(* ========================================================================= *)
(* Results connected with topological dimension.                             *)
(*                                                                           *)
(* At the moment this is just Brouwer's fixpoint theorem. The proof is from  *)
(* Kuhn: "some combinatorial lemmas in topology", IBM J. v4. (1960) p. 518   *)
(* See "http://www.research.ibm.com/journal/rd/045/ibmrd0405K.pdf".          *)
(*                                                                           *)
(* The script below is quite messy, but at least we avoid formalizing any    *)
(* topological machinery; we don't even use barycentric subdivision; this is *)
(* the big advantage of Kuhn's proof over the usual Sperner's lemma one.     *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2008                       *)
(* ========================================================================= *)
needs "Multivariate/polytope.ml";;
let KUHN_LABELLING_LEMMA = prove
 (`!f:real^N->real^N P Q.
        (!x. P x ==> P (f x))
        ==> (!x. P x ==> (!i. Q i ==> &0 <= x$i /\ x$i <= &1))
            ==> ?l. (!x i. l x i <= 1) /\
                    (!x i. P x /\ Q i /\ (x$i = &0) ==> (l x i = 0)) /\
                    (!x i. P x /\ Q i /\ (x$i = &1) ==> (l x i = 1)) /\
                    (!x i. P x /\ Q i /\ (l x i = 0) ==> x$i <= f(x)$i) /\
                    (!x i. P x /\ Q i /\ (l x i = 1) ==> f(x)$i <= x$i)`,
 
let KUHN_COUNTING_LEMMA = prove
 (`!face:F->S->bool faces simplices comp comp' bnd.
        
FINITE faces /\ 
FINITE simplices /\
        (!f. f 
IN faces /\ bnd f
             ==> (
CARD {s | s 
IN simplices /\ face f s} = 1)) /\
        (!f. f 
IN faces /\ ~bnd f
             ==> (
CARD {s | s 
IN simplices /\ face f s} = 2)) /\
        (!s. s 
IN simplices /\ comp s
             ==> (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = 1)) /\
        (!s. s 
IN simplices /\ ~comp s
             ==> (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = 0) \/
                 (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = 2))
        ==> 
ODD(
CARD {f | f 
IN faces /\ comp' f /\ bnd f})
            ==> 
ODD(
CARD {s | s 
IN simplices /\ comp s})`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `sum simplices
     (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) =
    sum simplices
     (\s. &(
CARD {f | f 
IN {f | f 
IN faces /\ comp' f /\ bnd f} /\
                      face f s})) +
    sum simplices
     (\s. &(
CARD {f | f 
IN {f | f 
IN faces /\ comp' f /\ ~(bnd f)} /\
                      face f s}))`
  MP_TAC THENL
   [ASM_SIMP_TAC[GSYM 
SUM_ADD] THEN MATCH_MP_TAC 
SUM_EQ THEN
    ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
    MATCH_MP_TAC 
CARD_UNION_EQ THEN ASM_SIMP_TAC[
FINITE_RESTRICT] THEN
    REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_INTER; 
IN_UNION; 
NOT_IN_EMPTY] THEN
    CONJ_TAC THEN GEN_TAC THEN CONV_TAC TAUT;
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\s f. (face:F->S->bool) f s`; `simplices:S->bool`;
    `{f:F | f 
IN faces /\ comp' f /\ bnd f}`; `1`] 
SUM_MULTICOUNT) THEN
  MP_TAC(ISPECL
   [`\s f. (face:F->S->bool) f s`; `simplices:S->bool`;
    `{f:F | f 
IN faces /\ comp' f /\ ~(bnd f)}`; `2`] 
SUM_MULTICOUNT) THEN
  REWRITE_TAC[] THEN
  REPEAT(ANTS_TAC THENL
   [ASM_SIMP_TAC[
FINITE_RESTRICT] THEN GEN_TAC THEN
    DISCH_THEN(fun th -> FIRST_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN
    SIMP_TAC[
IN_ELIM_THM];
    DISCH_THEN SUBST1_TAC]) THEN
  SUBGOAL_THEN
   `sum simplices
     (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) =
    sum {s | s 
IN simplices /\ comp s}
        (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) +
    sum {s | s 
IN simplices /\ ~(comp s)}
        (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f}))`
  SUBST1_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC 
SUM_UNION_EQ THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[
EXTENSION; 
NOT_IN_EMPTY] THEN
    REWRITE_TAC[
IN_ELIM_THM; 
IN_INTER; 
IN_UNION] THEN
    CONJ_TAC THEN GEN_TAC THEN CONV_TAC TAUT;
    ALL_TAC] THEN
  SUBGOAL_THEN
   `sum {s | s 
IN simplices /\ comp s}
        (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) =
    sum {s | s 
IN simplices /\ comp s} (\s. &1)`
  SUBST1_TAC THENL
   [MATCH_MP_TAC 
SUM_EQ THEN ASM_SIMP_TAC[
FINITE_RESTRICT] THEN
    GEN_TAC THEN REWRITE_TAC[REAL_OF_NUM_EQ] THEN
    DISCH_THEN(fun th -> FIRST_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN
    SIMP_TAC[
IN_ELIM_THM];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `sum {s | s 
IN simplices /\ ~(comp s)}
        (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) =
    sum {s | s 
IN simplices /\ ~(comp s) /\
             (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = 0)}
        (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) +
    sum {s | s 
IN simplices /\ ~(comp s) /\
             (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = 2)}
        (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f}))`
  SUBST1_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC 
SUM_UNION_EQ THEN
    ASM_SIMP_TAC[
FINITE_RESTRICT] THEN
    REWRITE_TAC[
EXTENSION; 
NOT_IN_EMPTY; 
IN_INTER; 
IN_UNION] THEN
    CONJ_TAC THENL
     [REWRITE_TAC[
IN_ELIM_THM] THEN MESON_TAC[ARITH_RULE `~(2 = 0)`];
      ALL_TAC] THEN
    X_GEN_TAC `s:S` THEN UNDISCH_TAC
     `!s:S. s 
IN simplices /\ ~comp s
            ==> (
CARD {f:F | f 
IN faces /\ face f s /\ comp' f} = 0) \/
                (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = 2)` THEN
    DISCH_THEN(MP_TAC o SPEC `s:S`) THEN
    REWRITE_TAC[
IN_ELIM_THM] THEN CONV_TAC TAUT;
    ALL_TAC] THEN
  SUBGOAL_THEN
   `!n. sum {s | s 
IN simplices /\ ~(comp s) /\
             (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = n)}
            (\s:S. &(
CARD {f:F | f 
IN faces /\ face f s /\ comp' f})) =
        sum {s | s 
IN simplices /\ ~(comp s) /\
             (
CARD {f | f 
IN faces /\ face f s /\ comp' f} = n)}
            (\s:S. &n)`
   (fun th -> REWRITE_TAC[th])
  THENL
   [GEN_TAC THEN MATCH_MP_TAC 
SUM_EQ THEN ASM_SIMP_TAC[
FINITE_RESTRICT] THEN
    SIMP_TAC[
IN_ELIM_THM];
    ALL_TAC] THEN
  REWRITE_TAC[
SUM_0] THEN ASM_SIMP_TAC[
SUM_CONST; 
FINITE_RESTRICT] THEN
  REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
  REWRITE_TAC[
ADD_CLAUSES; 
MULT_CLAUSES] THEN
  FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [
ODD_EXISTS]) THEN
  DISCH_THEN(MP_TAC o AP_TERM `
ODD`) THEN
  REWRITE_TAC[
ODD_ADD; 
ODD_MULT; 
ARITH_ODD; 
ODD]);;
 
let KUHN_COMPLETE_LEMMA = prove
 (`!face:(A->bool)->(A->bool)->bool simplices rl bnd n.
        
FINITE simplices /\
        (!f s. face f s <=> ?a. a 
IN s /\ (f = s 
DELETE a)) /\
        (!s. s 
IN simplices ==> s 
HAS_SIZE (n + 2) /\
                                (
IMAGE rl s) 
SUBSET 0..n+1) /\
        (!f. f 
IN {f | ?s. s 
IN simplices /\ face f s} /\ bnd f
             ==> (
CARD {s | s 
IN simplices /\ face f s} = 1)) /\
        (!f. f 
IN {f | ?s. s 
IN simplices /\ face f s} /\ ~bnd f
             ==> (
CARD {s | s 
IN simplices /\ face f s} = 2))
        ==> 
ODD(
CARD {f | f 
IN {f | ?s. s 
IN simplices /\ face f s} /\
                          (
IMAGE rl f = 0..n) /\ bnd f})
            ==> 
ODD(
CARD {s | s 
IN simplices /\ (
IMAGE rl s = 0..n+1)})`,
 
let KLE_ANTISYM = prove
 (`!n x y. kle n x y /\ kle n y x <=> (x = y)`,
  REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[kle]; MESON_TAC[
KLE_REFL]] THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  ASM_REWRITE_TAC[
FUN_EQ_THM] THEN
  MESON_TAC[ARITH_RULE `(x = (x + a) + b) ==> (x = x + a:num)`]);;
 
let KLE_TRANS = prove
 (`!x y z n. kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x)
             ==> kle n x z`,
 
let KLE_STRICT = prove
 (`!n x y. kle n x y /\ ~(x = y)
           ==> (!j. x(j) <= y(j)) /\ (?k. 1 <= k /\ k <= n /\ x(k) < y(k))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[kle] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num->bool` MP_TAC) THEN
  ASM_CASES_TAC `k:num->bool = {}` THENL
   [ASM_REWRITE_TAC[
NOT_IN_EMPTY; 
ADD_CLAUSES; GSYM 
FUN_EQ_THM; ETA_AX];
    STRIP_TAC THEN ASM_REWRITE_TAC[
LE_ADD] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM 
MEMBER_NOT_EMPTY]) THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `i:num` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[ARITH_RULE `n < n + 1`] THEN
    ASM_MESON_TAC[
SUBSET; 
IN_NUMSEG]]);;
 
let KLE_MINIMAL = prove
 (`!s n. 
FINITE s /\ ~(s = {}) /\
         (!x y. x 
IN s /\ y 
IN s ==> kle n x y \/ kle n y x)
         ==> ?a. a 
IN s /\ !x. x 
IN s ==> kle n a x`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?a:num->num. a 
IN s /\ !x. x 
IN s ==> !j. a(j) <= x(j)`
  MP_TAC THENL
   [MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] POINTWISE_MINIMAL); ALL_TAC] THEN
  ASM_MESON_TAC[
POINTWISE_ANTISYM; 
KLE_IMP_POINTWISE]);;
 
let KLE_MAXIMAL = prove
 (`!s n. 
FINITE s /\ ~(s = {}) /\
         (!x y. x 
IN s /\ y 
IN s ==> kle n x y \/ kle n y x)
         ==> ?a. a 
IN s /\ !x. x 
IN s ==> kle n x a`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?a:num->num. a 
IN s /\ !x. x 
IN s ==> !j. x(j) <= a(j)`
  MP_TAC THENL
   [MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] POINTWISE_MAXIMAL); ALL_TAC] THEN
  ASM_MESON_TAC[
POINTWISE_ANTISYM; 
KLE_IMP_POINTWISE]);;
 
let KLE_RANGE_COMBINE = prove
 (`!n x y m1 m2.
        kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) /\
        m1 <= 
CARD {k | k 
IN 1..n /\ x(k) < y(k)} /\
        m2 <= 
CARD {k | k 
IN 1..n /\ y(k) < z(k)}
        ==> kle n x z /\ m1 + m2 <= 
CARD {k | k 
IN 1..n /\ x(k) < z(k)}`,
  REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [ASM_MESON_TAC[
KLE_TRANS]; DISCH_TAC] THEN
  MATCH_MP_TAC 
LE_TRANS THEN
  EXISTS_TAC `
CARD {k | k 
IN 1..n /\ x(k):num < y(k)} +
              
CARD {k | k 
IN 1..n /\ y(k) < z(k)}` THEN
  ASM_SIMP_TAC[
LE_ADD2] THEN MATCH_MP_TAC 
EQ_IMP_LE THEN
  MATCH_MP_TAC 
CARD_UNION_EQ THEN
  SIMP_TAC[
FINITE_RESTRICT; 
FINITE_NUMSEG] THEN
  REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_INTER; 
IN_UNION; 
NOT_IN_EMPTY] THEN
  CONJ_TAC THENL
   [ALL_TAC;
    ASM_MESON_TAC[
KLE_IMP_POINTWISE; ARITH_RULE
     `x <= y:num /\ y <= z ==> (x < y \/ y < z <=> x < z)`]] THEN
  X_GEN_TAC `i:num` THEN UNDISCH_TAC `kle n x z` THEN
  REWRITE_TAC[kle] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_CASES_TAC `i 
IN 1..n` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(ARITH_RULE `d <= 1 ==> ~(a < x /\ x < a + d)`) THEN
  COND_CASES_TAC THEN REWRITE_TAC[ARITH]);;
 
let KLE_RANGE_COMBINE_L = prove
 (`!n x y m.
        kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) /\
        m <= 
CARD {k | k 
IN 1..n /\ y(k) < z(k)}
        ==> kle n x z /\ m <= 
CARD {k | k 
IN 1..n /\ x(k) < z(k)}`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `x:num->num = y` THEN ASM_SIMP_TAC[] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  SUBGOAL_THEN `kle n x z /\ 1 + m <= 
CARD {k | k 
IN 1 .. n /\ x k < z k}`
   (fun th -> MESON_TAC[th; ARITH_RULE `1 + m <= x ==> m <= x`]) THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `y:num->num` THEN
  ASM_SIMP_TAC[
KLE_STRICT_SET]);;
 
let KLE_RANGE_COMBINE_R = prove
 (`!n x y m.
        kle n x y /\ kle n y z /\ (kle n x z \/ kle n z x) /\
        m <= 
CARD {k | k 
IN 1..n /\ x(k) < y(k)}
        ==> kle n x z /\ m <= 
CARD {k | k 
IN 1..n /\ x(k) < z(k)}`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `y:num->num = z` THEN ASM_SIMP_TAC[] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  SUBGOAL_THEN `kle n x z /\ m + 1 <= 
CARD {k | k 
IN 1 .. n /\ x k < z k}`
   (fun th -> MESON_TAC[th; ARITH_RULE `m + 1 <= x ==> m <= x`]) THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `y:num->num` THEN
  ASM_SIMP_TAC[
KLE_STRICT_SET]);;
 
let KLE_RANGE_INDUCT = prove
 (`!n m s. s 
HAS_SIZE (SUC m)
           ==> (!x y. x 
IN s /\ y 
IN s ==> kle n x y \/ kle n y x)
               ==> ?x y. x 
IN s /\ y 
IN s /\ kle n x y /\
                         m <= 
CARD {k | k 
IN 1..n /\ x(k) < y(k)}`,
  GEN_TAC THEN INDUCT_TAC THENL
   [GEN_TAC THEN REWRITE_TAC[ARITH; 
LE_0] THEN
    CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN MESON_TAC[
IN_SING; 
KLE_REFL];
    ALL_TAC] THEN
  X_GEN_TAC `s:(num->num)->bool` THEN
  ONCE_REWRITE_TAC[
HAS_SIZE_SUC] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`s:(num->num)->bool`; `n:num`] 
KLE_MINIMAL) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[
HAS_SIZE_SUC; 
HAS_SIZE]; ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `a:num->num` THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s 
DELETE (a:num->num)`) THEN
  REPEAT(ANTS_TAC THENL [ASM_MESON_TAC[
IN_DELETE]; ALL_TAC]) THEN
  DISCH_THEN(X_CHOOSE_THEN `x:num->num` MP_TAC) THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN
  REWRITE_TAC[
IN_DELETE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[ARITH_RULE `SUC m = 1 + m`] THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `x:num->num` THEN
  ASM_SIMP_TAC[
KLE_STRICT_SET]);;
 
let KLE_SUC = prove
 (`!n x y. kle n x y ==> kle (n + 1) x y`,
  REPEAT GEN_TAC THEN REWRITE_TAC[kle] THEN MATCH_MP_TAC 
MONO_EXISTS THEN
  REWRITE_TAC[
SUBSET; 
IN_NUMSEG] THEN
  MESON_TAC[ARITH_RULE `k <= n ==> k <= n + 1`]);;
 
let KLE_TRANS_2 = prove
 (`!a b c. kle n a b /\ kle n b c /\ (!j. c j <= a j + 1)
           ==> kle n a c`,
  REPEAT GEN_TAC THEN REWRITE_TAC[
IMP_CONJ] THEN
  REWRITE_TAC[kle] THEN
  DISCH_THEN(X_CHOOSE_THEN `kk1:num->bool` STRIP_ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `kk2:num->bool` STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th ->
    EXISTS_TAC `(kk1:num->bool) 
UNION kk2` THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[
UNION_SUBSET; 
IN_UNION] THEN
  MATCH_MP_TAC 
MONO_FORALL THEN X_GEN_TAC `i:num` THEN
  ASM_CASES_TAC `(i:num) 
IN kk1` THEN ASM_CASES_TAC `(i:num) 
IN kk2` THEN
  ASM_REWRITE_TAC[] THEN ARITH_TAC);;
 
let KLE_BETWEEN_R = prove
 (`!a b c x. kle n a b /\ kle n b c /\ kle n a x /\ kle n c x
             ==> kle n b x`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC 
KLE_TRANS_2 THEN
  EXISTS_TAC `c:num->num` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[
KLE_TRANS_1; ARITH_RULE
   `x <= c + 1 /\ c <= b ==> x <= b + 1`]);;
 
let KLE_BETWEEN_L = prove
 (`!a b c x. kle n a b /\ kle n b c /\ kle n x a /\ kle n x c
             ==> kle n x b`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC 
KLE_TRANS_2 THEN
  EXISTS_TAC `a:num->num` THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[
KLE_TRANS_1; ARITH_RULE
   `c <= x + 1 /\ b <= c ==> b <= x + 1`]);;
 
let KLE_ADJACENT = prove
 (`!a b x k.
        1 <= k /\ k <= n /\ (!j. b(j) = if j = k then a(j) + 1 else a(j)) /\
        kle n a x /\ kle n x b
        ==> (x = a) \/ (x = b)`,
  REPEAT STRIP_TAC THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP 
KLE_IMP_POINTWISE)) THEN
  ASM_REWRITE_TAC[
FUN_EQ_THM; IMP_IMP; 
AND_FORALL_THM] THEN
  ASM_CASES_TAC `(x:num->num) k = a k` THENL
   [DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th);
    DISCH_THEN(fun th -> DISJ2_TAC THEN MP_TAC th)] THEN
  MATCH_MP_TAC 
MONO_FORALL THEN GEN_TAC THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[
LE_ANTISYM] THEN
  ASM_MESON_TAC[ARITH_RULE
   `a <= x /\ x <= a + 1 /\ ~(x = a) ==> (x = a + 1)`]);;
 
let KSIMPLEX_EXTREMA = prove
 (`!p n s.
        ksimplex p n s
        ==> ?a b. a 
IN s /\ b 
IN s /\
                  (!x. x 
IN s ==> kle n a x /\ kle n x b) /\
                  (!i. b(i) = if 1 <= i /\ i <= n then a(i) + 1 else a(i))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ksimplex] THEN ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= 0 <=> F`; GSYM 
FUN_EQ_THM] THEN
    REWRITE_TAC[
ADD_CLAUSES; ETA_AX] THEN
    CONV_TAC(LAND_CONV(LAND_CONV HAS_SIZE_CONV)) THEN
    DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
    ASM_REWRITE_TAC[
IN_SING] THEN MESON_TAC[
KLE_REFL];
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`s:(num->num)->bool`; `n:num`] 
KLE_MINIMAL) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[
HAS_SIZE; 
HAS_SIZE_SUC; 
ADD1]; ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `a:num->num` THEN STRIP_TAC THEN
  MP_TAC(SPECL [`s:(num->num)->bool`; `n:num`] 
KLE_MAXIMAL) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[
HAS_SIZE; 
HAS_SIZE_SUC; 
ADD1]; ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN STRIP_TAC THEN
  ASM_SIMP_TAC[] THEN
  MP_TAC(SPECL [`n:num`; `n:num`; `s:(num->num)->bool`] 
KLE_RANGE_INDUCT) THEN
  ASM_REWRITE_TAC[
ADD1] THEN
  DISCH_THEN(X_CHOOSE_THEN `c:num->num` (X_CHOOSE_THEN `d:num->num`
    STRIP_ASSUME_TAC)) THEN
  SUBGOAL_THEN `{k | k 
IN 1 .. n /\ a k :num < b k} = 1..n` MP_TAC THENL
   [MATCH_MP_TAC 
CARD_SUBSET_LE THEN
    ASM_REWRITE_TAC[
CARD_NUMSEG; 
ADD_SUB; 
FINITE_NUMSEG; 
SUBSET_RESTRICT] THEN
    SUBGOAL_THEN `kle n a b /\ n <= 
CARD {k | k 
IN 1..n /\ a(k) < b(k)}`
     (fun th -> REWRITE_TAC[th]) THEN
    MATCH_MP_TAC 
KLE_RANGE_COMBINE_L THEN EXISTS_TAC `c:num->num` THEN
    ASM_SIMP_TAC[] THEN
    SUBGOAL_THEN `kle n c b /\ n <= 
CARD {k | k 
IN 1 .. n /\ c k < b k}`
     (fun th -> REWRITE_TAC[th]) THEN
    MATCH_MP_TAC 
KLE_RANGE_COMBINE_R THEN EXISTS_TAC `d:num->num` THEN
    ASM_SIMP_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `kle n a b` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [kle]) THEN
  ASM_REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_NUMSEG] THEN
  MATCH_MP_TAC 
MONO_FORALL THEN X_GEN_TAC `i:num` THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES; 
LT_REFL] THEN
  ASM_MESON_TAC[
SUBSET; 
IN_NUMSEG]);;
 
let KSIMPLEX_EXTREMA_STRONG = prove
 (`!p n s.
        ksimplex p n s /\ ~(n = 0)
        ==> ?a b. a 
IN s /\ b 
IN s /\ ~(a = b) /\
                  (!x. x 
IN s ==> kle n a x /\ kle n x b) /\
                  (!i. b(i) = if 1 <= i /\ i <= n then a(i) + 1 else a(i))`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP 
KSIMPLEX_EXTREMA) THEN
  REPEAT(MATCH_MP_TAC 
MONO_EXISTS THEN GEN_TAC) THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `1`) THEN
  ASM_REWRITE_TAC[
LE_REFL; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN ARITH_TAC);;
 
let KSIMPLEX_SUCCESSOR = prove
 (`!a p n s.
        ksimplex p n s /\ a 
IN s
        ==> (!x. x 
IN s ==> kle n x a) \/
            (?y. y 
IN s /\ ?k. 1 <= k /\ k <= n /\
                               !j. y(j) = if j = k then a(j) + 1 else a(j))`,
  REWRITE_TAC[ksimplex] THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
  REWRITE_TAC[
NOT_FORALL_THM; NOT_IMP] THEN DISCH_TAC THEN
  MP_TAC(SPECL [`{x | x 
IN s /\ ~kle n x a}`; `n:num`] 
KLE_MINIMAL) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[
HAS_SIZE]) THEN
  ASM_SIMP_TAC[
FINITE_RESTRICT] THEN
  ASM_SIMP_TAC[GSYM 
MEMBER_NOT_EMPTY; 
IN_ELIM_THM] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `1 <= 
CARD {k | k 
IN 1..n /\ a(k):num < b(k)}` MP_TAC THENL
   [MATCH_MP_TAC 
KLE_STRICT_SET THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP (ARITH_RULE
   `1 <= n ==> (n = 1) \/ 2 <= n`))
  THENL
   [DISCH_TAC THEN
    MP_TAC(HAS_SIZE_CONV `{k | k 
IN 1 .. n /\ a k :num < b k} 
HAS_SIZE 1`) THEN
    ASM_SIMP_TAC[
HAS_SIZE; 
FINITE_RESTRICT; 
FINITE_NUMSEG] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
    REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_SING; 
IN_NUMSEG] THEN
    DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN
    DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN
    MATCH_MP_TAC 
MONO_FORALL THEN X_GEN_TAC `i:num` THEN
    SUBGOAL_THEN `kle n a b` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [kle]) THEN
    ASM_REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_NUMSEG] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES; 
LT_REFL] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES; 
LT_REFL] THEN
    ASM_MESON_TAC[
SUBSET; 
IN_NUMSEG; ARITH_RULE `~(a + 1 = a)`;
                  ARITH_RULE `a < a + 1`];
    ALL_TAC] THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`n:num`; `
PRE(
CARD {x | x 
IN s /\ ~(kle n x a)})`;
                `{x | x 
IN s /\ ~(kle n x a)}`] 
KLE_RANGE_INDUCT) THEN
  ASM_SIMP_TAC[
HAS_SIZE; 
FINITE_RESTRICT; 
CARD_EQ_0; GSYM 
MEMBER_NOT_EMPTY;
    ARITH_RULE `(n = SUC(
PRE n)) <=> ~(n = 0)`] THEN
  REPEAT(ANTS_TAC THENL
   [REWRITE_TAC[
IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN
  DISCH_THEN(X_CHOOSE_THEN `c:num->num`
   (X_CHOOSE_THEN `d:num->num` MP_TAC)) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2
   (STRIP_ASSUME_TAC o REWRITE_RULE[
IN_ELIM_THM]) MP_TAC)) THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`n:num`; `
PRE(
CARD {x | x 
IN s /\ kle n x a})`;
                `{x | x 
IN s /\ kle n x a}`] 
KLE_RANGE_INDUCT) THEN
  ASM_SIMP_TAC[
HAS_SIZE; 
FINITE_RESTRICT; 
CARD_EQ_0; GSYM 
MEMBER_NOT_EMPTY;
    ARITH_RULE `(n = SUC(
PRE n)) <=> ~(n = 0)`] THEN
  REPEAT(ANTS_TAC THENL
   [REWRITE_TAC[
IN_ELIM_THM] THEN ASM_MESON_TAC[
KLE_REFL]; ALL_TAC]) THEN
  DISCH_THEN(X_CHOOSE_THEN `e:num->num`
    (X_CHOOSE_THEN `f:num->num` MP_TAC)) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2
   (STRIP_ASSUME_TAC o REWRITE_RULE[
IN_ELIM_THM]) MP_TAC)) THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `kle n e d /\ n + 1 <= 
CARD {k | k 
IN 1..n /\ e(k) < d(k)}`
  MP_TAC THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o CONJUNCT2) THEN
    REWRITE_TAC[ARITH_RULE `~(n + 1 <= x) <=> x <= n`] THEN
    MATCH_MP_TAC 
LE_TRANS THEN EXISTS_TAC `
CARD(1..n)` THEN
    SIMP_TAC[
CARD_SUBSET; 
SUBSET_RESTRICT; 
FINITE_RESTRICT; 
FINITE_NUMSEG] THEN
    REWRITE_TAC[
CARD_NUMSEG; 
ADD_SUB; 
LE_REFL]] THEN
  SUBGOAL_THEN
   `(
CARD {x | x 
IN s /\ kle n x a} - 1) +
    2 + (
CARD {x | x 
IN s /\ ~kle n x a} - 1) = n + 1`
   (SUBST1_TAC o SYM)
  THENL
   [MATCH_MP_TAC(ARITH_RULE
     `~(a = 0) /\ ~(b = 0) /\ (a + b = n + 1)
       ==> ((a - 1) + 2 + (b - 1) = n + 1)`) THEN
    ASM_SIMP_TAC[
CARD_EQ_0; 
FINITE_RESTRICT; GSYM 
MEMBER_NOT_EMPTY] THEN
    REPEAT (CONJ_TAC THENL
     [REWRITE_TAC[
IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o CONJUNCT2) THEN
    MATCH_MP_TAC 
CARD_UNION_EQ THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[
EXTENSION; 
NOT_IN_EMPTY; 
IN_INTER; 
IN_UNION; 
IN_ELIM_THM] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `a:num->num` THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL
   [W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n e a`,w))
     (fun th -> REWRITE_TAC[th])) THEN
    MATCH_MP_TAC 
KLE_RANGE_COMBINE_R THEN EXISTS_TAC `f:num->num` THEN
    ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 
PRE k`];
    ALL_TAC] THEN
  W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n a d`,w))
     (fun th -> REWRITE_TAC[th])) THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `b:num->num` THEN
  ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 
PRE k`] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n b d`,w))
     (fun th -> REWRITE_TAC[th])) THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE_L THEN EXISTS_TAC `c:num->num` THEN
  ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 
PRE k`] THEN ASM_MESON_TAC[
KLE_TRANS]);;
 
let KSIMPLEX_PREDECESSOR = prove
 (`!a p n s.
        ksimplex p n s /\ a 
IN s
        ==> (!x. x 
IN s ==> kle n a x) \/
            (?y. y 
IN s /\ ?k. 1 <= k /\ k <= n /\
                               !j. a(j) = if j = k then y(j) + 1 else y(j))`,
  REWRITE_TAC[ksimplex] THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[TAUT `a \/ b <=> ~a ==> b`] THEN
  REWRITE_TAC[
NOT_FORALL_THM; NOT_IMP] THEN DISCH_TAC THEN
  MP_TAC(SPECL [`{x | x 
IN s /\ ~kle n a x}`; `n:num`] 
KLE_MAXIMAL) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[
HAS_SIZE]) THEN
  ASM_SIMP_TAC[
FINITE_RESTRICT] THEN
  ASM_SIMP_TAC[GSYM 
MEMBER_NOT_EMPTY; 
IN_ELIM_THM] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `b:num->num` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `1 <= 
CARD {k | k 
IN 1..n /\ b(k):num < a(k)}` MP_TAC THENL
   [MATCH_MP_TAC 
KLE_STRICT_SET THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN MP_TAC o MATCH_MP (ARITH_RULE
   `1 <= n ==> (n = 1) \/ 2 <= n`))
  THENL
   [DISCH_TAC THEN
    MP_TAC(HAS_SIZE_CONV `{k | k 
IN 1 .. n /\ b k :num < a k} 
HAS_SIZE 1`) THEN
    ASM_SIMP_TAC[
HAS_SIZE; 
FINITE_RESTRICT; 
FINITE_NUMSEG] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
    REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_SING; 
IN_NUMSEG] THEN
    DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN
    DISCH_THEN(fun th -> CONJ_TAC THENL [MESON_TAC[th]; MP_TAC th]) THEN
    MATCH_MP_TAC 
MONO_FORALL THEN X_GEN_TAC `i:num` THEN
    SUBGOAL_THEN `kle n b a` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [kle]) THEN
    ASM_REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM; 
IN_NUMSEG] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES; 
LT_REFL] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[
ADD_CLAUSES; 
LT_REFL] THEN
    ASM_MESON_TAC[
SUBSET; 
IN_NUMSEG; ARITH_RULE `~(a + 1 = a)`;
                  ARITH_RULE `a < a + 1`];
    ALL_TAC] THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`n:num`; `
PRE(
CARD {x | x 
IN s /\ ~(kle n a x)})`;
                `{x | x 
IN s /\ ~(kle n a x)}`] 
KLE_RANGE_INDUCT) THEN
  ASM_SIMP_TAC[
HAS_SIZE; 
FINITE_RESTRICT; 
CARD_EQ_0; GSYM 
MEMBER_NOT_EMPTY;
    ARITH_RULE `(n = SUC(
PRE n)) <=> ~(n = 0)`] THEN
  REPEAT(ANTS_TAC THENL
   [REWRITE_TAC[
IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num->num`
   (X_CHOOSE_THEN `c:num->num` MP_TAC)) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2
   (STRIP_ASSUME_TAC o REWRITE_RULE[
IN_ELIM_THM]) MP_TAC)) THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`n:num`; `
PRE(
CARD {x | x 
IN s /\ kle n a x})`;
                `{x | x 
IN s /\ kle n a x}`] 
KLE_RANGE_INDUCT) THEN
  ASM_SIMP_TAC[
HAS_SIZE; 
FINITE_RESTRICT; 
CARD_EQ_0; GSYM 
MEMBER_NOT_EMPTY;
    ARITH_RULE `(n = SUC(
PRE n)) <=> ~(n = 0)`] THEN
  REPEAT(ANTS_TAC THENL
   [REWRITE_TAC[
IN_ELIM_THM] THEN ASM_MESON_TAC[
KLE_REFL]; ALL_TAC]) THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->num`
    (X_CHOOSE_THEN `e:num->num` MP_TAC)) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2
   (STRIP_ASSUME_TAC o REWRITE_RULE[
IN_ELIM_THM]) MP_TAC)) THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `kle n d e /\ n + 1 <= 
CARD {k | k 
IN 1..n /\ d(k) < e(k)}`
  MP_TAC THENL
   [ALL_TAC;
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
    DISCH_THEN(MP_TAC o CONJUNCT2) THEN
    REWRITE_TAC[ARITH_RULE `~(n + 1 <= x) <=> x <= n`] THEN
    MATCH_MP_TAC 
LE_TRANS THEN EXISTS_TAC `
CARD(1..n)` THEN
    SIMP_TAC[
CARD_SUBSET; 
SUBSET_RESTRICT; 
FINITE_RESTRICT; 
FINITE_NUMSEG] THEN
    REWRITE_TAC[
CARD_NUMSEG; 
ADD_SUB; 
LE_REFL]] THEN
  SUBGOAL_THEN
   `((
CARD {x | x 
IN s /\ ~kle n a x} - 1) + 2) +
    (
CARD {x | x 
IN s /\ kle n a x} - 1) = n + 1`
   (SUBST1_TAC o SYM)
  THENL
   [MATCH_MP_TAC(ARITH_RULE
     `~(a = 0) /\ ~(b = 0) /\ (a + b = n + 1)
       ==> (((b - 1) + 2) + (a - 1) = n + 1)`) THEN
    ASM_SIMP_TAC[
CARD_EQ_0; 
FINITE_RESTRICT; GSYM 
MEMBER_NOT_EMPTY] THEN
    REPEAT (CONJ_TAC THENL
     [REWRITE_TAC[
IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC]) THEN
    FIRST_ASSUM(SUBST1_TAC o SYM o CONJUNCT2) THEN
    MATCH_MP_TAC 
CARD_UNION_EQ THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[
EXTENSION; 
NOT_IN_EMPTY; 
IN_INTER; 
IN_UNION; 
IN_ELIM_THM] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `a:num->num` THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN CONJ_TAC THENL
   [ALL_TAC;
    W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n a e`,w))
     (fun th -> REWRITE_TAC[th])) THEN
    MATCH_MP_TAC 
KLE_RANGE_COMBINE_L THEN EXISTS_TAC `f:num->num` THEN
    ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 
PRE k`]] THEN
  W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n d a`,w))
     (fun th -> REWRITE_TAC[th])) THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE THEN EXISTS_TAC `b:num->num` THEN
  ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 
PRE k`] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_TRANS]; ALL_TAC] THEN
  W(fun(asl,w) -> SUBGOAL_THEN(mk_conj(`kle n d b`,w))
     (fun th -> REWRITE_TAC[th])) THEN
  MATCH_MP_TAC 
KLE_RANGE_COMBINE_R THEN EXISTS_TAC `c:num->num` THEN
  ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 
PRE k`] THEN ASM_MESON_TAC[
KLE_TRANS]);;
 
let SIMPLEX_TOP_FACE = prove
 (`0 < p /\
   (!x. x 
IN f ==> (x(n + 1) = p))
   ==> ((?s a. ksimplex p (n + 1) s /\ a 
IN s /\ (f = s 
DELETE a)) <=>
        ksimplex p n f)`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[ksimplex; 
LEFT_IMP_EXISTS_THM] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[
IN_DELETE] THEN
    REPEAT CONJ_TAC THENL
     [UNDISCH_TAC `(s:(num->num)->bool) 
HAS_SIZE ((n + 1) + 1)` THEN
      SIMP_TAC[
HAS_SIZE; 
CARD_DELETE; 
FINITE_DELETE] THEN
      ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ARITH_TAC;
      REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
      GEN_TAC THEN X_GEN_TAC `j:num` THEN
      ONCE_REWRITE_TAC[ARITH_RULE
       `(1 <= j /\ j <= n) <=> (1 <= j /\ j <= n + 1) /\ ~(j = (n + 1))`] THEN
      ASM_MESON_TAC[
IN_DELETE];
      REPEAT STRIP_TAC THEN
      SUBGOAL_THEN `kle (n + 1) x y \/ kle (n + 1) y x` MP_TAC THENL
       [ASM_MESON_TAC[]; ALL_TAC] THEN
      MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN
      (REWRITE_TAC[kle] THEN
       MATCH_MP_TAC 
MONO_EXISTS THEN
       REWRITE_TAC[GSYM 
ADD1; 
NUMSEG_CLAUSES; ARITH_RULE `1 <= SUC n`] THEN
       X_GEN_TAC `k:num->bool` THEN SIMP_TAC[] THEN
       REWRITE_TAC[
SUBSET; 
IN_INSERT] THEN
       ASM_CASES_TAC `(SUC n) 
IN k` THENL
        [ALL_TAC; ASM_MESON_TAC[]] THEN
       DISCH_THEN(MP_TAC o SPEC `n + 1` o CONJUNCT2) THEN
       ASM_REWRITE_TAC[GSYM 
ADD1] THEN
       ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
       MATCH_MP_TAC(ARITH_RULE `(x = p) /\ (y = p) ==> ~(x = SUC y)`) THEN
       CONJ_TAC THEN ASM_MESON_TAC[
ADD1; 
IN_DELETE])];
    ALL_TAC] THEN
  DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP 
KSIMPLEX_EXTREMA) THEN
  DISCH_THEN(X_CHOOSE_THEN `a:num->num` (X_CHOOSE_THEN `b:num->num`
    STRIP_ASSUME_TAC)) THEN
  ABBREV_TAC `c = \i. if i = (n + 1) then p - 1 else a(i)` THEN
  MAP_EVERY EXISTS_TAC [`(c:num->num) 
INSERT f`; `c:num->num`] THEN
  REWRITE_TAC[
IN_INSERT; 
DELETE_INSERT] THEN
  SUBGOAL_THEN `~((c:num->num) 
IN f)` ASSUME_TAC THENL
   [DISCH_TAC THEN UNDISCH_TAC `!x:num->num. x 
IN f ==> (x (n + 1) = p)` THEN
    DISCH_THEN(MP_TAC o SPEC `c:num->num`) THEN ASM_REWRITE_TAC[] THEN
    EXPAND_TAC "c" THEN REWRITE_TAC[] THEN UNDISCH_TAC `0 < p` THEN ARITH_TAC;
    ALL_TAC] THEN
  CONJ_TAC THENL
   [ALL_TAC; UNDISCH_TAC `~((c:num->num) 
IN f)` THEN SET_TAC[]] THEN
  UNDISCH_TAC `ksimplex p n f` THEN REWRITE_TAC[ksimplex] THEN
  REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THENL
   [SIMP_TAC[
HAS_SIZE; 
FINITE_RULES; 
CARD_CLAUSES] THEN ASM_REWRITE_TAC[
ADD1];
    EXPAND_TAC "c" THEN REWRITE_TAC[
IN_INSERT] THEN
    SIMP_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN
    ASM_MESON_TAC[ARITH_RULE `p - 1 <= p`];
    EXPAND_TAC "c" THEN REWRITE_TAC[
IN_INSERT; TAUT
      `(a \/ b) /\ c ==> d <=> (a /\ c ==> d) /\ (b /\ c ==> d)`] THEN
    DISCH_TAC THEN REPEAT GEN_TAC THEN CONJ_TAC THENL
     [DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC); ALL_TAC] THEN
    ASM_MESON_TAC[
LE_REFL; ARITH_RULE `1 <= n + 1`;
                  ARITH_RULE `j <= n ==> j <= n + 1`];
    ALL_TAC] THEN
  DISCH_TAC THEN REWRITE_TAC[
IN_INSERT] THEN
  SUBGOAL_THEN `!x. x 
IN f ==> kle (n + 1) c x`
    (fun th -> ASM_MESON_TAC[th; 
KLE_SUC; 
KLE_REFL]) THEN
  X_GEN_TAC `x:num->num` THEN DISCH_TAC THEN
  SUBGOAL_THEN `kle (n + 1) a x` MP_TAC THENL
   [ASM_MESON_TAC[
KLE_SUC]; ALL_TAC] THEN
  EXPAND_TAC "c" THEN REWRITE_TAC[kle] THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num->bool` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `(n + 1) 
INSERT k` THEN
  ASM_REWRITE_TAC[
INSERT_SUBSET; 
IN_NUMSEG] THEN
  ASM_REWRITE_TAC[
LE_REFL; ARITH_RULE `1 <= n + 1`] THEN
  X_GEN_TAC `j:num` THEN REWRITE_TAC[
IN_INSERT] THEN
  ASM_CASES_TAC `j = n + 1` THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `~(n + 1 
IN k)`
   (fun th -> ASM_MESON_TAC[th; ARITH_RULE `0 < p ==> (p = (p - 1) + 1)`]) THEN
  DISCH_TAC THEN UNDISCH_TAC `!x:num->num. x 
IN f ==> (x (n + 1) = p)` THEN
  DISCH_THEN(fun th -> MP_TAC(SPEC `x:num->num` th) THEN
                       MP_TAC(SPEC `a:num->num` th)) THEN
  ASM_REWRITE_TAC[] THEN MESON_TAC[ARITH_RULE `~(p + 1 = p)`]);;
 
let KSIMPLEX_FIX_PLANE = prove
 (`!p q n j s a a0 a1.
        ksimplex p n s /\ a 
IN s /\
        1 <= j /\ j <= n /\ (!x. x 
IN (s 
DELETE a) ==> (x j = q)) /\
        a0 
IN s /\ a1 
IN s /\
        (!i. a1 i = (if 1 <= i /\ i <= n then a0 i + 1 else a0 i))
        ==> (a = a0) \/ (a = a1)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(~a /\ ~b ==> F) ==> a \/ b`) THEN STRIP_TAC THEN
  UNDISCH_TAC `!x:num->num. x 
IN s 
DELETE a ==> (x j = q)` THEN
  DISCH_THEN(fun th ->
   MP_TAC(SPEC `a0:num->num` th) THEN MP_TAC(SPEC `a1:num->num` th)) THEN
  ASM_REWRITE_TAC[
IN_DELETE] THEN ARITH_TAC);;
 
let KSIMPLEX_FIX_PLANE_0 = prove
 (`!p n j s a a0 a1.
        ksimplex p n s /\ a 
IN s /\
        1 <= j /\ j <= n /\ (!x. x 
IN (s 
DELETE a) ==> (x j = 0)) /\
        a0 
IN s /\ a1 
IN s /\
        (!i. a1 i = (if 1 <= i /\ i <= n then a0 i + 1 else a0 i))
        ==> (a = a1)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `(a = a0) \/ (a = a1:num->num)` MP_TAC THENL
   [MATCH_MP_TAC 
KSIMPLEX_FIX_PLANE THEN
    MAP_EVERY EXISTS_TAC
     [`p:num`; `0`; `n:num`; `j:num`; `s:(num->num)->bool`] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  ASM_CASES_TAC `a0:num->num = a1` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `~a ==> (a \/ b ==> b)`) THEN
  DISCH_THEN SUBST_ALL_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `a1:num->num`) THEN
  ASM_REWRITE_TAC[
IN_DELETE] THEN ARITH_TAC);;
 
let KSIMPLEX_FIX_PLANE_P = prove
 (`!p n j s a a0 a1.
        ksimplex p n s /\ a 
IN s /\
        1 <= j /\ j <= n /\ (!x. x 
IN (s 
DELETE a) ==> (x j = p)) /\
        a0 
IN s /\ a1 
IN s /\
        (!i. a1 i = (if 1 <= i /\ i <= n then a0 i + 1 else a0 i))
        ==> (a = a0)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `(a = a0) \/ (a = a1:num->num)` MP_TAC THENL
   [MATCH_MP_TAC 
KSIMPLEX_FIX_PLANE THEN
    MAP_EVERY EXISTS_TAC
     [`p:num`; `p:num`; `n:num`; `j:num`; `s:(num->num)->bool`] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  ASM_CASES_TAC `a0:num->num = a1` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `~b ==> (a \/ b ==> a)`) THEN
  DISCH_THEN SUBST_ALL_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `a0:num->num`) THEN
  ASM_REWRITE_TAC[
IN_DELETE] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ksimplex]) THEN
  DISCH_THEN(MP_TAC o SPEC `a1:num->num` o CONJUNCT1 o CONJUNCT2) THEN
  DISCH_THEN(MP_TAC o SPEC `j:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);;
 
let KSIMPLEX_REPLACE_0 = prove
 (`ksimplex p n s /\ a 
IN s /\ ~(n = 0) /\
   (?j. 1 <= j /\ j <= n /\ !x. x 
IN (s 
DELETE a) ==> (x j = 0))
   ==> (
CARD
         {s' | ksimplex p n s' /\ ?b. b 
IN s' /\ (s' 
DELETE b = s 
DELETE a)} =
        1)`,
  let lemma = prove
   (`!a a'. (s' DELETE a' = s DELETE a) /\ (a' = a) /\ a' IN s' /\ a IN s
            ==> (s' = s)`,
    SET_TAC[]) in
  REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_CARD THEN
  REWRITE_TAC[HAS_SIZE_1_EXISTS] THEN REWRITE_TAC[IN_ELIM_THM] THEN
  SUBGOAL_THEN
   `!s' a'. ksimplex p n s' /\ a' IN s' /\ (s' DELETE a' = s DELETE a)
            ==> (s' = s)`
   (fun th -> ASM_MESON_TAC[th]) THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`]
       KSIMPLEX_EXTREMA_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `a0:num->num` (X_CHOOSE_THEN `a1:num->num`
    STRIP_ASSUME_TAC)) THEN
  MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`]
       KSIMPLEX_EXTREMA_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `b0:num->num` (X_CHOOSE_THEN `b1:num->num`
    STRIP_ASSUME_TAC)) THEN
  SUBGOAL_THEN `a:num->num = a1` SUBST_ALL_TAC THENL
   [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_0 THEN MAP_EVERY EXISTS_TAC
     [`p:num`; `n:num`; `j:num`; `s:(num->num)->bool`; `a0:num->num`] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `a':num->num = b1` SUBST_ALL_TAC THENL
   [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_0 THEN MAP_EVERY EXISTS_TAC
     [`p:num`; `n:num`; `j:num`; `s':(num->num)->bool`; `b0:num->num`] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC lemma THEN
  MAP_EVERY EXISTS_TAC [`a1:num->num`; `b1:num->num`] THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `b0:num->num = a0` MP_TAC THENL
   [ONCE_REWRITE_TAC[GSYM KLE_ANTISYM] THEN ASM_MESON_TAC[IN_DELETE];
    ASM_REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]]);;  
let KSIMPLEX_REPLACE_1 = prove
 (`ksimplex p n s /\ a 
IN s /\ ~(n = 0) /\
   (?j. 1 <= j /\ j <= n /\ !x. x 
IN (s 
DELETE a) ==> (x j = p))
   ==> (
CARD
         {s' | ksimplex p n s' /\ ?b. b 
IN s' /\ (s' 
DELETE b = s 
DELETE a)} =
        1)`,
  let lemma = prove
   (`!a a'. (s' DELETE a' = s DELETE a) /\ (a' = a) /\ a' IN s' /\ a IN s
            ==> (s' = s)`,
    SET_TAC[]) in
  REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_SIZE_CARD THEN
  REWRITE_TAC[HAS_SIZE_1_EXISTS] THEN REWRITE_TAC[IN_ELIM_THM] THEN
  SUBGOAL_THEN
   `!s' a'. ksimplex p n s' /\ a' IN s' /\ (s' DELETE a' = s DELETE a)
            ==> (s' = s)`
   (fun th -> ASM_MESON_TAC[th]) THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`]
       KSIMPLEX_EXTREMA_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `a0:num->num` (X_CHOOSE_THEN `a1:num->num`
    STRIP_ASSUME_TAC)) THEN
  MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`]
       KSIMPLEX_EXTREMA_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `b0:num->num` (X_CHOOSE_THEN `b1:num->num`
    STRIP_ASSUME_TAC)) THEN
  SUBGOAL_THEN `a:num->num = a0` SUBST_ALL_TAC THENL
   [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_P THEN MAP_EVERY EXISTS_TAC
     [`p:num`; `n:num`; `j:num`; `s:(num->num)->bool`; `a1:num->num`] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `a':num->num = b0` SUBST_ALL_TAC THENL
   [MATCH_MP_TAC KSIMPLEX_FIX_PLANE_P THEN MAP_EVERY EXISTS_TAC
     [`p:num`; `n:num`; `j:num`; `s':(num->num)->bool`; `b1:num->num`] THEN
    ASM_REWRITE_TAC[];
    ALL_TAC] THEN
  MATCH_MP_TAC lemma THEN
  MAP_EVERY EXISTS_TAC [`a0:num->num`; `b0:num->num`] THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `b1:num->num = a1` MP_TAC THENL
   [ONCE_REWRITE_TAC[GSYM KLE_ANTISYM] THEN ASM_MESON_TAC[IN_DELETE];
    ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
    MESON_TAC[EQ_ADD_RCANCEL]]);;  
let KSIMPLEX_REPLACE_2 = prove
 (`ksimplex p n s /\ a 
IN s /\ ~(n = 0) /\
   ~(?j. 1 <= j /\ j <= n /\ !x. x 
IN (s 
DELETE a) ==> (x j = 0)) /\
   ~(?j. 1 <= j /\ j <= n /\ !x. x 
IN (s 
DELETE a) ==> (x j = p))
   ==> (
CARD
         {s' | ksimplex p n s' /\ ?b. b 
IN s' /\ (s' 
DELETE b = s 
DELETE a)} =
        2)`,
  let lemma = prove
   (`!a a'. (s' DELETE a' = s DELETE a) /\ (a' = a) /\ a' IN s' /\ a IN s
            ==> (s' = s)`,
    SET_TAC[])
  and lemma_1 = prove
   (`a IN s /\ ~(b = a) ==> ~(s = b INSERT (s DELETE a))`,
    SET_TAC[]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`]
       KSIMPLEX_EXTREMA_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `a0:num->num` (X_CHOOSE_THEN `a1:num->num`
   STRIP_ASSUME_TAC)) THEN
  ASM_CASES_TAC `a:num->num = a0` THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN
    MP_TAC(SPECL [`a0:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`]
                 KSIMPLEX_SUCCESSOR) THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL
     [DISCH_THEN(MP_TAC o SPEC `a1:num->num`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `1` o MATCH_MP KLE_IMP_POINTWISE) THEN
      ASM_REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; ARITH] THEN ARITH_TAC;
      ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `a2:num->num`
     (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
    ABBREV_TAC `a3 = \j:num. if j = k then a1 j + 1 else a1 j` THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN
    REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
    MATCH_MP_TAC HAS_SIZE_CARD THEN CONV_TAC HAS_SIZE_CONV THEN
    MAP_EVERY EXISTS_TAC
     [`s:(num->num)->bool`; `a3 INSERT (s DELETE (a0:num->num))`] THEN
    SUBGOAL_THEN `~((a3:num->num) IN s)` ASSUME_TAC THENL
     [DISCH_TAC THEN SUBGOAL_THEN `kle n a3 a1` MP_TAC THENL
       [ASM_MESON_TAC[]; ALL_TAC] THEN
      DISCH_THEN(MP_TAC o SPEC `k:num` o MATCH_MP KLE_IMP_POINTWISE) THEN
      ASM_REWRITE_TAC[LE_REFL] THEN ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `~(a3:num->num = a0) /\ ~(a3 = a1)` STRIP_ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `~(a2:num->num = a0)` ASSUME_TAC THENL
     [ASM_REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[ARITH_RULE `~(x + 1 = x)`];
      ALL_TAC] THEN
    CONJ_TAC THENL [MATCH_MP_TAC lemma_1 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `!x. x IN (s DELETE a0) ==> kle n a2 x` ASSUME_TAC THENL
     [GEN_TAC THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN
      SUBGOAL_THEN `kle n a2 x \/ kle n x a2` MP_TAC THENL
       [ASM_MESON_TAC[ksimplex]; ALL_TAC] THEN
      MATCH_MP_TAC(TAUT `(~b ==> ~a) ==> b \/ a ==> b`) THEN
      DISCH_TAC THEN SUBGOAL_THEN `kle n a0 x` MP_TAC THENL
       [ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN
      SUBGOAL_THEN `(x:num->num = a0) \/ (x = a2)`
       (fun th -> ASM_MESON_TAC[KLE_REFL; th]) THEN
      MATCH_MP_TAC KLE_ADJACENT THEN
      EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN `ksimplex p n (a3 INSERT (s DELETE a0))` ASSUME_TAC THENL
     [MP_TAC(ASSUME `ksimplex p n s`) THEN REWRITE_TAC[ksimplex] THEN
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
       [SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE; CARD_CLAUSES;
                 CARD_DELETE] THEN
        ASM_REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ARITH_TAC;
        ALL_TAC] THEN
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
       [DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
        SUBGOAL_THEN `!j. (a3:num->num) j <= p`
         (fun th -> ASM_MESON_TAC[th]) THEN
        X_GEN_TAC `j:num` THEN ONCE_ASM_REWRITE_TAC[] THEN COND_CASES_TAC THENL
         [ALL_TAC; ASM_MESON_TAC[]] THEN
        FIRST_X_ASSUM SUBST_ALL_TAC THEN
        UNDISCH_TAC
         `~(?j. 1 <= j /\ j <= n /\
                (!x. x IN s DELETE a0 ==> (x j = (p:num))))` THEN
        REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN
        REWRITE_TAC[ASSUME `1 <= k`; ASSUME `k:num <= n`; NOT_FORALL_THM] THEN
        DISCH_THEN(X_CHOOSE_THEN `a4:num->num` MP_TAC) THEN
        REWRITE_TAC[IN_DELETE; NOT_IMP] THEN STRIP_TAC THEN
        UNDISCH_TAC `!x. x IN s DELETE a0 ==> kle n a2 x` THEN
        DISCH_THEN(MP_TAC o SPEC `a4:num->num`) THEN
        ASM_REWRITE_TAC[IN_DELETE] THEN
        DISCH_THEN(MP_TAC o MATCH_MP KLE_IMP_POINTWISE) THEN
        ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN
        ASM_REWRITE_TAC[] THEN
        UNDISCH_TAC `~((a4:num->num) k = p)` THEN
        SUBGOAL_THEN `(a4:num->num) k <= p` MP_TAC THENL
         [ASM_MESON_TAC[ksimplex]; ARITH_TAC];
        ALL_TAC] THEN
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
       [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN REPEAT STRIP_TAC THENL
         [ALL_TAC; ASM_MESON_TAC[]] THEN
        FIRST_X_ASSUM SUBST_ALL_TAC THEN
        ONCE_ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
        ALL_TAC] THEN
      DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
      SUBGOAL_THEN `!x. x IN s /\ ~(x = a0) ==> kle n x a3`
       (fun th -> ASM_MESON_TAC[th; KLE_REFL]) THEN
      X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN
      SUBGOAL_THEN `kle n a2 x /\ kle n x a1` MP_TAC THENL
       [ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN
      REWRITE_TAC[IMP_CONJ] THEN
      DISCH_THEN(MP_TAC o SPEC `k:num` o MATCH_MP KLE_IMP_POINTWISE) THEN
      DISCH_TAC THEN REWRITE_TAC[kle] THEN
      DISCH_THEN(X_CHOOSE_THEN `kk:num->bool` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(k:num) INSERT kk` THEN
      REWRITE_TAC[INSERT_SUBSET; IN_NUMSEG] THEN
      CONJ_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
      X_GEN_TAC `j:num` THEN
      FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN
      REWRITE_TAC[IN_INSERT] THEN ASM_CASES_TAC `j:num = k` THENL
       [ALL_TAC; ASM_MESON_TAC[]] THEN
      FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[] THEN
      FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (ARITH_RULE
       `a2 <= x ==> !a0. x <= a1 /\ (a1 = a0 + 1) /\ (a2 = a0 + 1)
             ==> (a1 + 1 = x + 1)`)) THEN
      EXISTS_TAC `(a0:num->num) k` THEN
      ASM_MESON_TAC[KLE_IMP_POINTWISE];
      ALL_TAC] THEN
    GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
    X_GEN_TAC `s':(num->num)->bool` THEN EQ_TAC THENL
     [ALL_TAC;
      DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL
       [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
      ASM_REWRITE_TAC[] THEN EXISTS_TAC `a3:num->num` THEN
      REWRITE_TAC[IN_INSERT; DELETE_INSERT] THEN
      UNDISCH_TAC `~((a3:num->num) IN s)` THEN SET_TAC[]] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `a':num->num` STRIP_ASSUME_TAC) THEN
    MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`]
                 KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `a_min:num->num` (X_CHOOSE_THEN `a_max:num->num`
      STRIP_ASSUME_TAC)) THEN
    SUBGOAL_THEN `(a':num->num = a_min) \/ (a' = a_max)` MP_TAC THENL
     [MATCH_MP_TAC KSIMPLEX_FIX_PLANE THEN MAP_EVERY EXISTS_TAC
       [`p:num`; `(a2:num->num) k`; `n:num`;
        `k:num`; `s':(num->num)->bool`] THEN
      REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN
      X_GEN_TAC `x:num->num` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      SUBGOAL_THEN `kle n a2 x /\ kle n x a1` MP_TAC THENL
       [ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN
      DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `k:num` o MATCH_MP
        KLE_IMP_POINTWISE)) THEN
      ASM_REWRITE_TAC[] THEN ARITH_TAC;
      ALL_TAC] THEN
    DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL
     [DISJ1_TAC THEN MATCH_MP_TAC lemma THEN
      MAP_EVERY EXISTS_TAC [`a0:num->num`; `a_min:num->num`] THEN
      ASM_REWRITE_TAC[] THEN
      SUBGOAL_THEN `a_max:num->num = a1` MP_TAC THENL
       [SUBGOAL_THEN `a1:num->num IN (s' DELETE a_min) /\
                      a_max:num->num IN (s DELETE a0)`
        MP_TAC THENL
         [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]];
        ALL_TAC] THEN
      ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
      MESON_TAC[EQ_ADD_RCANCEL];
      DISJ2_TAC THEN MATCH_MP_TAC lemma THEN
      MAP_EVERY EXISTS_TAC [`a3:num->num`; `a_max:num->num`] THEN
      ASM_REWRITE_TAC[IN_INSERT] THEN CONJ_TAC THENL
       [UNDISCH_TAC `~(a3:num->num IN s)` THEN SET_TAC[]; ALL_TAC] THEN
      SUBGOAL_THEN `a_min:num->num = a2` MP_TAC THENL
       [SUBGOAL_THEN `a2:num->num IN (s' DELETE a_max) /\
                      a_min:num->num IN (s DELETE a0)`
        MP_TAC THENL
         [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]];
        ALL_TAC] THEN
      ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
      MESON_TAC[EQ_ADD_RCANCEL]];
    ALL_TAC] THEN
  ASM_CASES_TAC `a:num->num = a1` THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN
    MP_TAC(SPECL [`a1:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`]
                 KSIMPLEX_PREDECESSOR) THEN
    ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
    MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL
     [DISCH_THEN(MP_TAC o SPEC `a0:num->num`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `1` o MATCH_MP KLE_IMP_POINTWISE) THEN
      ASM_REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; ARITH] THEN ARITH_TAC;
      ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `a2:num->num`
     (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `!x. x IN (s DELETE a1) ==> kle n x a2` ASSUME_TAC THENL
     [GEN_TAC THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN
      SUBGOAL_THEN `kle n a2 x \/ kle n x a2` MP_TAC THENL
       [ASM_MESON_TAC[ksimplex]; ALL_TAC] THEN
      MATCH_MP_TAC(TAUT `(~b ==> ~a) ==> a \/ b ==> b`) THEN
      DISCH_TAC THEN SUBGOAL_THEN `kle n x a1` MP_TAC THENL
       [ASM_MESON_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN
      SUBGOAL_THEN `(x:num->num = a2) \/ (x = a1)`
       (fun th -> ASM_MESON_TAC[KLE_REFL; th]) THEN
      MATCH_MP_TAC KLE_ADJACENT THEN EXISTS_TAC `k:num` THEN
      REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_ACCEPT_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `~(a2:num->num = a1)` ASSUME_TAC THENL
     [REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[ARITH_RULE `~(x + 1 = x)`];
      ALL_TAC] THEN
    ABBREV_TAC `a3 = \j:num. if j = k then a0 j - 1 else a0 j` THEN
    SUBGOAL_THEN `!j:num. a0(j) = if j = k then a3(j) + 1 else a3 j`
    ASSUME_TAC THENL
     [X_GEN_TAC `j:num` THEN EXPAND_TAC "a3" THEN REWRITE_TAC[] THEN
      COND_CASES_TAC THEN
      REWRITE_TAC[ARITH_RULE `(a = a - 1 + 1) <=> ~(a = 0)`] THEN
      FIRST_X_ASSUM SUBST_ALL_TAC THEN DISCH_TAC THEN
      UNDISCH_TAC `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` THEN
      DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[ARITH_RULE `(0 + 1 = x + 1) <=> (x = 0)`] THEN DISCH_TAC THEN
      UNDISCH_TAC
       `~(?j. 1 <= j /\ j <= n /\ (!x. x IN s DELETE a1 ==> (x j = 0)))` THEN
      REWRITE_TAC[NOT_EXISTS_THM] THEN EXISTS_TAC `k:num` THEN
      ASM_MESON_TAC[KLE_IMP_POINTWISE; LE];
      ALL_TAC] THEN
    SUBGOAL_THEN `~(kle n a0 a3)` ASSUME_TAC THENL
     [ASM_MESON_TAC[KLE_IMP_POINTWISE; ARITH_RULE `~(a + 1 <= a)`];
      ALL_TAC] THEN
    SUBGOAL_THEN `~(a3:num->num IN s)` ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `kle n a3 a2` ASSUME_TAC THENL
     [SUBGOAL_THEN `kle n a0 a1` MP_TAC THENL
       [ASM_MESON_TAC[]; ALL_TAC] THEN
      REWRITE_TAC[kle] THEN MATCH_MP_TAC MONO_EXISTS THEN
      GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
      ONCE_REWRITE_TAC[
        ASSUME `!j:num. a0 j = (if j = k then a3 j + 1 else a3 j)`;
        ASSUME `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)`] THEN
      REPEAT(COND_CASES_TAC THEN REWRITE_TAC[]) THEN ARITH_TAC;
      ALL_TAC] THEN
    SUBGOAL_THEN `kle n a3 a0` ASSUME_TAC THENL
     [REWRITE_TAC[kle] THEN EXISTS_TAC `{k:num}` THEN
      ASM_REWRITE_TAC[SUBSET; IN_SING; IN_NUMSEG] THEN
      ASM_MESON_TAC[ADD_CLAUSES];
      ALL_TAC] THEN
    MATCH_MP_TAC HAS_SIZE_CARD THEN CONV_TAC HAS_SIZE_CONV THEN
    MAP_EVERY EXISTS_TAC
     [`s:(num->num)->bool`; `a3 INSERT (s DELETE (a1:num->num))`] THEN
    SUBGOAL_THEN `~(a3:num->num = a1) /\ ~(a3 = a0)` STRIP_ASSUME_TAC THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    CONJ_TAC THENL [MATCH_MP_TAC lemma_1 THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `ksimplex p n (a3 INSERT (s DELETE a1))` ASSUME_TAC THENL
     [MP_TAC(ASSUME `ksimplex p n s`) THEN REWRITE_TAC[ksimplex] THEN
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
       [SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE; CARD_CLAUSES;
                 CARD_DELETE] THEN
        ASM_REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN ARITH_TAC;
        ALL_TAC] THEN
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
       [DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
        SUBGOAL_THEN `!j. (a3:num->num) j <= p`
         (fun th -> ASM_MESON_TAC[th]) THEN
        X_GEN_TAC `j:num` THEN
        FIRST_X_ASSUM(MP_TAC o SPECL [`a0:num->num`; `j:num`]) THEN
        ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ARITH_TAC;
        ALL_TAC] THEN
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
       [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN REPEAT STRIP_TAC THENL
         [ALL_TAC; ASM_MESON_TAC[]] THEN
        FIRST_X_ASSUM SUBST_ALL_TAC THEN
        EXPAND_TAC "a3" THEN REWRITE_TAC[] THEN ASM_MESON_TAC[];
        ALL_TAC] THEN
      DISCH_TAC THEN REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
      SUBGOAL_THEN `!x. x IN s /\ ~(x = a1) ==> kle n a3 x`
       (fun th -> ASM_MESON_TAC[th; KLE_REFL]) THEN
      X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN
      MATCH_MP_TAC KLE_BETWEEN_L THEN
      MAP_EVERY EXISTS_TAC [`a0:num->num`; `a2:num->num`] THEN
      ASM_MESON_TAC[IN_DELETE];
      ALL_TAC] THEN
    GEN_REWRITE_TAC I [EXTENSION] THEN
    REWRITE_TAC[IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
    X_GEN_TAC `s':(num->num)->bool` THEN EQ_TAC THENL
     [ALL_TAC;
      DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL
       [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
      ASM_REWRITE_TAC[] THEN EXISTS_TAC `a3:num->num` THEN
      REWRITE_TAC[IN_INSERT; DELETE_INSERT] THEN
      UNDISCH_TAC `~((a3:num->num) IN s)` THEN SET_TAC[]] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `a':num->num` STRIP_ASSUME_TAC) THEN
    MP_TAC(SPECL [`p:num`; `n:num`; `s':(num->num)->bool`]
                 KSIMPLEX_EXTREMA_STRONG) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `a_min:num->num` (X_CHOOSE_THEN `a_max:num->num`
      STRIP_ASSUME_TAC)) THEN
    SUBGOAL_THEN `(a':num->num = a_min) \/ (a' = a_max)` MP_TAC THENL
     [MATCH_MP_TAC KSIMPLEX_FIX_PLANE THEN MAP_EVERY EXISTS_TAC
       [`p:num`; `(a2:num->num) k`; `n:num`;
        `k:num`; `s':(num->num)->bool`] THEN
      REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM MATCH_ACCEPT_TAC) THEN
      X_GEN_TAC `x:num->num` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
      SUBGOAL_THEN `kle n a0 x /\ kle n x a2` MP_TAC THENL
       [ASM_MESON_TAC[IN_DELETE]; ALL_TAC] THEN
      DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `k:num` o MATCH_MP
        KLE_IMP_POINTWISE)) THEN
      SUBGOAL_THEN `(a2:num->num) k <= a0 k`
        (fun th -> MP_TAC th THEN ARITH_TAC) THEN
      UNDISCH_TAC `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` THEN
      DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC;
      ALL_TAC] THEN
    DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THENL
     [DISJ2_TAC THEN MATCH_MP_TAC lemma THEN
      MAP_EVERY EXISTS_TAC [`a3:num->num`; `a_min:num->num`] THEN
      ASM_REWRITE_TAC[IN_INSERT] THEN CONJ_TAC THENL
       [UNDISCH_TAC `~(a3:num->num IN s)` THEN SET_TAC[]; ALL_TAC] THEN
      SUBGOAL_THEN `a_max:num->num = a2` MP_TAC THENL
       [SUBGOAL_THEN `a2:num->num IN (s' DELETE a_min) /\
                      a_max:num->num IN (s DELETE a1)`
        MP_TAC THENL
         [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]];
        ALL_TAC] THEN
      SUBGOAL_THEN
       `!j. a2 j = if 1 <= j /\ j <= n then a3 j + 1 else a3 j`
       (fun th -> ASM_REWRITE_TAC[th; FUN_EQ_THM])
      THENL
       [ALL_TAC;
        MATCH_MP_TAC MONO_FORALL THEN MESON_TAC[EQ_ADD_RCANCEL]] THEN
      UNDISCH_TAC `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)` THEN
      ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN
      MESON_TAC[EQ_ADD_RCANCEL];
      DISJ1_TAC THEN MATCH_MP_TAC lemma THEN
      MAP_EVERY EXISTS_TAC [`a1:num->num`; `a_max:num->num`] THEN
      REPEAT CONJ_TAC THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN
      SUBGOAL_THEN `a_min:num->num = a0` MP_TAC THENL
       [SUBGOAL_THEN `a0:num->num IN (s' DELETE a_max) /\
                      a_min:num->num IN (s DELETE a1)`
        MP_TAC THENL
         [ASM_MESON_TAC[IN_DELETE]; ASM_MESON_TAC[KLE_ANTISYM; IN_DELETE]];
        ALL_TAC] THEN
      UNDISCH_THEN `!j:num. a1 j = (if j = k then a2 j + 1 else a2 j)`
       (K ALL_TAC) THEN
      ASM_REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
      MESON_TAC[EQ_ADD_RCANCEL]];
    ALL_TAC] THEN
  MP_TAC(SPECL [`a:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`]
        KSIMPLEX_PREDECESSOR) THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL
   [ASM_MESON_TAC[KLE_ANTISYM]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `u:num->num`
   (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`a:num->num`; `p:num`; `n:num`; `s:(num->num)->bool`]
        KSIMPLEX_SUCCESSOR) THEN
  REWRITE_TAC[ASSUME `ksimplex p n s`; ASSUME `a:num->num IN s`] THEN
  MATCH_MP_TAC(TAUT `~a /\ (b ==> c) ==> a \/ b ==> c`) THEN CONJ_TAC THENL
   [ASM_MESON_TAC[KLE_ANTISYM]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `v:num->num`
   (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(X_CHOOSE_THEN `l:num` STRIP_ASSUME_TAC) THEN
  ABBREV_TAC `a' = \j:num. if j = l then u(j) + 1 else u(j)` THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FUN_EQ_THM]) THEN
  REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN
  SUBGOAL_THEN `~(k:num = l)` ASSUME_TAC THENL
   [DISCH_TAC THEN
    UNDISCH_TAC `!j:num. v j = (if j = l then a j + 1 else a j)` THEN
    ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN
    REWRITE_TAC[] THEN DISCH_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ksimplex]) THEN
    DISCH_THEN(MP_TAC o last o CONJUNCTS) THEN
    DISCH_THEN(MP_TAC o SPECL [`u:num->num`; `v:num->num`]) THEN
    ASM_REWRITE_TAC[] THEN
    ASM_REWRITE_TAC[kle] THEN
    DISCH_THEN(DISJ_CASES_THEN (CHOOSE_THEN (MP_TAC o SPEC `l:num` o
      CONJUNCT2))) THEN
    ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `~(a':num->num = a)` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN
    ASM_REWRITE_TAC[] THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `~((a':num->num) IN s)` ASSUME_TAC THENL
   [DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ksimplex]) THEN
    DISCH_THEN(MP_TAC o SPECL [`a:num->num`; `a':num->num`] o
      last o CONJUNCTS) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(DISJ_CASES_THEN (MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THENL
     [DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN ARITH_TAC;
      DISCH_THEN(MP_TAC o SPEC `l:num`) THEN ASM_REWRITE_TAC[] THEN
      ARITH_TAC];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `kle n u a /\ kle n u a' /\ kle n a v /\ kle n a' v`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[kle] THEN REPEAT CONJ_TAC THENL
     [EXISTS_TAC `{k:num}`;
      EXISTS_TAC `{l:num}`;
      EXISTS_TAC `{l:num}`;
      EXISTS_TAC `{k:num}`] THEN
    ASM_REWRITE_TAC[IN_SING; SUBSET; IN_NUMSEG] THEN
    ASM_MESON_TAC[ADD_CLAUSES];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x. kle n u x /\ kle n x v
                    ==> ((x = u) \/ (x = a) \/ (x = a') \/ (x = v))`
  ASSUME_TAC THENL
   [X_GEN_TAC `x:num->num` THEN
    DISCH_THEN(CONJUNCTS_THEN (MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THEN
    ASM_REWRITE_TAC[FUN_EQ_THM; IMP_IMP; AND_FORALL_THM] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN
    ASM_CASES_TAC `(x:num->num) k = u k` THEN
    ASM_CASES_TAC `(x:num->num) l = u l` THENL
     [DISCH_THEN(fun th -> DISJ1_TAC THEN MP_TAC th);
      DISCH_THEN(fun th -> DISJ2_TAC THEN DISJ2_TAC THEN DISJ1_TAC THEN
                           MP_TAC th);
      DISCH_THEN(fun th -> DISJ2_TAC THEN DISJ1_TAC THEN MP_TAC th);
      DISCH_THEN(fun th -> REPEAT DISJ2_TAC THEN MP_TAC th)] THEN
    MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `j:num` THEN
    REPEAT(COND_CASES_TAC THEN
           ASM_REWRITE_TAC[LE_ANTISYM;
       ARITH_RULE `x <= u + 1 /\ u <= x <=> (x = u) \/ (x = u + 1)`]);
    ALL_TAC] THEN
  SUBGOAL_THEN `kle n u v` ASSUME_TAC THENL
   [ASM_MESON_TAC[KLE_TRANS; ksimplex]; ALL_TAC] THEN
  SUBGOAL_THEN `ksimplex p n (a' INSERT (s DELETE a))` ASSUME_TAC THENL
   [MP_TAC(ASSUME `ksimplex p n s`) THEN REWRITE_TAC[ksimplex] THEN
    MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
     [SIMP_TAC[HAS_SIZE; FINITE_INSERT; FINITE_DELETE; CARD_CLAUSES;
               CARD_DELETE; IN_DELETE] THEN
      ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ARITH_TAC;
      ALL_TAC] THEN
    MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
     [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
      SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
      REWRITE_TAC[RIGHT_FORALL_IMP_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
      ASM_REWRITE_TAC[] THEN
      DISCH_THEN(fun th -> X_GEN_TAC `j:num` THEN MP_TAC th) THEN
      COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `v:num->num`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(MP_TAC o SPEC `l:num`) THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
     [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
      REWRITE_TAC[TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN
      SIMP_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN
      REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
      REWRITE_TAC[EXISTS_REFL; LEFT_FORALL_IMP_THM] THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
      ALL_TAC] THEN
    REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
    SUBGOAL_THEN
     `!x. x IN s /\ kle n v x ==> kle n a' x`
    ASSUME_TAC THENL
     [X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN
      MATCH_MP_TAC KLE_BETWEEN_R THEN
      MAP_EVERY EXISTS_TAC [`u:num->num`; `v:num->num`] THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ksimplex; KLE_TRANS];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `!x. x IN s /\ kle n x u ==> kle n x a'`
    ASSUME_TAC THENL
     [X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN
      MATCH_MP_TAC KLE_BETWEEN_L THEN
      MAP_EVERY EXISTS_TAC [`u:num->num`; `v:num->num`] THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[ksimplex; KLE_TRANS];
      ALL_TAC] THEN
    SUBGOAL_THEN
     `!x. x IN s /\ ~(x = a) ==> kle n a' x \/ kle n x a'`
     (fun th -> MESON_TAC[th; KLE_REFL; ASSUME `(a:num->num) IN s`]) THEN
    X_GEN_TAC `x:num->num` THEN STRIP_TAC THEN
    ASM_CASES_TAC `kle n v x` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_CASES_TAC `kle n x u` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    SUBGOAL_THEN `(x:num->num = u) \/ (x = a) \/ (x = a') \/ (x = v)`
     (fun th -> ASM_MESON_TAC[th; KLE_REFL]) THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[ksimplex];
    ALL_TAC] THEN
  MATCH_MP_TAC HAS_SIZE_CARD THEN CONV_TAC HAS_SIZE_CONV THEN
  MAP_EVERY EXISTS_TAC
   [`s:(num->num)->bool`; `a' INSERT (s DELETE (a:num->num))`] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_DELETE; IN_INSERT] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_ELIM_THM] THEN
  X_GEN_TAC `s':(num->num)->bool` THEN
  REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN EQ_TAC THENL
   [ALL_TAC;
    DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC) THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN EXISTS_TAC `a':num->num` THEN
    REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE] THEN ASM_MESON_TAC[]] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `a'':num->num` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `(a:num->num) IN s' \/ a' IN s'` MP_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN DISCH_TAC THEN
    MP_TAC(ASSUME `s' DELETE a'' = s DELETE (a:num->num)`) THEN
    REWRITE_TAC[EXTENSION] THEN
    DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC th) THENL
     [DISCH_THEN(MP_TAC o SPEC `a:num->num`);
      DISCH_THEN(MP_TAC o SPEC `a':num->num`)] THEN
    REWRITE_TAC[IN_DELETE] THEN ASM_REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
    DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[]] THEN
  SUBGOAL_THEN `~(u:num->num = v)` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN
    ASM_REWRITE_TAC[] THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `~(kle n v u)` ASSUME_TAC THENL
   [ASM_MESON_TAC[KLE_ANTISYM]; ALL_TAC] THEN
  SUBGOAL_THEN `~(u:num->num = a)` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN
    ASM_REWRITE_TAC[] THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `~(v:num->num = a)` ASSUME_TAC THENL
   [ASM_REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `l:num`) THEN
    ASM_REWRITE_TAC[] THEN ARITH_TAC;
    ALL_TAC] THEN
  SUBGOAL_THEN `u:num->num IN s' /\ v IN s'` STRIP_ASSUME_TAC THENL
   [ASM_MESON_TAC[EXTENSION; IN_DELETE]; ALL_TAC] THEN
  ASM_CASES_TAC
   `!x. x IN s' ==> kle n x u \/ kle n v x`
  THENL
   [ALL_TAC;
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN
    DISCH_THEN(X_CHOOSE_THEN `w:num->num` MP_TAC) THEN
    REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN STRIP_TAC THEN
    SUBGOAL_THEN `(w:num->num = u) \/ (w = a) \/ (w = a') \/ (w = v)`
     (fun th -> ASM_MESON_TAC[KLE_REFL; th]) THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[ksimplex]] THEN
  MP_TAC(SPECL [`u:num->num`; `p:num`; `n:num`; `s':(num->num)->bool`]
               KSIMPLEX_SUCCESSOR) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[EXTENSION; IN_DELETE]; ALL_TAC] THEN
  DISCH_THEN(DISJ_CASES_THEN2 (MP_TAC o SPEC `v:num->num`) MP_TAC) THENL
   [ASM_MESON_TAC[EXTENSION; IN_DELETE]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  UNDISCH_TAC `!x. x IN s' ==> kle n x u \/ kle n v x` THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
  X_GEN_TAC `w:num->num` THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(DISJ_CASES_THEN(MP_TAC o MATCH_MP KLE_IMP_POINTWISE)) THEN
  ASM_REWRITE_TAC[] THENL
   [MESON_TAC[ARITH_RULE `~(i + 1 <= i)`]; ALL_TAC] THEN
  DISCH_THEN(fun th -> MP_TAC(SPEC `k:num` th) THEN
                       MP_TAC(SPEC `l:num` th)) THEN
  ASM_REWRITE_TAC[] THEN
  REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN TRY ARITH_TAC THEN
  UNDISCH_TAC `~(k:num = l)` THEN ASM_REWRITE_TAC[]);;  
let KUHN_SIMPLEX_LEMMA = prove
 (`!p n. (!s. ksimplex p (n + 1) s ==> (
IMAGE rl s 
SUBSET 0..n+1)) /\
         
ODD(
CARD{f | (?s a. ksimplex p (n + 1) s /\
                             a 
IN s /\
                             (f = s 
DELETE a)) /\
                      (
IMAGE rl f = 0 .. n) /\
                      ((?j. 1 <= j /\ j <= n + 1 /\
                            !x. x 
IN f ==> (x j = 0)) \/
                       (?j. 1 <= j /\ j <= n + 1 /\
                            !x. x 
IN f ==> (x j = p)))})
         ==>  
ODD(
CARD {s | s 
IN {s | ksimplex p (n + 1) s} /\
                            (
IMAGE rl s = 0..n+1)})`,
 
let reduced = new_definition
 `reduced label n (x:num->num) =
     @k. k <= n /\
         (!i. 1 <= i /\ i < k + 1 ==> (label x i = 0)) /\
         ((k = n) \/ ~(label x (k + 1) = 0))`;;let REDUCED_LABELLING = prove
 (`!label x n.
      reduced label n x <= n /\
      (!i. 1 <= i /\ i < reduced label n x + 1 ==> (label x i = 0)) /\
      ((reduced label n x = n) \/ ~(label x (reduced label n x + 1) = 0))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[reduced] THEN CONV_TAC SELECT_CONV THEN
  MP_TAC(SPEC `\j. j <= n /\ ~(label (x:num->num) (j + 1) = 0) \/ (n = j)`
     
num_WOP) THEN
  REWRITE_TAC[] THEN
  MATCH_MP_TAC(TAUT `a /\ (b ==> c) ==> (a <=> b) ==> c`) THEN
  CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
  ASM_CASES_TAC `k = n:num` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[
LE_REFL] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `i - 1`) THEN
  SIMP_TAC[
LT_IMP_LE] THEN
  ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i < n + 1 ==> i - 1 < n`] THEN
  ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i < n + 1 ==> ~(n = i - 1)`] THEN
  ASM_SIMP_TAC[
SUB_ADD] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
  ARITH_TAC);;
 
let REDUCED_LABELLING_UNIQUE = prove
 (`!label x n.
      r <= n /\
      (!i. 1 <= i /\ i < r + 1 ==> (label x i = 0)) /\
      ((r = n) \/ ~(label x (r + 1) = 0))
      ==> (reduced label n x = r)`,
  REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC(SPECL
        [`label:(num->num)->(num->num)`; `x:num->num`; `n:num`]
        
REDUCED_LABELLING) THEN
  MATCH_MP_TAC(ARITH_RULE `~(a < b) /\ ~(b < a:num) ==> (a = b)`) THEN
  ASM_MESON_TAC[ARITH_RULE `s < r:num /\ r <= n ==> ~(s = n)`;
                ARITH_RULE `s < r ==> 1 <= s + 1 /\ s + 1 < r + 1`]);;
 
let REDUCED_LABELLING_0 = prove
 (`!label n x j.
        1 <= j /\ j <= n /\ (label x j = 0)
        ==> ~(reduced label n x = j - 1)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`label:(num->num)->num->num`; `x:num->num`; `n:num`]
               
REDUCED_LABELLING) THEN
  ASM_SIMP_TAC[
SUB_ADD; ARITH_RULE `1 <= j /\ j <= n ==> ~(j - 1 = n)`]);;
 
let REDUCED_LABELLING_1 = prove
 (`!label n x j.
        1 <= j /\ j <= n /\ ~(label x j = 0)
        ==> reduced label n x < j`,
  REWRITE_TAC[GSYM 
NOT_LE] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`label:(num->num)->num->num`; `x:num->num`; `n:num`]
               
REDUCED_LABELLING) THEN
  DISCH_THEN(MP_TAC o SPEC `j:num` o CONJUNCT1 o CONJUNCT2) THEN
  ASM_REWRITE_TAC[ARITH_RULE `y < x + 1 <=> (y <= x)`]);;
 
let COMPLETE_FACE_TOP = prove
 (`!lab f n.
         (!x j. x 
IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = 0)
                ==> (lab x j = 0)) /\
         (!x j. x 
IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = p)
                ==> (lab x j = 1))
         ==> ((
IMAGE (reduced lab (n + 1)) f = 0..n) /\
              ((?j. 1 <= j /\ j <= n + 1 /\ !x. x 
IN f ==> (x j = 0)) \/
               (?j. 1 <= j /\ j <= n + 1 /\ !x. x 
IN f ==> (x j = p))) <=>
              (
IMAGE (reduced lab (n + 1)) f = 0..n) /\
              (!x. x 
IN f ==> (x (n + 1) = p)))`,
  REPEAT STRIP_TAC THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[ARITH_RULE `1 <= n + 1`; 
LE_REFL]] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
EXTENSION]) THENL
   [DISCH_THEN(MP_TAC o SPEC `j - 1`) THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN
    ASM_SIMP_TAC[
IN_IMAGE; 
IN_NUMSEG; 
LE_0; 
NOT_EXISTS_THM;
                 ARITH_RULE `j <= n + 1 ==> j - 1 <= n`] THEN
    ASM_MESON_TAC[
REDUCED_LABELLING_0];
    DISCH_THEN(MP_TAC o SPEC `j:num`) THEN
    REWRITE_TAC[
IN_IMAGE; 
IN_NUMSEG; 
LE_0; 
NOT_LE] THEN
    ASM_SIMP_TAC[ARITH_RULE `j <= n + 1 ==> ((j <= n) <=> ~(j = n + 1))`] THEN
    ASM_MESON_TAC[
REDUCED_LABELLING_1; ARITH_RULE `~(1 = 0)`; 
LT_REFL]]);;
 
let KUHN_INDUCTION = prove
 (`!p n. 0 < p /\
         (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n + 1 /\ (x j = 0)
                ==> (lab x j = 0)) /\
         (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n + 1 /\ (x j = p)
                ==> (lab x j = 1))
         ==> 
ODD(
CARD {f | ksimplex p n f /\
                           (
IMAGE (reduced lab n) f = 0..n)})
             ==> 
ODD(
CARD {s | ksimplex p (n + 1) s /\
                           (
IMAGE (reduced lab (n + 1)) s = 0..n+1)})`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(REWRITE_RULE[
IN_ELIM_THM] 
KUHN_SIMPLEX_LEMMA) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[
SUBSET; 
FORALL_IN_IMAGE; 
IN_NUMSEG; 
LE_0] THEN
    MESON_TAC[ARITH_RULE `x <= n ==> x <= n + 1`; 
REDUCED_LABELLING];
    ALL_TAC] THEN
  FIRST_ASSUM(fun th -> MP_TAC th THEN
    MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC) THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [
EXTENSION] THEN
  X_GEN_TAC `f:(num->num)->bool` THEN REWRITE_TAC[
IN_ELIM_THM] THEN
  ASM_CASES_TAC
   `(!x j. x 
IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = 0) ==> (lab x j = 0)) /\
    (!x j. x 
IN f /\ 1 <= j /\ j <= n + 1 /\ (x j = p) ==> (lab x j = 1))`
  THENL
   [ALL_TAC;
    MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a /\ c <=> b /\ d)`) THEN
    CONJ_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_neg o concl)) THEN
    REWRITE_TAC[CONTRAPOS_THM] THEN REWRITE_TAC[ksimplex] THEN
    ASM_MESON_TAC[
IN_DELETE]] THEN
  ASM_SIMP_TAC[
COMPLETE_FACE_TOP] THEN
  ASM_CASES_TAC `!x. x 
IN f ==> (x(n + 1):num = p)` THENL
   [ALL_TAC;
    ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
    REWRITE_TAC[ksimplex] THEN
    ASM_MESON_TAC[ARITH_RULE `~(n + 1 <= n)`]] THEN
  ASM_SIMP_TAC[
SIMPLEX_TOP_FACE] THEN
  ASM_CASES_TAC `ksimplex p n f` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[
EXTENSION; 
IN_IMAGE] THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN
  X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  AP_TERM_TAC THEN GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN
  X_GEN_TAC `x:num->num` THEN REWRITE_TAC[] THEN
  ASM_CASES_TAC `(x:num->num) 
IN f` THEN ASM_REWRITE_TAC[] THEN
  AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN
  MATCH_MP_TAC 
REDUCED_LABELLING_SUC THEN
  MATCH_MP_TAC(ARITH_RULE `a:num < b ==> ~(a = b)`) THEN
  MATCH_MP_TAC 
REDUCED_LABELLING_1 THEN
  REWRITE_TAC[
LE_REFL; ARITH_RULE `1 <= n + 1`] THEN
  MATCH_MP_TAC(ARITH_RULE `(n = 1) ==> ~(n = 0)`) THEN
  FIRST_X_ASSUM MATCH_MP_TAC THEN
  REWRITE_TAC[
LE_REFL; ARITH_RULE `1 <= n + 1`] THEN
  ASM_MESON_TAC[ksimplex]);;
 
let KUHN_COMBINATORIAL = prove
 (`!lab p n.
         0 < p /\
         (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n /\ (x j = 0)
                ==> (lab x j = 0)) /\
         (!x j. (!j. x(j) <= p) /\ 1 <= j /\ j <= n  /\ (x j = p)
                ==> (lab x j = 1))
         ==> 
ODD(
CARD {s | ksimplex p n s /\
                           (
IMAGE (reduced lab n) s = 0..n)})`,
 
let KUHN_LEMMA = prove
 (`!n p label.
        0 < p /\ 0 < n /\
        (!x. (!i. 1 <= i /\ i <= n ==> x(i) <= p)
             ==> !i. 1 <= i /\ i <= n ==> (label x i = 0) \/ (label x i = 1)) /\
        (!x. (!i. 1 <= i /\ i <= n ==> x(i) <= p)
             ==> !i. 1 <= i /\ i <= n /\ (x i = 0) ==> (label x i = 0)) /\
        (!x. (!i. 1 <= i /\ i <= n ==> x(i) <= p)
             ==> !i. 1 <= i /\ i <= n /\ (x i = p) ==> (label x i = 1))
        ==> ?q. (!i. 1 <= i /\ i <= n ==> q(i) < p) /\
                (!i. 1 <= i /\ i <= n
                     ==> ?r s. (!j. 1 <= j /\ j <= n
                                    ==> q(j) <= r(j) /\ r(j) <= q(j) + 1) /\
                               (!j. 1 <= j /\ j <= n
                                    ==> q(j) <= s(j) /\ s(j) <= q(j) + 1) /\
                               ~(label r i = label s i))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`label:(num->num)->num->num`; `p:num`; `n:num`]
               
KUHN_COMBINATORIAL) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  ASM_CASES_TAC
   `{s | ksimplex p n s /\ (
IMAGE (reduced label n) s = 0 .. n)} = {}`
  THENL [ASM_REWRITE_TAC[
CARD_CLAUSES; ARITH]; ALL_TAC] THEN
  DISCH_THEN(K ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM 
MEMBER_NOT_EMPTY]) THEN
  REWRITE_TAC[
IN_ELIM_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `s:(num->num)->bool` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPECL [`p:num`; `n:num`; `s:(num->num)->bool`]
               
KSIMPLEX_EXTREMA_STRONG) THEN
  ASM_REWRITE_TAC[GSYM 
LT_NZ] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `a:num->num` THEN
  DISCH_THEN(X_CHOOSE_THEN `b:num->num` STRIP_ASSUME_TAC) THEN
  CONJ_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THENL
   [MATCH_MP_TAC(ARITH_RULE `x + 1 <= y ==> x < y`) THEN
    MATCH_MP_TAC 
LE_TRANS THEN EXISTS_TAC `(b:num->num) i` THEN
    CONJ_TAC THENL [ASM_REWRITE_TAC[
LE_REFL]; ALL_TAC] THEN
    ASM_MESON_TAC[ksimplex];
    ALL_TAC] THEN
  UNDISCH_TAC `
IMAGE (reduced label n) s = 0 .. n` THEN
  REWRITE_TAC[
EXTENSION; 
IN_IMAGE] THEN
  DISCH_THEN(fun th ->
    MP_TAC(SPEC `i - 1` th) THEN MP_TAC(SPEC `i:num` th)) THEN
  ASM_REWRITE_TAC[
IN_NUMSEG; 
LE_0] THEN
  DISCH_THEN(X_CHOOSE_THEN `u:num->num` (STRIP_ASSUME_TAC o GSYM)) THEN
  ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n ==> i - 1 <= n`] THEN
  DISCH_THEN(X_CHOOSE_THEN `v:num->num` (STRIP_ASSUME_TAC o GSYM)) THEN
  MAP_EVERY EXISTS_TAC [`u:num->num`; `v:num->num`] THEN
  REWRITE_TAC[
CONJ_ASSOC] THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
KLE_IMP_POINTWISE]; ALL_TAC] THEN
  MP_TAC(SPECL [`label:(num->num)->num->num`; `u:num->num`; `n:num`]
                
REDUCED_LABELLING) THEN
  MP_TAC(SPECL [`label:(num->num)->num->num`; `v:num->num`; `n:num`]
                
REDUCED_LABELLING) THEN
  ASM_REWRITE_TAC[] THEN
  ASM_SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n ==> ~(i - 1 = n)`] THEN
  ASM_SIMP_TAC[
SUB_ADD] THEN ASM_MESON_TAC[ARITH_RULE `i < i + 1`]);;
 
let RETRACTION_o = prove
 (`!f g s t u:real^N->bool.
        retraction (s,t) f /\ retraction (t,u) g
        ==> retraction (s,u) (g o f)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[retraction] THEN REPEAT STRIP_TAC THENL
   [ASM SET_TAC[];
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[
CONTINUOUS_ON_SUBSET];
    REWRITE_TAC[
IMAGE_o] THEN ASM SET_TAC[];
    REWRITE_TAC[
o_THM] THEN ASM SET_TAC[]]);;
 
let AR = new_definition
 `AR(s:real^N->bool) <=>
        !u s':real^(N,1)finite_sum->bool.
                s homeomorphic s' /\ closed_in (subtopology euclidean u) s'
                ==> s' retract_of u`;;let ANR = new_definition
 `ANR(s:real^N->bool) <=>
        !u s':real^(N,1)finite_sum->bool.
                s homeomorphic s' /\ closed_in (subtopology euclidean u) s'
                ==> ?t. open_in (subtopology euclidean u) t /\
                        s' retract_of t`;;let AR_IMP_ABSOLUTE_EXTENSOR = prove
 (`!f:real^M->real^N u t s.
        
AR s /\ f 
continuous_on t /\ 
IMAGE f t 
SUBSET s /\
        
closed_in (subtopology euclidean u) t
        ==> ?g. g 
continuous_on u /\ 
IMAGE g u 
SUBSET s /\
                !x. x 
IN t ==> g x = f x`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `?c s':real^(N,1)finite_sum->bool.
        convex c /\ ~(c = {}) /\ 
closed_in (subtopology euclidean c) s' /\
        (s:real^N->bool) homeomorphic s'`
  STRIP_ASSUME_TAC THENL
   [MATCH_MP_TAC 
HOMEOMORPHIC_CLOSED_IN_CONVEX THEN
    REWRITE_TAC[
DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM 
INT_OF_NUM_ADD] THEN
    REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; 
AFF_DIM_LE_UNIV];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
AR]) THEN
  DISCH_THEN(MP_TAC o SPECL
   [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN
  ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
  REWRITE_TAC[homeomorphism; 
LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC
   [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN
  STRIP_TAC THEN MP_TAC(ISPECL
   [`(g:real^N->real^(N,1)finite_sum) o (f:real^M->real^N)`;
    `c:real^(N,1)finite_sum->bool`; `u:real^M->bool`; `t:real^M->bool`]
        
DUGUNDJI) THEN
  ASM_REWRITE_TAC[
IMAGE_o; 
o_THM] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
RETRACT_OF_IMP_SUBSET) THEN ANTS_TAC THENL
   [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
    ASM SET_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `f':real^M->real^(N,1)finite_sum`
    STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
retract_of]) THEN
  REWRITE_TAC[retraction; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `r:real^(N,1)finite_sum->real^(N,1)finite_sum` THEN
  STRIP_TAC THEN
  EXISTS_TAC `(h:real^(N,1)finite_sum->real^N) o r o
              (f':real^M->real^(N,1)finite_sum)` THEN
  ASM_REWRITE_TAC[
IMAGE_o; 
o_THM] THEN
  CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  REWRITE_TAC[
o_ASSOC] THEN MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
  CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
 
let AR_IMP_ABSOLUTE_RETRACT = prove
 (`!s:real^N->bool u s':real^M->bool.
        
AR s /\ s homeomorphic s' /\ 
closed_in (subtopology euclidean u) s'
        ==> s' 
retract_of u`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
  REWRITE_TAC[homeomorphism; 
LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`g:real^N->real^M`; `h:real^M->real^N`] THEN
  STRIP_TAC THEN
  MP_TAC(ISPECL [`h:real^M->real^N`; `u:real^M->bool`; `s':real^M->bool`;
                 `s:real^N->bool`] 
AR_IMP_ABSOLUTE_EXTENSOR) THEN
  ASM_REWRITE_TAC[
SUBSET_REFL] THEN
  DISCH_THEN(X_CHOOSE_THEN `h':real^M->real^N` STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[
retract_of; retraction] THEN
  EXISTS_TAC `(g:real^N->real^M) o (h':real^M->real^N)` THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
CLOSED_IN_IMP_SUBSET) THEN
  ASM_SIMP_TAC[
o_THM; 
IMAGE_o] THEN
  CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
 
let ABSOLUTE_EXTENSOR_IMP_AR = prove
 (`!s:real^N->bool.
        (!f:real^(N,1)finite_sum->real^N u t.
             f 
continuous_on t /\ 
IMAGE f t 
SUBSET s /\
             
closed_in (subtopology euclidean u) t
             ==> ?g. g 
continuous_on u /\ 
IMAGE g u 
SUBSET s /\
                     !x. x 
IN t ==> g x = f x)
        ==> 
AR s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[
AR] THEN MAP_EVERY X_GEN_TAC
   [`u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`] THEN
  STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
  REWRITE_TAC[homeomorphism; 
LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC
   [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPECL
    [`h:real^(N,1)finite_sum->real^N`;
     `u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`]) THEN
  ASM_REWRITE_TAC[
SUBSET_REFL] THEN DISCH_THEN(X_CHOOSE_THEN
    `h':real^(N,1)finite_sum->real^N` STRIP_ASSUME_TAC) THEN
  REWRITE_TAC[
retract_of; retraction] THEN
  EXISTS_TAC `(g:real^N->real^(N,1)finite_sum) o
              (h':real^(N,1)finite_sum->real^N)` THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
CLOSED_IN_IMP_SUBSET) THEN
  ASM_SIMP_TAC[
o_THM; 
IMAGE_o] THEN
  CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
 
let ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR = prove
 (`!f:real^M->real^N u t s.
        
ANR s /\ f 
continuous_on t /\ 
IMAGE f t 
SUBSET s /\
        
closed_in (subtopology euclidean u) t
        ==> ?v g. t 
SUBSET v /\ 
open_in (subtopology euclidean u) v /\
                  g 
continuous_on v /\ 
IMAGE g v 
SUBSET s /\
                  !x. x 
IN t ==> g x = f x`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `?c s':real^(N,1)finite_sum->bool.
        convex c /\ ~(c = {}) /\ 
closed_in (subtopology euclidean c) s' /\
        (s:real^N->bool) homeomorphic s'`
  STRIP_ASSUME_TAC THENL
   [MATCH_MP_TAC 
HOMEOMORPHIC_CLOSED_IN_CONVEX THEN
    REWRITE_TAC[
DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM 
INT_OF_NUM_ADD] THEN
    REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; 
AFF_DIM_LE_UNIV];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
ANR]) THEN
  DISCH_THEN(MP_TAC o SPECL
   [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN
   `d:real^(N,1)finite_sum->bool` STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
  REWRITE_TAC[homeomorphism; 
LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC
   [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN
  STRIP_TAC THEN MP_TAC(ISPECL
   [`(g:real^N->real^(N,1)finite_sum) o (f:real^M->real^N)`;
    `c:real^(N,1)finite_sum->bool`; `u:real^M->bool`; `t:real^M->bool`]
        
DUGUNDJI) THEN
  ASM_REWRITE_TAC[
IMAGE_o; 
o_THM] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
OPEN_IN_IMP_SUBSET) THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
RETRACT_OF_IMP_SUBSET) THEN ANTS_TAC THENL
   [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
    ASM SET_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `f':real^M->real^(N,1)finite_sum`
    STRIP_ASSUME_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
retract_of]) THEN
  REWRITE_TAC[retraction; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `r:real^(N,1)finite_sum->real^(N,1)finite_sum` THEN
  STRIP_TAC THEN
  EXISTS_TAC `{x | x 
IN u /\ (f':real^M->real^(N,1)finite_sum) x 
IN d}` THEN
  EXISTS_TAC `(h:real^(N,1)finite_sum->real^N) o r o
              (f':real^M->real^(N,1)finite_sum)` THEN
  ASM_REWRITE_TAC[
IMAGE_o; 
o_THM] THEN REPEAT CONJ_TAC THENL
   [REPEAT(FIRST_X_ASSUM(ASSUME_TAC o MATCH_MP 
CLOSED_IN_IMP_SUBSET)) THEN
    ASM SET_TAC[];
    MATCH_MP_TAC 
CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN ASM_MESON_TAC[];
    REPEAT(MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN CONJ_TAC) THEN
    REWRITE_TAC[
IMAGE_o] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
          
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[];
    ASM SET_TAC[];
    ASM SET_TAC[]]);;
 
let ABSOLUTE_NEIGHBOURHOOD_EXTENSOR_IMP_ANR = prove
 (`!s:real^N->bool.
        (!f:real^(N,1)finite_sum->real^N u t.
             f 
continuous_on t /\ 
IMAGE f t 
SUBSET s /\
             
closed_in (subtopology euclidean u) t
             ==> ?v g. t 
SUBSET v /\ 
open_in  (subtopology euclidean u) v /\
                       g 
continuous_on v /\ 
IMAGE g v 
SUBSET s /\
                       !x. x 
IN t ==> g x = f x)
        ==> 
ANR s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[
ANR] THEN MAP_EVERY X_GEN_TAC
   [`u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`] THEN
  STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [homeomorphic]) THEN
  REWRITE_TAC[homeomorphism; 
LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC
   [`g:real^N->real^(N,1)finite_sum`; `h:real^(N,1)finite_sum->real^N`] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPECL
    [`h:real^(N,1)finite_sum->real^N`;
     `u:real^(N,1)finite_sum->bool`; `t:real^(N,1)finite_sum->bool`]) THEN
  ASM_REWRITE_TAC[
SUBSET_REFL] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `v:real^(N,1)finite_sum->bool` THEN
  DISCH_THEN(X_CHOOSE_THEN `h':real^(N,1)finite_sum->real^N`
    STRIP_ASSUME_TAC) THEN
  ASM_REWRITE_TAC[
retract_of; retraction] THEN
  EXISTS_TAC `(g:real^N->real^(N,1)finite_sum) o
              (h':real^(N,1)finite_sum->real^N)` THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
CLOSED_IN_IMP_SUBSET) THEN
  ASM_SIMP_TAC[
o_THM; 
IMAGE_o] THEN
  CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]);;
 
let AR_ANR = prove
 (`!s:real^N->bool. 
AR s <=> 
ANR s /\ contractible s /\ ~(s = {})`,
  GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[
AR_IMP_ANR] THENL
   [CONJ_TAC THENL
     [ALL_TAC;
      ASM_MESON_TAC[
AR; 
HOMEOMORPHIC_EMPTY; 
RETRACT_OF_EMPTY;
           
FORALL_UNWIND_THM2; 
CLOSED_IN_EMPTY; 
UNIV_NOT_EMPTY]] THEN
    SUBGOAL_THEN
     `?c s':real^(N,1)finite_sum->bool.
          convex c /\ ~(c = {}) /\ 
closed_in (subtopology euclidean c) s' /\
          (s:real^N->bool) homeomorphic s'`
    STRIP_ASSUME_TAC THENL
     [MATCH_MP_TAC 
HOMEOMORPHIC_CLOSED_IN_CONVEX THEN
      REWRITE_TAC[
DIMINDEX_FINITE_SUM; DIMINDEX_1; GSYM 
INT_OF_NUM_ADD] THEN
      REWRITE_TAC[INT_ARITH `x:int < y + &1 <=> x <= y`; 
AFF_DIM_LE_UNIV];
      ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
AR]) THEN
    DISCH_THEN(MP_TAC o SPECL
     [`c:real^(N,1)finite_sum->bool`; `s':real^(N,1)finite_sum->bool`]) THEN
    ASM_REWRITE_TAC[] THEN
    ASM_MESON_TAC[
HOMEOMORPHIC_SYM; 
HOMEOMORPHIC_CONTRACTIBLE;
                  
RETRACT_OF_CONTRACTIBLE; 
CONVEX_IMP_CONTRACTIBLE];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [contractible]) THEN
  REWRITE_TAC[
LEFT_IMP_EXISTS_THM; 
homotopic_with] THEN
  MAP_EVERY X_GEN_TAC [`a:real^N`; `h:real^(1,N)finite_sum->real^N`] THEN
  STRIP_TAC THEN REWRITE_TAC[
AR_EQ_ABSOLUTE_EXTENSOR] THEN
  MAP_EVERY X_GEN_TAC
   [`f:real^(N,1)finite_sum->real^N`; `w:real^(N,1)finite_sum->bool`;
    `t:real^(N,1)finite_sum->bool`] THEN
  STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o  ISPECL
    [`f:real^(N,1)finite_sum->real^N`; `w:real^(N,1)finite_sum->bool`;
     `t:real^(N,1)finite_sum->bool`]  o
    REWRITE_RULE[
ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR]) THEN
  ASM_REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC
    [`u:real^(N,1)finite_sum->bool`; `g:real^(N,1)finite_sum->real^N`] THEN
  STRIP_TAC THEN
  MP_TAC(ISPECL
   [`t:real^(N,1)finite_sum->bool`; `w 
DIFF u:real^(N,1)finite_sum->bool`;
    `w:real^(N,1)finite_sum->bool`] 
SEPARATION_NORMAL_LOCAL) THEN
  ASM_SIMP_TAC[
CLOSED_IN_DIFF; 
CLOSED_IN_REFL] THEN
  ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[
LEFT_IMP_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC
   [`v:real^(N,1)finite_sum->bool`; `v':real^(N,1)finite_sum->bool`] THEN
  STRIP_TAC THEN
  MP_TAC(ISPECL
   [`t:real^(N,1)finite_sum->bool`; `w 
DIFF v:real^(N,1)finite_sum->bool`;
    `w:real^(N,1)finite_sum->bool`; `vec 0:real^1`; `vec 1:real^1`]
        
URYSOHN_LOCAL) THEN
  ASM_SIMP_TAC[
SEGMENT_1; 
CLOSED_IN_DIFF; 
CLOSED_IN_REFL] THEN
  ANTS_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[
LEFT_IMP_EXISTS_THM]] THEN
  REWRITE_TAC[
DROP_VEC; 
REAL_POS] THEN
  X_GEN_TAC `e:real^(N,1)finite_sum->real^1` THEN STRIP_TAC THEN
  EXISTS_TAC
   `\x. if (x:real^(N,1)finite_sum) 
IN w 
DIFF v then a
        else (h:real^(1,N)finite_sum->real^N) (pastecart (e x) (g x))` THEN
  REWRITE_TAC[] THEN CONJ_TAC THENL
   [SUBGOAL_THEN `w:real^(N,1)finite_sum->bool = (w 
DIFF v) 
UNION (w 
DIFF v')`
    MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
    DISCH_THEN(fun th ->
        GEN_REWRITE_TAC RAND_CONV [th] THEN
        MATCH_MP_TAC 
CONTINUOUS_ON_CASES_LOCAL THEN
        REWRITE_TAC[GSYM th]) THEN
    ASM_SIMP_TAC[
CLOSED_IN_DIFF; 
CLOSED_IN_REFL; 
CONTINUOUS_ON_CONST] THEN
    CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM 
o_DEF] THEN
    MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN CONJ_TAC THENL
     [MATCH_MP_TAC 
CONTINUOUS_ON_PASTECART THEN CONJ_TAC; ALL_TAC] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
    REWRITE_TAC[
SUBSET; 
FORALL_IN_IMAGE; 
PASTECART_IN_PCROSS] THEN
    ASM SET_TAC[];
    ASM_SIMP_TAC[
SUBSET; 
FORALL_IN_IMAGE] THEN RULE_ASSUM_TAC
     (REWRITE_RULE[
SUBSET; 
FORALL_IN_IMAGE; 
FORALL_IN_PCROSS]) THEN
    CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[
IN_DIFF] THEN
    COND_CASES_TAC THEN ASM SET_TAC[]]);;
 
let ANR_RETRACT_OF_ANR = prove
 (`!s t:real^N->bool. 
ANR t /\ s 
retract_of t ==> 
ANR s`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  REWRITE_TAC[
ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR] THEN
  REPEAT(MATCH_MP_TAC 
MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
retract_of]) THEN
  REWRITE_TAC[retraction; 
LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `r:real^N->real^N` THEN STRIP_TAC THEN
  ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN GEN_TAC THEN
  DISCH_THEN(X_CHOOSE_THEN `g:real^(N,1)finite_sum->real^N`
        STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `(r:real^N->real^N) o (g:real^(N,1)finite_sum->real^N)` THEN
  ASM_SIMP_TAC[
IMAGE_o; 
o_THM] THEN
  CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
  MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN
  ASM SET_TAC[]);;
 
let ANR_OPEN_IN = prove
 (`!s t:real^N->bool.
        
open_in (subtopology euclidean t) s /\ 
ANR t ==> 
ANR s`,
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REWRITE_TAC[
ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR] THEN
  REPEAT(MATCH_MP_TAC 
MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
OPEN_IN_IMP_SUBSET) THEN
  ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  ONCE_REWRITE_TAC[
SWAP_EXISTS_THM] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `g:real^(N,1)finite_sum->real^N` THEN
  DISCH_THEN(X_CHOOSE_THEN `w:real^(N,1)finite_sum->bool`
        STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `{x | x 
IN w /\ (g:real^(N,1)finite_sum->real^N) x 
IN s}` THEN
  ASM_REWRITE_TAC[] THEN
  CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL
   [MATCH_MP_TAC 
OPEN_IN_TRANS THEN
    EXISTS_TAC `w:real^(N,1)finite_sum->bool` THEN
    ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC 
CONTINUOUS_OPEN_IN_PREIMAGE_GEN THEN ASM_MESON_TAC[];
    CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
     FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[
IMP_CONJ]
        
CONTINUOUS_ON_SUBSET)) THEN ASM SET_TAC[]]);;
 
let AR_INTERVAL = prove
 (`(!a b:real^N. 
AR(interval[a,b]) <=> ~(interval[a,b] = {})) /\
   (!a b:real^N. 
AR(interval(a,b)) <=> ~(interval(a,b) = {}))`,
 
let ANR_PCROSS = prove
 (`!s:real^M->bool t:real^N->bool. 
ANR s /\ 
ANR t ==> 
ANR(s 
PCROSS t)`,
  REPEAT STRIP_TAC THEN SIMP_TAC[
ANR_EQ_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR] THEN
  MAP_EVERY X_GEN_TAC
   [`f:real^((M,N)finite_sum,1)finite_sum->real^(M,N)finite_sum`;
    `u:real^((M,N)finite_sum,1)finite_sum->bool`;
    `c:real^((M,N)finite_sum,1)finite_sum->bool`] THEN
  STRIP_TAC THEN
  MP_TAC(ISPECL
   [`fstcart o (f:real^((M,N)finite_sum,1)finite_sum->real^(M,N)finite_sum)`;
    `u:real^((M,N)finite_sum,1)finite_sum->bool`;
    `c:real^((M,N)finite_sum,1)finite_sum->bool`;
    `s:real^M->bool`] 
ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN
  MP_TAC(ISPECL
   [`sndcart o (f:real^((M,N)finite_sum,1)finite_sum->real^(M,N)finite_sum)`;
    `u:real^((M,N)finite_sum,1)finite_sum->bool`;
    `c:real^((M,N)finite_sum,1)finite_sum->bool`;
    `t:real^N->bool`] 
ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN
  ASM_SIMP_TAC[
CONTINUOUS_ON_COMPOSE; 
LINEAR_CONTINUOUS_ON;
               
LINEAR_FSTCART; 
LINEAR_SNDCART; 
IMAGE_o] THEN
  RULE_ASSUM_TAC
   (REWRITE_RULE[
SUBSET; 
FORALL_IN_IMAGE; 
PCROSS; 
IN_ELIM_THM]) THEN
  REWRITE_TAC[
SUBSET; 
FORALL_IN_IMAGE] THEN ANTS_TAC THENL
   [ASM_MESON_TAC[
SNDCART_PASTECART]; REWRITE_TAC[
LEFT_IMP_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC
   [`w2:real^((M,N)finite_sum,1)finite_sum->bool`;
    `h:real^((M,N)finite_sum,1)finite_sum->real^N`] THEN
  STRIP_TAC THEN ANTS_TAC THENL
   [ASM_MESON_TAC[
FSTCART_PASTECART]; REWRITE_TAC[
LEFT_IMP_EXISTS_THM]] THEN
  MAP_EVERY X_GEN_TAC
   [`w1:real^((M,N)finite_sum,1)finite_sum->bool`;
    `g:real^((M,N)finite_sum,1)finite_sum->real^M`] THEN
  STRIP_TAC THEN MAP_EVERY EXISTS_TAC
   [`w1 
INTER w2:real^((M,N)finite_sum,1)finite_sum->bool`;
    `\x:real^((M,N)finite_sum,1)finite_sum.
        pastecart (g x:real^M) (h x:real^N)`] THEN
  ASM_SIMP_TAC[
OPEN_IN_INTER; 
IN_INTER; 
o_DEF; 
PASTECART_IN_PCROSS;
               
PASTECART_FST_SND] THEN
  MATCH_MP_TAC 
CONTINUOUS_ON_PASTECART THEN
  ASM_MESON_TAC[
CONTINUOUS_ON_SUBSET; 
INTER_SUBSET]);;
 
let BORSUK_HOMOTOPY_EXTENSION_HOMOTOPIC = prove
 (`!f:real^M->real^N g s t u.
        
closed_in (subtopology euclidean t) s /\
        (
ANR s /\ 
ANR t \/ 
ANR u) /\
        f 
continuous_on t /\ 
IMAGE f t 
SUBSET u /\
        
homotopic_with (\x. T) (s,u) f g
        ==> ?g'. 
homotopic_with (\x. T) (t,u) f g' /\
                 g' 
continuous_on t /\ 
IMAGE g' t 
SUBSET u /\
                 !x. x 
IN s ==> g'(x) = g(x)`,
  REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
CLOSED_IN_IMP_SUBSET) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
homotopic_with]) THEN
  REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `h:real^(1,M)finite_sum->real^N`
    STRIP_ASSUME_TAC) THEN
  MAP_EVERY ABBREV_TAC
   [`h' = \z. if sndcart z 
IN s then (h:real^(1,M)finite_sum->real^N) z
             else f(sndcart z)`;
    `B:real^(1,M)finite_sum->bool =
       {vec 0} 
PCROSS t 
UNION interval[vec 0,vec 1] 
PCROSS s`] THEN
  SUBGOAL_THEN
   `
closed_in (subtopology euclidean (interval[vec 0:real^1,vec 1] 
PCROSS t))
              ({vec 0} 
PCROSS (t:real^M->bool)) /\
    
closed_in (subtopology euclidean (interval[vec 0:real^1,vec 1] 
PCROSS t))
              (interval[vec 0,vec 1] 
PCROSS s)`
  STRIP_ASSUME_TAC THENL
   [CONJ_TAC THEN MATCH_MP_TAC 
CLOSED_IN_PCROSS THEN
    ASM_REWRITE_TAC[
CLOSED_IN_SING; 
CLOSED_IN_REFL; 
ENDS_IN_UNIT_INTERVAL];
    ALL_TAC] THEN
  SUBGOAL_THEN `(h':real^(1,M)finite_sum->real^N) 
continuous_on B`
  ASSUME_TAC THENL
   [MAP_EVERY EXPAND_TAC ["h'";
 
let HOMOTOPIC_NEIGHBOURHOOD_EXTENSION = prove
 (`!f g:real^M->real^N s t u.
        f 
continuous_on s /\ 
IMAGE f s 
SUBSET u /\
        g 
continuous_on s /\ 
IMAGE g s 
SUBSET u /\
        
closed_in (subtopology euclidean s) t /\ 
ANR u /\
        
homotopic_with (\x. T) (t,u) f g
        ==> ?v. t 
SUBSET v /\
                
open_in (subtopology euclidean s) v /\
                
homotopic_with (\x. T) (v,u) f g`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
CLOSED_IN_IMP_SUBSET) THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
homotopic_with]) THEN
  DISCH_THEN(X_CHOOSE_THEN `h:real^(1,M)finite_sum->real^N`
        STRIP_ASSUME_TAC) THEN
  ABBREV_TAC
   `h' = \z. if fstcart z 
IN {vec 0} then f(sndcart z)
             else if fstcart z 
IN {vec 1} then g(sndcart z)
             else (h:real^(1,M)finite_sum->real^N) z` THEN
  MP_TAC(ISPECL
   [`h':real^(1,M)finite_sum->real^N`;
    `interval[vec 0:real^1,vec 1] 
PCROSS (s:real^M->bool)`;
    `{vec 0:real^1,vec 1} 
PCROSS (s:real^M->bool) 
UNION
     interval[vec 0,vec 1] 
PCROSS t`;
    `u:real^N->bool`] 
ANR_IMP_ABSOLUTE_NEIGHBOURHOOD_EXTENSOR) THEN
  ASM_SIMP_TAC[
ENR_IMP_ANR] THEN ANTS_TAC THENL
   [REPEAT CONJ_TAC THENL
     [REWRITE_TAC[SET_RULE `{a,b} = {a} 
UNION {b}`] THEN
      REWRITE_TAC[
PCROSS_UNION; 
UNION_ASSOC] THEN EXPAND_TAC "h'" THEN
      REPLICATE_TAC 2 (MATCH_MP_TAC 
CONTINUOUS_ON_CASES_LOCAL THEN
       REPLICATE_TAC 2 (CONJ_TAC THENL
        [MATCH_MP_TAC 
CLOSED_IN_SUBSET_TRANS THEN
         EXISTS_TAC `interval[vec 0:real^1,vec 1] 
PCROSS (s:real^M->bool)` THEN
         REWRITE_TAC[SET_RULE `t 
UNION u 
SUBSET s 
UNION t 
UNION u`] THEN
         REWRITE_TAC[
SUBSET_UNION; 
UNION_SUBSET; 
SUBSET_PCROSS] THEN
         REWRITE_TAC[
INSERT_SUBSET; 
EMPTY_SUBSET; 
ENDS_IN_UNIT_INTERVAL] THEN
         ASM_REWRITE_TAC[
SUBSET_REFL] THEN
         TRY(MATCH_MP_TAC 
CLOSED_IN_UNION THEN CONJ_TAC) THEN
         MATCH_MP_TAC 
CLOSED_IN_PCROSS THEN
         ASM_REWRITE_TAC[
CLOSED_IN_REFL] THEN MATCH_MP_TAC 
CLOSED_SUBSET THEN
         REWRITE_TAC[
SING_SUBSET; 
ENDS_IN_UNIT_INTERVAL; 
CLOSED_SING];
         ALL_TAC]) THEN
       REPEAT CONJ_TAC THENL
        [GEN_REWRITE_TAC LAND_CONV [GSYM 
o_DEF] THEN
         MATCH_MP_TAC 
CONTINUOUS_ON_COMPOSE THEN
         SIMP_TAC[
LINEAR_SNDCART; 
LINEAR_CONTINUOUS_ON] THEN
         ASM_REWRITE_TAC[
IMAGE_SNDCART_PCROSS; 
NOT_INSERT_EMPTY];
         ASM_REWRITE_TAC[];
         REWRITE_TAC[
FORALL_PASTECART; 
IN_UNION; 
PASTECART_IN_PCROSS] THEN
         REWRITE_TAC[
FSTCART_PASTECART; 
IN_SING; 
SNDCART_PASTECART] THEN
         MAP_EVERY X_GEN_TAC [`x:real^1`; `y:real^M`] THEN
         ASM_CASES_TAC `x:real^1 = vec 0` THEN ASM_REWRITE_TAC[] THEN
         REWRITE_TAC[
VEC_EQ; 
ARITH_EQ; 
ENDS_IN_UNIT_INTERVAL] THEN
          ASM_CASES_TAC `x:real^1 = vec 1` THEN ASM_REWRITE_TAC[]]);
      REWRITE_TAC[
SUBSET; 
FORALL_IN_IMAGE; 
FORALL_PASTECART] THEN
      REWRITE_TAC[
IN_UNION; 
PASTECART_IN_PCROSS; 
IN_SING; 
NOT_IN_EMPTY] THEN
      MAP_EVERY X_GEN_TAC [`x:real^1`; `y:real^M`] THEN
      REWRITE_TAC[
IN_INSERT; 
NOT_IN_EMPTY] THEN
      EXPAND_TAC "h'" THEN
      REWRITE_TAC[
FSTCART_PASTECART; 
SNDCART_PASTECART; 
IN_SING] THEN
      REPEAT(COND_CASES_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]]) THEN
      STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
       `
IMAGE f s 
SUBSET u ==> b 
IN s ==> f b 
IN u`)) THEN
      ASM_REWRITE_TAC[
PASTECART_IN_PCROSS];
      MATCH_MP_TAC 
CLOSED_IN_UNION THEN CONJ_TAC THEN
      MATCH_MP_TAC 
CLOSED_IN_PCROSS THEN
      ASM_REWRITE_TAC[
CLOSED_IN_REFL] THEN
      MATCH_MP_TAC 
CLOSED_SUBSET THEN
      REWRITE_TAC[
INSERT_SUBSET; 
EMPTY_SUBSET; 
ENDS_IN_UNIT_INTERVAL] THEN
      SIMP_TAC[
CLOSED_INSERT; 
CLOSED_EMPTY]];
    REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC
     [`w:real^(1,M)finite_sum->bool`; `k:real^(1,M)finite_sum->real^N`] THEN
    STRIP_TAC] THEN
  MP_TAC(ISPECL [`interval[vec 0:real^1,vec 1]`;
                 `t:real^M->bool`; `s:real^M->bool`;
                 `w:real^(1,M)finite_sum->bool`]
        
TUBE_LEMMA_GEN) THEN
  ASM_REWRITE_TAC[
COMPACT_INTERVAL; 
UNIT_INTERVAL_NONEMPTY] THEN
  ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC 
MONO_EXISTS] THEN
  X_GEN_TAC `t':real^M->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[
HOMOTOPIC_WITH] THEN
  EXISTS_TAC `k:real^(1,M)finite_sum->real^N` THEN
  CONJ_TAC THENL [ASM_MESON_TAC[
CONTINUOUS_ON_SUBSET]; ALL_TAC] THEN
  CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP 
OPEN_IN_IMP_SUBSET) THEN
  CONJ_TAC THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN
  FIRST_X_ASSUM(fun th ->
    W(MP_TAC o PART_MATCH (lhs o snd o dest_imp) th o lhs o snd)) THEN
  REWRITE_TAC[
IN_UNION; 
PASTECART_IN_PCROSS; 
IN_INSERT] THEN
  (ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC]) THEN
  EXPAND_TAC "h'" THEN
  REWRITE_TAC[
FSTCART_PASTECART; 
SNDCART_PASTECART; 
IN_SING] THEN
  REWRITE_TAC[
VEC_EQ; 
ARITH_EQ]);;
 
let DEFORMATION_RETRACT = prove
 (`!s t:real^N->bool.
        (?r. 
homotopic_with (\x. T) (s,s) (\x. x) r /\ retraction(s,t) r) <=>
        t 
retract_of s /\
        ?f. 
homotopic_with (\x. T) (s,s) (\x. x) f /\ 
IMAGE f s 
SUBSET t`,
  REPEAT GEN_TAC THEN REWRITE_TAC[
retract_of; retraction] THEN EQ_TAC THENL
   [REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `r:real^N->real^N` THEN
    REPEAT STRIP_TAC THEN EXISTS_TAC `r:real^N->real^N` THEN ASM_REWRITE_TAC[];
    DISCH_THEN(CONJUNCTS_THEN2
     (X_CHOOSE_THEN `r:real^N->real^N` STRIP_ASSUME_TAC) MP_TAC) THEN
    REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:real^N->real^N` THEN
    STRIP_TAC THEN EXISTS_TAC `r:real^N->real^N` THEN ASM_REWRITE_TAC[] THEN
    TRANS_TAC 
HOMOTOPIC_WITH_TRANS `f:real^N->real^N` THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC 
HOMOTOPIC_WITH_EQ THEN
    MAP_EVERY EXISTS_TAC
     [`(r:real^N->real^N) o (f:real^N->real^N)`;
      `(r:real^N->real^N) o (\x. x)`] THEN
    ASM_SIMP_TAC[
o_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    MATCH_MP_TAC 
HOMOTOPIC_WITH_COMPOSE_CONTINUOUS_LEFT THEN
    EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
     [ASM_MESON_TAC[
HOMOTOPIC_WITH_SYM]; ASM SET_TAC[]]]);;
 
let interval_bij = new_definition
 `interval_bij (a:real^N,b:real^N) (u:real^N,v:real^N) (x:real^N) =
    (lambda i. u$i + (x$i - a$i) / (b$i - a$i) * (v$i - u$i)):real^N`;;let INFNORM_EQ_1_2 = prove
 (`infnorm (x:real^2) = &1 <=>
        abs(x$1) <= &1 /\ abs(x$2) <= &1 /\
        (x$1 = -- &1 \/ x$1 = &1 \/ x$2 = -- &1 \/ x$2 = &1)`,
  REWRITE_TAC[
INFNORM_2] THEN REAL_ARITH_TAC);;
 
let FASHODA_UNIT = prove
 (`!f:real^1->real^2 g:real^1->real^2.
        
IMAGE f (interval[--vec 1,vec 1]) 
SUBSET interval[--vec 1,vec 1] /\
        
IMAGE g (interval[--vec 1,vec 1]) 
SUBSET interval[--vec 1,vec 1] /\
        f 
continuous_on interval[--vec 1,vec 1] /\
        g 
continuous_on interval[--vec 1,vec 1] /\
        f(--vec 1)$1 = -- &1 /\ f(vec 1)$1 = &1 /\
        g(--vec 1)$2 = -- &1 /\ g(vec 1)$2 = &1
        ==> ?s t. s 
IN interval[--vec 1,vec 1] /\
                  t 
IN interval[--vec 1,vec 1] /\
                  f(s) = g(t)`,
 
let FASHODA = prove
 (`!f g a b:real^2.
        path f /\ path g /\
        
path_image f 
SUBSET interval[a,b] /\
        
path_image g 
SUBSET interval[a,b] /\
        (pathstart f)$1 = a$1 /\ (pathfinish f)$1 = b$1 /\
        (pathstart g)$2 = a$2 /\ (pathfinish g)$2 = b$2
        ==> ?z. z 
IN path_image f /\ z 
IN path_image g`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `~(interval[a:real^2,b] = {})` MP_TAC THENL
   [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
     `s 
SUBSET t ==> ~(s = {}) ==> ~(t = {})`)) THEN
    REWRITE_TAC[
PATH_IMAGE_NONEMPTY];
    ALL_TAC] THEN
  REWRITE_TAC[
INTERVAL_NE_EMPTY; DIMINDEX_2; 
FORALL_2] THEN STRIP_TAC THEN
  MP_TAC(ASSUME `(a:real^2)$1 <= (b:real^2)$1`) THEN
  REWRITE_TAC[REAL_ARITH `a <= b <=> b = a \/ a < b`] THEN STRIP_TAC THENL
   [SUBGOAL_THEN
      `?z:real^2. z 
IN path_image g /\ z$2 = (pathstart f:real^2)$2`
    MP_TAC THENL
     [MATCH_MP_TAC 
CONNECTED_IVT_COMPONENT THEN
      MAP_EVERY EXISTS_TAC [`pathstart(g:real^1->real^2)`;
                            `pathfinish(g:real^1->real^2)`] THEN
      ASM_SIMP_TAC[
CONNECTED_PATH_IMAGE; 
PATHSTART_IN_PATH_IMAGE; 
REAL_LE_REFL;
                   
PATHFINISH_IN_PATH_IMAGE; DIMINDEX_2; ARITH] THEN
      UNDISCH_TAC `
path_image f 
SUBSET interval[a:real^2,b]` THEN
      REWRITE_TAC[
SUBSET; 
path_image; 
IN_INTERVAL_1; 
FORALL_IN_IMAGE] THEN
      DISCH_THEN(MP_TAC o SPEC `vec 0:real^1`) THEN SIMP_TAC[pathstart] THEN
      SIMP_TAC[
DROP_VEC; 
REAL_POS; 
IN_INTERVAL; 
FORALL_2; DIMINDEX_2];
      ALL_TAC] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `z:real^2` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[
path_image; 
IN_IMAGE] THEN
    EXISTS_TAC `vec 0:real^1` THEN
    REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
REAL_POS] THEN
    ASM_REWRITE_TAC[
CART_EQ; 
FORALL_2; DIMINDEX_2; pathstart] THEN
    SUBGOAL_THEN
     `(z:real^2) 
IN interval[a,b] /\ f(vec 0:real^1) 
IN interval[a,b]`
    MP_TAC THENL
     [ASM_MESON_TAC[
SUBSET; 
path_image; 
IN_IMAGE; 
PATHSTART_IN_PATH_IMAGE;
                    pathstart];
      ASM_REWRITE_TAC[
IN_INTERVAL; 
FORALL_2; DIMINDEX_2] THEN REAL_ARITH_TAC];
    ALL_TAC] THEN
  MP_TAC(ASSUME `(a:real^2)$2 <= (b:real^2)$2`) THEN
  REWRITE_TAC[REAL_ARITH `a <= b <=> b = a \/ a < b`] THEN STRIP_TAC THENL
   [SUBGOAL_THEN
      `?z:real^2. z 
IN path_image f /\ z$1 = (pathstart g:real^2)$1`
    MP_TAC THENL
     [MATCH_MP_TAC 
CONNECTED_IVT_COMPONENT THEN
      MAP_EVERY EXISTS_TAC [`pathstart(f:real^1->real^2)`;
                            `pathfinish(f:real^1->real^2)`] THEN
      ASM_SIMP_TAC[
CONNECTED_PATH_IMAGE; 
PATHSTART_IN_PATH_IMAGE; 
REAL_LE_REFL;
                   
PATHFINISH_IN_PATH_IMAGE; DIMINDEX_2; ARITH] THEN
      UNDISCH_TAC `
path_image g 
SUBSET interval[a:real^2,b]` THEN
      REWRITE_TAC[
SUBSET; 
path_image; 
IN_INTERVAL_1; 
FORALL_IN_IMAGE] THEN
      DISCH_THEN(MP_TAC o SPEC `vec 0:real^1`) THEN SIMP_TAC[pathstart] THEN
      SIMP_TAC[
DROP_VEC; 
REAL_POS; 
IN_INTERVAL; 
FORALL_2; DIMINDEX_2];
      ALL_TAC] THEN
    MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `z:real^2` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[
path_image; 
IN_IMAGE] THEN
    EXISTS_TAC `vec 0:real^1` THEN
    REWRITE_TAC[
IN_INTERVAL_1; 
DROP_VEC; 
REAL_POS] THEN
    ASM_REWRITE_TAC[
CART_EQ; 
FORALL_2; DIMINDEX_2; pathstart] THEN
    SUBGOAL_THEN
     `(z:real^2) 
IN interval[a,b] /\ g(vec 0:real^1) 
IN interval[a,b]`
    MP_TAC THENL
     [ASM_MESON_TAC[
SUBSET; 
path_image; 
IN_IMAGE; 
PATHSTART_IN_PATH_IMAGE;
                    pathstart];
      ASM_REWRITE_TAC[
IN_INTERVAL; 
FORALL_2; DIMINDEX_2] THEN REAL_ARITH_TAC];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`
interval_bij (a,b) (--vec 1,vec 1) o (f:real^1->real^2)`;
    `
interval_bij (a,b) (--vec 1,vec 1) o (g:real^1->real^2)`]
   
FASHODA_UNIT_PATH) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[path; 
path_image; pathstart; pathfinish]) THEN
  ASM_REWRITE_TAC[path; 
path_image; pathstart; pathfinish; 
o_THM] THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[
CONTINUOUS_ON_COMPOSE; 
CONTINUOUS_ON_INTERVAL_BIJ] THEN
    REWRITE_TAC[
IMAGE_o] THEN REPLICATE_TAC 2 (CONJ_TAC THENL
     [REWRITE_TAC[
SUBSET] THEN ONCE_REWRITE_TAC[
FORALL_IN_IMAGE] THEN
      REPEAT STRIP_TAC THEN MATCH_MP_TAC 
IN_INTERVAL_INTERVAL_BIJ THEN
      SIMP_TAC[
INTERVAL_NE_EMPTY; 
VECTOR_NEG_COMPONENT; 
VEC_COMPONENT] THEN
      CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM SET_TAC[];
      ALL_TAC]) THEN
    ASM_SIMP_TAC[
interval_bij; 
LAMBDA_BETA; DIMINDEX_2; ARITH] THEN
    ASM_SIMP_TAC[
REAL_DIV_REFL; 
REAL_LT_IMP_NZ; 
REAL_SUB_LT] THEN
    REWRITE_TAC[
real_div; 
REAL_SUB_REFL; 
REAL_MUL_LZERO] THEN
    SIMP_TAC[
VECTOR_NEG_COMPONENT; 
VEC_COMPONENT; DIMINDEX_2; ARITH] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV;
    ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `z:real^2`
   (fun th -> EXISTS_TAC `
interval_bij (--vec 1,vec 1) (a,b) (z:real^2)` THEN
              MP_TAC th)) THEN
  MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN REWRITE_TAC[
IMAGE_o] THEN
  MATCH_MP_TAC(SET_RULE
   `(!x. x 
IN s ==> g(f(x)) = x) ==> x 
IN IMAGE f s ==> g x 
IN s`) THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC 
INTERVAL_BIJ_BIJ THEN
  ASM_SIMP_TAC[
FORALL_2; DIMINDEX_2; 
VECTOR_NEG_COMPONENT; 
VEC_COMPONENT;
               ARITH] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;
 
let SEGMENT_VERTICAL = prove
 (`!a:real^2 b:real^2 x:real^2.
      a$1 = b$1
      ==> (x 
IN segment[a,b] <=>
           x$1 = a$1 /\ x$1 = b$1 /\
           (a$2 <= x$2 /\ x$2 <= b$2 \/ b$2 <= x$2 /\ x$2 <= a$2))`,
 
let SEGMENT_HORIZONTAL = prove
 (`!a:real^2 b:real^2 x:real^2.
      a$2 = b$2
      ==> (x 
IN segment[a,b] <=>
           x$2 = a$2 /\ x$2 = b$2 /\
           (a$1 <= x$1 /\ x$1 <= b$1 \/ b$1 <= x$1 /\ x$1 <= a$1))`,
 
let FASHODA_INTERLACE = prove
 (`!f g a b:real^2.
        path f /\ path g /\
        
path_image f 
SUBSET interval[a,b] /\
        
path_image g 
SUBSET interval[a,b] /\
        (pathstart f)$2 = a$2 /\ (pathfinish f)$2 = a$2 /\
        (pathstart g)$2 = a$2 /\ (pathfinish g)$2 = a$2 /\
        (pathstart f)$1 < (pathstart g)$1 /\
        (pathstart g)$1 < (pathfinish f)$1 /\
        (pathfinish f)$1 < (pathfinish g)$1
        ==> ?z. z 
IN path_image f /\ z 
IN path_image g`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `~(interval[a:real^2,b] = {})` MP_TAC THENL
   [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE
     `s 
SUBSET t ==> ~(s = {}) ==> ~(t = {})`)) THEN
    REWRITE_TAC[
PATH_IMAGE_NONEMPTY];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `pathstart (f:real^1->real^2) 
IN interval[a,b] /\
    pathfinish f 
IN interval[a,b] /\
    pathstart g 
IN interval[a,b] /\
    pathfinish g 
IN interval[a,b]`
  MP_TAC THENL
   [ASM_MESON_TAC[
SUBSET; 
PATHSTART_IN_PATH_IMAGE; 
PATHFINISH_IN_PATH_IMAGE];
    ALL_TAC] THEN
  REWRITE_TAC[
INTERVAL_NE_EMPTY; 
IN_INTERVAL; 
FORALL_2; DIMINDEX_2] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL
   [`linepath(vector[a$1 - &2;a$2 - &2],vector[(pathstart f)$1;a$2 - &2]) ++
     linepath(vector[(pathstart f)$1;(a:real^2)$2 - &2],pathstart f) ++
     (f:real^1->real^2) ++
     linepath(pathfinish f,vector[(pathfinish f)$1;a$2 - &2]) ++
     linepath(vector[(pathfinish f)$1;a$2 - &2],
              vector[(b:real^2)$1 + &2;a$2 - &2])`;
    `linepath(vector[(pathstart g)$1; (pathstart g)$2 - &3],pathstart g) ++
     (g:real^1->real^2) ++
     linepath(pathfinish g,vector[(pathfinish g)$1;(a:real^2)$2 - &1]) ++
     linepath(vector[(pathfinish g)$1;a$2 - &1],vector[b$1 + &1;a$2 - &1]) ++
     linepath(vector[b$1 + &1;a$2 - &1],vector[(b:real^2)$1 + &1;b$2 + &3])`;
    `vector[(a:real^2)$1 - &2; a$2 - &3]:real^2`;
    `vector[(b:real^2)$1 + &2; b$2 + &3]:real^2`]
   
FASHODA) THEN
  ASM_SIMP_TAC[
PATH_JOIN; 
PATHSTART_JOIN; 
PATHFINISH_JOIN; 
PATH_IMAGE_JOIN;
               
PATHSTART_LINEPATH; 
PATHFINISH_LINEPATH; 
PATH_LINEPATH] THEN
  REWRITE_TAC[
VECTOR_2] THEN ANTS_TAC THENL
   [CONJ_TAC THEN
    REPEAT(MATCH_MP_TAC
            (SET_RULE `s 
SUBSET u /\ t 
SUBSET u ==> (s 
UNION t) 
SUBSET u`) THEN
           CONJ_TAC) THEN
    TRY(REWRITE_TAC[
PATH_IMAGE_LINEPATH] THEN
        MATCH_MP_TAC(REWRITE_RULE[
CONVEX_CONTAINS_SEGMENT]
           (CONJUNCT1 (SPEC_ALL 
CONVEX_INTERVAL))) THEN
        ASM_REWRITE_TAC[
IN_INTERVAL; 
FORALL_2; DIMINDEX_2; 
VECTOR_2] THEN
        ASM_REAL_ARITH_TAC) THEN
    MATCH_MP_TAC 
SUBSET_TRANS THEN
    EXISTS_TAC `interval[a:real^2,b:real^2]` THEN
    ASM_REWRITE_TAC[
SUBSET_REFL] THEN
    REWRITE_TAC[
SUBSET_INTERVAL; 
FORALL_2; DIMINDEX_2; 
VECTOR_2] THEN
    ASM_REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN X_GEN_TAC `z:real^2` THEN
  REWRITE_TAC[
PATH_IMAGE_LINEPATH] THEN
  SUBGOAL_THEN
   `!f s:real^2->bool. 
path_image f 
UNION s =
                       
path_image f 
UNION (s 
DIFF {pathstart f,pathfinish f})`
   (fun th -> ONCE_REWRITE_TAC[th] THEN
              REWRITE_TAC[GSYM 
UNION_ASSOC] THEN
              ONCE_REWRITE_TAC[SET_RULE `(s 
UNION t) 
UNION u =
                                         u 
UNION t 
UNION s`] THEN
              ONCE_REWRITE_TAC[th])
  THENL
   [REWRITE_TAC[
EXTENSION; 
IN_UNION; 
IN_DIFF; 
IN_INSERT; 
NOT_IN_EMPTY] THEN
    ASM_MESON_TAC[
PATHSTART_IN_PATH_IMAGE; 
PATHFINISH_IN_PATH_IMAGE];
    ALL_TAC] THEN
  REWRITE_TAC[
IN_UNION; 
IN_DIFF; GSYM 
DISJ_ASSOC; 
LEFT_OR_DISTRIB;
              
RIGHT_OR_DISTRIB; GSYM 
CONJ_ASSOC;
              SET_RULE `~(z 
IN {x,y}) <=> ~(z = x) /\ ~(z = y)`] THEN
  DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN MP_TAC) THEN
  ASM_SIMP_TAC[
SEGMENT_VERTICAL; 
SEGMENT_HORIZONTAL; 
VECTOR_2] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `
path_image (f:real^1->real^2) 
SUBSET interval [a,b]` THEN
  REWRITE_TAC[
SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `z:real^2`) THEN
  UNDISCH_TAC `
path_image (g:real^1->real^2) 
SUBSET interval [a,b]` THEN
  REWRITE_TAC[
SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `z:real^2`) THEN
  ASM_REWRITE_TAC[
IN_INTERVAL; 
FORALL_2; DIMINDEX_2] THEN
  REPEAT(DISCH_THEN(fun th -> if is_imp(concl th) then ALL_TAC else
    ASSUME_TAC th)) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN TRY REAL_ARITH_TAC THEN
  REWRITE_TAC[
CART_EQ; 
FORALL_2; DIMINDEX_2] THEN REAL_ARITH_TAC);;