(* ========================================================================= *)
(* Pascal's hexagon theorem for projective and affine planes.                *)
(* ========================================================================= *)
needs "Multivariate/cross.ml";;
(* ------------------------------------------------------------------------- *)
(* A lemma we want to justify some of the axioms.                            *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Type of directions.                                                       *)
(* ------------------------------------------------------------------------- *)
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
 (MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let DIRECTION_CLAUSES = prove
 (`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
   ((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
  MESON_TAC[direction_tybij]);;
 
let DIRECTION_AXIOM_1 = prove
 (`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
                             !l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
  REWRITE_TAC[perpdir; pardir; 
DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:real^3`; `p':real^3`] 
NORMAL_EXISTS) THEN
  MATCH_MP_TAC 
MONO_EXISTS THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
 
let DIRECTION_AXIOM_3 = prove
 (`?p p' p''.
        ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
        ~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
  REWRITE_TAC[perpdir; pardir; 
DIRECTION_CLAUSES] THEN MAP_EVERY
   (fun t -> EXISTS_TAC t THEN SIMP_TAC[
BASIS_NONZERO; DIMINDEX_3; ARITH])
   [`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
  VEC3_TAC);;
 
let DIRECTION_AXIOM_4_WEAK = prove
 (`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
  REWRITE_TAC[
DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
    ~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
    orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
    orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 2) cross (l cross basis 3) = vec 0)`
  MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[
CROSS_0]]);;
 
let ORTHOGONAL_COMBINE = prove
 (`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
           ==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
  REWRITE_TAC[
DIRECTION_CLAUSES; pardir; perpdir] THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
 
let DIRECTION_AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
                  p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
 
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;let POINT_CLAUSES = prove
 (`((p = p') <=> (dest_point p = dest_point p')) /\
   ((!p. P (dest_point p)) <=> (!l. P l)) /\
   ((?p. P (dest_point p)) <=> (?l. P l))`,
  MESON_TAC[point_tybij]);;
 
let AXIOM_1 = prove
 (`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
          !l'. p on l' /\ p' on l' ==> (l' = l)`,
  POINT_TAC LINE_AXIOM_1);;
 
let AXIOM_2 = prove
 (`!l l'. ?p. p on l /\ p on l'`,
  POINT_TAC LINE_AXIOM_2);;
 
let AXIOM_3 = prove
 (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    ~(?l. p on l /\ p' on l /\ p'' on l)`,
  POINT_TAC LINE_AXIOM_3);;
 
let AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    p on l /\ p' on l /\ p'' on l`,
  POINT_TAC LINE_AXIOM_4);;
 
let PROJL_TOTAL = prove
 (`!l. ?x. ~(x = vec 0) /\ l = projl x`,
  GEN_TAC THEN
  SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL
   [MESON_TAC[fst 
line_tybij; snd 
line_tybij];
    REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN
    MESON_TAC[direction_tybij]]);;
 
let homop_def = new_definition
 `homop p = homol(dest_point p)`;;
let homop = prove
 (`!p. ~(homop p = vec 0) /\ p = projp(homop p)`,
  GEN_TAC THEN REWRITE_TAC[
homop_def; projp; MESON[point_tybij]
   `p = mk_point l <=> dest_point p = l`] THEN
  MATCH_ACCEPT_TAC homol);;
 
let ON_HOMOL = prove
 (`!p l. p on l <=> orthogonal (homop p) (homol l)`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN
  REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN
  REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN
  MESON_TAC[homol; homop; direction_tybij]);;
 
let EQ_HOMOL = prove
 (`!l l'. l = l' <=> parallel (homol l) (homol l')`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN
  REWRITE_TAC[projl; MESON[fst 
line_tybij; snd 
line_tybij]
   `mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN
  REWRITE_TAC[
PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN
  MESON_TAC[homol; direction_tybij]);;
 
let PARALLEL_PROJL_HOMOL = prove
 (`!x. parallel x (homol(projl x))`,
  GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
  ASM_REWRITE_TAC[
CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN
  DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN
  REWRITE_TAC[MESON[fst 
line_tybij; snd 
line_tybij]
   `dest_line(mk_line((||) l)) = (||) l`] THEN
  REWRITE_TAC[
PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN
  ASM_MESON_TAC[direction_tybij]);;
 
let homogeneous_conic = new_definition
 `homogeneous_conic con <=>
    ?a b c d e f.
       ~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\
       con = {x:real^3 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$3 pow 2 +
                         d * x$1 * x$2 + e * x$1 * x$3 + f * x$2 * x$3 = &0}`;;let HOMOGENEOUS_CONIC_BRACKET = prove
 (`!con x1 x2 x3 x4 x5 x6.
        
homogeneous_conic con /\
        x1 
IN con /\ x2 
IN con /\ x3 
IN con /\
        x4 
IN con /\ x5 
IN con /\ x6 
IN con
        ==> det(vector[x6;x1;x4]) * det(vector[x6;x2;x3]) *
            det(vector[x5;x1;x3]) * det(vector[x5;x2;x4]) =
            det(vector[x6;x1;x3]) * det(vector[x6;x2;x4]) *
            det(vector[x5;x1;x4]) * det(vector[x5;x2;x3])`,
 
let PROJECTIVE_CONIC_BRACKET = prove
 (`!con p1 p2 p3 p4 p5 p6.
        
projective_conic con /\
        p1 
IN con /\ p2 
IN con /\ p3 
IN con /\
        p4 
IN con /\ p5 
IN con /\ p6 
IN con
        ==> bracket[p6;p1;p4] * bracket[p6;p2;p3] *
            bracket[p5;p1;p3] * bracket[p5;p2;p4] =
            bracket[p6;p1;p3] * bracket[p6;p2;p4] *
            bracket[p5;p1;p4] * bracket[p5;p2;p3]`,
 
let PASCAL_DIRECT = prove
 (`!con x1 x2 x3 x4 x5 x6 x6 x8 x9.
        ~COLLINEAR {x2,x5,x7} /\
        ~COLLINEAR {x1,x2,x5} /\
        ~COLLINEAR {x1,x3,x6} /\
        ~COLLINEAR {x2,x4,x6} /\
        ~COLLINEAR {x3,x4,x5} /\
        ~COLLINEAR {x1,x5,x7} /\
        ~COLLINEAR {x2,x5,x9} /\
        ~COLLINEAR {x1,x2,x6} /\
        ~COLLINEAR {x3,x6,x8} /\
        ~COLLINEAR {x2,x4,x5} /\
        ~COLLINEAR {x2,x4,x7} /\
        ~COLLINEAR {x2,x6,x8} /\
        ~COLLINEAR {x3,x4,x6} /\
        ~COLLINEAR {x3,x5,x8} /\
        ~COLLINEAR {x1,x3,x5}
        ==> 
projective_conic con /\
            x1 
IN con /\ x2 
IN con /\ x3 
IN con /\
            x4 
IN con /\ x5 
IN con /\ x6 
IN con /\
            
COLLINEAR {x1,x9,x5} /\
            
COLLINEAR {x1,x8,x6} /\
            
COLLINEAR {x2,x9,x4} /\
            
COLLINEAR {x2,x7,x6} /\
            
COLLINEAR {x3,x8,x4} /\
            
COLLINEAR {x3,x7,x5}
            ==> 
COLLINEAR {x7,x8,x9}`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e /\ f /\ g /\ h ==> p <=>
                    a /\ b /\ c /\ d /\ e /\ f /\ g ==> h ==> p`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP 
PROJECTIVE_CONIC_BRACKET) THEN
  REWRITE_TAC[
COLLINEAR_BRACKET; IMP_IMP; GSYM 
CONJ_ASSOC] THEN
  MATCH_MP_TAC(TAUT `!q. (p ==> q) /\ (q ==> r) ==> p ==> r`) THEN
  EXISTS_TAC
   `bracket[x1;x2;x5] * bracket[x1;x3;x6] *
    bracket[x2;x4;x6] * bracket[x3;x4;x5] =
    bracket[x1;x2;x6] * bracket[x1;x3;x5] *
    bracket[x2;x4;x5] * bracket[x3;x4;x6] /\
    bracket[x1;x5;x7] * bracket[x2;x5;x9] =
    --bracket[x1;x2;x5] * bracket[x5;x9;x7] /\
    bracket[x1;x2;x6] * bracket[x3;x6;x8] =
    bracket[x1;x3;x6] * bracket[x2;x6;x8] /\
    bracket[x2;x4;x5] * bracket[x2;x9;x7] =
    --bracket[x2;x4;x7] * bracket[x2;x5;x9] /\
    bracket[x2;x4;x7] * bracket[x2;x6;x8] =
    --bracket[x2;x4;x6] * bracket[x2;x8;x7] /\
    bracket[x3;x4;x6] * bracket[x3;x5;x8] =
    bracket[x3;x4;x5] * bracket[x3;x6;x8] /\
    bracket[x1;x3;x5] * bracket[x5;x8;x7] =
    --bracket[x1;x5;x7] * bracket[x3;x5;x8]` THEN
  CONJ_TAC THENL
   [REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
    REWRITE_TAC[bracket; 
DET_3; 
VECTOR_3] THEN CONV_TAC REAL_RING;
    ALL_TAC] THEN
  REWRITE_TAC[
IMP_CONJ] THEN
  REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN
         DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
          `a = b /\ x:real = y ==> a * x = b * y`))) THEN
  REWRITE_TAC[GSYM REAL_MUL_ASSOC; 
REAL_MUL_LNEG; 
REAL_MUL_RNEG] THEN
  REWRITE_TAC[
REAL_NEG_NEG] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[
COLLINEAR_BRACKET]) THEN
  REWRITE_TAC[
REAL_MUL_AC] THEN ASM_REWRITE_TAC[
REAL_EQ_MUL_LCANCEL] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
  ASM_REWRITE_TAC[
REAL_EQ_MUL_LCANCEL] THEN
  FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN
  REWRITE_TAC[bracket; 
DET_3; 
VECTOR_3] THEN CONV_TAC REAL_RING);;
 
let PASCAL = prove
 (`!con x1 x2 x3 x4 x5 x6 x6 x8 x9.
        ~COLLINEAR {x1,x2,x4} /\
        ~COLLINEAR {x1,x2,x5} /\
        ~COLLINEAR {x1,x2,x6} /\
        ~COLLINEAR {x1,x3,x4} /\
        ~COLLINEAR {x1,x3,x5} /\
        ~COLLINEAR {x1,x3,x6} /\
        ~COLLINEAR {x2,x3,x4} /\
        ~COLLINEAR {x2,x3,x5} /\
        ~COLLINEAR {x2,x3,x6} /\
        ~COLLINEAR {x4,x5,x1} /\
        ~COLLINEAR {x4,x5,x2} /\
        ~COLLINEAR {x4,x5,x3} /\
        ~COLLINEAR {x4,x6,x1} /\
        ~COLLINEAR {x4,x6,x2} /\
        ~COLLINEAR {x4,x6,x3} /\
        ~COLLINEAR {x5,x6,x1} /\
        ~COLLINEAR {x5,x6,x2} /\
        ~COLLINEAR {x5,x6,x3}
        ==> 
projective_conic con /\
            x1 
IN con /\ x2 
IN con /\ x3 
IN con /\
            x4 
IN con /\ x5 
IN con /\ x6 
IN con /\
            
COLLINEAR {x1,x9,x5} /\
            
COLLINEAR {x1,x8,x6} /\
            
COLLINEAR {x2,x9,x4} /\
            
COLLINEAR {x2,x7,x6} /\
            
COLLINEAR {x3,x8,x4} /\
            
COLLINEAR {x3,x7,x5}
            ==> 
COLLINEAR {x7,x8,x9}`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  DISCH_THEN(fun th ->
    MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN DISCH_TAC THEN
    MP_TAC th THEN MATCH_MP_TAC 
PASCAL_DIRECT THEN
    ASSUME_TAC(funpow 7 CONJUNCT2 th)) THEN
  REPEAT CONJ_TAC THEN
  REPEAT(POP_ASSUM MP_TAC) THEN
  REWRITE_TAC[
COLLINEAR_BRACKET; bracket; 
DET_3; 
VECTOR_3] THEN
  CONV_TAC REAL_RING);;
 
let affine_conic = new_definition
 `affine_conic con <=>
    ?a b c d e f.
       ~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\
       con = {x:real^2 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$1 * x$2 +
                         d * x$1 + e * x$2 + f = &0}`;;let PASCAL_AFFINE = prove
 (`!con x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2.
        ~collinear {x1,x2,x4} /\
        ~collinear {x1,x2,x5} /\
        ~collinear {x1,x2,x6} /\
        ~collinear {x1,x3,x4} /\
        ~collinear {x1,x3,x5} /\
        ~collinear {x1,x3,x6} /\
        ~collinear {x2,x3,x4} /\
        ~collinear {x2,x3,x5} /\
        ~collinear {x2,x3,x6} /\
        ~collinear {x4,x5,x1} /\
        ~collinear {x4,x5,x2} /\
        ~collinear {x4,x5,x3} /\
        ~collinear {x4,x6,x1} /\
        ~collinear {x4,x6,x2} /\
        ~collinear {x4,x6,x3} /\
        ~collinear {x5,x6,x1} /\
        ~collinear {x5,x6,x2} /\
        ~collinear {x5,x6,x3}
        ==> 
affine_conic con /\
            x1 
IN con /\ x2 
IN con /\ x3 
IN con /\
            x4 
IN con /\ x5 
IN con /\ x6 
IN con /\
            collinear {x1,x9,x5} /\
            collinear {x1,x8,x6} /\
            collinear {x2,x9,x4} /\
            collinear {x2,x7,x6} /\
            collinear {x3,x8,x4} /\
            collinear {x3,x7,x5}
            ==> collinear {x7,x8,x9}`,
 
let COLLINEAR_NOT_COCIRCULAR = prove
 (`!r c x y z:real^2.
        dist(c,x) = r /\ dist(c,y) = r /\ dist(c,z) = r /\
        ~(x = y) /\ ~(x = z) /\ ~(y = z)
        ==> ~collinear {x,y,z}`,
 
let PASCAL_AFFINE_CIRCLE = prove
 (`!c r x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2.
        
PAIRWISE (\x y. ~(x = y)) [x1;x2;x3;x4;x5;x6] /\
        dist(c,x1) = r /\ dist(c,x2) = r /\ dist(c,x3) = r /\
        dist(c,x4) = r /\ dist(c,x5) = r /\ dist(c,x6) = r /\
        collinear {x1,x9,x5} /\
        collinear {x1,x8,x6} /\
        collinear {x2,x9,x4} /\
        collinear {x2,x7,x6} /\
        collinear {x3,x8,x4} /\
        collinear {x3,x7,x5}
        ==> collinear {x7,x8,x9}`,
  GEN_TAC THEN GEN_TAC THEN
  MP_TAC(SPEC `{x:real^2 | dist(c,x) = r}` 
PASCAL_AFFINE) THEN
  REPEAT(MATCH_MP_TAC 
MONO_FORALL THEN GEN_TAC) THEN
  REWRITE_TAC[
PAIRWISE; 
ALL; 
IN_ELIM_THM] THEN
  GEN_REWRITE_TAC LAND_CONV [IMP_IMP] THEN
  DISCH_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [REPEAT CONJ_TAC THEN MATCH_MP_TAC 
COLLINEAR_NOT_COCIRCULAR THEN
    MAP_EVERY EXISTS_TAC [`r:real`; `c:real^2`] THEN ASM_REWRITE_TAC[];
    REWRITE_TAC[
affine_conic; dist; 
NORM_EQ_SQUARE] THEN
    ASM_CASES_TAC `&0 <= r` THEN ASM_REWRITE_TAC[] THENL
     [MAP_EVERY EXISTS_TAC
       [`&1`; `&1`; `&0`; `-- &2 * (c:real^2)$1`; `-- &2 * (c:real^2)$2`;
        `(c:real^2)$1 pow 2 + (c:real^2)$2 pow 2 - r pow 2`] THEN
      REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM] THEN
      REWRITE_TAC[
DOT_2; 
VECTOR_SUB_COMPONENT] THEN REAL_ARITH_TAC;
      REPLICATE_TAC 5 (EXISTS_TAC `&0`) THEN EXISTS_TAC `&1` THEN
      REWRITE_TAC[
EXTENSION; 
IN_ELIM_THM] THEN REAL_ARITH_TAC]]);;