAC[degree] THEN
SPEC_TAC(`normalize s`,`s:complex list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[
NOT_CONS_NIL] THEN
REWRITE_TAC[
LENGTH;
PRE; poly;
LAST] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[
LENGTH_EQ_NIL]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:complex` STRIP_ASSUME_TAC) THEN
REWRITE_TAC[divides] THEN
EXISTS_TAC `[inv(k)] ** [--a; Cx (&1)] exp (n - order a p) ** r exp n` THEN
ASM_REWRITE_TAC[
FUN_EQ_THM;
POLY_MUL;
POLY_EXP;
COMPLEX_POW_MUL] THEN
X_GEN_TAC `z:complex` THEN
ONCE_REWRITE_TAC[AC
COMPLEX_MUL_AC
`(a * b) * c * d * e = ((d * a) * (c * b)) * e`] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM
COMPLEX_POW_ADD] THEN ASM_SIMP_TAC[
SUB_ADD] THEN
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID;
COMPLEX_MUL_RID] THEN
ASM_SIMP_TAC[
COMPLEX_MUL_LINV;
COMPLEX_MUL_RID]; ALL_TAC] THEN
SUBGOAL_THEN `degree s < n` ASSUME_TAC THENL
[EXPAND_TAC "n" THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP
DEGREE_WELLDEF) THEN
REWRITE_TAC[
LINEAR_POW_MUL_DEGREE] THEN
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(order a p = 0)` THEN ARITH_TAC;
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `degree s`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPECL [`s:complex list`; `r:complex list`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[X_GEN_TAC `z:complex` THEN DISCH_TAC THEN
UNDISCH_TAC
`!x. (poly p x = Cx(&0)) ==> (poly([--a; Cx (&1)] ** r) x = Cx(&0))` THEN
DISCH_THEN(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[
POLY_MUL;
COMPLEX_MUL_RID] THEN
REWRITE_TAC[
COMPLEX_ENTIRE] THEN
MATCH_MP_TAC(TAUT `~a ==> (a \/ b ==> b)`) THEN
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID] THEN
REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`(--a + z * Cx(&1) = Cx(&0)) <=> (z = a)`] THEN
DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `poly s a = Cx (&0)` THEN
ASM_REWRITE_TAC[
POLY_LINEAR_DIVIDES; DE_MORGAN_THM] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `u:complex list` SUBST_ALL_TAC) THEN
UNDISCH_TAC `~([--a; Cx (&1)] exp SUC (order a p) divides p)` THEN
REWRITE_TAC[divides] THEN
EXISTS_TAC `u:complex list` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
POLY_MUL;
poly_exp;
COMPLEX_MUL_AC;
FUN_EQ_THM];
ALL_TAC] THEN
REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `u:complex list` ASSUME_TAC) THEN
EXISTS_TAC
`u ** [--a; Cx(&1)] exp (n - order a p) ** r exp (n - degree s)` THEN
ASM_REWRITE_TAC[
FUN_EQ_THM;
POLY_MUL;
POLY_EXP;
COMPLEX_POW_MUL] THEN
X_GEN_TAC `z:complex` THEN
ONCE_REWRITE_TAC[AC
COMPLEX_MUL_AC
`(ap * s) * u * anp * rns = (anp * ap) * rns * s * u`] THEN
REWRITE_TAC[GSYM
COMPLEX_POW_ADD] THEN
ASM_SIMP_TAC[
SUB_ADD] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM
POLY_MUL] THEN
SUBST1_TAC(SYM(ASSUME `poly (r exp degree s) = poly (s ** u)`)) THEN
REWRITE_TAC[
POLY_EXP; GSYM
COMPLEX_POW_ADD] THEN
ASM_SIMP_TAC[
SUB_ADD;
LT_IMP_LE]);;
let NULLSTELLENSATZ_UNIVARIATE = prove
(`!p q. (!x. (poly p x = Cx(&0)) ==> (poly q x = Cx(&0))) <=>
p divides (q exp (degree p)) \/
((poly p = poly []) /\ (poly q = poly []))`,
(* ------------------------------------------------------------------------- *)
(* Useful lemma I should have proved ages ago. *)
(* ------------------------------------------------------------------------- *)
let CONSTANT_DEGREE = prove
(`!p. constant(poly p) <=> (degree p = 0)`,
GEN_TAC THEN REWRITE_TAC[constant] THEN EQ_TAC THENL
[DISCH_THEN(ASSUME_TAC o GSYM o SPEC `Cx(&0)`) THEN
SUBGOAL_THEN `degree [poly p (Cx(&0))] = 0` MP_TAC THENL
[REWRITE_TAC[degree; normalize] THEN
COND_CASES_TAC THEN REWRITE_TAC[
LENGTH] THEN CONV_TAC NUM_REDUCE_CONV;
ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `(x = y) ==> (x = 0) ==> (y = 0)`) THEN
MATCH_MP_TAC
DEGREE_WELLDEF THEN
REWRITE_TAC[
FUN_EQ_THM; poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID] THEN
FIRST_ASSUM(ACCEPT_TAC o GSYM);
ONCE_REWRITE_TAC[GSYM
POLY_NORMALIZE] THEN REWRITE_TAC[degree] THEN
SPEC_TAC(`normalize p`,`l:complex list`) THEN
MATCH_MP_TAC
list_INDUCT THEN REWRITE_TAC[poly] THEN
SIMP_TAC[
LENGTH;
PRE;
LENGTH_EQ_NIL; poly;
COMPLEX_MUL_RZERO]]);;
(* ------------------------------------------------------------------------- *)
(* It would be nicer to prove this without using algebraic closure... *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_DEGREE_LEMMA = prove
(`!n p q. (degree(p) = n)
==> n <= degree(p ** q) \/ (poly(p ** q) = poly [])`,
INDUCT_TAC THEN REWRITE_TAC[
LE_0] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPEC `p:complex list`
FUNDAMENTAL_THEOREM_OF_ALGEBRA) THEN
ASM_REWRITE_TAC[
CONSTANT_DEGREE;
NOT_SUC] THEN
DISCH_THEN(X_CHOOSE_THEN `a:complex` MP_TAC) THEN
GEN_REWRITE_TAC LAND_CONV [
POLY_LINEAR_DIVIDES] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[REWRITE_TAC[
POLY_MUL; poly;
COMPLEX_MUL_LZERO;
FUN_EQ_THM];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` SUBST_ALL_TAC) THEN
SUBGOAL_THEN `poly (([--a; Cx (&1)] ** r) ** q) =
poly ([--a; Cx (&1)] ** (r ** q))`
ASSUME_TAC THENL
[REWRITE_TAC[
FUN_EQ_THM;
POLY_MUL;
COMPLEX_MUL_ASSOC]; ALL_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP
DEGREE_WELLDEF) THEN
ASM_REWRITE_TAC[] THEN
MP_TAC(SPECL [`r ** q`; `--a`]
LINEAR_MUL_DEGREE) THEN
ASM_CASES_TAC `poly (r ** q) = poly []` THENL
[REWRITE_TAC[
FUN_EQ_THM] THEN
ONCE_REWRITE_TAC[
POLY_MUL] THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `n <= degree(r ** q) \/ (poly(r ** q) = poly [])` MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[ARITH_RULE `SUC n <= m + 1 <=> n <= m`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
FUN_EQ_THM] THEN
ONCE_REWRITE_TAC[
POLY_MUL] THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO]] THEN
MP_TAC(SPECL [`r:complex list`; `--a`]
LINEAR_MUL_DEGREE) THEN ANTS_TAC THENL
[UNDISCH_TAC `~(poly (r ** q) = poly [])` THEN
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN
SIMP_TAC[poly;
FUN_EQ_THM;
POLY_MUL;
COMPLEX_ENTIRE]; ALL_TAC] THEN
DISCH_THEN SUBST_ALL_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `degree r + 1 = SUC n` THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Arithmetic operations on multivariate polynomials. *)
(* ------------------------------------------------------------------------- *)
let MPOLY_BASE_CONV =
let pth_0 = prove
(`Cx(&0) = poly [] x`,
REWRITE_TAC[poly])
and
pth_1 =
prove
(`c = poly [c] x`,
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID])
and pth_var =
prove
(`x = poly [Cx(&0); Cx(&1)] x`,
REWRITE_TAC[poly;
COMPLEX_ADD_LID;
COMPLEX_MUL_RZERO] THEN
REWRITE_TAC[
COMPLEX_ADD_RID;
COMPLEX_MUL_RID])
and zero_tm = `Cx(&0)`
and c_tm = `c:complex`
and x_tm = `x:complex` in
let rec MPOLY_BASE_CONV avs tm =
if avs = [] then REFL tm
else if tm = zero_tm then INST [hd avs,x_tm]
pth_0
else if tm = hd avs then
let th1 = INST [tm,x_tm] pth_var in
let th2 =
(LAND_CONV
(COMB2_CONV (RAND_CONV (MPOLY_BASE_CONV (tl avs)))
(LAND_CONV (MPOLY_BASE_CONV (tl avs)))))
(rand(concl th1)) in
TRANS th1 th2
else
let th1 = MPOLY_BASE_CONV (tl avs) tm in
let th2 = INST [hd avs,x_tm; rand(concl th1),c_tm]
pth_1 in
TRANS th1 th2 in
MPOLY_BASE_CONV;;
let MPOLY_NORM_CONV =
let pth_0 = prove
(`poly [Cx(&0)] x = poly [] x`,
REWRITE_TAC[poly;
COMPLEX_ADD_RID;
COMPLEX_MUL_RZERO])
and
pth_1 =
prove
(`poly [poly [] y] x = poly [] x`,
REWRITE_TAC[poly;
COMPLEX_ADD_RID;
COMPLEX_MUL_RZERO]) in
let conv_fwd = REWR_CONV(CONJUNCT2 poly)
and conv_bck = REWR_CONV(GSYM(CONJUNCT2 poly))
and conv_0 = GEN_REWRITE_CONV I [
pth_0]
and conv_1 = GEN_REWRITE_CONV I [
pth_1] in
let rec NORM0_CONV tm =
(conv_0 ORELSEC
(conv_fwd THENC RAND_CONV(RAND_CONV NORM0_CONV) THENC conv_bck THENC
TRY_CONV NORM0_CONV)) tm
and NORM1_CONV tm =
(conv_1 ORELSEC
(conv_fwd THENC RAND_CONV(RAND_CONV NORM1_CONV) THENC conv_bck THENC
TRY_CONV NORM1_CONV)) tm in
fun avs -> TRY_CONV(if avs = [] then NORM0_CONV else NORM1_CONV);;
let MPOLY_ADD_CONV,MPOLY_TADD_CONV =
let add_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_ADD_CLAUSES))
and add_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_ADD_CLAUSES)]
and add_conv = REWR_CONV(GSYM POLY_ADD) in
let rec MPOLY_ADD_CONV avs tm =
if avs = [] then COMPLEX_RAT_ADD_CONV tm else
(add_conv THENC LAND_CONV(MPOLY_TADD_CONV avs) THENC
MPOLY_NORM_CONV (tl avs)) tm
and MPOLY_TADD_CONV avs tm =
(add_conv0 ORELSEC
(add_conv1 THENC
LAND_CONV (MPOLY_ADD_CONV (tl avs)) THENC
RAND_CONV (MPOLY_TADD_CONV avs))) tm in
MPOLY_ADD_CONV,MPOLY_TADD_CONV;;
let MPOLY_CMUL_CONV,MPOLY_TCMUL_CONV,MPOLY_MUL_CONV,MPOLY_TMUL_CONV =
let cmul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_cmul]
and cmul_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_cmul]
and cmul_conv = REWR_CONV(GSYM POLY_CMUL)
and mul_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 POLY_MUL_CLAUSES]
and mul_conv1 = GEN_REWRITE_CONV I [CONJUNCT1(CONJUNCT2 POLY_MUL_CLAUSES)]
and mul_conv2 = GEN_REWRITE_CONV I [CONJUNCT2(CONJUNCT2 POLY_MUL_CLAUSES)]
and mul_conv = REWR_CONV(GSYM POLY_MUL) in
let rec MPOLY_CMUL_CONV avs tm =
(cmul_conv THENC LAND_CONV(MPOLY_TCMUL_CONV avs)) tm
and MPOLY_TCMUL_CONV avs tm =
(cmul_conv0 ORELSEC
(cmul_conv1 THENC
LAND_CONV (MPOLY_MUL_CONV (tl avs)) THENC
RAND_CONV (MPOLY_TCMUL_CONV avs))) tm
and MPOLY_MUL_CONV avs tm =
if avs = [] then COMPLEX_RAT_MUL_CONV tm else
(mul_conv THENC LAND_CONV(MPOLY_TMUL_CONV avs)) tm
and MPOLY_TMUL_CONV avs tm =
(mul_conv0 ORELSEC
(mul_conv1 THENC MPOLY_TCMUL_CONV avs) ORELSEC
(mul_conv2 THENC
COMB2_CONV (RAND_CONV(MPOLY_TCMUL_CONV avs))
(COMB2_CONV (RAND_CONV(MPOLY_BASE_CONV (tl avs)))
(MPOLY_TMUL_CONV avs)) THENC
MPOLY_TADD_CONV avs)) tm in
MPOLY_CMUL_CONV,MPOLY_TCMUL_CONV,MPOLY_MUL_CONV,MPOLY_TMUL_CONV;;
let MPOLY_SUB_CONV =
let pth = prove
(`(poly p x - poly q x) = (poly p x + Cx(--(&1)) * poly q x)`,
SIMPLE_COMPLEX_ARITH_TAC) in
let APPLY_PTH_CONV = REWR_CONV pth in
fun avs ->
APPLY_PTH_CONV THENC
RAND_CONV(LAND_CONV (MPOLY_BASE_CONV (tl avs)) THENC
MPOLY_CMUL_CONV avs) THENC
MPOLY_ADD_CONV avs;;
let MPOLY_POW_CONV =
let cnv_0 = GEN_REWRITE_CONV I [CONJUNCT1 complex_pow]
and cnv_1 = GEN_REWRITE_CONV I [CONJUNCT2 complex_pow] in
let rec MPOLY_POW_CONV avs tm =
try (cnv_0 THENC MPOLY_BASE_CONV avs) tm with Failure _ ->
(RAND_CONV num_CONV THENC
cnv_1 THENC (RAND_CONV (MPOLY_POW_CONV avs)) THENC
MPOLY_MUL_CONV avs) tm in
MPOLY_POW_CONV;;
(* ------------------------------------------------------------------------- *)
(* Recursive conversion to polynomial form. *)
(* ------------------------------------------------------------------------- *)
let POLYNATE_CONV =
let ELIM_SUB_CONV = REWR_CONV
(SIMPLE_COMPLEX_ARITH `x - y = x + Cx(--(&1)) * y`)
and ELIM_NEG_CONV = REWR_CONV
(SIMPLE_COMPLEX_ARITH `--x = Cx(--(&1)) * x`)
and ELIM_POW_0_CONV = GEN_REWRITE_CONV I [CONJUNCT1 complex_pow]
and ELIM_POW_1_CONV =
RAND_CONV num_CONV THENC GEN_REWRITE_CONV I [CONJUNCT2 complex_pow] in
let rec ELIM_POW_CONV tm =
(ELIM_POW_0_CONV ORELSEC (ELIM_POW_1_CONV THENC RAND_CONV ELIM_POW_CONV))
tm in
let polynet = itlist (uncurry net_of_conv)
[`x pow n`,(fun cnv avs -> LAND_CONV (cnv avs) THENC MPOLY_POW_CONV avs);
`x * y`,(fun cnv avs -> BINOP_CONV (cnv avs) THENC MPOLY_MUL_CONV avs);
`x + y`,(fun cnv avs -> BINOP_CONV (cnv avs) THENC MPOLY_ADD_CONV avs);
`x - y`,(fun cnv avs -> BINOP_CONV (cnv avs) THENC MPOLY_SUB_CONV avs);
`--x`,(fun cnv avs -> ELIM_NEG_CONV THENC (cnv avs))]
empty_net in
let rec POLYNATE_CONV avs tm =
try snd(hd(lookup tm polynet)) POLYNATE_CONV avs tm
with Failure _ -> MPOLY_BASE_CONV avs tm in
POLYNATE_CONV;;
(* ------------------------------------------------------------------------- *)
(* Cancellation conversion. *)
(* ------------------------------------------------------------------------- *)
let POLY_PAD_RULE =
let pth = prove
(`(poly p x = Cx(&0)) ==> (poly (CONS (Cx(&0)) p) x = Cx(&0))`,
SIMP_TAC[poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_LID]) in
let MATCH_pth = MATCH_MP pth in
fun avs th ->
let th1 = MATCH_pth th in
CONV_RULE(funpow 3 LAND_CONV (MPOLY_BASE_CONV (tl avs))) th1;;
let POLY_CANCEL_EQ_CONV =
let pth_1 = prove
(`(p = Cx(&0)) /\ ~(a = Cx(&0))
==> !q b. (q = Cx(&0)) <=> (a * q - b * p = Cx(&0))`,
SIMP_TAC[
COMPLEX_MUL_RZERO;
COMPLEX_SUB_RZERO;
COMPLEX_ENTIRE]) in
let MATCH_CANCEL_THM = MATCH_MP
pth_1 in
let rec POLY_CANCEL_EQ_CONV avs n ath eth tm =
let m = length(dest_list(lhand(lhand tm))) in
if m < n then REFL tm else
let th1 = funpow (m - n) (POLY_PAD_RULE avs) eth in
let th2 = MATCH_CANCEL_THM (CONJ th1 ath) in
let th3 = SPECL [lhs tm; last(dest_list(lhand(lhs tm)))] th2 in
let th4 = CONV_RULE(RAND_CONV(LAND_CONV
(BINOP_CONV(MPOLY_CMUL_CONV avs)))) th3 in
let th5 = CONV_RULE(RAND_CONV(LAND_CONV (MPOLY_SUB_CONV avs))) th4 in
TRANS th5 (POLY_CANCEL_EQ_CONV avs n ath eth (rand(concl th5))) in
POLY_CANCEL_EQ_CONV;;
let RESOLVE_EQ_RAW =
let pth = prove
(`(poly [] x = Cx(&0)) /\
(poly [c] x = c)`,
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID]) in
let REWRITE_pth = GEN_REWRITE_CONV LAND_CONV [pth] in
let rec RESOLVE_EQ asm tm =
try EQT_INTRO(find (fun th -> concl th = tm) asm) with Failure _ ->
let tm' = mk_neg tm in
try EQF_INTRO(find (fun th -> concl th = tm') asm) with Failure _ ->
try let th1 = REWRITE_pth tm in
TRANS th1 (RESOLVE_EQ asm (rand(concl th1)))
with Failure _ -> COMPLEX_RAT_EQ_CONV tm in
RESOLVE_EQ;;
let RESOLVE_EQ asm tm =
let th = RESOLVE_EQ_RAW asm tm in
try EQF_ELIM th with Failure _ -> EQT_ELIM th;;
let RESOLVE_EQ_THEN =
let MATCH_pth = MATCH_MP
(TAUT `(p ==> (q <=> q1)) /\ (~p ==> (q <=> q2))
==> (q <=> (p /\ q1 \/ ~p /\ q2))`) in
fun asm tm yfn nfn ->
try let th = RESOLVE_EQ asm tm in
if is_neg(concl th) then nfn (th::asm) th else yfn (th::asm) th
with Failure _ ->
let tm' = mk_neg tm in
let yth = DISCH tm (yfn (ASSUME tm :: asm) (ASSUME tm))
and nth = DISCH tm' (nfn (ASSUME tm' :: asm) (ASSUME tm')) in
MATCH_pth (CONJ yth nth);;
let POLY_CANCEL_ENE_CONV avs n ath eth tm =
if is_neg tm then RAND_CONV(POLY_CANCEL_EQ_CONV avs n ath eth) tm
else POLY_CANCEL_EQ_CONV avs n ath eth tm;;
let RESOLVE_NE =
let NEGATE_NEGATE_RULE = GEN_REWRITE_RULE I [TAUT `p <=> (~p <=> F)`] in
fun asm tm ->
try let th = RESOLVE_EQ asm (rand tm) in
if is_neg(concl th) then EQT_INTRO th
else NEGATE_NEGATE_RULE th
with Failure _ -> REFL tm;;
(* ------------------------------------------------------------------------- *)
(* Conversion for division of polynomials. *)
(* ------------------------------------------------------------------------- *)
let LAST_CONV = GEN_REWRITE_CONV REPEATC [LAST_CLAUSES];;
let LENGTH_CONV =
let cnv_0 = GEN_REWRITE_CONV I [CONJUNCT1 LENGTH]
and cnv_1 = GEN_REWRITE_CONV I [CONJUNCT2 LENGTH] in
let rec LENGTH_CONV tm =
try cnv_0 tm with Failure _ ->
(cnv_1 THENC RAND_CONV LENGTH_CONV THENC NUM_SUC_CONV) tm in
LENGTH_CONV;;
let EXPAND_EX_BETA_CONV =
let pth = prove(`
EX P [c] = P c`,
REWRITE_TAC[
EX]) in
let cnv_0 = GEN_REWRITE_CONV I [CONJUNCT1
EX]
and cnv_1 = GEN_REWRITE_CONV I [pth]
and cnv_2 = GEN_REWRITE_CONV I [CONJUNCT2
EX] in
let rec EXPAND_EX_BETA_CONV tm =
try (cnv_1 THENC BETA_CONV) tm with Failure _ -> try
(cnv_2 THENC COMB2_CONV (RAND_CONV BETA_CONV)
EXPAND_EX_BETA_CONV) tm
with Failure _ -> cnv_0 tm in
EXPAND_EX_BETA_CONV;;
let POLY_DIVIDES_PAD_RULE =
let POLY_DIVIDES_PAD_CONST_RULE =
let pth = prove
(`p divides q ==> !a. p divides (a ## q)`,
REWRITE_TAC[
FUN_EQ_THM; divides;
POLY_CMUL;
POLY_MUL] THEN
DISCH_THEN(X_CHOOSE_THEN `r:complex list` ASSUME_TAC) THEN
X_GEN_TAC `a:complex` THEN EXISTS_TAC `[a] ** r` THEN
ASM_REWRITE_TAC[
POLY_MUL; poly] THEN SIMPLE_COMPLEX_ARITH_TAC) in
let APPLY_pth = MATCH_MP pth in
fun avs n a tm ->
let th1 = POLY_DIVIDES_PAD_RULE avs n tm in
let th2 = SPEC a (APPLY_pth th1) in
CONV_RULE(RAND_CONV(MPOLY_TCMUL_CONV avs)) th2;;
let EXPAND_EX_BETA_RESOLVE_CONV asm tm =
let th1 = EXPAND_EX_BETA_CONV tm in
let djs = disjuncts(rand(concl th1)) in
let th2 = end_itlist MK_DISJ (map (RESOLVE_NE asm) djs) in
TRANS th1 th2;;
let POLY_DIVIDES_CONV =
let pth_0 = prove
(`
LENGTH q <
LENGTH p
==> ~(
LAST p = Cx(&0))
==> (p divides q <=> ~(
EX (\c. ~(c = Cx(&0))) q))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[
NOT_EX; GSYM
POLY_ZERO] THEN EQ_TAC THENL
[ALL_TAC;
SIMP_TAC[divides;
POLY_MUL;
FUN_EQ_THM] THEN
DISCH_TAC THEN EXISTS_TAC `[]:complex list` THEN
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO]] THEN
DISCH_THEN(MP_TAC o MATCH_MP
DIVIDES_DEGREE) THEN
MATCH_MP_TAC(TAUT `(~b ==> ~a) ==> (a \/ b ==> b)`) THEN
DISCH_TAC THEN REWRITE_TAC[
NOT_LE] THEN ASM_SIMP_TAC[
NORMAL_DEGREE] THEN
REWRITE_TAC[degree] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
`lq < lp ==> ~(lq = 0) /\ dq <= lq - 1 ==> dq < lp - 1`)) THEN
CONJ_TAC THENL [ASM_MESON_TAC[
LENGTH_EQ_NIL]; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `m <= n ==>
PRE m <= n - 1`) THEN
REWRITE_TAC[
LENGTH_NORMALIZE_LE]) in
let APPLY_pth0 = PART_MATCH (lhand o rand o rand)
pth_0 in
let pth_1 = prove
(`~(a = Cx(&0))
==> p divides p'
==> (!x. a * poly q x - poly p' x = poly r x)
==> (p divides q <=> p divides r)`,
DISCH_TAC THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `t:complex list` THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[FUN_EQ_THM; POLY_MUL] THEN
DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN EQ_TAC THEN
DISCH_THEN(X_CHOOSE_THEN `s:complex list` MP_TAC) THENL
[DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
EXISTS_TAC `a ## s ++ --(Cx(&1)) ## t` THEN
REWRITE_TAC[POLY_MUL; POLY_ADD; POLY_CMUL] THEN
REWRITE_TAC[poly] THEN SIMPLE_COMPLEX_ARITH_TAC;
REWRITE_TAC[POLY_MUL] THEN DISCH_TAC THEN
EXISTS_TAC `[inv(a)] ** (t ++ s)` THEN
X_GEN_TAC `z:complex` THEN
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN
REWRITE_TAC[POLY_MUL; POLY_ADD; GSYM COMPLEX_MUL_ASSOC] THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
SUBGOAL_THEN `a * poly q z = (poly t z + poly s z) * poly p z`
MP_TAC THENL
[FIRST_ASSUM(MP_TAC o SPEC `z:complex`) THEN SIMPLE_COMPLEX_ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(MP_TAC o AP_TERM `( * ) (inv a)`) THEN
ASM_SIMP_TAC[COMPLEX_MUL_ASSOC; COMPLEX_MUL_LINV; COMPLEX_MUL_LID]]) in
let MATCH_pth1 = MATCH_MP pth_1 in
let rec DIVIDE_STEP_CONV avs sfn n tm =
let m = length(dest_list(rand tm)) in
if m < n then REFL tm else
let th1 = POLY_DIVIDES_PAD_CONST_RULE avs (m - n)
(last(dest_list(rand tm))) (lhand tm) in
let th2 = MATCH_MP (sfn tm) th1 in
let av,bod = dest_forall(lhand(concl th2)) in
let tm1 = vsubst [hd avs,av] (lhand bod) in
let th3 = (LAND_CONV (MPOLY_CMUL_CONV avs) THENC MPOLY_SUB_CONV avs) tm1 in
let th4 = MATCH_MP th2 (GEN (hd avs) th3) in
TRANS th4 (DIVIDE_STEP_CONV avs sfn n (rand(concl th4))) in
let zero_tm = `Cx(&0)` in
fun asm avs tm ->
let ath = RESOLVE_EQ asm (mk_eq(last(dest_list(lhand tm)),zero_tm)) in
let sfn = PART_MATCH (lhand o rand o rand) (MATCH_pth1 ath)
and n = length(dest_list(lhand tm)) in
let th1 = DIVIDE_STEP_CONV avs sfn n tm in
let th2 = APPLY_pth0 (rand(concl th1)) in
let th3 = (BINOP_CONV LENGTH_CONV THENC NUM_LT_CONV) (lhand(concl th2)) in
let th4 = MP th2 (EQT_ELIM th3) in
let th5 = CONV_RULE(LAND_CONV(RAND_CONV(LAND_CONV LAST_CONV))) th4 in
let th6 = TRANS th1 (MP th5 ath) in
CONV_RULE(RAND_CONV(RAND_CONV(EXPAND_EX_BETA_RESOLVE_CONV asm))) th6;;
(* ------------------------------------------------------------------------- *)
(* Apply basic Nullstellensatz principle. *)
(* ------------------------------------------------------------------------- *)
let BASIC_QUELIM_CONV =
let pth_1 = prove
(`((?x. (poly p x = Cx(&0)) /\ ~(poly [] x = Cx(&0))) <=> F) /\
((?x. ~(poly [] x = Cx(&0))) <=> F) /\
((?x. ~(poly [c] x = Cx(&0))) <=> ~(c = Cx(&0))) /\
((?x. (poly [] x = Cx(&0))) <=> T) /\
((?x. (poly [c] x = Cx(&0))) <=> (c = Cx(&0)))`,
REWRITE_TAC[poly;
COMPLEX_MUL_RZERO;
COMPLEX_ADD_RID]) in
let APPLY_pth1 = GEN_REWRITE_CONV I [
pth_1] in
let pth_2 = prove
(`~(LAST(CONS a (CONS b p)) = Cx(&0))
==> ((?x. poly (CONS a (CONS b p)) x = Cx(&0)) <=> T)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `CONS (a:complex) (CONS b p)`
FUNDAMENTAL_THEOREM_OF_ALGEBRA_ALT) THEN
REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[NOT_EXISTS_THM; CONS_11] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `~(ALL (\c. c = Cx(&0)) (CONS b p))`
(fun th -> MP_TAC th THEN ASM_REWRITE_TAC[]) THEN
UNDISCH_TAC `~(LAST (CONS a (CONS b p)) = Cx (&0))` THEN
ONCE_REWRITE_TAC[LAST] THEN REWRITE_TAC[NOT_CONS_NIL] THEN
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN
SPEC_TAC(`p:complex list`,`p:complex list`) THEN
LIST_INDUCT_TAC THEN ONCE_REWRITE_TAC[LAST] THEN
REWRITE_TAC[ALL; NOT_CONS_NIL] THEN
STRIP_TAC THEN FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN
REWRITE_TAC[LAST] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ALL]) in
let APPLY_pth2 = PART_MATCH (lhand o rand) pth_2 in
let pth_2b = prove
(`(?x. ~(poly p x = Cx(&0))) <=> EX (\c. ~(c = Cx(&0))) p`,
REWRITE_TAC[GSYM NOT_FORALL_THM] THEN
ONCE_REWRITE_TAC[TAUT `(~a <=> b) <=> (a <=> ~b)`] THEN
REWRITE_TAC[NOT_EX; GSYM POLY_ZERO; poly; FUN_EQ_THM]) in
let APPLY_pth2b = GEN_REWRITE_CONV I [pth_2b] in
let pth_3 = prove
(`~(LAST(CONS a p) = Cx(&0))
==> ((?x. (poly (CONS a p) x = Cx(&0)) /\ ~(poly q x = Cx(&0))) <=>
~((CONS a p) divides (q exp (LENGTH p))))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`CONS (a:complex) p`; `q:complex list`]
NULLSTELLENSATZ_UNIVARIATE) THEN
ASM_SIMP_TAC[degree; NORMALIZE_EQ; LENGTH; PRE] THEN
SUBGOAL_THEN `~(poly (CONS a p) = poly [])`
(fun th -> REWRITE_TAC[th] THEN MESON_TAC[]) THEN
REWRITE_TAC[POLY_ZERO] THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`p:complex list`,`p:complex list`) THEN
REWRITE_TAC[LAST] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LAST; ALL; NOT_CONS_NIL] THEN
POP_ASSUM MP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[ALL] THEN
CONV_TAC TAUT) in
let APPLY_pth3 = PART_MATCH (lhand o rand) pth_3 in
let POLY_EXP_DIVIDES_CONV =
let pth_4 = prove
(`(!x. (poly (q exp n) x = poly r x))
==> (p divides (q exp n) <=> p divides r)`,
SIMP_TAC[divides; POLY_EXP; FUN_EQ_THM]) in
let APPLY_pth4 = MATCH_MP pth_4
and poly_tm = `poly`
and REWR_POLY_EXP_CONV = REWR_CONV POLY_EXP in
let POLY_EXP_DIVIDES_CONV avs tm =
let tm1 = mk_comb(mk_comb(poly_tm,rand tm),hd avs) in
let th1 = REWR_POLY_EXP_CONV tm1 in
let th2 = TRANS th1 (MPOLY_POW_CONV avs (rand(concl th1))) in
PART_MATCH lhand (APPLY_pth4 (GEN (hd avs) th2)) tm in
POLY_EXP_DIVIDES_CONV in
fun asm avs tm ->
try APPLY_pth1 tm with Failure _ ->
try let th1 = APPLY_pth2 tm in
let th2 = CONV_RULE(LAND_CONV(RAND_CONV(LAND_CONV LAST_CONV))) th1 in
let th3 = try MATCH_MP th2 (RESOLVE_EQ asm (rand(lhand(concl th2))))
with Failure _ -> failwith "Sanity failure (2a)" in
th3
with Failure _ -> try
let th1 = APPLY_pth2b tm in
TRANS th1 (EXPAND_EX_BETA_RESOLVE_CONV asm (rand(concl th1)))
with Failure _ ->
let th1 = APPLY_pth3 tm in
let th2 = CONV_RULE(LAND_CONV(RAND_CONV(LAND_CONV LAST_CONV))) th1 in
let th3 = try MATCH_MP th2 (RESOLVE_EQ asm (rand(lhand(concl th2))))
with Failure _ -> failwith "Sanity failure (2b)" in
let th4 = CONV_RULE (funpow 4 RAND_CONV LENGTH_CONV) th3 in
let th5 =
CONV_RULE(RAND_CONV(RAND_CONV(POLY_EXP_DIVIDES_CONV avs))) th4 in
CONV_RULE(RAND_CONV(RAND_CONV(POLY_DIVIDES_CONV asm avs))) th5;;
(* ------------------------------------------------------------------------- *)
(* Put into canonical form by multiplying inequalities. *)
(* ------------------------------------------------------------------------- *)
let POLY_NE_MULT_CONV =
let pth = prove
(`~(poly p x = Cx(&0)) /\ ~(poly q x = Cx(&0)) <=>
~(poly p x * poly q x = Cx(&0))`,
REWRITE_TAC[
COMPLEX_ENTIRE; DE_MORGAN_THM]) in
let APPLY_pth = REWR_CONV pth in
let rec POLY_NE_MULT_CONV avs tm =
if not(is_conj tm) then REFL tm else
let l,r = dest_conj tm in
let th1 = MK_COMB(AP_TERM (rator(rator tm)) (POLY_NE_MULT_CONV avs l),
POLY_NE_MULT_CONV avs r) in
let th2 = TRANS th1 (APPLY_pth (rand(concl th1))) in
CONV_RULE(RAND_CONV(RAND_CONV(LAND_CONV(MPOLY_MUL_CONV avs)))) th2 in
POLY_NE_MULT_CONV;;
let CORE_QUELIM_CONV =
let CONJ_AC_RULE = AC CONJ_ACI in
let CORE_QUELIM_CONV asm avs tm =
let ev,bod = dest_exists tm in
let cjs = conjuncts bod in
let eqs,neqs = partition is_eq cjs in
if eqs = [] then
let th1 = MK_EXISTS ev (POLY_NE_MULT_CONV avs bod) in
TRANS th1 (BASIC_QUELIM_CONV asm avs (rand(concl th1)))
else if length eqs > 1 then failwith "CORE_QUELIM_CONV: Sanity failure"
else if neqs = [] then BASIC_QUELIM_CONV asm avs tm else
let tm1 = mk_conj(hd eqs,list_mk_conj neqs) in
let th1 = CONJ_AC_RULE(mk_eq(bod,tm1)) in
let th2 = CONV_RULE(funpow 2 RAND_CONV(POLY_NE_MULT_CONV avs)) th1 in
let th3 = MK_EXISTS ev th2 in
TRANS th3 (BASIC_QUELIM_CONV asm avs (rand(concl th3))) in
CORE_QUELIM_CONV;;
(* ------------------------------------------------------------------------- *)
(* Main elimination coversion (for a single quantifier). *)
(* ------------------------------------------------------------------------- *)
let RESOLVE_EQ_NE =
let DNE_RULE = GEN_REWRITE_RULE I
[TAUT `((p <=> T) <=> (~p <=> F)) /\ ((p <=> F) <=> (~p <=> T))`] in
fun asm tm ->
if is_neg tm then DNE_RULE(RESOLVE_EQ_RAW asm (rand tm))
else RESOLVE_EQ_RAW asm tm;;
let COMPLEX_QUELIM_CONV =
let pth_0 = prove
(`((poly [] x = Cx(&0)) <=> T) /\
((poly [] x = Cx(&0)) /\ p <=> p)`,
REWRITE_TAC[poly])
and
pth_1 =
prove
(`(~(poly [] x = Cx(&0)) <=> F) /\
(~(poly [] x = Cx(&0)) /\ p <=> F)`,
REWRITE_TAC[poly])
and
pth_2 =
prove
(`(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`,
CONV_TAC TAUT)
and zero_tm = `Cx(&0)`
and true_tm = `T` in
let ELIM_ZERO_RULE = GEN_REWRITE_RULE RAND_CONV [
pth_0]
and ELIM_NONZERO_RULE = GEN_REWRITE_RULE RAND_CONV [
pth_1]
and INCORP_ASSUM_THM = MATCH_MP
pth_2
and CONJ_AC_RULE = AC
CONJ_ACI in
let POLY_CONST_CONV =
let pth = prove
(`((poly [c] x = y) <=> (c = y)) /\
(~(poly [c] x = y) <=> ~(c = y))`,
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID]) in
TRY_CONV(GEN_REWRITE_CONV I [pth]) in
let EXISTS_TRIV_CONV = REWR_CONV EXISTS_SIMP
and EXISTS_PUSH_CONV = REWR_CONV RIGHT_EXISTS_AND_THM
and AND_SIMP_CONV = GEN_REWRITE_CONV DEPTH_CONV
[TAUT `(p /\ F <=> F) /\ (p /\ T <=> p) /\
(F /\ p <=> F) /\ (T /\ p <=> p)`]
and RESOLVE_OR_CONST_CONV asm tm =
try RESOLVE_EQ_NE asm tm with Failure _ -> POLY_CONST_CONV tm
and false_tm = `F` in
let rec COMPLEX_QUELIM_CONV asm avs tm =
let ev,bod = dest_exists tm in
let cjs = conjuncts bod in
let cjs_set = setify cjs in
if length cjs_set < length cjs then
let th1 = CONJ_AC_RULE(mk_eq(bod,list_mk_conj cjs_set)) in
let th2 = MK_EXISTS ev th1 in
TRANS th2 (COMPLEX_QUELIM_CONV asm avs (rand(concl th2)))
else
let eqs,neqs = partition is_eq cjs in
let lens = map (length o dest_list o lhand o lhs) eqs
and nens = map (length o dest_list o lhand o lhs o rand) neqs in
try let zeq = el (index 0 lens) eqs in
if cjs = [zeq] then BASIC_QUELIM_CONV asm avs tm else
let cjs' = zeq::(subtract cjs [zeq]) in
let th1 = ELIM_ZERO_RULE(CONJ_AC_RULE(mk_eq(bod,list_mk_conj cjs'))) in
let th2 = MK_EXISTS ev th1 in
TRANS th2 (COMPLEX_QUELIM_CONV asm avs (rand(concl th2)))
with Failure _ -> try
let zne = el (index 0 nens) neqs in
if cjs = [zne] then BASIC_QUELIM_CONV asm avs tm else
let cjs' = zne::(subtract cjs [zne]) in
let th1 = ELIM_NONZERO_RULE
(CONJ_AC_RULE(mk_eq(bod,list_mk_conj cjs'))) in
CONV_RULE (RAND_CONV EXISTS_TRIV_CONV) (MK_EXISTS ev th1)
with Failure _ -> try
let ones = map snd (filter (fun (n,_) -> n = 1)
(zip lens eqs @ zip nens neqs)) in
if ones = [] then failwith "" else
let cjs' = subtract cjs ones in
if cjs' = [] then
let th1 = MK_EXISTS ev (SUBS_CONV(map POLY_CONST_CONV cjs) bod) in
TRANS th1 (EXISTS_TRIV_CONV (rand(concl th1)))
else
let tha = SUBS_CONV (map (RESOLVE_OR_CONST_CONV asm) ones)
(list_mk_conj ones) in
let thb = CONV_RULE (RAND_CONV AND_SIMP_CONV) tha in
if rand(concl thb) = false_tm then
let thc = MK_CONJ thb (REFL(list_mk_conj cjs')) in
let thd = CONV_RULE(RAND_CONV AND_SIMP_CONV) thc in
let the = CONJ_AC_RULE(mk_eq(bod,lhand(concl thd))) in
let thf = MK_EXISTS ev (TRANS the thd) in
CONV_RULE(RAND_CONV EXISTS_TRIV_CONV) thf
else
let thc = MK_CONJ thb (REFL(list_mk_conj cjs')) in
let thd = CONJ_AC_RULE(mk_eq(bod,lhand(concl thc))) in
let the = MK_EXISTS ev (TRANS thd thc) in
let th4 = TRANS the(EXISTS_PUSH_CONV(rand(concl the))) in
let tm4 = rand(concl th4) in
let th5 = COMPLEX_QUELIM_CONV asm avs (rand tm4) in
TRANS th4 (AP_TERM (rator tm4) th5)
with Failure _ ->
if eqs = [] or
(length eqs = 1 &
(let ceq = mk_eq(last(dest_list(lhand(lhs(hd eqs)))),zero_tm) in
try concl(RESOLVE_EQ asm ceq) = mk_neg ceq with Failure _ -> false) &
(let h = hd lens in forall (fun n -> n < h) nens))
then
CORE_QUELIM_CONV asm avs tm
else
let n = end_itlist min lens in
let eq = el (index n lens) eqs in
let pol = lhand(lhand eq) in
let atm = last(dest_list pol) in
let zeq = mk_eq(atm,zero_tm) in
RESOLVE_EQ_THEN asm zeq
(fun asm' yth ->
let th0 = TRANS yth (MPOLY_BASE_CONV (tl avs) zero_tm) in
let th1 =
GEN_REWRITE_CONV
(LAND_CONV o LAND_CONV o funpow (n - 1) RAND_CONV o LAND_CONV)
[th0] eq in
let th2 = LAND_CONV(MPOLY_NORM_CONV avs) (rand(concl th1)) in
let th3 = MK_EXISTS ev (SUBS_CONV[TRANS th1 th2] bod) in
TRANS th3 (COMPLEX_QUELIM_CONV asm' avs (rand(concl th3))))
(fun asm' nth ->
let oth = subtract cjs [eq] in
if oth = [] then COMPLEX_QUELIM_CONV asm' avs tm else
let eth = ASSUME eq in
let ths = map (POLY_CANCEL_ENE_CONV avs n nth eth) oth in
let th1 = DISCH eq (end_itlist MK_CONJ ths) in
let th2 = INCORP_ASSUM_THM th1 in
let th3 = TRANS (CONJ_AC_RULE(mk_eq(bod,lhand(concl th2)))) th2 in
let th4 = MK_EXISTS ev th3 in
TRANS th4 (COMPLEX_QUELIM_CONV asm' avs (rand(concl th4)))) in
fun asm avs -> time(COMPLEX_QUELIM_CONV asm avs);;
(* ------------------------------------------------------------------------- *)
(* NNF conversion doing "conditionals" ~(p /\ q \/ ~p /\ r) intelligently. *)
(* ------------------------------------------------------------------------- *)
let NNF_COND_CONV =
(* ------------------------------------------------------------------------- *)
(* Overall procedure for multiple quantifiers in any first order formula. *)
(* ------------------------------------------------------------------------- *)
let FULL_COMPLEX_QUELIM_CONV =
let ELIM_FORALL_CONV =
let pth = prove(`(!x. P x) <=> ~(?x. ~(P x))`,
MESON_TAC[]) in
REWR_CONV pth in
let ELIM_EQ_CONV =
let pth = SIMPLE_COMPLEX_ARITH `(x = y) <=> (x - y = Cx(&0))`
and zero_tm = `Cx(&0)` in
let REWR_pth = REWR_CONV pth in
fun avs tm ->
if rand tm = zero_tm then LAND_CONV(POLYNATE_CONV avs) tm
else (REWR_pth THENC LAND_CONV(POLYNATE_CONV avs)) tm in
let SIMP_DNF_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV (basic_rewrites()) THENC
NNF_COND_CONV THENC DNF_CONV in
let DISTRIB_EXISTS_CONV = GEN_REWRITE_CONV I [
EXISTS_OR_THM] in
let TRIV_EXISTS_CONV = GEN_REWRITE_CONV I [
EXISTS_SIMP] in
let complex_ty = `:complex` in
let FINAL_SIMP_CONV =
GEN_REWRITE_CONV DEPTH_CONV [
CX_INJ] THENC
REAL_RAT_REDUCE_CONV THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV (basic_rewrites()) in
let rec FULL_COMPLEX_QUELIM_CONV avs tm =
if is_forall tm then
let th1 = ELIM_FORALL_CONV tm in
let th2 = FULL_COMPLEX_QUELIM_CONV avs (rand(concl th1)) in
TRANS th1 th2
else if is_neg tm then
AP_TERM (rator tm) (FULL_COMPLEX_QUELIM_CONV avs (rand tm))
else if is_conj tm or is_disj tm or is_imp tm or is_iff tm then
let lop,r = dest_comb tm in
let op,l = dest_comb lop in
let thl = FULL_COMPLEX_QUELIM_CONV avs l
and thr = FULL_COMPLEX_QUELIM_CONV avs r in
MK_COMB(AP_TERM(rator(rator tm)) thl,thr)
else if is_exists tm then
let ev,bod = dest_exists tm in
let th0 = FULL_COMPLEX_QUELIM_CONV (ev::avs) bod in
let th1 = MK_EXISTS ev (CONV_RULE(RAND_CONV SIMP_DNF_CONV) th0) in
TRANS th1 (DISTRIB_AND_COMPLEX_QUELIM_CONV (ev::avs) (rand(concl th1)))
else if is_eq tm then
ELIM_EQ_CONV avs tm
else failwith "unexpected type of formula"
and DISTRIB_AND_COMPLEX_QUELIM_CONV avs tm =
try TRIV_EXISTS_CONV tm
with Failure _ -> try
(DISTRIB_EXISTS_CONV THENC
BINOP_CONV (DISTRIB_AND_COMPLEX_QUELIM_CONV avs)) tm
with Failure _ -> COMPLEX_QUELIM_CONV [] avs tm in
fun tm ->
let avs = filter (fun t -> type_of t = complex_ty) (frees tm) in
(FULL_COMPLEX_QUELIM_CONV avs THENC FINAL_SIMP_CONV) tm;;