(* ========================================================================= *)
(* Real vectors in Euclidean space, and elementary linear algebra.           *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2008                       *)
(* ========================================================================= *)

needs "Multivariate/misc.ml";;

(* ------------------------------------------------------------------------- *)
(* Some common special cases.                                                *)
(* ------------------------------------------------------------------------- *)

let FORALL_1 = 
prove (`(!i. 1 <= i /\ i <= 1 ==> P i) <=> P 1`,
MESON_TAC[LE_ANTISYM]);;
let FORALL_2 = 
prove (`!P. (!i. 1 <= i /\ i <= 2 ==> P i) <=> P 1 /\ P 2`,
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 2 <=> i = 1 \/ i = 2`]);;
let FORALL_3 = 
prove (`!P. (!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`,
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> i = 1 \/ i = 2 \/ i = 3`]);;
let FORALL_4 = 
prove (`!P. (!i. 1 <= i /\ i <= 4 ==> P i) <=> P 1 /\ P 2 /\ P 3 /\ P 4`,
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 4 <=> i = 1 \/ i = 2 \/ i = 3 \/ i = 4`]);;
let SUM_1 = 
prove (`sum(1..1) f = f(1)`,
REWRITE_TAC[SUM_SING_NUMSEG]);;
let SUM_2 = 
prove (`!t. sum(1..2) t = t(1) + t(2)`,
REWRITE_TAC[num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
let SUM_3 = 
prove (`!t. sum(1..3) t = t(1) + t(2) + t(3)`,
REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
let SUM_4 = 
prove (`!t. sum(1..4) t = t(1) + t(2) + t(3) + t(4)`,
SIMP_TAC[num_CONV `4`; num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
(* ------------------------------------------------------------------------- *) (* Basic componentwise operations on vectors. *) (* ------------------------------------------------------------------------- *)
let vector_add = new_definition
  `(vector_add:real^N->real^N->real^N) x y = lambda i. x$i + y$i`;;
let vector_sub = new_definition
  `(vector_sub:real^N->real^N->real^N) x y = lambda i. x$i - y$i`;;
let vector_neg = new_definition
  `(vector_neg:real^N->real^N) x = lambda i. --(x$i)`;;
overload_interface ("+",`(vector_add):real^N->real^N->real^N`);; overload_interface ("-",`(vector_sub):real^N->real^N->real^N`);; overload_interface ("--",`(vector_neg):real^N->real^N`);; prioritize_real();; let prioritize_vector = let ty = `:real^N` in fun () -> prioritize_overload ty;; (* ------------------------------------------------------------------------- *) (* Also the scalar-vector multiplication. *) (* ------------------------------------------------------------------------- *) parse_as_infix("%",(21,"right"));;
let vector_mul = new_definition
  `((%):real->real^N->real^N) c x = lambda i. c * x$i`;;
(* ------------------------------------------------------------------------- *) (* Vectors corresponding to small naturals. Perhaps should overload "&"? *) (* ------------------------------------------------------------------------- *)
let vec = new_definition
  `(vec:num->real^N) n = lambda i. &n`;;
(* ------------------------------------------------------------------------- *) (* Dot products. *) (* ------------------------------------------------------------------------- *) parse_as_infix("dot",(20,"right"));;
let dot = new_definition
  `(x:real^N) dot (y:real^N) = sum(1..dimindex(:N)) (\i. x$i * y$i)`;;
let DOT_1 = 
prove (`(x:real^1) dot (y:real^1) = x$1 * y$1`,
REWRITE_TAC[dot; DIMINDEX_1; SUM_1]);;
let DOT_2 = 
prove (`(x:real^2) dot (y:real^2) = x$1 * y$1 + x$2 * y$2`,
REWRITE_TAC[dot; DIMINDEX_2; SUM_2]);;
let DOT_3 = 
prove (`(x:real^3) dot (y:real^3) = x$1 * y$1 + x$2 * y$2 + x$3 * y$3`,
REWRITE_TAC[dot; DIMINDEX_3; SUM_3]);;
let DOT_4 = 
prove (`(x:real^4) dot (y:real^4) = x$1 * y$1 + x$2 * y$2 + x$3 * y$3 + x$4 * y$4`,
REWRITE_TAC[dot; DIMINDEX_4; SUM_4]);;
(* ------------------------------------------------------------------------- *) (* A naive proof procedure to lift really trivial arithmetic stuff from R. *) (* ------------------------------------------------------------------------- *) let VECTOR_ARITH_TAC = let RENAMED_LAMBDA_BETA th = if fst(dest_fun_ty(type_of(funpow 3 rand (concl th)))) = aty then INST_TYPE [aty,bty; bty,aty] LAMBDA_BETA else LAMBDA_BETA in POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT(GEN_TAC ORELSE CONJ_TAC ORELSE DISCH_TAC ORELSE EQ_TAC) THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN REWRITE_TAC[dot; GSYM SUM_ADD_NUMSEG; GSYM SUM_SUB_NUMSEG; GSYM SUM_LMUL; GSYM SUM_RMUL; GSYM SUM_NEG] THEN (MATCH_MP_TAC SUM_EQ_NUMSEG ORELSE MATCH_MP_TAC SUM_EQ_0_NUMSEG ORELSE GEN_REWRITE_TAC ONCE_DEPTH_CONV [CART_EQ]) THEN REWRITE_TAC[AND_FORALL_THM] THEN TRY EQ_TAC THEN TRY(MATCH_MP_TAC MONO_FORALL) THEN GEN_TAC THEN REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`; TAUT `(a ==> b) \/ (a ==> c) <=> a ==> b \/ c`] THEN TRY(MATCH_MP_TAC(TAUT `(a ==> b ==> c) ==> (a ==> b) ==> (a ==> c)`)) THEN REWRITE_TAC[vector_add; vector_sub; vector_neg; vector_mul; vec] THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP(RENAMED_LAMBDA_BETA th) th]) THEN REAL_ARITH_TAC;; let VECTOR_ARITH tm = prove(tm,VECTOR_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Obvious "component-pushing". *) (* ------------------------------------------------------------------------- *)
let VEC_COMPONENT = 
prove (`!k i. (vec k :real^N)$i = &k`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ !z:real^N. z$i = z$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ASM_SIMP_TAC[vec; CART_EQ; LAMBDA_BETA]]);;
let VECTOR_ADD_COMPONENT = 
prove (`!x:real^N y i. (x + y)$i = x$i + y$i`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ !z:real^N. z$i = z$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ASM_SIMP_TAC[vector_add; CART_EQ; LAMBDA_BETA]]);;
let VECTOR_SUB_COMPONENT = 
prove (`!x:real^N y i. (x - y)$i = x$i - y$i`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ !z:real^N. z$i = z$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ASM_SIMP_TAC[vector_sub; CART_EQ; LAMBDA_BETA]]);;
let VECTOR_NEG_COMPONENT = 
prove (`!x:real^N i. (--x)$i = --(x$i)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ !z:real^N. z$i = z$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ASM_SIMP_TAC[vector_neg; CART_EQ; LAMBDA_BETA]]);;
let VECTOR_MUL_COMPONENT = 
prove (`!c x:real^N i. (c % x)$i = c * x$i`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ !z:real^N. z$i = z$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ASM_SIMP_TAC[vector_mul; CART_EQ; LAMBDA_BETA]]);;
let COND_COMPONENT = 
prove (`(if b then x else y)$i = if b then x$i else y$i`,
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Some frequently useful arithmetic lemmas over vectors. *) (* ------------------------------------------------------------------------- *)
let VECTOR_ADD_SYM = VECTOR_ARITH `!x y:real^N. x + y = y + x`;;
let VECTOR_ADD_LID = VECTOR_ARITH `!x. vec 0 + x = x`;;
let VECTOR_ADD_RID = VECTOR_ARITH `!x. x + vec 0 = x`;;
let VECTOR_SUB_REFL = VECTOR_ARITH `!x. x - x = vec 0`;;
let VECTOR_ADD_LINV = VECTOR_ARITH `!x. --x + x = vec 0`;;
let VECTOR_ADD_RINV = VECTOR_ARITH `!x. x + --x = vec 0`;;
let VECTOR_SUB_RADD = VECTOR_ARITH `!x y. x - (x + y) = --y:real^N`;;
let VECTOR_NEG_SUB = VECTOR_ARITH `!x:real^N y. --(x - y) = y - x`;;
let VECTOR_SUB_EQ = VECTOR_ARITH `!x y. (x - y = vec 0) <=> (x = y)`;;
let VECTOR_MUL_ASSOC = VECTOR_ARITH `!a b x. a % (b % x) = (a * b) % x`;;
let VECTOR_MUL_LID = VECTOR_ARITH `!x. &1 % x = x`;;
let VECTOR_MUL_LZERO = VECTOR_ARITH `!x. &0 % x = vec 0`;;
let VECTOR_SUB_ADD = VECTOR_ARITH `(x - y) + y = x:real^N`;;
let VECTOR_SUB_ADD2 = VECTOR_ARITH `y + (x - y) = x:real^N`;;
let VECTOR_ADD_LDISTRIB = VECTOR_ARITH `c % (x + y) = c % x + c % y`;;
let VECTOR_SUB_LDISTRIB = VECTOR_ARITH `c % (x - y) = c % x - c % y`;;
let VECTOR_ADD_RDISTRIB = VECTOR_ARITH `(a + b) % x = a % x + b % x`;;
let VECTOR_SUB_RDISTRIB = VECTOR_ARITH `(a - b) % x = a % x - b % x`;;
let VECTOR_ADD_SUB = VECTOR_ARITH `(x + y:real^N) - x = y`;;
let VECTOR_EQ_ADDR = VECTOR_ARITH `(x + y = x) <=> (y = vec 0)`;;
let VECTOR_SUB = VECTOR_ARITH `x - y = x + --(y:real^N)`;;
let VECTOR_SUB_RZERO = VECTOR_ARITH `x - vec 0 = x`;;
let VECTOR_MUL_RZERO = VECTOR_ARITH `c % vec 0 = vec 0`;;
let VECTOR_NEG_MINUS1 = VECTOR_ARITH `--x = (--(&1)) % x`;;
let VECTOR_ADD_ASSOC = VECTOR_ARITH `(x:real^N) + y + z = (x + y) + z`;;
let VECTOR_SUB_LZERO = VECTOR_ARITH `vec 0 - x = --x`;;
let VECTOR_NEG_NEG = VECTOR_ARITH `--(--(x:real^N)) = x`;;
let VECTOR_MUL_LNEG = VECTOR_ARITH `--c % x = --(c % x)`;;
let VECTOR_MUL_RNEG = VECTOR_ARITH `c % --x = --(c % x)`;;
let VECTOR_NEG_0 = VECTOR_ARITH `--(vec 0) = vec 0`;;
let VECTOR_NEG_EQ_0 = VECTOR_ARITH `--x = vec 0 <=> x = vec 0`;;
let VECTOR_EQ_NEG2 = VECTOR_ARITH `!x y:real^N. --x = --y <=> x = y`;;
let VECTOR_ADD_AC = VECTOR_ARITH
  `(m + n = n + m:real^N) /\
   ((m + n) + p = m + n + p) /\
   (m + n + p = n + m + p)`;;
let VEC_EQ = 
prove (`!m n. (vec m = vec n) <=> (m = n)`,
SIMP_TAC[CART_EQ; VEC_COMPONENT; REAL_OF_NUM_EQ] THEN MESON_TAC[LE_REFL; DIMINDEX_GE_1]);;
(* ------------------------------------------------------------------------- *) (* Analogous theorems for set-sums. *) (* ------------------------------------------------------------------------- *)
let SUMS_SYM = 
prove (`!s t:real^N->bool. {x + y | x IN s /\ y IN t} = {y + x | y IN t /\ x IN s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[VECTOR_ADD_SYM]);;
let SUMS_ASSOC = 
prove (`!s t u:real^N->bool. {w + z | w IN {x + y | x IN s /\ y IN t} /\ z IN u} = {x + v | x IN s /\ v IN {y + z | y IN t /\ z IN u}}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[VECTOR_ADD_ASSOC]);;
(* ------------------------------------------------------------------------- *) (* Infinitude of Euclidean space. *) (* ------------------------------------------------------------------------- *)
let EUCLIDEAN_SPACE_INFINITE = 
prove (`INFINITE(:real^N)`,
REWRITE_TAC[INFINITE] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o ISPEC `vec:num->real^N` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] FINITE_IMAGE_INJ)) THEN REWRITE_TAC[VEC_EQ; SET_RULE `{x | f x IN UNIV} = UNIV`] THEN REWRITE_TAC[GSYM INFINITE; num_INFINITE]);;
(* ------------------------------------------------------------------------- *) (* Properties of the dot product. *) (* ------------------------------------------------------------------------- *)
let DOT_SYM = VECTOR_ARITH `!x y. x dot y = y dot x`;;
let DOT_LADD = VECTOR_ARITH `!x y z. (x + y) dot z = (x dot z) + (y dot z)`;;
let DOT_RADD = VECTOR_ARITH `!x y z. x dot (y + z) = (x dot y) + (x dot z)`;;
let DOT_LSUB = VECTOR_ARITH `!x y z. (x - y) dot z = (x dot z) - (y dot z)`;;
let DOT_RSUB = VECTOR_ARITH `!x y z. x dot (y - z) = (x dot y) - (x dot z)`;;
let DOT_LMUL = VECTOR_ARITH `!c x y. (c % x) dot y = c * (x dot y)`;;
let DOT_RMUL = VECTOR_ARITH `!c x y. x dot (c % y) = c * (x dot y)`;;
let DOT_LNEG = VECTOR_ARITH `!x y. (--x) dot y = --(x dot y)`;;
let DOT_RNEG = VECTOR_ARITH `!x y. x dot (--y) = --(x dot y)`;;
let DOT_LZERO = VECTOR_ARITH `!x. (vec 0) dot x = &0`;;
let DOT_RZERO = VECTOR_ARITH `!x. x dot (vec 0) = &0`;;
let DOT_POS_LE = 
prove (`!x. &0 <= x dot x`,
SIMP_TAC[dot; SUM_POS_LE_NUMSEG; REAL_LE_SQUARE]);;
let DOT_EQ_0 = 
prove (`!x:real^N. ((x dot x = &0) <=> (x = vec 0))`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[DOT_LZERO]] THEN SIMP_TAC[dot; CART_EQ; vec; LAMBDA_BETA] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[REAL_ENTIRE] `x * x = &0`)] THEN MATCH_MP_TAC SUM_POS_EQ_0_NUMSEG THEN ASM_REWRITE_TAC[REAL_LE_SQUARE]);;
let DOT_POS_LT = 
prove (`!x. (&0 < x dot x) <=> ~(x = vec 0)`,
REWRITE_TAC[REAL_LT_LE; DOT_POS_LE] THEN MESON_TAC[DOT_EQ_0]);;
let FORALL_DOT_EQ_0 = 
prove (`(!y. (!x. x dot y = &0) <=> y = vec 0) /\ (!x. (!y. x dot y = &0) <=> x = vec 0)`,
MESON_TAC[DOT_LZERO; DOT_RZERO; DOT_EQ_0]);;
(* ------------------------------------------------------------------------- *) (* Introduce norms, but defer many properties till we get square roots. *) (* ------------------------------------------------------------------------- *) make_overloadable "norm" `:A->real`;; overload_interface("norm",`vector_norm:real^N->real`);;
let vector_norm = new_definition
  `norm x = sqrt(x dot x)`;;
(* ------------------------------------------------------------------------- *) (* Useful for the special cases of 1 dimension. *) (* ------------------------------------------------------------------------- *)
let FORALL_DIMINDEX_1 = 
prove (`(!i. 1 <= i /\ i <= dimindex(:1) ==> P i) <=> P 1`,
MESON_TAC[DIMINDEX_1; LE_ANTISYM]);;
(* ------------------------------------------------------------------------- *) (* The collapse of the general concepts to the real line R^1. *) (* ------------------------------------------------------------------------- *)
let VECTOR_ONE = 
prove (`!x:real^1. x = lambda i. x$1`,
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN MESON_TAC[DIMINDEX_1; LE_ANTISYM]);;
let FORALL_REAL_ONE = 
prove (`(!x:real^1. P x) <=> (!x. P(lambda i. x))`,
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN GEN_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(x:real^1)$1`) THEN REWRITE_TAC[GSYM VECTOR_ONE]);;
let NORM_REAL = 
prove (`!x:real^1. norm(x) = abs(x$1)`,
REWRITE_TAC[vector_norm; dot; DIMINDEX_1; SUM_SING_NUMSEG; GSYM REAL_POW_2; POW_2_SQRT_ABS]);;
(* ------------------------------------------------------------------------- *) (* Metric function. *) (* ------------------------------------------------------------------------- *) override_interface("dist",`distance:real^N#real^N->real`);;
let dist = new_definition
  `dist(x,y) = norm(x - y)`;;
let DIST_REAL = 
prove (`!x:real^1 y. dist(x,y) = abs(x$1 - y$1)`,
SIMP_TAC[dist; NORM_REAL; vector_sub; LAMBDA_BETA; LE_REFL; DIMINDEX_1]);;
(* ------------------------------------------------------------------------- *) (* A connectedness or intermediate value lemma with several applications. *) (* ------------------------------------------------------------------------- *)
let CONNECTED_REAL_LEMMA = 
prove (`!f:real->real^N a b e1 e2. a <= b /\ f(a) IN e1 /\ f(b) IN e2 /\ (!e x. a <= x /\ x <= b /\ &0 < e ==> ?d. &0 < d /\ !y. abs(y - x) < d ==> dist(f(y),f(x)) < e) /\ (!y. y IN e1 ==> ?e. &0 < e /\ !y'. dist(y',y) < e ==> y' IN e1) /\ (!y. y IN e2 ==> ?e. &0 < e /\ !y'. dist(y',y) < e ==> y' IN e2) /\ ~(?x. a <= x /\ x <= b /\ f(x) IN e1 /\ f(x) IN e2) ==> ?x. a <= x /\ x <= b /\ ~(f(x) IN e1) /\ ~(f(x) IN e2)`,
let tac = ASM_MESON_TAC[REAL_LT_IMP_LE; REAL_LE_TOTAL; REAL_LE_ANTISYM] in REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC `\c. !x. a <= x /\ x <= c ==> (f(x):real^N) IN e1` REAL_COMPLETE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [tac; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN SUBGOAL_THEN `a <= x /\ x <= b` STRIP_ASSUME_TAC THENL [tac; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!z. a <= z /\ z < x ==> (f(z):real^N) IN e1` ASSUME_TAC THENL [ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_IMP_LE]; ALL_TAC] THEN REPEAT STRIP_TAC THENL [SUBGOAL_THEN `?d. &0 < d /\ !y. abs(y - x) < d ==> (f(y):real^N) IN e1` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[REAL_ARITH `z <= x + e /\ e < d ==> z < x \/ abs(z - x) < d`; REAL_ARITH `&0 < e ==> ~(x + e <= x)`; REAL_DOWN]; SUBGOAL_THEN `?d. &0 < d /\ !y. abs(y - x) < d ==> (f(y):real^N) IN e2` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(SPECL [`x - a`; `d:real`] REAL_DOWN2) THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_LT_LE; REAL_SUB_LT]; ALL_TAC] THEN ASM_MESON_TAC[REAL_ARITH `e < x - a ==> a <= x - e`; REAL_ARITH `&0 < e /\ x <= b ==> x - e <= b`; REAL_ARITH `&0 < e /\ e < d ==> x - e < x /\ abs((x - e) - x) < d`]]);;
(* ------------------------------------------------------------------------- *) (* One immediately useful corollary is the existence of square roots! *) (* ------------------------------------------------------------------------- *)
let SQUARE_BOUND_LEMMA = 
prove (`!x. x < (&1 + x) * (&1 + x)`,
GEN_TAC THEN REWRITE_TAC[REAL_POW_2] THEN MAP_EVERY (fun t -> MP_TAC(SPEC t REAL_LE_SQUARE)) [`x:real`; `&1 + x`] THEN REAL_ARITH_TAC);;
let SQUARE_CONTINUOUS = 
prove (`!x e. &0 < e ==> ?d. &0 < d /\ !y. abs(y - x) < d ==> abs(y * y - x * x) < e`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = &0` THENL [ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_SUB_RZERO] THEN EXISTS_TAC `inv(&1 + inv(e))` THEN ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_LT_ADD; REAL_LT_01] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `inv(&1 + inv(e)) * inv(&1 + inv(e))` THEN ASM_SIMP_TAC[REAL_ABS_MUL; REAL_LT_MUL2; REAL_ABS_POS] THEN REWRITE_TAC[GSYM REAL_INV_MUL] THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; SQUARE_BOUND_LEMMA; REAL_LT_INV_EQ]; MP_TAC(SPECL [`abs(x)`; `e / (&3 * abs(x))`] REAL_DOWN2)THEN ASM_SIMP_TAC[GSYM REAL_ABS_NZ; REAL_LT_DIV; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH; REAL_LT_RDIV_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN REWRITE_TAC[REAL_ARITH `x * x - y * y = (x - y) * (x + y)`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `d * &3 * abs(x)` THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[REAL_ABS_POS; REAL_LT_IMP_LE] THEN MAP_EVERY UNDISCH_TAC [`abs (y - x) < d`; `d < abs(x)`] THEN REAL_ARITH_TAC]);;
let SQRT_WORKS_GEN = 
prove (`!x. real_sgn(sqrt x) = real_sgn x /\ sqrt(x) pow 2 = abs x`,
GEN_TAC THEN REWRITE_TAC[sqrt] THEN CONV_TAC SELECT_CONV THEN SUBGOAL_THEN `!x. &0 < x ==> ?y. &0 < y /\ y pow 2 = x` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(\u. lambda i. u):real->real^1`; `&0`; `&1 + x`; `{u:real^1 | u$1 * u$1 < x}`; `{u:real^1 | u$1 * u$1 > x}`] CONNECTED_REAL_LEMMA) THEN SIMP_TAC[LAMBDA_BETA; LE_REFL; DIMINDEX_1; DIST_REAL; IN_ELIM_THM] THEN REWRITE_TAC[REAL_POW_2; REAL_ARITH `~(x < y) /\ ~(x > y) <=> x = y`] THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LT_LE; REAL_ENTIRE]] THEN ASM_REWRITE_TAC[real_gt; SQUARE_BOUND_LEMMA; REAL_MUL_LZERO] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_LT_ANTISYM]] THEN MESON_TAC[SQUARE_CONTINUOUS; REAL_SUB_LT; REAL_ARITH `abs(z2 - x2) < y - x2 ==> z2 < y`; REAL_ARITH `abs(z2 - x2) < x2 - y ==> y < z2`]; ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[REAL_SGN_0; REAL_SGN_EQ; UNWIND_THM2] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN FIRST_X_ASSUM(MP_TAC o SPEC `abs x`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `y:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `real_sgn x * y` THEN ASM_REWRITE_TAC[REAL_POW_MUL; GSYM REAL_SGN_POW; REAL_SGN_POW_2] THEN REWRITE_TAC[REAL_SGN_MUL; REAL_SGN_REAL_SGN] THEN ASM_SIMP_TAC[real_sgn; REAL_ARITH `&0 < abs x <=> ~(x = &0)`] THEN REWRITE_TAC[REAL_MUL_LID; REAL_MUL_RID]]);;
let SQRT_UNIQUE_GEN = 
prove (`!x y. real_sgn y = real_sgn x /\ y pow 2 = abs x ==> sqrt x = y`,
REPEAT GEN_TAC THEN MP_TAC(GSYM(SPEC `x:real` SQRT_WORKS_GEN)) THEN SIMP_TAC[REAL_RING `x pow 2 = y pow 2 <=> x:real = y \/ x = --y`] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[IMP_CONJ_ALT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_SGN_NEG] THEN SIMP_TAC[REAL_ARITH `--x = x <=> x = &0`; REAL_SGN_EQ; REAL_NEG_0; SQRT_0]);;
let SQRT_NEG = 
prove (`!x. sqrt(--x) = --sqrt(x)`,
GEN_TAC THEN MATCH_MP_TAC SQRT_UNIQUE_GEN THEN REWRITE_TAC[REAL_SGN_NEG; REAL_POW_NEG; REAL_ABS_NEG; ARITH] THEN REWRITE_TAC[SQRT_WORKS_GEN]);;
let REAL_SGN_SQRT = 
prove (`!x. real_sgn(sqrt x) = real_sgn x`,
REWRITE_TAC[SQRT_WORKS_GEN]);;
let SQRT_WORKS = 
prove (`!x. &0 <= x ==> &0 <= sqrt(x) /\ sqrt(x) pow 2 = x`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `x:real` SQRT_WORKS_GEN) THEN REWRITE_TAC[real_sgn] THEN ASM_REAL_ARITH_TAC);;
let SQRT_POS_LE = 
prove (`!x. &0 <= x ==> &0 <= sqrt(x)`,
MESON_TAC[SQRT_WORKS]);;
let SQRT_POW_2 = 
prove (`!x. &0 <= x ==> sqrt(x) pow 2 = x`,
MESON_TAC[SQRT_WORKS]);;
let SQRT_POW2 = 
prove (`!x. sqrt(x) pow 2 = x <=> &0 <= x`,
MESON_TAC[REAL_POW_2; REAL_LE_SQUARE; SQRT_POW_2]);;
let SQRT_MUL = 
prove (`!x y. sqrt(x * y) = sqrt x * sqrt y`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SQRT_UNIQUE_GEN THEN REWRITE_TAC[REAL_SGN_MUL; REAL_POW_MUL; SQRT_WORKS_GEN; REAL_ABS_MUL]);;
let SQRT_INV = 
prove (`!x. sqrt (inv x) = inv(sqrt x)`,
GEN_TAC THEN MATCH_MP_TAC SQRT_UNIQUE_GEN THEN REWRITE_TAC[REAL_SGN_INV; REAL_POW_INV; REAL_ABS_INV; SQRT_WORKS_GEN]);;
let SQRT_DIV = 
prove (`!x y. sqrt (x / y) = sqrt x / sqrt y`,
REWRITE_TAC[real_div; SQRT_MUL; SQRT_INV]);;
let SQRT_LT_0 = 
prove (`!x. &0 < sqrt x <=> &0 < x`,
REWRITE_TAC[GSYM real_gt; GSYM REAL_SGN_EQ; REAL_SGN_SQRT]);;
let SQRT_EQ_0 = 
prove (`!x. sqrt x = &0 <=> x = &0`,
ONCE_REWRITE_TAC[GSYM REAL_SGN_EQ] THEN REWRITE_TAC[REAL_SGN_SQRT]);;
let SQRT_LE_0 = 
prove (`!x. &0 <= sqrt x <=> &0 <= x`,
REWRITE_TAC[REAL_ARITH `&0 <= x <=> &0 < x \/ x = &0`] THEN REWRITE_TAC[SQRT_LT_0; SQRT_EQ_0]);;
let SQRT_MONO_LT = 
prove (`!x y. x < y ==> sqrt(x) < sqrt(y)`,
SUBGOAL_THEN `!x y. &0 <= x /\ x < y ==> sqrt x < sqrt y` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POW_LT2_REV THEN EXISTS_TAC `2` THEN ASM_REWRITE_TAC[SQRT_WORKS_GEN; SQRT_LE_0] THEN ASM_REAL_ARITH_TAC; REPEAT STRIP_TAC THEN ASM_CASES_TAC `&0 <= x` THEN ASM_SIMP_TAC[] THEN ASM_CASES_TAC `&0 <= y` THENL [MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `&0` THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE; SQRT_LE_0]; FIRST_X_ASSUM(MP_TAC o SPECL [`--y:real`; `--x:real`]) THEN REWRITE_TAC[SQRT_NEG] THEN ASM_REAL_ARITH_TAC]]);;
let SQRT_MONO_LE = 
prove (`!x y. x <= y ==> sqrt(x) <= sqrt(y)`,
MESON_TAC[REAL_LE_LT; SQRT_MONO_LT]);;
let SQRT_MONO_LT_EQ = 
prove (`!x y. sqrt(x) < sqrt(y) <=> x < y`,
let SQRT_MONO_LE_EQ = 
prove (`!x y. sqrt(x) <= sqrt(y) <=> x <= y`,
let SQRT_INJ = 
prove (`!x y. sqrt(x) = sqrt(y) <=> x = y`,
SIMP_TAC[GSYM REAL_LE_ANTISYM; SQRT_MONO_LE_EQ]);;
let SQRT_POS_LT = 
prove (`!x. &0 < x ==> &0 < sqrt(x)`,
let REAL_LE_LSQRT = 
prove (`!x y. &0 <= y /\ x <= y pow 2 ==> sqrt(x) <= y`,
let REAL_LE_RSQRT = 
prove (`!x y. x pow 2 <= y ==> x <= sqrt(y)`,
let REAL_LT_LSQRT = 
prove (`!x y. &0 <= y /\ x < y pow 2 ==> sqrt x < y`,
let REAL_LT_RSQRT = 
prove (`!x y. x pow 2 < y ==> x < sqrt(y)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs x < a ==> x < a`) THEN REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN MATCH_MP_TAC SQRT_MONO_LT THEN ASM_REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]);;
let SQRT_EVEN_POW2 = 
prove (`!n. EVEN n ==> (sqrt(&2 pow n) = &2 pow (n DIV 2))`,
let REAL_DIV_SQRT = 
prove (`!x. &0 <= x ==> x / sqrt(x) = sqrt(x)`,
REWRITE_TAC[REAL_LE_LT] THEN REPEAT STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[SQRT_0; real_div; REAL_MUL_LZERO]] THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; SQRT_POS_LT; GSYM REAL_POW_2] THEN ASM_SIMP_TAC[SQRT_POW_2; REAL_LT_IMP_LE]);;
let REAL_RSQRT_LE = 
prove (`!x y. &0 <= x /\ &0 <= y /\ x <= sqrt y ==> x pow 2 <= y`,
MESON_TAC[REAL_POW_LE2; SQRT_POW_2]);;
let REAL_LSQRT_LE = 
prove (`!x y. &0 <= x /\ sqrt x <= y ==> x <= y pow 2`,
let REAL_SQRT_POW_2 = 
prove (`!x. sqrt x pow 2 = abs x`,
REWRITE_TAC[SQRT_WORKS_GEN]);;
(* ------------------------------------------------------------------------- *) (* Hence derive more interesting properties of the norm. *) (* ------------------------------------------------------------------------- *)
let NORM_0 = 
prove (`norm(vec 0) = &0`,
REWRITE_TAC[vector_norm; DOT_LZERO; SQRT_0]);;
let NORM_POS_LE = 
prove (`!x. &0 <= norm x`,
GEN_TAC THEN SIMP_TAC[DOT_POS_LE; vector_norm; SQRT_POS_LE]);;
let NORM_NEG = 
prove (`!x. norm(--x) = norm x`,
let NORM_SUB = 
prove (`!x y. norm(x - y) = norm(y - x)`,
MESON_TAC[NORM_NEG; VECTOR_NEG_SUB]);;
let NORM_MUL = 
prove (`!a x. norm(a % x) = abs(a) * norm x`,
REWRITE_TAC[vector_norm; DOT_LMUL; DOT_RMUL; REAL_MUL_ASSOC] THEN REWRITE_TAC[SQRT_MUL; GSYM REAL_POW_2; REAL_SQRT_POW_2]);;
let NORM_EQ_0_DOT = 
prove (`!x. (norm x = &0) <=> (x dot x = &0)`,
let NORM_EQ_0 = 
prove (`!x. (norm x = &0) <=> (x = vec 0)`,
let NORM_POS_LT = 
prove (`!x. &0 < norm x <=> ~(x = vec 0)`,
let NORM_POW_2 = 
prove (`!x. norm(x) pow 2 = x dot x`,
let NORM_EQ_0_IMP = 
prove (`!x. (norm x = &0) ==> (x = vec 0)`,
MESON_TAC[NORM_EQ_0]);;
let NORM_LE_0 = 
prove (`!x. norm x <= &0 <=> (x = vec 0)`,
MESON_TAC[REAL_LE_ANTISYM; NORM_EQ_0; NORM_POS_LE]);;
let VECTOR_MUL_EQ_0 = 
prove (`!a x. (a % x = vec 0) <=> (a = &0) \/ (x = vec 0)`,
REWRITE_TAC[GSYM NORM_EQ_0; NORM_MUL; REAL_ABS_ZERO; REAL_ENTIRE]);;
let VECTOR_MUL_LCANCEL = 
prove (`!a x y. (a % x = a % y) <=> (a = &0) \/ (x = y)`,
let VECTOR_MUL_RCANCEL = 
prove (`!a b x. (a % x = b % x) <=> (a = b) \/ (x = vec 0)`,
let VECTOR_MUL_LCANCEL_IMP = 
prove (`!a x y. ~(a = &0) /\ (a % x = a % y) ==> (x = y)`,
MESON_TAC[VECTOR_MUL_LCANCEL]);;
let VECTOR_MUL_RCANCEL_IMP = 
prove (`!a b x. ~(x = vec 0) /\ (a % x = b % x) ==> (a = b)`,
MESON_TAC[VECTOR_MUL_RCANCEL]);;
let NORM_CAUCHY_SCHWARZ = 
prove (`!(x:real^N) y. x dot y <= norm(x) * norm(y)`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`norm(x:real^N) = &0`; `norm(y:real^N) = &0`] THEN ASM_SIMP_TAC[NORM_EQ_0_IMP; DOT_LZERO; DOT_RZERO; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN MP_TAC(ISPEC `norm(y:real^N) % x - norm(x:real^N) % y` DOT_POS_LE) THEN REWRITE_TAC[DOT_RSUB; DOT_LSUB; DOT_LMUL; DOT_RMUL; GSYM NORM_POW_2; REAL_POW_2; REAL_LE_REFL] THEN REWRITE_TAC[DOT_SYM; REAL_ARITH `&0 <= y * (y * x * x - x * d) - x * (y * d - x * y * y) <=> x * y * d <= x * y * x * y`] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LT_LE; NORM_POS_LE]);;
let NORM_CAUCHY_SCHWARZ_ABS = 
prove (`!x:real^N y. abs(x dot y) <= norm(x) * norm(y)`,
REPEAT GEN_TAC THEN MP_TAC(ISPEC `x:real^N` NORM_CAUCHY_SCHWARZ) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `y:real^N` th) THEN MP_TAC(SPEC `--(y:real^N)` th)) THEN REWRITE_TAC[DOT_RNEG; NORM_NEG] THEN REAL_ARITH_TAC);;
let REAL_ABS_NORM = 
prove (`!x. abs(norm x) = norm x`,
REWRITE_TAC[NORM_POS_LE; REAL_ABS_REFL]);;
let NORM_CAUCHY_SCHWARZ_DIV = 
prove (`!x:real^N y. abs((x dot y) / (norm x * norm y)) <= &1`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN ASM_REWRITE_TAC[NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO; real_div; REAL_INV_1; DOT_LZERO; DOT_RZERO; REAL_ABS_NUM; REAL_POS] THEN ASM_SIMP_TAC[GSYM real_div; REAL_ABS_DIV; REAL_LE_LDIV_EQ; REAL_LT_MUL; REAL_ABS_INV; NORM_POS_LT; REAL_ABS_MUL; REAL_ABS_NORM] THEN REWRITE_TAC[REAL_MUL_LID; NORM_CAUCHY_SCHWARZ_ABS]);;
let NORM_TRIANGLE = 
prove (`!x y. norm(x + y) <= norm(x) + norm(y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[vector_norm] THEN MATCH_MP_TAC REAL_LE_LSQRT THEN SIMP_TAC[GSYM vector_norm; DOT_POS_LE; NORM_POS_LE; REAL_LE_ADD] THEN REWRITE_TAC[DOT_LADD; DOT_RADD; REAL_POW_2; GSYM NORM_POW_2] THEN SIMP_TAC[NORM_CAUCHY_SCHWARZ; DOT_SYM; REAL_ARITH `d <= x * y ==> (x * x + d) + (d + y * y) <= (x + y) * (x + y)`]);;
let NORM_TRIANGLE_SUB = 
prove (`!x y:real^N. norm(x) <= norm(y) + norm(x - y)`,
let NORM_TRIANGLE_LE = 
prove (`!x y. norm(x) + norm(y) <= e ==> norm(x + y) <= e`,
let NORM_TRIANGLE_LT = 
prove (`!x y. norm(x) + norm(y) < e ==> norm(x + y) < e`,
let COMPONENT_LE_NORM = 
prove (`!x:real^N i. abs(x$i) <= norm x`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ !x:real^N. x$i = x$k` STRIP_ASSUME_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[vector_norm] THEN MATCH_MP_TAC REAL_LE_RSQRT THEN REWRITE_TAC[GSYM REAL_ABS_POW] THEN REWRITE_TAC[real_abs; REAL_POW_2; REAL_LE_SQUARE] THEN SUBGOAL_THEN `x$k * (x:real^N)$k = sum(1..dimindex(:N)) (\i. if i = k then x$k * x$k else &0)` SUBST1_TAC THENL [REWRITE_TAC[SUM_DELTA] THEN ASM_REWRITE_TAC[IN_NUMSEG]; ALL_TAC] THEN REWRITE_TAC[dot] THEN MATCH_MP_TAC SUM_LE THEN REWRITE_TAC[FINITE_NUMSEG] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL; REAL_LE_SQUARE]);;
let NORM_BOUND_COMPONENT_LE = 
prove (`!x:real^N e. norm(x) <= e ==> !i. 1 <= i /\ i <= dimindex(:N) ==> abs(x$i) <= e`,
let NORM_BOUND_COMPONENT_LT = 
prove (`!x:real^N e. norm(x) < e ==> !i. 1 <= i /\ i <= dimindex(:N) ==> abs(x$i) < e`,
let NORM_LE_L1 = 
prove (`!x:real^N. norm x <= sum(1..dimindex(:N)) (\i. abs(x$i))`,
REPEAT GEN_TAC THEN REWRITE_TAC[vector_norm; dot] THEN MATCH_MP_TAC REAL_LE_LSQRT THEN REWRITE_TAC[REAL_POW_2] THEN SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG; REAL_LE_SQUARE; REAL_ABS_POS] THEN SPEC_TAC(`dimindex(:N)`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ARITH_RULE `1 <= SUC n`] THEN SIMP_TAC[REAL_MUL_LZERO; REAL_LE_REFL] THEN MATCH_MP_TAC(REAL_ARITH `a2 <= a * a /\ &0 <= a * b /\ b2 <= b * b ==> a2 + b2 <= (a + b) * (a + b)`) THEN ASM_SIMP_TAC[SUM_POS_LE; REAL_LE_MUL; REAL_ABS_POS; FINITE_NUMSEG] THEN REWRITE_TAC[GSYM REAL_ABS_MUL] THEN REAL_ARITH_TAC);;
let REAL_ABS_SUB_NORM = 
prove (`abs(norm(x) - norm(y)) <= norm(x - y)`,
REWRITE_TAC[REAL_ARITH `abs(x - y) <= a <=> x <= y + a /\ y <= x + a`] THEN MESON_TAC[NORM_TRIANGLE_SUB; NORM_SUB]);;
let NORM_LE = 
prove (`!x y. norm(x) <= norm(y) <=> x dot x <= y dot y`,
REWRITE_TAC[vector_norm] THEN MESON_TAC[SQRT_MONO_LE_EQ; DOT_POS_LE]);;
let NORM_LT = 
prove (`!x y. norm(x) < norm(y) <=> x dot x < y dot y`,
REWRITE_TAC[vector_norm] THEN MESON_TAC[SQRT_MONO_LT_EQ; DOT_POS_LE]);;
let NORM_EQ = 
prove (`!x y. (norm x = norm y) <=> (x dot x = y dot y)`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; NORM_LE]);;
let NORM_EQ_1 = 
prove (`!x. norm(x) = &1 <=> x dot x = &1`,
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SQRT_1] THEN SIMP_TAC[vector_norm; SQRT_INJ; DOT_POS_LE; REAL_POS]);;
let NORM_LE_COMPONENTWISE = 
prove (`!x:real^N y:real^N. (!i. 1 <= i /\ i <= dimindex(:N) ==> abs(x$i) <= abs(y$i)) ==> norm(x) <= norm(y)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_LE; dot] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN ASM_SIMP_TAC[GSYM REAL_POW_2; GSYM REAL_LE_SQUARE_ABS]);;
let L1_LE_NORM = 
prove (`!x:real^N. sum(1..dimindex(:N)) (\i. abs(x$i)) <= sqrt(&(dimindex(:N))) * norm x`,
let lemma = prove
   (`!x n. &n * sum(1..n) (\i. x i pow 2) - (sum(1..n) x) pow 2 =
           sum(1..n) (\i. sum(i+1..n) (\j. (x i - x j) pow 2))`,
    GEN_TAC THEN CONV_TAC(BINDER_CONV SYM_CONV) THEN INDUCT_TAC THEN
    REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH; ARITH_RULE `1 <= SUC n`] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    SIMP_TAC[ARITH_RULE `i <= n ==> i + 1 <= SUC n`; SUM_TRIV_NUMSEG;
             ARITH_RULE `~(n + 1 <= n)`; ARITH_RULE `n < SUC n + 1`] THEN
    ASM_REWRITE_TAC[SUM_ADD_NUMSEG; REAL_ADD_RID] THEN
    REWRITE_TAC[REAL_ARITH
     `(x - y) pow 2 = (x pow 2 + y pow 2) - &2 * x * y`] THEN
    REWRITE_TAC[SUM_ADD_NUMSEG; SUM_SUB_NUMSEG; SUM_LMUL; SUM_RMUL;
                GSYM REAL_OF_NUM_SUC; SUM_CONST_NUMSEG; ADD_SUB] THEN
    REAL_ARITH_TAC) in
  GEN_TAC THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ abs x <= abs y ==> x <= y`) THEN
  SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; SQRT_POS_LE; REAL_POS] THEN
  REWRITE_TAC[REAL_LE_SQUARE_ABS; REAL_POW_MUL] THEN
  SIMP_TAC[SQRT_POW_2; REAL_POS; NORM_POW_2; dot] THEN
  REWRITE_TAC[GSYM REAL_POW_2] THEN
  GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_POW2_ABS] THEN
  ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN REWRITE_TAC[lemma] THEN
  SIMP_TAC[SUM_POS_LE_NUMSEG; REAL_LE_POW_2]);;
(* ------------------------------------------------------------------------- *) (* Squaring equations and inequalities involving norms. *) (* ------------------------------------------------------------------------- *)
let DOT_SQUARE_NORM = 
prove (`!x. x dot x = norm(x) pow 2`,
let NORM_EQ_SQUARE = 
prove (`!x:real^N. norm(x) = a <=> &0 <= a /\ x dot x = a pow 2`,
REWRITE_TAC[DOT_SQUARE_NORM] THEN ONCE_REWRITE_TAC[REAL_RING `x pow 2 = a pow 2 <=> x = a \/ x + a = &0`] THEN GEN_TAC THEN MP_TAC(ISPEC `x:real^N` NORM_POS_LE) THEN REAL_ARITH_TAC);;
let NORM_LE_SQUARE = 
prove (`!x:real^N. norm(x) <= a <=> &0 <= a /\ x dot x <= a pow 2`,
REWRITE_TAC[DOT_SQUARE_NORM; GSYM REAL_LE_SQUARE_ABS] THEN GEN_TAC THEN MP_TAC(ISPEC `x:real^N` NORM_POS_LE) THEN REAL_ARITH_TAC);;
let NORM_GE_SQUARE = 
prove (`!x:real^N. norm(x) >= a <=> a <= &0 \/ x dot x >= a pow 2`,
REWRITE_TAC[real_ge; DOT_SQUARE_NORM; GSYM REAL_LE_SQUARE_ABS] THEN GEN_TAC THEN MP_TAC(ISPEC `x:real^N` NORM_POS_LE) THEN REAL_ARITH_TAC);;
let NORM_LT_SQUARE = 
prove (`!x:real^N. norm(x) < a <=> &0 < a /\ x dot x < a pow 2`,
REWRITE_TAC[REAL_ARITH `x < a <=> ~(x >= a)`; NORM_GE_SQUARE] THEN REAL_ARITH_TAC);;
let NORM_GT_SQUARE = 
prove (`!x:real^N. norm(x) > a <=> a < &0 \/ x dot x > a pow 2`,
REWRITE_TAC[REAL_ARITH `x > a <=> ~(x <= a)`; NORM_LE_SQUARE] THEN REAL_ARITH_TAC);;
let NORM_LT_SQUARE_ALT = 
prove (`!x:real^N. norm(x) < a <=> &0 <= a /\ x dot x < a pow 2`,
REWRITE_TAC[REAL_ARITH `x < a <=> ~(x >= a)`; NORM_GE_SQUARE] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `a = &0` THENL [ASM_REWRITE_TAC[real_ge] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[DOT_POS_LE]; ASM_REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *) (* General linear decision procedure for normed spaces. *) (* ------------------------------------------------------------------------- *) let NORM_ARITH = let find_normedterms = let augment_norm b tm acc = match tm with Comb(Const("vector_norm",_),v) -> insert (b,v) acc | _ -> acc in let rec find_normedterms tm acc = match tm with Comb(Comb(Const("real_add",_),l),r) -> find_normedterms l (find_normedterms r acc) | Comb(Comb(Const("real_mul",_),c),n) -> if not (is_ratconst c) then acc else augment_norm (rat_of_term c >=/ Int 0) n acc | _ -> augment_norm true tm acc in find_normedterms in let lincomb_neg t = mapf minus_num t in let lincomb_cmul c t = if c =/ Int 0 then undefined else mapf (( */ ) c) t in let lincomb_add l r = combine (+/) (fun x -> x =/ Int 0) l r in let lincomb_sub l r = lincomb_add l (lincomb_neg r) in let lincomb_eq l r = lincomb_sub l r = undefined in let rec vector_lincomb tm = match tm with Comb(Comb(Const("vector_add",_),l),r) -> lincomb_add (vector_lincomb l) (vector_lincomb r) | Comb(Comb(Const("vector_sub",_),l),r) -> lincomb_sub (vector_lincomb l) (vector_lincomb r) | Comb(Comb(Const("%",_),l),r) -> lincomb_cmul (rat_of_term l) (vector_lincomb r) | Comb(Const("vector_neg",_),t) -> lincomb_neg (vector_lincomb t) | Comb(Const("vec",_),n) when is_numeral n & dest_numeral n =/ Int 0 -> undefined | _ -> (tm |=> Int 1) in let vector_lincombs tms = itlist (fun t fns -> if can (assoc t) fns then fns else let f = vector_lincomb t in try let _,f' = find (fun (_,f') -> lincomb_eq f f') fns in (t,f')::fns with Failure _ -> (t,f)::fns) tms [] in let rec replacenegnorms fn tm = match tm with Comb(Comb(Const("real_add",_),l),r) -> BINOP_CONV (replacenegnorms fn) tm | Comb(Comb(Const("real_mul",_),c),n) when rat_of_term c </ Int 0 -> RAND_CONV fn tm | _ -> REFL tm in let flip v eq = if defined eq v then (v |-> minus_num(apply eq v)) eq else eq in let rec allsubsets s = match s with [] -> [[]] | (a::t) -> let res = allsubsets t in map (fun b -> a::b) res @ res in let evaluate env lin = foldr (fun x c s -> s +/ c */ apply env x) lin (Int 0) in let rec solve (vs,eqs) = match (vs,eqs) with [],[] -> (0 |=> Int 1) | _,eq::oeqs -> let v = hd(intersect vs (dom eq)) in let c = apply eq v in let vdef = lincomb_cmul (Int(-1) // c) eq in let eliminate eqn = if not(defined eqn v) then eqn else lincomb_add (lincomb_cmul (apply eqn v) vdef) eqn in let soln = solve (subtract vs [v],map eliminate oeqs) in (v |-> evaluate soln (undefine v vdef)) soln in let rec combinations k l = if k = 0 then [[]] else match l with [] -> [] | h::t -> map (fun c -> h::c) (combinations (k - 1) t) @ combinations k t in let vertices vs eqs = let vertex cmb = let soln = solve(vs,cmb) in map (fun v -> tryapplyd soln v (Int 0)) vs in let rawvs = mapfilter vertex (combinations (length vs) eqs) in let unset = filter (forall (fun c -> c >=/ Int 0)) rawvs in itlist (insert' (forall2 (=/))) unset [] in let subsumes l m = forall2 (fun x y -> abs_num x <=/ abs_num y) l m in let rec subsume todo dun = match todo with [] -> dun | v::ovs -> let dun' = if exists (fun w -> subsumes w v) dun then dun else v::(filter (fun w -> not(subsumes v w)) dun) in subsume ovs dun' in let NORM_CMUL_RULE = let MATCH_pth = (MATCH_MP o prove) (`!b x. b >= norm(x) ==> !c. abs(c) * b >= norm(c % x)`, SIMP_TAC[NORM_MUL; real_ge; REAL_LE_LMUL; REAL_ABS_POS]) in fun c th -> ISPEC(term_of_rat c) (MATCH_pth th) in let NORM_ADD_RULE = let MATCH_pth = (MATCH_MP o prove) (`!b1 b2 x1 x2. b1 >= norm(x1) /\ b2 >= norm(x2) ==> b1 + b2 >= norm(x1 + x2)`, REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC NORM_TRIANGLE_LE THEN ASM_SIMP_TAC[REAL_LE_ADD2]) in fun th1 th2 -> MATCH_pth (CONJ th1 th2) in let INEQUALITY_CANON_RULE = CONV_RULE(LAND_CONV REAL_POLY_CONV) o CONV_RULE(LAND_CONV REAL_RAT_REDUCE_CONV) o GEN_REWRITE_RULE I [REAL_ARITH `s >= t <=> s - t >= &0`] in let NORM_CANON_CONV = let APPLY_pth1 = GEN_REWRITE_CONV I [VECTOR_ARITH `x:real^N = &1 % x`] and APPLY_pth2 = GEN_REWRITE_CONV I [VECTOR_ARITH `x - y:real^N = x + --y`] and APPLY_pth3 = GEN_REWRITE_CONV I [VECTOR_ARITH `--x:real^N = -- &1 % x`] and APPLY_pth4 = GEN_REWRITE_CONV I [VECTOR_ARITH `&0 % x:real^N = vec 0`; VECTOR_ARITH `c % vec 0:real^N = vec 0`] and APPLY_pth5 = GEN_REWRITE_CONV I [VECTOR_ARITH `c % (d % x) = (c * d) % x`] and APPLY_pth6 = GEN_REWRITE_CONV I [VECTOR_ARITH `c % (x + y) = c % x + c % y`] and APPLY_pth7 = GEN_REWRITE_CONV I [VECTOR_ARITH `vec 0 + x = x`; VECTOR_ARITH `x + vec 0 = x`] and APPLY_pth8 = GEN_REWRITE_CONV I [VECTOR_ARITH `c % x + d % x = (c + d) % x`] THENC LAND_CONV REAL_RAT_ADD_CONV THENC GEN_REWRITE_CONV TRY_CONV [VECTOR_ARITH `&0 % x = vec 0`] and APPLY_pth9 = GEN_REWRITE_CONV I [VECTOR_ARITH `(c % x + z) + d % x = (c + d) % x + z`; VECTOR_ARITH `c % x + (d % x + z) = (c + d) % x + z`; VECTOR_ARITH `(c % x + w) + (d % x + z) = (c + d) % x + (w + z)`] THENC LAND_CONV(LAND_CONV REAL_RAT_ADD_CONV) and APPLY_ptha = GEN_REWRITE_CONV I [VECTOR_ARITH `&0 % x + y = y`] and APPLY_pthb = GEN_REWRITE_CONV I [VECTOR_ARITH `c % x + d % y = c % x + d % y`; VECTOR_ARITH `(c % x + z) + d % y = c % x + (z + d % y)`; VECTOR_ARITH `c % x + (d % y + z) = c % x + (d % y + z)`; VECTOR_ARITH `(c % x + w) + (d % y + z) = c % x + (w + (d % y + z))`] and APPLY_pthc = GEN_REWRITE_CONV I [VECTOR_ARITH `c % x + d % y = d % y + c % x`; VECTOR_ARITH `(c % x + z) + d % y = d % y + (c % x + z)`; VECTOR_ARITH `c % x + (d % y + z) = d % y + (c % x + z)`; VECTOR_ARITH `(c % x + w) + (d % y + z) = d % y + ((c % x + w) + z)`] and APPLY_pthd = GEN_REWRITE_CONV TRY_CONV [VECTOR_ARITH `x + vec 0 = x`] in let headvector tm = match tm with Comb(Comb(Const("vector_add",_),Comb(Comb(Const("%",_),l),v)),r) -> v | Comb(Comb(Const("%",_),l),v) -> v | _ -> failwith "headvector: non-canonical term" in let rec VECTOR_CMUL_CONV tm = ((APPLY_pth5 THENC LAND_CONV REAL_RAT_MUL_CONV) ORELSEC (APPLY_pth6 THENC BINOP_CONV VECTOR_CMUL_CONV)) tm and VECTOR_ADD_CONV tm = try APPLY_pth7 tm with Failure _ -> try APPLY_pth8 tm with Failure _ -> match tm with Comb(Comb(Const("vector_add",_),lt),rt) -> let l = headvector lt and r = headvector rt in if l < r then (APPLY_pthb THENC RAND_CONV VECTOR_ADD_CONV THENC APPLY_pthd) tm else if r < l then (APPLY_pthc THENC RAND_CONV VECTOR_ADD_CONV THENC APPLY_pthd) tm else (APPLY_pth9 THENC ((APPLY_ptha THENC VECTOR_ADD_CONV) ORELSEC RAND_CONV VECTOR_ADD_CONV THENC APPLY_pthd)) tm | _ -> REFL tm in let rec VECTOR_CANON_CONV tm = match tm with Comb(Comb(Const("vector_add",_),l),r) -> let lth = VECTOR_CANON_CONV l and rth = VECTOR_CANON_CONV r in let th = MK_COMB(AP_TERM (rator(rator tm)) lth,rth) in CONV_RULE (RAND_CONV VECTOR_ADD_CONV) th | Comb(Comb(Const("%",_),l),r) -> let rth = AP_TERM (rator tm) (VECTOR_CANON_CONV r) in CONV_RULE (RAND_CONV(APPLY_pth4 ORELSEC VECTOR_CMUL_CONV)) rth | Comb(Comb(Const("vector_sub",_),l),r) -> (APPLY_pth2 THENC VECTOR_CANON_CONV) tm | Comb(Const("vector_neg",_),t) -> (APPLY_pth3 THENC VECTOR_CANON_CONV) tm | Comb(Const("vec",_),n) when is_numeral n & dest_numeral n =/ Int 0 -> REFL tm | _ -> APPLY_pth1 tm in fun tm -> match tm with Comb(Const("vector_norm",_),e) -> RAND_CONV VECTOR_CANON_CONV tm | _ -> failwith "NORM_CANON_CONV" in let REAL_VECTOR_COMBO_PROVER =
let pth_zero = 
prove(`norm(vec 0:real^N) = &0`,
REWRITE_TAC[NORM_0]) and tv_n = mk_vartype "N" in fun translator (nubs,ges,gts) -> let sources = map (rand o rand o concl) nubs and rawdests = itlist (find_normedterms o lhand o concl) (ges @ gts) [] in if not (forall fst rawdests) then failwith "Sanity check" else let dests = setify (map snd rawdests) in let srcfuns = map vector_lincomb sources and destfuns = map vector_lincomb dests in let vvs = itlist (union o dom) (srcfuns @ destfuns) [] in let n = length srcfuns in let nvs = 1--n in let srccombs = zip srcfuns nvs in let consider d = let coefficients x = let inp = if defined d x then 0 |=> minus_num(apply d x) else undefined in itlist (fun (f,v) g -> if defined f x then (v |-> apply f x) g else g) srccombs inp in let equations = map coefficients vvs and inequalities = map (fun n -> (n |=> Int 1)) nvs in let plausiblevertices f = let flippedequations = map (itlist flip f) equations in let constraints = flippedequations @ inequalities in let rawverts = vertices nvs constraints in let check_solution v = let f = itlist2 (|->) nvs v (0 |=> Int 1) in forall (fun e -> evaluate f e =/ Int 0) flippedequations in let goodverts = filter check_solution rawverts in let signfixups = map (fun n -> if mem n f then -1 else 1) nvs in map (map2 (fun s c -> Int s */ c) signfixups) goodverts in let allverts = itlist (@) (map plausiblevertices (allsubsets nvs)) [] in subsume allverts [] in let compute_ineq v = let ths = mapfilter (fun (v,t) -> if v =/ Int 0 then fail() else NORM_CMUL_RULE v t) (zip v nubs) in INEQUALITY_CANON_RULE (end_itlist NORM_ADD_RULE ths) in let ges' = mapfilter compute_ineq (itlist ((@) o consider) destfuns []) @ map INEQUALITY_CANON_RULE nubs @ ges in let zerodests = filter (fun t -> dom(vector_lincomb t) = []) (map snd rawdests) in REAL_LINEAR_PROVER translator (map (fun t -> INST_TYPE [last(snd(dest_type(type_of t))),tv_n] pth_zero) zerodests, map (CONV_RULE(ONCE_DEPTH_CONV NORM_CANON_CONV THENC LAND_CONV REAL_POLY_CONV)) ges', map (CONV_RULE(ONCE_DEPTH_CONV NORM_CANON_CONV THENC LAND_CONV REAL_POLY_CONV)) gts) in let REAL_VECTOR_INEQ_PROVER =
let pth = prove
     (`norm(x) = n ==> norm(x) >= &0 /\ n >= norm(x)`,
      DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
      REWRITE_TAC[real_ge; NORM_POS_LE] THEN REAL_ARITH_TAC) in
    let NORM_MP = MATCH_MP pth in
    fun translator (ges,gts) ->
    let ntms = itlist find_normedterms (map (lhand o concl) (ges @ gts)) [] in
    let lctab = vector_lincombs (map snd (filter (not o fst) ntms)) in
    let asl = map (fun (t,_) ->
       ASSUME(mk_eq(mk_icomb(mk_const("vector_norm",[]),t),
                    genvar `:real`))) lctab in
    let replace_conv = GEN_REWRITE_CONV TRY_CONV asl in
    let replace_rule = CONV_RULE (LAND_CONV (replacenegnorms replace_conv)) in
    let ges' =
       itlist (fun th ths -> CONJUNCT1(NORM_MP th)::ths)
              asl (map replace_rule ges)
    and gts' = map replace_rule gts
    and nubs = map (CONJUNCT2 o NORM_MP) asl in
    let th1 = REAL_VECTOR_COMBO_PROVER translator (nubs,ges',gts') in
    let th2 = INST
     (map (fun th -> let l,r = dest_eq(concl th) in (l,r)) asl) th1 in
    itlist PROVE_HYP (map (REFL o lhand o concl) asl) th2 in
  let REAL_VECTOR_PROVER =
    let rawrule =
      GEN_REWRITE_RULE I [REAL_ARITH `x = &0 <=> x >= &0 /\ --x >= &0`] in
    let splitequation th acc =
      let th1,th2 = CONJ_PAIR(rawrule th) in
      th1::CONV_RULE(LAND_CONV REAL_POLY_NEG_CONV) th2::acc in
    fun translator (eqs,ges,gts) ->
      REAL_VECTOR_INEQ_PROVER translator
         (itlist splitequation eqs ges,gts) in
  let pth = prove
   (`(!x y:real^N. x = y <=> norm(x - y) <= &0) /\
     (!x y:real^N. ~(x = y) <=> ~(norm(x - y) <= &0))`,
    REWRITE_TAC[NORM_LE_0; VECTOR_SUB_EQ]) in
  let conv1 = GEN_REWRITE_CONV TRY_CONV [pth] in
  let conv2 tm = (conv1 tm,conv1(mk_neg tm)) in
  let init = GEN_REWRITE_CONV ONCE_DEPTH_CONV [DECIMAL] THENC
             REAL_RAT_REDUCE_CONV THENC
             GEN_REWRITE_CONV ONCE_DEPTH_CONV [dist] THENC
             GEN_NNF_CONV true (conv1,conv2)
  and pure = GEN_REAL_ARITH REAL_VECTOR_PROVER in
  fun tm -> let th = init tm in EQ_MP (SYM th) (pure(rand(concl th)));;
let NORM_ARITH_TAC = CONV_TAC NORM_ARITH;; let ASM_NORM_ARITH_TAC = REPEAT(FIRST_X_ASSUM(MP_TAC o check (not o is_forall o concl))) THEN NORM_ARITH_TAC;; (* ------------------------------------------------------------------------- *) (* Dot product in terms of the norm rather than conversely. *) (* ------------------------------------------------------------------------- *)
let DOT_NORM = 
prove (`!x y. x dot y = (norm(x + y) pow 2 - norm(x) pow 2 - norm(y) pow 2) / &2`,
REWRITE_TAC[NORM_POW_2; DOT_LADD; DOT_RADD; DOT_SYM] THEN REAL_ARITH_TAC);;
let DOT_NORM_NEG = 
prove (`!x y. x dot y = ((norm(x) pow 2 + norm(y) pow 2) - norm(x - y) pow 2) / &2`,
REWRITE_TAC[NORM_POW_2; DOT_LADD; DOT_RADD; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN REAL_ARITH_TAC);;
let DOT_NORM_SUB = 
prove (`!x y. x dot y = ((norm(x) pow 2 + norm(y) pow 2) - norm(x - y) pow 2) / &2`,
REWRITE_TAC[NORM_POW_2; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Equality of vectors in terms of dot products. *) (* ------------------------------------------------------------------------- *)
let VECTOR_EQ = 
prove (`!x y. (x = y) <=> (x dot x = x dot y) /\ (y dot y = x dot x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN REWRITE_TAC[GSYM DOT_EQ_0] THEN SIMP_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Hence more metric properties. *) (* ------------------------------------------------------------------------- *)
let DIST_REFL = 
prove (`!x. dist(x,x) = &0`,
NORM_ARITH_TAC);;
let DIST_SYM = 
prove (`!x y. dist(x,y) = dist(y,x)`,
NORM_ARITH_TAC);;
let DIST_POS_LE = 
prove (`!x y. &0 <= dist(x,y)`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE = 
prove (`!x:real^N y z. dist(x,z) <= dist(x,y) + dist(y,z)`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE_ALT = 
prove (`!x y z. dist(y,z) <= dist(x,y) + dist(x,z)`,
NORM_ARITH_TAC);;
let DIST_EQ_0 = 
prove (`!x y. (dist(x,y) = &0) <=> (x = y)`,
NORM_ARITH_TAC);;
let DIST_POS_LT = 
prove (`!x y. ~(x = y) ==> &0 < dist(x,y)`,
NORM_ARITH_TAC);;
let DIST_NZ = 
prove (`!x y. ~(x = y) <=> &0 < dist(x,y)`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE_LE = 
prove (`!x y z e. dist(x,z) + dist(y,z) <= e ==> dist(x,y) <= e`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE_LT = 
prove (`!x y z e. dist(x,z) + dist(y,z) < e ==> dist(x,y) < e`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE_HALF_L = 
prove (`!x1 x2 y. dist(x1,y) < e / &2 /\ dist(x2,y) < e / &2 ==> dist(x1,x2) < e`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE_HALF_R = 
prove (`!x1 x2 y. dist(y,x1) < e / &2 /\ dist(y,x2) < e / &2 ==> dist(x1,x2) < e`,
NORM_ARITH_TAC);;
let DIST_TRIANGLE_ADD = 
prove (`!x x' y y'. dist(x + y,x' + y') <= dist(x,x') + dist(y,y')`,
NORM_ARITH_TAC);;
let DIST_MUL = 
prove (`!x y c. dist(c % x,c % y) = abs(c) * dist(x,y)`,
REWRITE_TAC[dist; GSYM VECTOR_SUB_LDISTRIB; NORM_MUL]);;
let DIST_TRIANGLE_ADD_HALF = 
prove (`!x x' y y':real^N. dist(x,x') < e / &2 /\ dist(y,y') < e / &2 ==> dist(x + y,x' + y') < e`,
NORM_ARITH_TAC);;
let DIST_LE_0 = 
prove (`!x y. dist(x,y) <= &0 <=> x = y`,
NORM_ARITH_TAC);;
let DIST_EQ = 
prove (`!w x y z. dist(w,x) = dist(y,z) <=> dist(w,x) pow 2 = dist(y,z) pow 2`,
REWRITE_TAC[dist; NORM_POW_2; NORM_EQ]);;
let DIST_0 = 
prove (`!x. dist(x,vec 0) = norm(x) /\ dist(vec 0,x) = norm(x)`,
NORM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Sums of vectors. *) (* ------------------------------------------------------------------------- *)
let NEUTRAL_VECTOR_ADD = 
prove (`neutral(+) = vec 0:real^N`,
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[VECTOR_ARITH `x + y = y <=> x = vec 0`; VECTOR_ARITH `x + y = x <=> y = vec 0`]);;
let MONOIDAL_VECTOR_ADD = 
prove (`monoidal((+):real^N->real^N->real^N)`,
REWRITE_TAC[monoidal; NEUTRAL_VECTOR_ADD] THEN REPEAT CONJ_TAC THEN VECTOR_ARITH_TAC);;
let vsum = new_definition
  `(vsum:(A->bool)->(A->real^N)->real^N) s f = lambda i. sum s (\x. f(x)$i)`;;
let VSUM_CLAUSES = 
prove (`(!f. vsum {} f = vec 0) /\ (!x f s. FINITE s ==> (vsum (x INSERT s) f = if x IN s then vsum s f else f(x) + vsum s f))`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; SUM_CLAUSES] THEN SIMP_TAC[VEC_COMPONENT] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; VECTOR_ADD_COMPONENT]);;
let VSUM = 
prove (`!f s. FINITE s ==> vsum s f = iterate (+) s f`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[VSUM_CLAUSES; ITERATE_CLAUSES; MONOIDAL_VECTOR_ADD] THEN REWRITE_TAC[NEUTRAL_VECTOR_ADD]);;
let VSUM_EQ_0 = 
prove (`!f s. (!x:A. x IN s ==> (f(x) = vec 0)) ==> (vsum s f = vec 0)`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA; vec; SUM_EQ_0]);;
let VSUM_0 = 
prove (`vsum s (\x. vec 0) = vec 0`,
SIMP_TAC[VSUM_EQ_0]);;
let VSUM_LMUL = 
prove (`!f c s. vsum s (\x. c % f(x)) = c % vsum s f`,
let VSUM_RMUL = 
prove (`!c s v. vsum s (\x. c x % v) = (sum s c) % v`,
let VSUM_ADD = 
prove (`!f g s. FINITE s ==> (vsum s (\x. f x + g x) = vsum s f + vsum s g)`,
let VSUM_SUB = 
prove (`!f g s. FINITE s ==> (vsum s (\x. f x - g x) = vsum s f - vsum s g)`,
let VSUM_CONST = 
prove (`!c s. FINITE s ==> (vsum s (\n. c) = &(CARD s) % c)`,
let VSUM_COMPONENT = 
prove (`!s f i. 1 <= i /\ i <= dimindex(:N) ==> ((vsum s (f:A->real^N))$i = sum s (\x. f(x)$i))`,
SIMP_TAC[vsum; LAMBDA_BETA]);;
let VSUM_IMAGE = 
prove (`!f g s. FINITE s /\ (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) ==> (vsum (IMAGE f s) g = vsum s (g o f))`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhs o rand) SUM_IMAGE o lhs o snd) THEN ASM_REWRITE_TAC[o_DEF]);;
let VSUM_UNION = 
prove (`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t ==> (vsum (s UNION t) f = vsum s f + vsum t f)`,
let VSUM_DIFF = 
prove (`!f s t. FINITE s /\ t SUBSET s ==> (vsum (s DIFF t) f = vsum s f - vsum t f)`,
let VSUM_DELETE = 
prove (`!f s a. FINITE s /\ a IN s ==> vsum (s DELETE a) f = vsum s f - f a`,
let VSUM_INCL_EXCL = 
prove (`!s t (f:A->real^N). FINITE s /\ FINITE t ==> vsum s f + vsum t f = vsum (s UNION t) f + vsum (s INTER t) f`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT] THEN SIMP_TAC[SUM_INCL_EXCL]);;
let VSUM_NEG = 
prove (`!f s. vsum s (\x. --f x) = --vsum s f`,
let VSUM_EQ = 
prove (`!f g s. (!x. x IN s ==> (f x = g x)) ==> (vsum s f = vsum s g)`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[]);;
let VSUM_SUPERSET = 
prove (`!f:A->real^N u v. u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = vec 0)) ==> (vsum v f = vsum u f)`,
let VSUM_SUPPORT = 
prove (`!f:A->real^N s. vsum {x | x IN s /\ ~(f x = vec 0)} f = vsum s f`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN SET_TAC[]);;
let VSUM_EQ_SUPERSET = 
prove (`!f s t:A->bool. FINITE t /\ t SUBSET s /\ (!x. x IN t ==> (f x = g x)) /\ (!x. x IN s /\ ~(x IN t) ==> f(x) = vec 0) ==> vsum s f = vsum t g`,
MESON_TAC[VSUM_SUPERSET; VSUM_EQ]);;
let VSUM_UNION_RZERO = 
prove (`!f:A->real^N u v. (!x. x IN v /\ ~(x IN u) ==> (f(x) = vec 0)) ==> (vsum (u UNION v) f = vsum u f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC VSUM_SUPERSET THEN ASM SET_TAC[]);;
let VSUM_UNION_LZERO = 
prove (`!f:A->real^N u v. (!x. x IN u /\ ~(x IN v) ==> (f(x) = vec 0)) ==> (vsum (u UNION v) f = vsum v f)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC VSUM_SUPERSET THEN ASM SET_TAC[]);;
let VSUM_RESTRICT = 
prove (`!f s. vsum s (\x. if x IN s then f(x) else vec 0) = vsum s f`,
REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN SIMP_TAC[]);;
let VSUM_RESTRICT_SET = 
prove (`!P s f. vsum {x | x IN s /\ P x} f = vsum s (\x. if P x then f x else vec 0)`,
let VSUM_CASES = 
prove (`!s P f g. FINITE s ==> vsum s (\x:A. if P x then (f x):real^N else g x) = vsum {x | x IN s /\ P x} f + vsum {x | x IN s /\ ~P x} g`,
let VSUM_SING = 
prove (`!f x. vsum {x} f = f(x)`,
let VSUM_NORM = 
prove (`!f s. FINITE s ==> norm(vsum s f) <= sum s (\x. norm(f x))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; NORM_0; REAL_LE_REFL] THEN NORM_ARITH_TAC);;
let VSUM_NORM_LE = 
prove (`!s f:A->real^N g. FINITE s /\ (!x. x IN s ==> norm(f x) <= g(x)) ==> norm(vsum s f) <= sum s g`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum s (\x:A. norm(f x :real^N))` THEN ASM_SIMP_TAC[VSUM_NORM; SUM_LE]);;
let VSUM_NORM_TRIANGLE = 
prove (`!s f b. FINITE s /\ sum s (\a. norm(f a)) <= b ==> norm(vsum s f) <= b`,
MESON_TAC[VSUM_NORM; REAL_LE_TRANS]);;
let VSUM_NORM_BOUND = 
prove (`!s f b. FINITE s /\ (!x:A. x IN s ==> norm(f(x)) <= b) ==> norm(vsum s f) <= &(CARD s) * b`,
SIMP_TAC[GSYM SUM_CONST; VSUM_NORM_LE]);;
let VSUM_CLAUSES_NUMSEG = 
prove (`(!m. vsum(m..0) f = if m = 0 then f(0) else vec 0) /\ (!m n. vsum(m..SUC n) f = if m <= SUC n then vsum(m..n) f + f(SUC n) else vsum(m..n) f)`,
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[VSUM_SING; VSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; VECTOR_ADD_AC]);;
let VSUM_CLAUSES_RIGHT = 
prove (`!f m n. 0 < n /\ m <= n ==> vsum(m..n) f = vsum(m..n-1) f + (f n):real^N`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[LT_REFL; VSUM_CLAUSES_NUMSEG; SUC_SUB1]);;
let VSUM_CMUL_NUMSEG = 
prove (`!f c m n. vsum (m..n) (\x. c % f x) = c % vsum (m..n) f`,
SIMP_TAC[VSUM_LMUL; FINITE_NUMSEG]);;
let VSUM_EQ_NUMSEG = 
prove (`!f g m n. (!x. m <= x /\ x <= n ==> (f x = g x)) ==> (vsum(m .. n) f = vsum(m .. n) g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG]);;
let VSUM_IMAGE_GEN = 
prove (`!f:A->B g s. FINITE s ==> (vsum s g = vsum (IMAGE f s) (\y. vsum {x | x IN s /\ (f(x) = y)} g))`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA; SUM_IMAGE_GEN]);;
let VSUM_GROUP = 
prove (`!f:A->B g s t. FINITE s /\ IMAGE f s SUBSET t ==> vsum t (\y. vsum {x | x IN s /\ f(x) = y} g) = vsum s g`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA; SUM_GROUP]);;
let VSUM_VMUL = 
prove (`!f v s. (sum s f) % v = vsum s (\x. f(x) % v)`,
REWRITE_TAC[VSUM_RMUL]);;
let VSUM_DELTA = 
prove (`!s a. vsum s (\x. if x = a then b else vec 0) = if a IN s then b else vec 0`,
let VSUM_ADD_NUMSEG = 
prove (`!f g m n. vsum(m..n) (\i. f i + g i) = vsum(m..n) f + vsum(m..n) g`,
SIMP_TAC[VSUM_ADD; FINITE_NUMSEG]);;
let VSUM_SUB_NUMSEG = 
prove (`!f g m n. vsum(m..n) (\i. f i - g i) = vsum(m..n) f - vsum(m..n) g`,
SIMP_TAC[VSUM_SUB; FINITE_NUMSEG]);;
let VSUM_ADD_SPLIT = 
prove (`!f m n p. m <= n + 1 ==> vsum(m..n + p) f = vsum(m..n) f + vsum(n + 1..n + p) f`,
let VSUM_VSUM_PRODUCT = 
prove (`!s:A->bool t:A->B->bool x. FINITE s /\ (!i. i IN s ==> FINITE(t i)) ==> vsum s (\i. vsum (t i) (x i)) = vsum {i,j | i IN s /\ j IN t i} (\(i,j). x i j)`,
SIMP_TAC[CART_EQ; LAMBDA_BETA; VSUM_COMPONENT; COND_COMPONENT] THEN SIMP_TAC[SUM_SUM_PRODUCT] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);;
let VSUM_IMAGE_NONZERO = 
prove (`!d:B->real^N i:A->B s. FINITE s /\ (!x y. x IN s /\ y IN s /\ ~(x = y) /\ i x = i y ==> d(i x) = vec 0) ==> vsum (IMAGE i s) d = vsum s (d o i)`,
GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[IMAGE_CLAUSES; VSUM_CLAUSES; FINITE_IMAGE] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `vsum s ((d:B->real^N) o (i:A->B)) = vsum (IMAGE i s) d` SUBST1_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[VECTOR_ARITH `a = x + a <=> x = vec 0`] THEN ASM_MESON_TAC[IN_IMAGE]);;
let VSUM_UNION_NONZERO = 
prove (`!f s t. FINITE s /\ FINITE t /\ (!x. x IN s INTER t ==> f(x) = vec 0) ==> vsum (s UNION t) f = vsum s f + vsum t f`,
let VSUM_UNIONS_NONZERO = 
prove (`!f s. FINITE s /\ (!t:A->bool. t IN s ==> FINITE t) /\ (!t1 t2 x. t1 IN s /\ t2 IN s /\ ~(t1 = t2) /\ x IN t1 /\ x IN t2 ==> f x = vec 0) ==> vsum (UNIONS s) f = vsum s (\t. vsum t f)`,
GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; UNIONS_INSERT; VSUM_CLAUSES; IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `s:(A->bool)->bool`] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[VSUM_CLAUSES] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST_ALL_TAC o SYM)] THEN STRIP_TAC THEN MATCH_MP_TAC VSUM_UNION_NONZERO THEN ASM_SIMP_TAC[FINITE_UNIONS; IN_INTER; IN_UNIONS] THEN ASM_MESON_TAC[]);;
let VSUM_CLAUSES_LEFT = 
prove (`!f m n. m <= n ==> vsum(m..n) f = f m + vsum(m + 1..n) f`,
let VSUM_DIFFS = 
prove (`!m n. vsum(m..n) (\k. f(k) - f(k + 1)) = if m <= n then f(m) - f(n + 1) else vec 0`,
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[VSUM_CLAUSES_NUMSEG; LE] THEN ASM_CASES_TAC `m = SUC n` THEN ASM_REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; VECTOR_ADD_LID] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM ADD1] THEN VECTOR_ARITH_TAC);;
let VSUM_DIFFS_ALT = 
prove (`!m n. vsum(m..n) (\k. f(k + 1) - f(k)) = if m <= n then f(n + 1) - f(m) else vec 0`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_NEG_SUB] THEN SIMP_TAC[VSUM_NEG; VSUM_DIFFS] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_NEG_SUB; VECTOR_NEG_0]);;
let VSUM_DELETE_CASES = 
prove (`!x f s. FINITE(s:A->bool) ==> vsum(s DELETE x) f = if x IN s then vsum s f - f x else vsum s f`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[SET_RULE `~(x IN s) ==> s DELETE x = s`] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MATCH_MP (SET_RULE `x IN s ==> s = x INSERT (s DELETE x)`) th]) THEN ASM_SIMP_TAC[VSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN VECTOR_ARITH_TAC);;
let VSUM_EQ_GENERAL = 
prove (`!s:A->bool t:B->bool (f:A->real^N) g h. (!y. y IN t ==> ?!x. x IN s /\ h x = y) /\ (!x. x IN s ==> h x IN t /\ g(h x) = f x) ==> vsum s f = vsum t g`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL THEN EXISTS_TAC `h:A->B` THEN ASM_MESON_TAC[]);;
let VSUM_EQ_GENERAL_INVERSES = 
prove (`!s t (f:A->real^N) (g:B->real^N) h k. (!y. y IN t ==> k y IN s /\ h (k y) = y) /\ (!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x) ==> vsum s f = vsum t g`,
SIMP_TAC[vsum; CART_EQ; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN MAP_EVERY EXISTS_TAC [`h:A->B`; `k:B->A`] THEN ASM_MESON_TAC[]);;
let VSUM_NORM_ALLSUBSETS_BOUND = 
prove (`!f:A->real^N p e. FINITE p /\ (!q. q SUBSET p ==> norm(vsum q f) <= e) ==> sum p (\x. norm(f x)) <= &2 * &(dimindex(:N)) * e`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum p (\x:A. sum (1..dimindex(:N)) (\i. abs((f x:real^N)$i)))` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE THEN ASM_SIMP_TAC[NORM_LE_L1]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) SUM_SWAP o lhand o snd) THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN DISCH_THEN SUBST1_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `&2 * &n * e = &n * &2 * e`] THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum {x:A | x IN p /\ &0 <= (f x:real^N)$k} (\x. abs((f x)$k)) + sum {x | x IN p /\ (f x)$k < &0} (\x. abs((f x)$k))` THEN CONJ_TAC THENL [MATCH_MP_TAC(REAL_ARITH `a = b ==> b <= a`) THEN MATCH_MP_TAC SUM_UNION_EQ THEN ASM_SIMP_TAC[EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_UNION; IN_ELIM_THM] THEN CONJ_TAC THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN p` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `x <= e /\ y <= e ==> x + y <= &2 * e`) THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM REAL_ABS_NEG] THEN CONJ_TAC THEN MATCH_MP_TAC(REAL_ARITH `!g. sum s g = sum s f /\ sum s g <= e ==> sum s f <= e`) THENL [EXISTS_TAC `\x. ((f:A->real^N) x)$k`; EXISTS_TAC `\x. --(((f:A->real^N) x)$k)`] THEN (CONJ_TAC THENL [MATCH_MP_TAC SUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN REAL_ARITH_TAC; ALL_TAC]) THEN ASM_SIMP_TAC[GSYM VSUM_COMPONENT; SUM_NEG; FINITE_RESTRICT] THEN MATCH_MP_TAC(REAL_ARITH `abs(x) <= e ==> x <= e`) THEN REWRITE_TAC[REAL_ABS_NEG] THEN MATCH_MP_TAC(REAL_ARITH `abs((vsum q f)$k) <= norm(vsum q f) /\ norm(vsum q f) <= e ==> abs((vsum q f)$k) <= e`) THEN ASM_SIMP_TAC[COMPONENT_LE_NORM] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN SET_TAC[]);;
let DOT_LSUM = 
prove (`!s f y. FINITE s ==> (vsum s f) dot y = sum s (\x. f(x) dot y)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[VSUM_CLAUSES; SUM_CLAUSES; DOT_LZERO; DOT_LADD]);;
let DOT_RSUM = 
prove (`!s f x. FINITE s ==> x dot (vsum s f) = sum s (\y. x dot f(y))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[VSUM_CLAUSES; SUM_CLAUSES; DOT_RZERO; DOT_RADD]);;
let VSUM_OFFSET = 
prove (`!p f m n. vsum(m + p..n + p) f = vsum(m..n) (\i. f (i + p))`,
let VSUM_OFFSET_0 = 
prove (`!f m n. m <= n ==> vsum(m..n) f = vsum(0..n - m) (\i. f (i + m))`,
let VSUM_TRIV_NUMSEG = 
prove (`!f m n. n < m ==> vsum(m..n) f = vec 0`,
SIMP_TAC[GSYM NUMSEG_EMPTY; VSUM_CLAUSES]);;
let VSUM_CONST_NUMSEG = 
prove (`!c m n. vsum(m..n) (\n. c) = &((n + 1) - m) % c`,
let VSUM_SUC = 
prove (`!f m n. vsum (SUC n..SUC m) f = vsum (n..m) (f o SUC)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `SUC n..SUC m = IMAGE SUC (n..m)` SUBST1_TAC THENL [REWRITE_TAC [ADD1; NUMSEG_OFFSET_IMAGE] THEN REWRITE_TAC [ONE; ADD_SUC; ADD_0; ETA_AX]; SIMP_TAC [VSUM_IMAGE; FINITE_NUMSEG; SUC_INJ]]);;
let VSUM_BIJECTION = 
prove (`!f:A->real^N p s:A->bool. (!x. x IN s ==> p(x) IN s) /\ (!y. y IN s ==> ?!x. x IN s /\ p(x) = y) ==> vsum s f = vsum s (f o p)`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_EQ_GENERAL THEN EXISTS_TAC `p:A->A` THEN ASM_REWRITE_TAC[o_THM]);;
let VSUM_PARTIAL_SUC = 
prove (`!f g:num->real^N m n. vsum (m..n) (\k. f(k) % (g(k + 1) - g(k))) = if m <= n then f(n + 1) % g(n + 1) - f(m) % g(m) - vsum (m..n) (\k. (f(k + 1) - f(k)) % g(k + 1)) else vec 0`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[VSUM_TRIV_NUMSEG; GSYM NOT_LE] THEN ASM_REWRITE_TAC[VSUM_CLAUSES_NUMSEG] THENL [COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH] THENL [VECTOR_ARITH_TAC; ASM_ARITH_TAC]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE]) THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN ASM_SIMP_TAC[GSYM NOT_LT; VSUM_TRIV_NUMSEG; ARITH_RULE `n < SUC n`] THEN ASM_SIMP_TAC[GSYM ADD1; ADD_CLAUSES] THEN VECTOR_ARITH_TAC);;
let VSUM_PARTIAL_PRE = 
prove (`!f g:num->real^N m n. vsum (m..n) (\k. f(k) % (g(k) - g(k - 1))) = if m <= n then f(n + 1) % g(n) - f(m) % g(m - 1) - vsum (m..n) (\k. (f(k + 1) - f(k)) % g(k)) else vec 0`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:num->real`; `\k. (g:num->real^N)(k - 1)`; `m:num`; `n:num`] VSUM_PARTIAL_SUC) THEN REWRITE_TAC[ADD_SUB] THEN DISCH_THEN SUBST1_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[]);;
let VSUM_COMBINE_L = 
prove (`!f m n p. 0 < n /\ m <= n /\ n <= p + 1 ==> vsum(m..n - 1) f + vsum(n..p) f = vsum(m..p) f`,
let VSUM_COMBINE_R = 
prove (`!f m n p. m <= n + 1 /\ n <= p ==> vsum(m..n) f + vsum(n + 1..p) f = vsum(m..p) f`,
let VSUM_INJECTION = 
prove (`!f p s. FINITE s /\ (!x. x IN s ==> p x IN s) /\ (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y) ==> vsum s (f o p) = vsum s f`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUM_INJECTION) THEN SIMP_TAC[CART_EQ; VSUM_COMPONENT; o_DEF]);;
let VSUM_SWAP = 
prove (`!f s t. FINITE s /\ FINITE t ==> vsum s (\i. vsum t (f i)) = vsum t (\j. vsum s (\i. f i j))`,
SIMP_TAC[CART_EQ; VSUM_COMPONENT] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhs o rand) SUM_SWAP o lhs o snd) THEN ASM_REWRITE_TAC[]);;
let VSUM_SWAP_NUMSEG = 
prove (`!a b c d f. vsum (a..b) (\i. vsum (c..d) (f i)) = vsum (c..d) (\j. vsum (a..b) (\i. f i j))`,
REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_SWAP THEN REWRITE_TAC[FINITE_NUMSEG]);;
let VSUM_ADD_GEN = 
prove (`!f g s. FINITE {x | x IN s /\ ~(f x = vec 0)} /\ FINITE {x | x IN s /\ ~(g x = vec 0)} ==> vsum s (\x. f x + g x) = vsum s f + vsum s g`,
REPEAT GEN_TAC THEN DISCH_TAC THEN SIMP_TAC[CART_EQ; vsum; LAMBDA_BETA; VECTOR_ADD_COMPONENT] THEN REPEAT GEN_TAC THEN DISCH_THEN(K ALL_TAC) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_ADD_GEN THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[VEC_COMPONENT]);;
let VSUM_CASES_1 = 
prove (`!s a. FINITE s /\ a IN s ==> vsum s (\x. if x = a then y else f(x)) = vsum s f + (y - f a)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[VSUM_CASES] THEN ASM_SIMP_TAC[GSYM DELETE; VSUM_DELETE] THEN ASM_SIMP_TAC[SET_RULE `a IN s ==> {x | x IN s /\ x = a} = {a}`] THEN REWRITE_TAC[VSUM_SING] THEN VECTOR_ARITH_TAC);;
let VSUM_SING_NUMSEG = 
prove (`vsum(n..n) f = f n`,
REWRITE_TAC[NUMSEG_SING; VSUM_SING]);;
let VSUM_1 = 
prove (`vsum(1..1) f = f(1)`,
REWRITE_TAC[VSUM_SING_NUMSEG]);;
let VSUM_2 = 
prove (`!t. vsum(1..2) t = t(1) + t(2)`,
REWRITE_TAC[num_CONV `2`; VSUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[VSUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
let VSUM_3 = 
prove (`!t. vsum(1..3) t = t(1) + t(2) + t(3)`,
REWRITE_TAC[num_CONV `3`; num_CONV `2`; VSUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[VSUM_SING_NUMSEG; ARITH; VECTOR_ADD_ASSOC]);;
let VSUM_4 = 
prove (`!t. vsum(1..4) t = t(1) + t(2) + t(3) + t(4)`,
SIMP_TAC[num_CONV `4`; num_CONV `3`; num_CONV `2`; VSUM_CLAUSES_NUMSEG] THEN REWRITE_TAC[VSUM_SING_NUMSEG; ARITH; VECTOR_ADD_ASSOC]);;
let VSUM_PAIR = 
prove (`!f:num->real^N m n. vsum(2*m..2*n+1) f = vsum(m..n) (\i. f(2*i) + f(2*i+1))`,
let VSUM_PAIR_0 = 
prove (`!f:num->real^N n. vsum(0..2*n+1) f = vsum(0..n) (\i. f(2*i) + f(2*i+1))`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:num->real^N`; `0`; `n:num`] VSUM_PAIR) THEN ASM_REWRITE_TAC[ARITH]);;
(* ------------------------------------------------------------------------- *) (* Add useful congruences to the simplifier. *) (* ------------------------------------------------------------------------- *)
let th = 
prove (`(!f g s. (!x. x IN s ==> f(x) = g(x)) ==> vsum s (\i. f(i)) = vsum s g) /\ (!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i)) ==> vsum(a..b) (\i. f(i)) = vsum(a..b) g) /\ (!f g p. (!x. p x ==> f x = g x) ==> vsum {y | p y} (\i. f(i)) = vsum {y | p y} g)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC VSUM_EQ THEN ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;
(* ------------------------------------------------------------------------- *) (* A conversion for evaluation of `vsum(m..n) f` for numerals m and n. *) (* ------------------------------------------------------------------------- *) let EXPAND_VSUM_CONV = let [pth_0; pth_1; pth_2] = (CONJUNCTS o prove) (`(n < m ==> vsum(m..n) (f:num->real^N) = vec 0) /\ vsum(m..m) (f:num->real^N) = f m /\ (m <= n ==> vsum (m..n) (f:num->real^N) = f m + vsum (m + 1..n) f)`, REWRITE_TAC[VSUM_CLAUSES_LEFT; VSUM_SING_NUMSEG; VSUM_TRIV_NUMSEG]) and ns_tm = `..` and f_tm = `f:num->real^N` and m_tm = `m:num` and n_tm = `n:num` and n_ty = `:N` in let rec conv tm = let smn,ftm = dest_comb tm in let s,mn = dest_comb smn in if not(is_const s & fst(dest_const s) = "vsum") then failwith "EXPAND_VSUM_CONV" else let mtm,ntm = dest_binop ns_tm mn in let m = dest_numeral mtm and n = dest_numeral ntm in let nty = hd(tl(snd(dest_type(snd(dest_fun_ty(type_of ftm)))))) in let ilist = [nty,n_ty] in let ifn = inst ilist and tfn = INST_TYPE ilist in if n < m then let th1 = INST [ftm,ifn f_tm; mtm,m_tm; ntm,n_tm] (tfn pth_0) in MP th1 (EQT_ELIM(NUM_LT_CONV(lhand(concl th1)))) else if n = m then CONV_RULE (RAND_CONV(TRY_CONV BETA_CONV)) (INST [ftm,ifn f_tm; mtm,m_tm] (tfn pth_1)) else let th1 = INST [ftm,ifn f_tm; mtm,m_tm; ntm,n_tm] (tfn pth_2) in let th2 = MP th1 (EQT_ELIM(NUM_LE_CONV(lhand(concl th1)))) in CONV_RULE (RAND_CONV(COMB2_CONV (RAND_CONV(TRY_CONV BETA_CONV)) (LAND_CONV(LAND_CONV NUM_ADD_CONV) THENC conv))) th2 in conv;; (* ------------------------------------------------------------------------- *) (* Basis vectors in coordinate directions. *) (* ------------------------------------------------------------------------- *)
let basis = new_definition
  `basis k = lambda i. if i = k then &1 else &0`;;
let NORM_BASIS = 
prove (`!k. 1 <= k /\ k <= dimindex(:N) ==> (norm(basis k :real^N) = &1)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[basis; dot; vector_norm] THEN GEN_REWRITE_TAC RAND_CONV [GSYM SQRT_1] THEN AP_TERM_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum (1..dimindex(:N)) (\i. if i = k then &1 else &0)` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_EQ_NUMSEG THEN ASM_SIMP_TAC[LAMBDA_BETA; IN_NUMSEG; EQ_SYM_EQ] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REAL_ARITH_TAC; ASM_REWRITE_TAC[SUM_DELTA; IN_NUMSEG]]);;
let NORM_BASIS_1 = 
prove (`norm(basis 1) = &1`,
SIMP_TAC[NORM_BASIS; ARITH_EQ; ARITH_RULE `1 <= k <=> ~(k = 0)`; DIMINDEX_NONZERO]);;
let VECTOR_CHOOSE_SIZE = 
prove (`!c. &0 <= c ==> ?x:real^N. norm(x) = c`,
REPEAT STRIP_TAC THEN EXISTS_TAC `c % basis 1 :real^N` THEN ASM_REWRITE_TAC[NORM_MUL; real_abs; NORM_BASIS_1; REAL_MUL_RID]);;
let VECTOR_CHOOSE_DIST = 
prove (`!x e. &0 <= e ==> ?y:real^N. dist(x,y) = e`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `?c:real^N. norm(c) = e` CHOOSE_TAC THENL [ASM_SIMP_TAC[VECTOR_CHOOSE_SIZE]; ALL_TAC] THEN EXISTS_TAC `x - c:real^N` THEN REWRITE_TAC[dist] THEN ASM_REWRITE_TAC[VECTOR_ARITH `x - (x - c) = c:real^N`]);;
let BASIS_INJ = 
prove (`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) /\ (basis i :real^N = basis j) ==> (i = j)`,
SIMP_TAC[basis; CART_EQ; LAMBDA_BETA] THEN REPEAT GEN_TAC THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN ASM_SIMP_TAC[REAL_OF_NUM_EQ; ARITH_EQ]);;
let BASIS_INJ_EQ = 
prove (`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) ==> (basis i:real^N = basis j <=> i = j)`,
MESON_TAC[BASIS_INJ]);;
let BASIS_NE = 
prove (`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) /\ ~(i = j) ==> ~(basis i :real^N = basis j)`,
MESON_TAC[BASIS_INJ]);;
let BASIS_COMPONENT = 
prove (`!k i. 1 <= i /\ i <= dimindex(:N) ==> ((basis k :real^N)$i = if i = k then &1 else &0)`,
SIMP_TAC[basis; LAMBDA_BETA] THEN MESON_TAC[]);;
let BASIS_EXPANSION = 
prove (`!x:real^N. vsum(1..dimindex(:N)) (\i. x$i % basis i) = x`,
SIMP_TAC[CART_EQ; VSUM_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT] THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[REAL_MUL_RZERO] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN ASM_SIMP_TAC[SUM_DELTA; IN_NUMSEG; REAL_MUL_RID]);;
let BASIS_EXPANSION_UNIQUE = 
prove (`!f x:real^N. (vsum(1..dimindex(:N)) (\i. f(i) % basis i) = x) <=> (!i. 1 <= i /\ i <= dimindex(:N) ==> f(i) = x$i)`,
SIMP_TAC[CART_EQ; VSUM_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[COND_RAND; REAL_MUL_RZERO; REAL_MUL_RID] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN SIMP_TAC[SUM_DELTA; IN_NUMSEG]);;
let DOT_BASIS = 
prove (`!x:real^N i. 1 <= i /\ i <= dimindex(:N) ==> ((basis i) dot x = x$i) /\ (x dot (basis i) = x$i)`,
SIMP_TAC[dot; basis; LAMBDA_BETA] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO] THEN SIMP_TAC[SUM_DELTA; IN_NUMSEG; REAL_MUL_LID; REAL_MUL_RID]);;
let DOT_BASIS_BASIS = 
prove (`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) ==> (basis i:real^N) dot (basis j) = if i = j then &1 else &0`,
SIMP_TAC[DOT_BASIS; BASIS_COMPONENT]);;
let DOT_BASIS_BASIS_UNEQUAL = 
prove (`!i j. ~(i = j) ==> (basis i) dot (basis j) = &0`,
SIMP_TAC[basis; dot; LAMBDA_BETA] THEN ONCE_REWRITE_TAC[COND_RAND] THEN SIMP_TAC[SUM_0; REAL_MUL_RZERO; REAL_MUL_LZERO; COND_ID]);;
let BASIS_EQ_0 = 
prove (`!i. (basis i :real^N = vec 0) <=> ~(i IN 1..dimindex(:N))`,
SIMP_TAC[CART_EQ; BASIS_COMPONENT; VEC_COMPONENT; IN_NUMSEG] THEN MESON_TAC[REAL_ARITH `~(&1 = &0)`]);;
let BASIS_NONZERO = 
prove (`!k. 1 <= k /\ k <= dimindex(:N) ==> ~(basis k :real^N = vec 0)`,
REWRITE_TAC[BASIS_EQ_0; IN_NUMSEG]);;
let VECTOR_EQ_LDOT = 
prove (`!y z. (!x. x dot y = x dot z) <=> y = z`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN REWRITE_TAC[CART_EQ] THEN MESON_TAC[DOT_BASIS]);;
let VECTOR_EQ_RDOT = 
prove (`!x y. (!z. x dot z = y dot z) <=> x = y`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN REWRITE_TAC[CART_EQ] THEN MESON_TAC[DOT_BASIS]);;
(* ------------------------------------------------------------------------- *) (* Orthogonality. *) (* ------------------------------------------------------------------------- *)
let orthogonal = new_definition
  `orthogonal x y <=> (x dot y = &0)`;;
let ORTHOGONAL_0 = 
prove (`!x. orthogonal (vec 0) x /\ orthogonal x (vec 0)`,
REWRITE_TAC[orthogonal; DOT_LZERO; DOT_RZERO]);;
let ORTHOGONAL_REFL = 
prove (`!x. orthogonal x x <=> x = vec 0`,
REWRITE_TAC[orthogonal; DOT_EQ_0]);;
let ORTHOGONAL_SYM = 
prove (`!x y. orthogonal x y <=> orthogonal y x`,
REWRITE_TAC[orthogonal; DOT_SYM]);;
let ORTHOGONAL_LNEG = 
prove (`!x y. orthogonal (--x) y <=> orthogonal x y`,
REWRITE_TAC[orthogonal; DOT_LNEG; REAL_NEG_EQ_0]);;
let ORTHOGONAL_RNEG = 
prove (`!x y. orthogonal x (--y) <=> orthogonal x y`,
REWRITE_TAC[orthogonal; DOT_RNEG; REAL_NEG_EQ_0]);;
let ORTHOGONAL_MUL = 
prove (`(!a x y:real^N. orthogonal (a % x) y <=> a = &0 \/ orthogonal x y) /\ (!a x y:real^N. orthogonal x (a % y) <=> a = &0 \/ orthogonal x y)`,
REWRITE_TAC[orthogonal; DOT_LMUL; DOT_RMUL; REAL_ENTIRE]);;
let ORTHOGONAL_BASIS = 
prove (`!x:real^N i. 1 <= i /\ i <= dimindex(:N) ==> (orthogonal (basis i) x <=> (x$i = &0))`,
REPEAT STRIP_TAC THEN SIMP_TAC[orthogonal; dot; basis; LAMBDA_BETA] THEN REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN ASM_SIMP_TAC[SUM_DELTA; IN_NUMSEG; REAL_MUL_LID]);;
let ORTHOGONAL_BASIS_BASIS = 
prove (`!i j. 1 <= i /\ i <= dimindex(:N) /\ 1 <= j /\ j <= dimindex(:N) ==> (orthogonal (basis i :real^N) (basis j) <=> ~(i = j))`,
ASM_SIMP_TAC[ORTHOGONAL_BASIS] THEN ASM_SIMP_TAC[BASIS_COMPONENT] THEN MESON_TAC[REAL_ARITH `~(&1 = &0)`]);;
let ORTHOGONAL_CLAUSES = 
prove (`(!a. orthogonal a (vec 0)) /\ (!a x c. orthogonal a x ==> orthogonal a (c % x)) /\ (!a x. orthogonal a x ==> orthogonal a (--x)) /\ (!a x y. orthogonal a x /\ orthogonal a y ==> orthogonal a (x + y)) /\ (!a x y. orthogonal a x /\ orthogonal a y ==> orthogonal a (x - y)) /\ (!a. orthogonal (vec 0) a) /\ (!a x c. orthogonal x a ==> orthogonal (c % x) a) /\ (!a x. orthogonal x a ==> orthogonal (--x) a) /\ (!a x y. orthogonal x a /\ orthogonal y a ==> orthogonal (x + y) a) /\ (!a x y. orthogonal x a /\ orthogonal y a ==> orthogonal (x - y) a)`,
REWRITE_TAC[orthogonal; DOT_RNEG; DOT_RMUL; DOT_RADD; DOT_RSUB; DOT_LZERO; DOT_RZERO; DOT_LNEG; DOT_LMUL; DOT_LADD; DOT_LSUB] THEN SIMP_TAC[] THEN REAL_ARITH_TAC);;
let ORTHOGONAL_RVSUM = 
prove (`!f:A->real^N s x. FINITE s /\ (!y. y IN s ==> orthogonal x (f y)) ==> orthogonal x (vsum s f)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[NOT_IN_EMPTY; FORALL_IN_INSERT; ORTHOGONAL_CLAUSES; VSUM_CLAUSES]);;
let ORTHOGONAL_LVSUM = 
prove (`!f:A->real^N s y. FINITE s /\ (!x. x IN s ==> orthogonal (f x) y) ==> orthogonal (vsum s f) y`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[NOT_IN_EMPTY; FORALL_IN_INSERT; ORTHOGONAL_CLAUSES; VSUM_CLAUSES]);;
let NORM_ADD_PYTHAGOREAN = 
prove (`!a b:real^N. orthogonal a b ==> norm(a + b) pow 2 = norm(a) pow 2 + norm(b) pow 2`,
SIMP_TAC[NORM_POW_2; orthogonal; DOT_LADD; DOT_RADD; DOT_SYM] THEN REAL_ARITH_TAC);;
let NORM_VSUM_PYTHAGOREAN = 
prove (`!k u:A->real^N. FINITE k /\ pairwise (\i j. orthogonal (u i) (u j)) k ==> norm(vsum k u) pow 2 = sum k (\i. norm(u i) pow 2)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN SIMP_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES; SUM_CLAUSES; NORM_0] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[PAIRWISE_INSERT] THEN REWRITE_TAC[pairwise] THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NORM_ADD_PYTHAGOREAN THEN MATCH_MP_TAC ORTHOGONAL_RVSUM THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Explicit vector construction from lists. *) (* ------------------------------------------------------------------------- *)
let VECTOR_1 = 
prove (`(vector[x]:A^1)$1 = x`,
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_1; ARITH; LENGTH; EL; HD; TL]);;
let VECTOR_2 = 
prove (`(vector[x;y]:A^2)$1 = x /\ (vector[x;y]:A^2)$2 = y`,
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_2; ARITH; LENGTH; EL] THEN REWRITE_TAC[num_CONV `1`; HD; TL; EL]);;
let VECTOR_3 = 
prove (`(vector[x;y;z]:A^3)$1 = x /\ (vector[x;y;z]:A^3)$2 = y /\ (vector[x;y;z]:A^3)$3 = z`,
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; ARITH; LENGTH; EL] THEN REWRITE_TAC[num_CONV `2`; num_CONV `1`; HD; TL; EL]);;
let VECTOR_4 = 
prove (`(vector[w;x;y;z]:A^4)$1 = w /\ (vector[w;x;y;z]:A^4)$2 = x /\ (vector[w;x;y;z]:A^4)$3 = y /\ (vector[w;x;y;z]:A^4)$4 = z`,
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_4; ARITH; LENGTH; EL] THEN REWRITE_TAC[num_CONV `3`; num_CONV `2`; num_CONV `1`; HD; TL; EL]);;
let FORALL_VECTOR_1 = 
prove (`(!v:A^1. P v) <=> !x. P(vector[x])`,
EQ_TAC THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(v:A^1)$1`) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[CART_EQ; FORALL_1; VECTOR_1; DIMINDEX_1]);;
let FORALL_VECTOR_2 = 
prove (`(!v:A^2. P v) <=> !x y. P(vector[x;y])`,
EQ_TAC THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(v:A^2)$1`; `(v:A^2)$2`]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[CART_EQ; FORALL_2; VECTOR_2; DIMINDEX_2]);;
let FORALL_VECTOR_3 = 
prove (`(!v:A^3. P v) <=> !x y z. P(vector[x;y;z])`,
EQ_TAC THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(v:A^3)$1`; `(v:A^3)$2`; `(v:A^3)$3`]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[CART_EQ; FORALL_3; VECTOR_3; DIMINDEX_3]);;
let FORALL_VECTOR_4 = 
prove (`(!v:A^4. P v) <=> !w x y z. P(vector[w;x;y;z])`,
EQ_TAC THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(v:A^4)$1`; `(v:A^4)$2`; `(v:A^4)$3`; `(v:A^4)$4`]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[CART_EQ; FORALL_4; VECTOR_4; DIMINDEX_4]);;
let EXISTS_VECTOR_1 = 
prove (`(?v:A^1. P v) <=> ?x. P(vector[x])`,
REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_VECTOR_1]);;
let EXISTS_VECTOR_2 = 
prove (`(?v:A^2. P v) <=> ?x y. P(vector[x;y])`,
REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_VECTOR_2]);;
let EXISTS_VECTOR_3 = 
prove (`(?v:A^3. P v) <=> ?x y z. P(vector[x;y;z])`,
REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_VECTOR_3]);;
let EXISTS_VECTOR_4 = 
prove (`(?v:A^4. P v) <=> ?w x y z. P(vector[w;x;y;z])`,
REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_VECTOR_4]);;
let VECTOR_EXPAND_1 = 
prove (`!x:real^1. x = vector[x$1]`,
SIMP_TAC[CART_EQ; DIMINDEX_1; FORALL_1; VECTOR_1]);;
let VECTOR_EXPAND_2 = 
prove (`!x:real^2. x = vector[x$1;x$2]`,
SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; VECTOR_2]);;
let VECTOR_EXPAND_3 = 
prove (`!x:real^3. x = vector[x$1;x$2;x$3]`,
SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VECTOR_3]);;
let VECTOR_EXPAND_4 = 
prove (`!x:real^4. x = vector[x$1;x$2;x$3;x$4]`,
SIMP_TAC[CART_EQ; DIMINDEX_4; FORALL_4; VECTOR_4]);;
(* ------------------------------------------------------------------------- *) (* Linear functions. *) (* ------------------------------------------------------------------------- *)
let linear = new_definition
  `linear (f:real^M->real^N) <=>
        (!x y. f(x + y) = f(x) + f(y)) /\
        (!c x. f(c % x) = c % f(x))`;;
let LINEAR_COMPOSE_CMUL = 
prove (`!f c. linear f ==> linear (\x. c % f(x))`,
SIMP_TAC[linear] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let LINEAR_COMPOSE_NEG = 
prove (`!f. linear f ==> linear (\x. --(f(x)))`,
SIMP_TAC[linear] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let LINEAR_COMPOSE_ADD = 
prove (`!f g. linear f /\ linear g ==> linear (\x. f(x) + g(x))`,
SIMP_TAC[linear] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let LINEAR_COMPOSE_SUB = 
prove (`!f g. linear f /\ linear g ==> linear (\x. f(x) - g(x))`,
SIMP_TAC[linear] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let LINEAR_COMPOSE = 
prove (`!f g. linear f /\ linear g ==> linear (g o f)`,
SIMP_TAC[linear; o_THM]);;
let LINEAR_ID = 
prove (`linear (\x. x)`,
REWRITE_TAC[linear]);;
let LINEAR_I = 
prove (`linear I`,
REWRITE_TAC[I_DEF; LINEAR_ID]);;
let LINEAR_ZERO = 
prove (`linear (\x. vec 0)`,
REWRITE_TAC[linear] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let LINEAR_NEGATION = 
prove (`linear(--)`,
REWRITE_TAC[linear] THEN VECTOR_ARITH_TAC);;
let LINEAR_COMPOSE_VSUM = 
prove (`!f s. FINITE s /\ (!a. a IN s ==> linear(f a)) ==> linear(\x. vsum s (\a. f a x))`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES; LINEAR_ZERO] THEN ASM_SIMP_TAC[ETA_AX; IN_INSERT; LINEAR_COMPOSE_ADD]);;
let LINEAR_VMUL_COMPONENT = 
prove (`!f:real^M->real^N v k. linear f /\ 1 <= k /\ k <= dimindex(:N) ==> linear (\x. f(x)$k % v)`,
SIMP_TAC[linear; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let LINEAR_0 = 
prove (`!f. linear f ==> (f(vec 0) = vec 0)`,
MESON_TAC[VECTOR_MUL_LZERO; linear]);;
let LINEAR_CMUL = 
prove (`!f c x. linear f ==> (f(c % x) = c % f(x))`,
SIMP_TAC[linear]);;
let LINEAR_NEG = 
prove (`!f x. linear f ==> (f(--x) = --(f x))`,
ONCE_REWRITE_TAC[VECTOR_NEG_MINUS1] THEN SIMP_TAC[LINEAR_CMUL]);;
let LINEAR_ADD = 
prove (`!f x y. linear f ==> (f(x + y) = f(x) + f(y))`,
SIMP_TAC[linear]);;
let LINEAR_SUB = 
prove (`!f x y. linear f ==> (f(x - y) = f(x) - f(y))`,
let LINEAR_VSUM = 
prove (`!f g s. linear f /\ FINITE s ==> (f(vsum s g) = vsum s (f o g))`,
GEN_TAC THEN GEN_TAC THEN SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES] THEN FIRST_ASSUM(fun th -> SIMP_TAC[MATCH_MP LINEAR_0 th; MATCH_MP LINEAR_ADD th; o_THM]));;
let LINEAR_VSUM_MUL = 
prove (`!f s c v. linear f /\ FINITE s ==> f(vsum s (\i. c i % v i)) = vsum s (\i. c(i) % f(v i))`,
SIMP_TAC[LINEAR_VSUM; o_DEF; LINEAR_CMUL]);;
let LINEAR_INJECTIVE_0 = 
prove (`!f. linear f ==> ((!x y. (f(x) = f(y)) ==> (x = y)) <=> (!x. (f(x) = vec 0) ==> (x = vec 0)))`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_SUB_EQ] THEN ASM_SIMP_TAC[GSYM LINEAR_SUB] THEN MESON_TAC[VECTOR_SUB_RZERO]);;
let LINEAR_BOUNDED = 
prove (`!f:real^M->real^N. linear f ==> ?B. !x. norm(f x) <= B * norm(x)`,
REPEAT STRIP_TAC THEN EXISTS_TAC `sum(1..dimindex(:M)) (\i. norm((f:real^M->real^N)(basis i)))` THEN GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV) [GSYM BASIS_EXPANSION] THEN ASM_SIMP_TAC[LINEAR_VSUM; FINITE_NUMSEG] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC VSUM_NORM_LE THEN SIMP_TAC[FINITE_CROSS; FINITE_NUMSEG; IN_NUMSEG] THEN ASM_SIMP_TAC[o_DEF; NORM_MUL; LINEAR_CMUL] THEN ASM_SIMP_TAC[REAL_LE_RMUL; NORM_POS_LE; COMPONENT_LE_NORM]);;
let LINEAR_BOUNDED_POS = 
prove (`!f:real^M->real^N. linear f ==> ?B. &0 < B /\ !x. norm(f x) <= B * norm(x)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_TAC `B:real` o MATCH_MP LINEAR_BOUNDED) THEN EXISTS_TAC `abs(B) + &1` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[NORM_POS_LE] THEN REAL_ARITH_TAC);;
let SYMMETRIC_LINEAR_IMAGE = 
prove (`!f s. (!x. x IN s ==> --x IN s) /\ linear f ==> !x. x IN (IMAGE f s) ==> --x IN (IMAGE f s)`,
REWRITE_TAC[FORALL_IN_IMAGE] THEN SIMP_TAC[GSYM LINEAR_NEG] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Bilinear functions. *) (* ------------------------------------------------------------------------- *)
let bilinear = new_definition
  `bilinear f <=> (!x. linear(\y. f x y)) /\ (!y. linear(\x. f x y))`;;
let BILINEAR_LADD = 
prove (`!h x y z. bilinear h ==> h (x + y) z = (h x z) + (h y z)`,
SIMP_TAC[bilinear; linear]);;
let BILINEAR_RADD = 
prove (`!h x y z. bilinear h ==> h x (y + z) = (h x y) + (h x z)`,
SIMP_TAC[bilinear; linear]);;
let BILINEAR_LMUL = 
prove (`!h c x y. bilinear h ==> h (c % x) y = c % (h x y)`,
SIMP_TAC[bilinear; linear]);;
let BILINEAR_RMUL = 
prove (`!h c x y. bilinear h ==> h x (c % y) = c % (h x y)`,
SIMP_TAC[bilinear; linear]);;
let BILINEAR_LNEG = 
prove (`!h x y. bilinear h ==> h (--x) y = --(h x y)`,
ONCE_REWRITE_TAC[VECTOR_NEG_MINUS1] THEN SIMP_TAC[BILINEAR_LMUL]);;
let BILINEAR_RNEG = 
prove (`!h x y. bilinear h ==> h x (--y) = --(h x y)`,
ONCE_REWRITE_TAC[VECTOR_NEG_MINUS1] THEN SIMP_TAC[BILINEAR_RMUL]);;
let BILINEAR_LZERO = 
prove (`!h x. bilinear h ==> h (vec 0) x = vec 0`,
ONCE_REWRITE_TAC[VECTOR_ARITH `x = vec 0 <=> x + x = x`] THEN SIMP_TAC[GSYM BILINEAR_LADD; VECTOR_ADD_LID]);;
let BILINEAR_RZERO = 
prove (`!h x. bilinear h ==> h x (vec 0) = vec 0`,
ONCE_REWRITE_TAC[VECTOR_ARITH `x = vec 0 <=> x + x = x`] THEN SIMP_TAC[GSYM BILINEAR_RADD; VECTOR_ADD_LID]);;
let BILINEAR_LSUB = 
prove (`!h x y z. bilinear h ==> h (x - y) z = (h x z) - (h y z)`,
let BILINEAR_RSUB = 
prove (`!h x y z. bilinear h ==> h x (y - z) = (h x y) - (h x z)`,
let BILINEAR_VSUM = 
prove (`!h:real^M->real^N->real^P. bilinear h /\ FINITE s /\ FINITE t ==> h (vsum s f) (vsum t g) = vsum (s CROSS t) (\(i,j). h (f i) (g j))`,
REPEAT GEN_TAC THEN SIMP_TAC[bilinear; ETA_AX] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c /\ d <=> (a /\ d) /\ (b /\ c)`] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[LEFT_AND_FORALL_THM] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_ALL o MATCH_MP LINEAR_VSUM o SPEC_ALL) THEN SIMP_TAC[] THEN ASM_SIMP_TAC[LINEAR_VSUM; o_DEF; VSUM_VSUM_PRODUCT] THEN REWRITE_TAC[GSYM CROSS]);;
let BILINEAR_BOUNDED = 
prove (`!h:real^M->real^N->real^P. bilinear h ==> ?B. !x y. norm(h x y) <= B * norm(x) * norm(y)`,
REPEAT STRIP_TAC THEN EXISTS_TAC `sum ((1..dimindex(:M)) CROSS (1..dimindex(:N))) (\(i,j). norm((h:real^M->real^N->real^P) (basis i) (basis j)))` THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o BINOP_CONV) [GSYM BASIS_EXPANSION] THEN ASM_SIMP_TAC[BILINEAR_VSUM; FINITE_NUMSEG] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM SUM_LMUL] THEN MATCH_MP_TAC VSUM_NORM_LE THEN SIMP_TAC[FINITE_CROSS; FINITE_NUMSEG; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[BILINEAR_LMUL; NORM_MUL] THEN ASM_SIMP_TAC[BILINEAR_RMUL; NORM_MUL; REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[NORM_POS_LE] THEN ASM_SIMP_TAC[COMPONENT_LE_NORM; REAL_ABS_POS; REAL_LE_MUL2]);;
let BILINEAR_BOUNDED_POS = 
prove (`!h. bilinear h ==> ?B. &0 < B /\ !x y. norm(h x y) <= B * norm(x) * norm(y)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_TAC `B:real` o MATCH_MP BILINEAR_BOUNDED) THEN EXISTS_TAC `abs(B) + &1` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN REPEAT(MATCH_MP_TAC REAL_LE_RMUL THEN SIMP_TAC[NORM_POS_LE; REAL_LE_MUL]) THEN REAL_ARITH_TAC);;
let BILINEAR_VSUM_PARTIAL_SUC = 
prove (`!f g h:real^M->real^N->real^P m n. bilinear h ==> vsum (m..n) (\k. h (f k) (g(k + 1) - g(k))) = if m <= n then h (f(n + 1)) (g(n + 1)) - h (f m) (g m) - vsum (m..n) (\k. h (f(k + 1) - f(k)) (g(k + 1))) else vec 0`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[VSUM_TRIV_NUMSEG; GSYM NOT_LE] THEN ASM_REWRITE_TAC[VSUM_CLAUSES_NUMSEG] THENL [COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH] THENL [ASM_SIMP_TAC[BILINEAR_RSUB; BILINEAR_LSUB] THEN VECTOR_ARITH_TAC; ASM_ARITH_TAC]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE]) THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN ASM_SIMP_TAC[GSYM NOT_LT; VSUM_TRIV_NUMSEG; ARITH_RULE `n < SUC n`] THEN ASM_SIMP_TAC[GSYM ADD1; ADD_CLAUSES] THEN ASM_SIMP_TAC[BILINEAR_RSUB; BILINEAR_LSUB] THEN VECTOR_ARITH_TAC);;
let BILINEAR_VSUM_PARTIAL_PRE = 
prove (`!f g h:real^M->real^N->real^P m n. bilinear h ==> vsum (m..n) (\k. h (f k) (g(k) - g(k - 1))) = if m <= n then h (f(n + 1)) (g(n)) - h (f m) (g(m - 1)) - vsum (m..n) (\k. h (f(k + 1) - f(k)) (g(k))) else vec 0`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`f:num->real^M`; `\k. (g:num->real^N)(k - 1)`; `m:num`; `n:num`] o MATCH_MP BILINEAR_VSUM_PARTIAL_SUC) THEN REWRITE_TAC[ADD_SUB] THEN DISCH_THEN SUBST1_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Adjoints. *) (* ------------------------------------------------------------------------- *)
let adjoint = new_definition
 `adjoint(f:real^M->real^N) = @f'. !x y. f(x) dot y = x dot f'(y)`;;
let ADJOINT_WORKS = 
prove (`!f:real^M->real^N. linear f ==> !x y. f(x) dot y = x dot (adjoint f)(y)`,
GEN_TAC THEN DISCH_TAC THEN SIMP_TAC[adjoint] THEN CONV_TAC SELECT_CONV THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[GSYM SKOLEM_THM] THEN X_GEN_TAC `y:real^N` THEN EXISTS_TAC `(lambda i. (f:real^M->real^N) (basis i) dot y):real^M` THEN X_GEN_TAC `x:real^M` THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV o RAND_CONV) [GSYM BASIS_EXPANSION] THEN ASM_SIMP_TAC[LINEAR_VSUM; FINITE_NUMSEG] THEN SIMP_TAC[dot; LAMBDA_BETA; VSUM_COMPONENT; GSYM SUM_LMUL; GSYM SUM_RMUL] THEN GEN_REWRITE_TAC RAND_CONV [SUM_SWAP_NUMSEG] THEN ASM_SIMP_TAC[o_THM; VECTOR_MUL_COMPONENT; LINEAR_CMUL; REAL_MUL_ASSOC]);;
let ADJOINT_LINEAR = 
prove (`!f:real^M->real^N. linear f ==> linear(adjoint f)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[linear; GSYM VECTOR_EQ_LDOT] THEN ASM_SIMP_TAC[DOT_RMUL; DOT_RADD; GSYM ADJOINT_WORKS]);;
let ADJOINT_CLAUSES = 
prove (`!f:real^M->real^N. linear f ==> (!x y. x dot (adjoint f)(y) = f(x) dot y) /\ (!x y. (adjoint f)(y) dot x = y dot f(x))`,
MESON_TAC[ADJOINT_WORKS; DOT_SYM]);;
let ADJOINT_ADJOINT = 
prove (`!f:real^M->real^N. linear f ==> adjoint(adjoint f) = f`,
let ADJOINT_UNIQUE = 
prove (`!f f'. linear f /\ (!x y. f'(x) dot y = x dot f(y)) ==> f' = adjoint f`,
let ADJOINT_COMPOSE = 
prove (`!f g:real^N->real^N. linear f /\ linear g ==> adjoint(f o g) = adjoint g o adjoint f`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC ADJOINT_UNIQUE THEN ASM_SIMP_TAC[LINEAR_COMPOSE; o_THM; ADJOINT_CLAUSES]);;
let SELF_ADJOINT_COMPOSE = 
prove (`!f g:real^N->real^N. linear f /\ linear g /\ adjoint f = f /\ adjoint g = g ==> (adjoint(f o g) = f o g <=> f o g = g o f)`,
SIMP_TAC[ADJOINT_COMPOSE] THEN MESON_TAC[]);;
let SELF_ADJOINT_ORTHOGONAL_EIGENVECTORS = 
prove (`!f:real^N->real^N v w a b. linear f /\ adjoint f = f /\ f v = a % v /\ f w = b % w /\ ~(a = b) ==> orthogonal v w`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPECL [`v:real^N`; `w:real^N`] o MATCH_MP ADJOINT_WORKS) THEN ASM_REWRITE_TAC[DOT_LMUL; DOT_RMUL; orthogonal; REAL_EQ_MUL_RCANCEL]);;
(* ------------------------------------------------------------------------- *) (* Matrix notation. NB: an MxN matrix is of type real^N^M, not real^M^N. *) (* We could define a special type if we're going to use them a lot. *) (* ------------------------------------------------------------------------- *) overload_interface ("--",`(matrix_neg):real^N^M->real^N^M`);; overload_interface ("+",`(matrix_add):real^N^M->real^N^M->real^N^M`);; overload_interface ("-",`(matrix_sub):real^N^M->real^N^M->real^N^M`);; make_overloadable "**" `:A->B->C`;; overload_interface ("**",`(matrix_mul):real^N^M->real^P^N->real^P^M`);; overload_interface ("**",`(matrix_vector_mul):real^N^M->real^N->real^M`);; overload_interface ("**",`(vector_matrix_mul):real^M->real^N^M->real^N`);; parse_as_infix("%%",(21,"right"));; prioritize_real();;
let matrix_cmul = new_definition
  `((%%):real->real^N^M->real^N^M) c A = lambda i j. c * A$i$j`;;
let matrix_neg = new_definition
  `!A:real^N^M. --A = lambda i j. --(A$i$j)`;;
let matrix_add = new_definition
  `!A:real^N^M B:real^N^M. A + B = lambda i j. A$i$j + B$i$j`;;
let matrix_sub = new_definition
  `!A:real^N^M B:real^N^M. A - B = lambda i j. A$i$j - B$i$j`;;
let matrix_mul = new_definition
  `!A:real^N^M B:real^P^N.
        A ** B =
          lambda i j. sum(1..dimindex(:N)) (\k. A$i$k * B$k$j)`;;
let matrix_vector_mul = new_definition
  `!A:real^N^M x:real^N.
        A ** x = lambda i. sum(1..dimindex(:N)) (\j. A$i$j * x$j)`;;
let vector_matrix_mul = new_definition
  `!A:real^N^M x:real^M.
        x ** A = lambda j. sum(1..dimindex(:M)) (\i. A$i$j * x$i)`;;
let mat = new_definition
  `(mat:num->real^N^M) k = lambda i j. if i = j then &k else &0`;;
let transp = new_definition
  `(transp:real^N^M->real^M^N) A = lambda i j. A$j$i`;;
let row = new_definition
 `(row:num->real^N^M->real^N) i A = lambda j. A$i$j`;;
let column = new_definition
 `(column:num->real^N^M->real^M) j A = lambda i. A$i$j`;;
let rows = new_definition
 `rows(A:real^N^M) = { row i A | 1 <= i /\ i <= dimindex(:M)}`;;
let columns = new_definition
 `columns(A:real^N^M) = { column i A | 1 <= i /\ i <= dimindex(:N)}`;;
let MATRIX_CMUL_COMPONENT = 
prove (`!c A:real^N^M i. (c %% A)$i$j = c * A$i$j`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:M) /\ !A:real^N^M. A$i = A$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$j = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_SIMP_TAC[matrix_cmul; CART_EQ; LAMBDA_BETA]);;
let MATRIX_ADD_COMPONENT = 
prove (`!A B:real^N^M i j. (A + B)$i$j = A$i$j + B$i$j`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:M) /\ !A:real^N^M. A$i = A$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$j = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_SIMP_TAC[matrix_add; LAMBDA_BETA]);;
let MATRIX_SUB_COMPONENT = 
prove (`!A B:real^N^M i j. (A - B)$i$j = A$i$j - B$i$j`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:M) /\ !A:real^N^M. A$i = A$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$j = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_SIMP_TAC[matrix_sub; LAMBDA_BETA]);;
let MATRIX_NEG_COMPONENT = 
prove (`!A:real^N^M i j. (--A)$i$j = --(A$i$j)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:M) /\ !A:real^N^M. A$i = A$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$j = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_SIMP_TAC[matrix_neg; LAMBDA_BETA]);;
let TRANSP_COMPONENT = 
prove (`!A:real^N^M i j. (transp A)$i$j = A$j$i`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:N) /\ (!A:real^M^N. A$i = A$k) /\ (!z:real^N. z$i = z$k)` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE_2]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:M) /\ (!A:real^N^M. A$j = A$l) /\ (!z:real^M. z$j = z$l)` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE_2]; ALL_TAC] THEN ASM_SIMP_TAC[transp; LAMBDA_BETA]);;
let MAT_COMPONENT = 
prove (`!n i j. 1 <= i /\ i <= dimindex(:M) /\ 1 <= j /\ j <= dimindex(:N) ==> (mat n:real^N^M)$i$j = if i = j then &n else &0`,
SIMP_TAC[mat; LAMBDA_BETA]);;
let MAT_0_COMPONENT = 
prove (`!i j. (mat 0:real^N^M)$i$j = &0`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:M) /\ !A:real^N^M. A$i = A$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$j = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_SIMP_TAC[mat; COND_ID; LAMBDA_BETA]);;
let MATRIX_CMUL_ASSOC = 
prove (`!a b X:real^M^N. a %% (b %% X) = (a * b) %% X`,
SIMP_TAC[CART_EQ; matrix_cmul; LAMBDA_BETA; REAL_MUL_ASSOC]);;
let MATRIX_CMUL_LID = 
prove (`!X:real^M^N. &1 %% X = X`,
SIMP_TAC[CART_EQ; matrix_cmul; LAMBDA_BETA; REAL_MUL_LID]);;
let MATRIX_ADD_SYM = 
prove (`!A:real^N^M B. A + B = B + A`,
let MATRIX_ADD_ASSOC = 
prove (`!A:real^N^M B C. A + (B + C) = (A + B) + C`,
let MATRIX_ADD_LID = 
prove (`!A. mat 0 + A = A`,
SIMP_TAC[matrix_add; mat; COND_ID; CART_EQ; LAMBDA_BETA; REAL_ADD_LID]);;
let MATRIX_ADD_RID = 
prove (`!A. A + mat 0 = A`,
let MATRIX_ADD_LNEG = 
prove (`!A. --A + A = mat 0`,
SIMP_TAC[matrix_neg; matrix_add; mat; COND_ID; CART_EQ; LAMBDA_BETA; REAL_ADD_LINV]);;
let MATRIX_ADD_RNEG = 
prove (`!A. A + --A = mat 0`,
let MATRIX_SUB = 
prove (`!A:real^N^M B. A - B = A + --B`,
let MATRIX_SUB_REFL = 
prove (`!A. A - A = mat 0`,
REWRITE_TAC[MATRIX_SUB; MATRIX_ADD_RNEG]);;
let MATRIX_ADD_LDISTRIB = 
prove (`!A:real^N^M B:real^P^N C. A ** (B + C) = A ** B + A ** C`,
SIMP_TAC[matrix_mul; matrix_add; CART_EQ; LAMBDA_BETA; GSYM SUM_ADD_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN ASM_SIMP_TAC[LAMBDA_BETA; REAL_ADD_LDISTRIB]);;
let MATRIX_MUL_LID = 
prove (`!A:real^N^M. mat 1 ** A = A`,
REWRITE_TAC[matrix_mul; GEN_REWRITE_RULE (RAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] (SPEC_ALL mat)] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN SIMP_TAC[SUM_DELTA; REAL_MUL_LZERO; IN_NUMSEG; REAL_MUL_LID]);;
let MATRIX_MUL_RID = 
prove (`!A:real^N^M. A ** mat 1 = A`,
REWRITE_TAC[matrix_mul; mat] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN SIMP_TAC[SUM_DELTA; REAL_MUL_RZERO; IN_NUMSEG; REAL_MUL_RID]);;
let MATRIX_MUL_ASSOC = 
prove (`!A:real^N^M B:real^P^N C:real^Q^P. A ** B ** C = (A ** B) ** C`,
REPEAT GEN_TAC THEN SIMP_TAC[matrix_mul; CART_EQ; LAMBDA_BETA; GSYM SUM_LMUL; GSYM SUM_RMUL] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [SUM_SWAP_NUMSEG] THEN REWRITE_TAC[]);;
let MATRIX_MUL_LZERO = 
prove (`!A. (mat 0:real^N^M) ** (A:real^P^N) = mat 0`,
SIMP_TAC[matrix_mul; mat; CART_EQ; LAMBDA_BETA; COND_ID; REAL_MUL_LZERO] THEN REWRITE_TAC[SUM_0]);;
let MATRIX_MUL_RZERO = 
prove (`!A. (A:real^N^M) ** (mat 0:real^P^N) = mat 0`,
SIMP_TAC[matrix_mul; mat; CART_EQ; LAMBDA_BETA; COND_ID; REAL_MUL_RZERO] THEN REWRITE_TAC[SUM_0]);;
let MATRIX_ADD_RDISTRIB = 
prove (`!A:real^N^M B C:real^P^N. (A + B) ** C = A ** C + B ** C`,
let MATRIX_SUB_LDISTRIB = 
prove (`!A:real^N^M B C:real^P^N. A ** (B - C) = A ** B - A ** C`,
let MATRIX_SUB_RDISTRIB = 
prove (`!A:real^N^M B C:real^P^N. (A - B) ** C = A ** C - B ** C`,
let MATRIX_MUL_LMUL = 
prove (`!A:real^N^M B:real^P^N c. (c %% A) ** B = c %% (A ** B)`,
SIMP_TAC[matrix_mul; matrix_cmul; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC; SUM_LMUL]);;
let MATRIX_MUL_RMUL = 
prove (`!A:real^N^M B:real^P^N c. A ** (c %% B) = c %% (A ** B)`,
SIMP_TAC[matrix_mul; matrix_cmul; CART_EQ; LAMBDA_BETA] THEN ONCE_REWRITE_TAC[REAL_ARITH `A * c * B:real = c * A * B`] THEN REWRITE_TAC[SUM_LMUL]);;
let MATRIX_CMUL_ADD_LDISTRIB = 
prove (`!A:real^N^M B c. c %% (A + B) = c %% A + c %% B`,
SIMP_TAC[matrix_cmul; matrix_add; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[REAL_ADD_LDISTRIB]);;
let MATRIX_CMUL_SUB_LDISTRIB = 
prove (`!A:real^N^M B c. c %% (A - B) = c %% A - c %% B`,
SIMP_TAC[matrix_cmul; matrix_sub; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[REAL_SUB_LDISTRIB]);;
let MATRIX_CMUL_ADD_RDISTRIB = 
prove (`!A:real^N^M b c. (b + c) %% A = b %% A + c %% A`,
SIMP_TAC[matrix_cmul; matrix_add; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[REAL_ADD_RDISTRIB]);;
let MATRIX_CMUL_SUB_RDISTRIB = 
prove (`!A:real^N^M b c. (b - c) %% A = b %% A - c %% A`,
SIMP_TAC[matrix_cmul; matrix_sub; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[REAL_SUB_RDISTRIB]);;
let MATRIX_CMUL_RZERO = 
prove (`!c. c %% mat 0 = mat 0`,
let MATRIX_CMUL_LZERO = 
prove (`!A. &0 %% A = mat 0`,
let MATRIX_NEG_MINUS1 = 
prove (`!A:real^N^M. --A = --(&1) %% A`,
REWRITE_TAC[matrix_cmul; matrix_neg; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[GSYM REAL_NEG_MINUS1]);;
let MATRIX_ADD_AC = 
prove (`(A:real^N^M) + B = B + A /\ (A + B) + C = A + (B + C) /\ A + (B + C) = B + (A + C)`,
let MATRIX_NEG_ADD = 
prove (`!A B:real^N^M. --(A + B) = --A + --B`,
let MATRIX_NEG_SUB = 
prove (`!A B:real^N^M. --(A - B) = B - A`,
let MATRIX_NEG_0 = 
prove (`--(mat 0) = mat 0`,
let MATRIX_SUB_RZERO = 
prove (`!A:real^N^M. A - mat 0 = A`,
let MATRIX_SUB_LZERO = 
prove (`!A:real^N^M. mat 0 - A = --A`,
let MATRIX_NEG_EQ_0 = 
prove (`!A:real^N^M. --A = mat 0 <=> A = mat 0`,
let MATRIX_VECTOR_MUL_ASSOC = 
prove (`!A:real^N^M B:real^P^N x:real^P. A ** B ** x = (A ** B) ** x`,
REPEAT GEN_TAC THEN SIMP_TAC[matrix_mul; matrix_vector_mul; CART_EQ; LAMBDA_BETA; GSYM SUM_LMUL; GSYM SUM_RMUL] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [SUM_SWAP_NUMSEG] THEN REWRITE_TAC[]);;
let MATRIX_VECTOR_MUL_LID = 
prove (`!x:real^N. mat 1 ** x = x`,
REWRITE_TAC[matrix_vector_mul; GEN_REWRITE_RULE (RAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] (SPEC_ALL mat)] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[COND_RATOR; COND_RAND] THEN SIMP_TAC[SUM_DELTA; REAL_MUL_LZERO; IN_NUMSEG; REAL_MUL_LID]);;
let MATRIX_VECTOR_MUL_LZERO = 
prove (`!x:real^N. mat 0 ** x = vec 0`,
let MATRIX_VECTOR_MUL_RZERO = 
prove (`!A:real^M^N. A ** vec 0 = vec 0`,
let MATRIX_VECTOR_MUL_ADD_LDISTRIB = 
prove (`!A:real^M^N x:real^M y. A ** (x + y) = A ** x + A ** y`,
let MATRIX_VECTOR_MUL_SUB_LDISTRIB = 
prove (`!A:real^M^N x:real^M y. A ** (x - y) = A ** x - A ** y`,
let MATRIX_VECTOR_MUL_ADD_RDISTRIB = 
prove (`!A:real^M^N B x. (A + B) ** x = (A ** x) + (B ** x)`,
let MATRIX_VECTOR_MUL_SUB_RDISTRIB = 
prove (`!A:real^M^N B x. (A - B) ** x = (A ** x) - (B ** x)`,
let MATRIX_VECTOR_MUL_RMUL = 
prove (`!A:real^M^N x:real^M c. A ** (c % x) = c % (A ** x)`,
SIMP_TAC[CART_EQ; VECTOR_MUL_COMPONENT; matrix_vector_mul; LAMBDA_BETA] THEN REWRITE_TAC[GSYM SUM_LMUL] THEN REWRITE_TAC[REAL_MUL_AC]);;
let MATRIX_MUL_LNEG = 
prove (`!A:real^N^M B:real^P^N. (--A) ** B = --(A ** B)`,
let MATRIX_MUL_RNEG = 
prove (`!A:real^N^M B:real^P^N. A ** --B = --(A ** B)`,
let MATRIX_NEG_NEG = 
prove (`!A:real^N^N. --(--A) = A`,
let MATRIX_TRANSP_MUL = 
prove (`!A B. transp(A ** B) = transp(B) ** transp(A)`,
SIMP_TAC[matrix_mul; transp; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[REAL_MUL_AC]);;
let SYMMETRIC_MATRIX_MUL = 
prove (`!A B:real^N^N. transp(A) = A /\ transp(B) = B ==> (transp(A ** B) = A ** B <=> A ** B = B ** A)`,
SIMP_TAC[MATRIX_TRANSP_MUL] THEN MESON_TAC[]);;
let MATRIX_EQ = 
prove (`!A:real^N^M B. (A = B) = !x:real^N. A ** x = B ** x`,
REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(MP_TAC o GEN `i:num` o SPEC `(basis i):real^N`) THEN SIMP_TAC[CART_EQ; matrix_vector_mul; LAMBDA_BETA; basis] THEN SIMP_TAC[SUM_DELTA; COND_RAND; REAL_MUL_RZERO] THEN REWRITE_TAC[TAUT `(if p then b else T) <=> p ==> b`] THEN SIMP_TAC[REAL_MUL_RID; IN_NUMSEG]);;
let MATRIX_VECTOR_MUL_COMPONENT = 
prove (`!A:real^N^M x k. 1 <= k /\ k <= dimindex(:M) ==> ((A ** x)$k = (A$k) dot x)`,
SIMP_TAC[matrix_vector_mul; LAMBDA_BETA; dot]);;
let DOT_LMUL_MATRIX = 
prove (`!A:real^N^M x:real^M y:real^N. (x ** A) dot y = x dot (A ** y)`,
SIMP_TAC[dot; matrix_vector_mul; vector_matrix_mul; dot; LAMBDA_BETA] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUM_LMUL] THEN REWRITE_TAC[GSYM SUM_RMUL] THEN GEN_REWRITE_TAC RAND_CONV [SUM_SWAP_NUMSEG] THEN REWRITE_TAC[REAL_MUL_AC]);;
let TRANSP_MATRIX_CMUL = 
prove (`!A:real^M^N c. transp(c %% A) = c %% transp A`,
SIMP_TAC[CART_EQ; transp; MATRIX_CMUL_COMPONENT; LAMBDA_BETA]);;
let TRANSP_MATRIX_ADD = 
prove (`!A B:real^N^M. transp(A + B) = transp A + transp B`,
SIMP_TAC[CART_EQ; transp; LAMBDA_BETA; matrix_add]);;
let TRANSP_MATRIX_SUB = 
prove (`!A B:real^N^M. transp(A - B) = transp A - transp B`,
SIMP_TAC[CART_EQ; transp; LAMBDA_BETA; matrix_sub]);;
let TRANSP_MATRIX_NEG = 
prove (`!A:real^N^M. transp(--A) = --(transp A)`,
SIMP_TAC[CART_EQ; transp; LAMBDA_BETA; matrix_neg]);;
let TRANSP_MAT = 
prove (`!n. transp(mat n) = mat n`,
SIMP_TAC[transp; mat; LAMBDA_BETA; CART_EQ; EQ_SYM_EQ]);;
let TRANSP_TRANSP = 
prove (`!A:real^N^M. transp(transp A) = A`,
SIMP_TAC[CART_EQ; transp; LAMBDA_BETA]);;
let SYMMETRIX_MATRIX_CONJUGATE = 
prove (`!A B:real^N^N. transp B = B ==> transp(transp A ** B ** A) = transp A ** B ** A`,
let TRANSP_EQ = 
prove (`!A B:real^M^N. transp A = transp B <=> A = B`,
MESON_TAC[TRANSP_TRANSP]);;
let ROW_TRANSP = 
prove (`!A:real^N^M i. 1 <= i /\ i <= dimindex(:N) ==> row i (transp A) = column i A`,
SIMP_TAC[row; column; transp; CART_EQ; LAMBDA_BETA]);;
let COLUMN_TRANSP = 
prove (`!A:real^N^M i. 1 <= i /\ i <= dimindex(:M) ==> column i (transp A) = row i A`,
SIMP_TAC[row; column; transp; CART_EQ; LAMBDA_BETA]);;
let ROWS_TRANSP = 
prove (`!A:real^N^M. rows(transp A) = columns A`,
REWRITE_TAC[rows; columns; EXTENSION; IN_ELIM_THM] THEN MESON_TAC[ROW_TRANSP]);;
let COLUMNS_TRANSP = 
prove (`!A:real^N^M. columns(transp A) = rows A`,
MESON_TAC[TRANSP_TRANSP; ROWS_TRANSP]);;
let VECTOR_MATRIX_MUL_TRANSP = 
prove (`!A:real^M^N x:real^N. x ** A = transp A ** x`,
REWRITE_TAC[matrix_vector_mul; vector_matrix_mul; transp] THEN SIMP_TAC[LAMBDA_BETA; CART_EQ]);;
let MATRIX_VECTOR_MUL_TRANSP = 
prove (`!A:real^M^N x:real^M. A ** x = x ** transp A`,
let FINITE_ROWS = 
prove (`!A:real^N^M. FINITE(rows A)`,
REWRITE_TAC[rows] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN SIMP_TAC[GSYM numseg; FINITE_IMAGE; FINITE_NUMSEG]);;
let FINITE_COLUMNS = 
prove (`!A:real^N^M. FINITE(columns A)`,
REWRITE_TAC[columns] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN SIMP_TAC[GSYM numseg; FINITE_IMAGE; FINITE_NUMSEG]);;
let MATRIX_EQUAL_ROWS = 
prove (`!A B:real^N^M. A = B <=> !i. 1 <= i /\ i <= dimindex(:M) ==> row i A = row i B`,
SIMP_TAC[row; CART_EQ; LAMBDA_BETA]);;
let MATRIX_EQUAL_COLUMNS = 
prove (`!A B:real^N^M. A = B <=> !i. 1 <= i /\ i <= dimindex(:N) ==> column i A = column i B`,
SIMP_TAC[column; CART_EQ; LAMBDA_BETA] THEN MESON_TAC[]);;
let MATRIX_CMUL_EQ_0 = 
prove (`!A:real^M^N c. c %% A = mat 0 <=> c = &0 \/ A = mat 0`,
SIMP_TAC[CART_EQ; MATRIX_CMUL_COMPONENT; MAT_COMPONENT; COND_ID] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THEN ASM_REWRITE_TAC[REAL_ENTIRE]);;
let MAT_EQ = 
prove (`!m n. mat m = mat n <=> m = n`,
SIMP_TAC[CART_EQ; MAT_COMPONENT] THEN REPEAT STRIP_TAC THEN MESON_TAC[REAL_OF_NUM_EQ; DIMINDEX_GE_1; LE_REFL]);;
(* ------------------------------------------------------------------------- *) (* Two sometimes fruitful ways of looking at matrix-vector multiplication. *) (* ------------------------------------------------------------------------- *)
let MATRIX_MUL_DOT = 
prove (`!A:real^N^M x. A ** x = lambda i. A$i dot x`,
REWRITE_TAC[matrix_vector_mul; dot] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA]);;
let MATRIX_MUL_VSUM = 
prove (`!A:real^N^M x. A ** x = vsum(1..dimindex(:N)) (\i. x$i % column i A)`,
(* ------------------------------------------------------------------------- *) (* Slightly gruesome lemmas: better to define sums over vectors really... *) (* ------------------------------------------------------------------------- *)
let VECTOR_COMPONENTWISE = 
prove (`!x:real^N. x = lambda j. sum(1..dimindex(:N)) (\i. x$i * (basis i :real^N)$j)`,
SIMP_TAC[CART_EQ; LAMBDA_BETA; basis] THEN ONCE_REWRITE_TAC[ARITH_RULE `(m:num = n) <=> (n = m)`] THEN SIMP_TAC[COND_RAND; REAL_MUL_RZERO; SUM_DELTA; IN_NUMSEG] THEN REWRITE_TAC[REAL_MUL_RID; COND_ID]);;
let LINEAR_COMPONENTWISE_EXPANSION = 
prove (`!f:real^M->real^N. linear(f) ==> !x j. 1 <= j /\ j <= dimindex(:N) ==> (f x $j = sum(1..dimindex(:M)) (\i. x$i * f(basis i)$j))`,
REWRITE_TAC[linear] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [VECTOR_COMPONENTWISE] THEN SPEC_TAC(`dimindex(:M)`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH] THENL [REWRITE_TAC[GSYM vec] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [GSYM VECTOR_MUL_LZERO] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[VECTOR_MUL_LZERO] THEN ASM_SIMP_TAC[vec; LAMBDA_BETA]; REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN ASSUM_LIST(fun thl -> REWRITE_TAC(map GSYM thl)) THEN SIMP_TAC[GSYM VECTOR_MUL_COMPONENT; ASSUME `1 <= j`; ASSUME `j <= dimindex(:N)`] THEN ASSUM_LIST(fun thl -> REWRITE_TAC(map GSYM thl)) THEN SIMP_TAC[GSYM VECTOR_ADD_COMPONENT; ASSUME `1 <= j`; ASSUME `j <= dimindex(:N)`] THEN ASSUM_LIST(fun thl -> REWRITE_TAC(map GSYM thl)) THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[CART_EQ; VECTOR_ADD_COMPONENT; LAMBDA_BETA] THEN SIMP_TAC[VECTOR_MUL_COMPONENT]]);;
(* ------------------------------------------------------------------------- *) (* Inverse matrices (not necessarily square, but it's vacuous otherwise). *) (* ------------------------------------------------------------------------- *)
let invertible = new_definition
  `invertible(A:real^N^M) <=>
        ?A':real^M^N. (A ** A' = mat 1) /\ (A' ** A = mat 1)`;;
let matrix_inv = new_definition
  `matrix_inv(A:real^N^M) =
        @A':real^M^N. (A ** A' = mat 1) /\ (A' ** A = mat 1)`;;
let MATRIX_INV = 
prove (`!A:real^N^M. invertible A ==> A ** matrix_inv A = mat 1 /\ matrix_inv A ** A = mat 1`,
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[matrix_inv; invertible] THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[GSYM invertible]);;
let MATRIX_INV_UNIQUE = 
prove (`!A:real^N^M B. A ** B = mat 1 /\ B ** A = mat 1 ==> matrix_inv A = B`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `A:real^N^M` MATRIX_INV) THEN ANTS_TAC THENL [ASM_MESON_TAC[invertible]; ALL_TAC] THEN DISCH_THEN(MP_TAC o AP_TERM `(( ** ):real^M^N->real^M^M->real^M^N) B` o CONJUNCT1) THEN ASM_REWRITE_TAC[MATRIX_MUL_ASSOC; MATRIX_MUL_LID; MATRIX_MUL_RID]);;
let INVERTIBLE_NEG = 
prove (`!A:real^N^M. invertible(--A) <=> invertible A`,
REWRITE_TAC[invertible] THEN MESON_TAC[MATRIX_MUL_LNEG; MATRIX_MUL_RNEG; MATRIX_NEG_NEG]);;
let MATRIX_INV_I = 
prove (`matrix_inv(mat 1:real^N^N) = mat 1`,
MATCH_MP_TAC MATRIX_INV_UNIQUE THEN REWRITE_TAC[MATRIX_MUL_LID]);;
(* ------------------------------------------------------------------------- *) (* Correspondence between matrices and linear operators. *) (* ------------------------------------------------------------------------- *)
let matrix = new_definition
  `(matrix:(real^M->real^N)->real^M^N) f = lambda i j. f(basis j)$i`;;
let MATRIX_VECTOR_MUL_LINEAR = 
prove (`!A:real^N^M. linear(\x. A ** x)`,
REWRITE_TAC[linear; matrix_vector_mul] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN REWRITE_TAC[GSYM SUM_ADD_NUMSEG; GSYM SUM_LMUL; REAL_ADD_LDISTRIB] THEN REWRITE_TAC[REAL_ADD_AC; REAL_MUL_AC]);;
let MATRIX_WORKS = 
prove (`!f:real^M->real^N. linear f ==> !x. matrix f ** x = f(x)`,
REWRITE_TAC[matrix; matrix_vector_mul] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM LINEAR_COMPONENTWISE_EXPANSION]);;
let MATRIX_VECTOR_MUL = 
prove (`!f:real^M->real^N. linear f ==> f = \x. matrix f ** x`,
SIMP_TAC[FUN_EQ_THM; MATRIX_WORKS]);;
let MATRIX_OF_MATRIX_VECTOR_MUL = 
prove (`!A:real^N^M. matrix(\x. A ** x) = A`,
let MATRIX_COMPOSE = 
prove (`!f g. linear f /\ linear g ==> (matrix(g o f) = matrix g ** matrix f)`,
let MATRIX_VECTOR_COLUMN = 
prove (`!A:real^N^M x. A ** x = vsum(1..dimindex(:N)) (\i. x$i % (transp A)$i)`,
REWRITE_TAC[matrix_vector_mul; transp] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA; VSUM_COMPONENT; VECTOR_MUL_COMPONENT] THEN REWRITE_TAC[REAL_MUL_AC]);;
let MATRIX_MUL_COMPONENT = 
prove (`!i. 1 <= i /\ i <= dimindex(:N) ==> ((A:real^N^N) ** (B:real^N^N))$i = transp B ** A$i`,
SIMP_TAC[matrix_mul; LAMBDA_BETA; matrix_vector_mul; vector_matrix_mul; transp; CART_EQ] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN REWRITE_TAC[REAL_MUL_AC]);;
let ADJOINT_MATRIX = 
prove (`!A:real^N^M. adjoint(\x. A ** x) = (\x. transp A ** x)`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC ADJOINT_UNIQUE THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN REPEAT GEN_TAC THEN SIMP_TAC[transp; dot; LAMBDA_BETA; matrix_vector_mul; GSYM SUM_LMUL; GSYM SUM_RMUL] THEN GEN_REWRITE_TAC LAND_CONV [SUM_SWAP_NUMSEG] THEN REWRITE_TAC[REAL_MUL_AC]);;
let MATRIX_ADJOINT = 
prove (`!f. linear f ==> matrix(adjoint f) = transp(matrix f)`,
GEN_TAC THEN DISCH_THEN (fun th -> GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV) [MATCH_MP MATRIX_VECTOR_MUL th]) THEN REWRITE_TAC[ADJOINT_MATRIX; MATRIX_OF_MATRIX_VECTOR_MUL]);;
let MATRIX_ID = 
prove (`matrix(\x. x) = mat 1`,
let MATRIX_I = 
prove (`matrix I = mat 1`,
REWRITE_TAC[I_DEF; MATRIX_ID]);;
let LINEAR_EQ_MATRIX = 
prove (`!f g. linear f /\ linear g /\ matrix f = matrix g ==> f = g`,
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP MATRIX_VECTOR_MUL)) THEN ASM_REWRITE_TAC[]);;
let MATRIX_SELF_ADJOINT = 
prove (`!f. linear f ==> (adjoint f = f <=> transp(matrix f) = matrix f)`,
SIMP_TAC[GSYM MATRIX_ADJOINT] THEN MESON_TAC[LINEAR_EQ_MATRIX; ADJOINT_LINEAR]);;
let LINEAR_MATRIX_EXISTS = 
prove (`!f:real^M->real^N. linear f <=> ?A:real^M^N. f = \x. A ** x`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[MATRIX_VECTOR_MUL_LINEAR; LEFT_IMP_EXISTS_THM] THEN DISCH_TAC THEN EXISTS_TAC `matrix(f:real^M->real^N)` THEN ASM_SIMP_TAC[GSYM MATRIX_VECTOR_MUL]);;
let LINEAR_1 = 
prove (`!f:real^1->real^1. linear f <=> ?c. f = \x. c % x`,
let SYMMETRIC_MATRIX = 
prove (`!A:real^N^N. transp A = A <=> adjoint(\x. A ** x) = \x. A ** x`,
let SYMMETRIC_MATRIX_ORTHOGONAL_EIGENVECTORS = 
prove (`!A:real^N^N v w a b. transp A = A /\ A ** v = a % v /\ A ** w = b % w /\ ~(a = b) ==> orthogonal v w`,
REPEAT GEN_TAC THEN REWRITE_TAC[SYMMETRIC_MATRIX] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] SELF_ADJOINT_ORTHOGONAL_EIGENVECTORS)) THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR]);;
(* ------------------------------------------------------------------------- *) (* Operator norm. *) (* ------------------------------------------------------------------------- *)
let onorm = new_definition
 `onorm (f:real^M->real^N) = sup { norm(f x) | norm(x) = &1 }`;;
let NORM_BOUND_GENERALIZE = 
prove (`!f:real^M->real^N b. linear f ==> ((!x. (norm(x) = &1) ==> norm(f x) <= b) <=> (!x. norm(f x) <= b * norm(x)))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_MUL_RID]] THEN X_GEN_TAC `x:real^M` THEN ASM_CASES_TAC `x:real^M = vec 0` THENL [ASM_REWRITE_TAC[NORM_0; REAL_MUL_RZERO] THEN ASM_MESON_TAC[LINEAR_0; NORM_0; REAL_LE_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; NORM_POS_LT; real_div] THEN MATCH_MP_TAC(REAL_ARITH `abs(a * b) <= c ==> b * a <= c`) THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NORM; GSYM NORM_MUL] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP LINEAR_CMUL th)]) THEN ASM_SIMP_TAC[NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM; REAL_MUL_LINV; NORM_EQ_0]);;
let ONORM = 
prove (`!f:real^M->real^N. linear f ==> (!x. norm(f x) <= onorm f * norm(x)) /\ (!b. (!x. norm(f x) <= b * norm(x)) ==> onorm f <= b)`,
GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPEC `{ norm((f:real^M->real^N) x) | norm(x) = &1 }` SUP) THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[LEFT_FORALL_IMP_THM; RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN ASM_SIMP_TAC[NORM_BOUND_GENERALIZE; GSYM onorm; GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[VECTOR_CHOOSE_SIZE; LINEAR_BOUNDED; REAL_POS]);;
let ONORM_POS_LE = 
prove (`!f. linear f ==> &0 <= onorm f`,
let ONORM_EQ_0 = 
prove (`!f:real^M->real^N. linear f ==> ((onorm f = &0) <=> (!x. f x = vec 0))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN MP_TAC(SPEC `f:real^M->real^N` ONORM) THEN ASM_SIMP_TAC[GSYM REAL_LE_ANTISYM; ONORM_POS_LE; NORM_0; REAL_MUL_LZERO; NORM_LE_0; REAL_LE_REFL]);;
let ONORM_CONST = 
prove (`!y:real^N. onorm(\x:real^M. y) = norm(y)`,
GEN_TAC THEN REWRITE_TAC[onorm] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sup {norm(y:real^N)}` THEN CONJ_TAC THENL [AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `(?x. P x) ==> {f y | x | P x} = {f y}`) THEN EXISTS_TAC `basis 1 :real^M` THEN SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL]; MATCH_MP_TAC REAL_SUP_UNIQUE THEN SET_TAC[REAL_LE_REFL]]);;
let ONORM_POS_LT = 
prove (`!f. linear f ==> (&0 < onorm f <=> ~(!x. f x = vec 0))`,
SIMP_TAC[GSYM ONORM_EQ_0; ONORM_POS_LE; REAL_ARITH `(&0 < x <=> ~(x = &0)) <=> &0 <= x`]);;
let ONORM_COMPOSE = 
prove (`!f g. linear f /\ linear g ==> onorm(f o g) <= onorm f * onorm g`,
let ONORM_NEG_LEMMA = 
prove (`!f. linear f ==> onorm(\x. --(f x)) <= onorm f`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP ONORM o MATCH_MP LINEAR_COMPOSE_NEG) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[NORM_NEG; ONORM]);;
let ONORM_NEG = 
prove (`!f:real^M->real^N. linear f ==> (onorm(\x. --(f x)) = onorm f)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN ASM_SIMP_TAC[ONORM_NEG_LEMMA] THEN SUBGOAL_THEN `f:real^M->real^N = \x. --(--(f x))` (fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [th]) THEN ASM_SIMP_TAC[ONORM_NEG_LEMMA; LINEAR_COMPOSE_NEG] THEN REWRITE_TAC[VECTOR_NEG_NEG; ETA_AX]);;
let ONORM_TRIANGLE = 
prove (`!f:real^M->real^N g. linear f /\ linear g ==> onorm(\x. f x + g x) <= onorm f + onorm g`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o CONJUNCT2 o MATCH_MP ONORM o MATCH_MP LINEAR_COMPOSE_ADD) THEN REWRITE_TAC[REAL_ADD_RDISTRIB] THEN ASM_MESON_TAC[REAL_LE_ADD2; REAL_LE_TRANS; NORM_TRIANGLE; ONORM]);;
let ONORM_TRIANGLE_LE = 
prove (`!f g. linear f /\ linear g /\ onorm(f) + onorm(g) <= e ==> onorm(\x. f x + g x) <= e`,
let ONORM_TRIANGLE_LT = 
prove (`!f g. linear f /\ linear g /\ onorm(f) + onorm(g) < e ==> onorm(\x. f x + g x) < e`,
let ONORM_ID = 
prove (`onorm(\x:real^N. x) = &1`,
REWRITE_TAC[onorm] THEN SUBGOAL_THEN `{norm(x:real^N) | norm x = &1} = {&1}` (fun th -> REWRITE_TAC[th; SUP_SING]) THEN SUBGOAL_THEN `norm(basis 1:real^N) = &1` MP_TAC THENL [SIMP_TAC[NORM_BASIS; DIMINDEX_GE_1; LE_REFL]; SET_TAC[]]);;
let ONORM_I = 
prove (`onorm(I:real^N->real^N) = &1`,
REWRITE_TAC[I_DEF; ONORM_ID]);;
(* ------------------------------------------------------------------------- *) (* It's handy to "lift" from R to R^1 and "drop" from R^1 to R. *) (* ------------------------------------------------------------------------- *)
let lift = new_definition
 `(lift:real->real^1) x = lambda i. x`;;
let drop = new_definition
 `(drop:real^1->real) x = x$1`;;
let LIFT_COMPONENT = 
prove (`!x. (lift x)$1 = x`,
SIMP_TAC[lift; LAMBDA_BETA; DIMINDEX_1; LE_ANTISYM]);;
let LIFT_DROP = 
prove (`(!x. lift(drop x) = x) /\ (!x. drop(lift x) = x)`,
SIMP_TAC[lift; drop; CART_EQ; LAMBDA_BETA; DIMINDEX_1; LE_ANTISYM]);;
let IMAGE_LIFT_DROP = 
prove (`(!s. IMAGE (lift o drop) s = s) /\ (!s. IMAGE (drop o lift) s = s)`,
REWRITE_TAC[o_DEF; LIFT_DROP] THEN SET_TAC[]);;
let IN_IMAGE_LIFT_DROP = 
prove (`(!x s. x IN IMAGE lift s <=> drop x IN s) /\ (!x s. x IN IMAGE drop s <=> lift x IN s)`,
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);;
let FORALL_LIFT = 
prove (`(!x. P x) = (!x. P(lift x))`,
MESON_TAC[LIFT_DROP]);;
let EXISTS_LIFT = 
prove (`(?x. P x) = (?x. P(lift x))`,
MESON_TAC[LIFT_DROP]);;
let FORALL_DROP = 
prove (`(!x. P x) = (!x. P(drop x))`,
MESON_TAC[LIFT_DROP]);;
let EXISTS_DROP = 
prove (`(?x. P x) = (?x. P(drop x))`,
MESON_TAC[LIFT_DROP]);;
let FORALL_LIFT_FUN = 
prove (`!P:(A->real^1)->bool. (!f. P f) <=> (!f. P(lift o f))`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `f:A->real^1` THEN FIRST_X_ASSUM(MP_TAC o SPEC `drop o (f:A->real^1)`) THEN REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]);;
let FORALL_DROP_FUN = 
prove (`!P:(A->real)->bool. (!f. P f) <=> (!f. P(drop o f))`,
REWRITE_TAC[FORALL_LIFT_FUN; o_DEF; LIFT_DROP; ETA_AX]);;
let EXISTS_LIFT_FUN = 
prove (`!P:(A->real^1)->bool. (?f. P f) <=> (?f. P(lift o f))`,
ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_LIFT_FUN]);;
let EXISTS_DROP_FUN = 
prove (`!P:(A->real)->bool. (?f. P f) <=> (?f. P(drop o f))`,
ONCE_REWRITE_TAC[MESON[] `(?x. P x) <=> ~(!x. ~P x)`] THEN REWRITE_TAC[FORALL_DROP_FUN]);;
let LIFT_EQ = 
prove (`!x y. (lift x = lift y) <=> (x = y)`,
MESON_TAC[LIFT_DROP]);;
let DROP_EQ = 
prove (`!x y. (drop x = drop y) <=> (x = y)`,
MESON_TAC[LIFT_DROP]);;
let LIFT_IN_IMAGE_LIFT = 
prove (`!x s. (lift x) IN (IMAGE lift s) <=> x IN s`,
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);;
let FORALL_LIFT_IMAGE = 
prove (`!P. (!s. P s) <=> (!s. P(IMAGE lift s))`,
MESON_TAC[IMAGE_LIFT_DROP; IMAGE_o]);;
let EXISTS_LIFT_IMAGE = 
prove (`!P. (?s. P s) <=> (?s. P(IMAGE lift s))`,
MESON_TAC[IMAGE_LIFT_DROP; IMAGE_o]);;
let SUBSET_LIFT_IMAGE = 
prove (`!s t. IMAGE lift s SUBSET IMAGE lift t <=> s SUBSET t`,
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[IMAGE_SUBSET] THEN DISCH_THEN(MP_TAC o ISPEC `drop` o MATCH_MP IMAGE_SUBSET) THEN REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP]);;
let FORALL_DROP_IMAGE = 
prove (`!P. (!s. P s) <=> (!s. P(IMAGE drop s))`,
MESON_TAC[IMAGE_LIFT_DROP; IMAGE_o]);;
let EXISTS_DROP_IMAGE = 
prove (`!P. (?s. P s) <=> (?s. P(IMAGE drop s))`,
MESON_TAC[IMAGE_LIFT_DROP; IMAGE_o]);;
let SUBSET_DROP_IMAGE = 
prove (`!s t. IMAGE drop s SUBSET IMAGE drop t <=> s SUBSET t`,
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[IMAGE_SUBSET] THEN DISCH_THEN(MP_TAC o ISPEC `lift` o MATCH_MP IMAGE_SUBSET) THEN REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP]);;
let DROP_IN_IMAGE_DROP = 
prove (`!x s. (drop x) IN (IMAGE drop s) <=> x IN s`,
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);;
let LIFT_NUM = 
prove (`!n. lift(&n) = vec n`,
SIMP_TAC[CART_EQ; lift; vec; LAMBDA_BETA]);;
let LIFT_ADD = 
prove (`!x y. lift(x + y) = lift x + lift y`,
let LIFT_SUB = 
prove (`!x y. lift(x - y) = lift x - lift y`,
let LIFT_CMUL = 
prove (`!x c. lift(c * x) = c % lift(x)`,
let LIFT_NEG = 
prove (`!x. lift(--x) = --(lift x)`,
let LIFT_EQ_CMUL = 
prove (`!x. lift x = x % vec 1`,
REWRITE_TAC[GSYM LIFT_NUM; GSYM LIFT_CMUL; REAL_MUL_RID]);;
let SUM_VSUM = 
prove (`!f s. sum s f = drop(vsum s(lift o f))`,
SIMP_TAC[vsum; drop; LAMBDA_BETA; DIMINDEX_1; ARITH] THEN REWRITE_TAC[o_THM; GSYM drop; LIFT_DROP; ETA_AX]);;
let VSUM_REAL = 
prove (`!f s. vsum s f = lift(sum s (drop o f))`,
REWRITE_TAC[o_DEF; SUM_VSUM; LIFT_DROP; ETA_AX]);;
let LIFT_SUM = 
prove (`!k x. lift(sum k x) = vsum k (lift o x)`,
REWRITE_TAC[SUM_VSUM; LIFT_DROP]);;
let DROP_VSUM = 
prove (`!k x. drop(vsum k x) = sum k (drop o x)`,
REWRITE_TAC[VSUM_REAL; LIFT_DROP]);;
let DROP_LAMBDA = 
prove (`!x. drop(lambda i. x i) = x 1`,
SIMP_TAC[drop; LAMBDA_BETA; DIMINDEX_1; LE_REFL]);;
let DROP_VEC = 
prove (`!n. drop(vec n) = &n`,
MESON_TAC[LIFT_DROP; LIFT_NUM]);;
let DROP_ADD = 
prove (`!x y. drop(x + y) = drop x + drop y`,
MESON_TAC[LIFT_DROP; LIFT_ADD]);;
let DROP_SUB = 
prove (`!x y. drop(x - y) = drop x - drop y`,
MESON_TAC[LIFT_DROP; LIFT_SUB]);;
let DROP_CMUL = 
prove (`!x c. drop(c % x) = c * drop(x)`,
MESON_TAC[LIFT_DROP; LIFT_CMUL]);;
let DROP_NEG = 
prove (`!x. drop(--x) = --(drop x)`,
MESON_TAC[LIFT_DROP; LIFT_NEG]);;
let NORM_1 = 
prove (`!x. norm x = abs(drop x)`,
REWRITE_TAC[drop; NORM_REAL]);;
let NORM_1_POS = 
prove (`!x. &0 <= drop x ==> norm x = drop x`,
SIMP_TAC[NORM_1; real_abs]);;
let NORM_LIFT = 
prove (`!x. norm(lift x) = abs(x)`,
SIMP_TAC[lift; NORM_REAL; LIFT_COMPONENT]);;
let DIST_LIFT = 
prove (`!x y. dist(lift x,lift y) = abs(x - y)`,
REWRITE_TAC[DIST_REAL; LIFT_COMPONENT]);;
let ABS_DROP = 
prove (`!x. norm x = abs(drop x)`,
REWRITE_TAC[FORALL_LIFT; LIFT_DROP; NORM_LIFT]);;
let LINEAR_VMUL_DROP = 
prove (`!f v. linear f ==> linear (\x. drop(f x) % v)`,
SIMP_TAC[drop; LINEAR_VMUL_COMPONENT; DIMINDEX_1; LE_REFL]);;
let LINEAR_FROM_REALS = 
prove (`!f:real^1->real^N. linear f ==> f = \x. drop x % column 1 (matrix f)`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(fun th -> REWRITE_TAC[GSYM(MATCH_MP MATRIX_WORKS th)]) THEN SIMP_TAC[CART_EQ; matrix_vector_mul; vector_mul; LAMBDA_BETA; DIMINDEX_1; SUM_SING_NUMSEG; drop; column] THEN REWRITE_TAC[REAL_MUL_AC]);;
let LINEAR_TO_REALS = 
prove (`!f:real^N->real^1. linear f ==> f = \x. lift(row 1 (matrix f) dot x)`,
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN DISCH_THEN(fun th -> REWRITE_TAC[GSYM(MATCH_MP MATRIX_WORKS th)]) THEN SIMP_TAC[CART_EQ; matrix_vector_mul; dot; LAMBDA_BETA; DIMINDEX_1; SUM_SING_NUMSEG; lift; row; LE_ANTISYM]);;
let DROP_EQ_0 = 
prove (`!x. drop x = &0 <=> x = vec 0`,
REWRITE_TAC[GSYM DROP_EQ; DROP_VEC]);;
let DROP_WLOG_LE = 
prove (`(!x y. P x y <=> P y x) /\ (!x y. drop x <= drop y ==> P x y) ==> (!x y. P x y)`,
MESON_TAC[REAL_LE_TOTAL]);;
let IMAGE_LIFT_UNIV = 
prove (`IMAGE lift (:real) = (:real^1)`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV] THEN MESON_TAC[LIFT_DROP]);;
let IMAGE_DROP_UNIV = 
prove (`IMAGE drop (:real^1) = (:real)`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV] THEN MESON_TAC[LIFT_DROP]);;
let LINEAR_LIFT_DOT = 
prove (`!a. linear(\x. lift(a dot x))`,
REWRITE_TAC[linear; DOT_RMUL; DOT_RADD; LIFT_ADD; LIFT_CMUL]);;
let LINEAR_LIFT_COMPONENT = 
prove (`!k. linear(\x:real^N. lift(x$k))`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?j. 1 <= j /\ j <= dimindex(:N) /\ !z:real^N. z$k = z$j` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; MP_TAC(ISPEC `basis j:real^N` LINEAR_LIFT_DOT) THEN ASM_SIMP_TAC[DOT_BASIS]]);;
let BILINEAR_DROP_MUL = 
prove (`bilinear (\x y:real^N. drop x % y)`,
REWRITE_TAC[bilinear; linear] THEN REWRITE_TAC[DROP_ADD; DROP_CMUL] THEN VECTOR_ARITH_TAC);;
let LINEAR_COMPONENTWISE = 
prove (`!f:real^M->real^N. linear f <=> !i. 1 <= i /\ i <= dimindex(:N) ==> linear(\x. lift(f(x)$i))`,
REPEAT GEN_TAC THEN REWRITE_TAC[linear] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CART_EQ] THEN SIMP_TAC[GSYM LIFT_CMUL; GSYM LIFT_ADD; LIFT_EQ] THEN REWRITE_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Pasting vectors. *) (* ------------------------------------------------------------------------- *)
let LINEAR_FSTCART = 
prove (`linear fstcart`,
SIMP_TAC[linear; fstcart; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; DIMINDEX_FINITE_SUM; ARITH_RULE `x <= a ==> x <= a + b:num`]);;
let LINEAR_SNDCART = 
prove (`linear sndcart`,
SIMP_TAC[linear; sndcart; CART_EQ; LAMBDA_BETA; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; DIMINDEX_FINITE_SUM; ARITH_RULE `x <= a ==> x <= a + b:num`; ARITH_RULE `x <= b ==> x + a <= a + b:num`]);;
let FSTCART_VEC = 
prove (`!n. fstcart(vec n) = vec n`,
SIMP_TAC[vec; fstcart; LAMBDA_BETA; CART_EQ; DIMINDEX_FINITE_SUM; ARITH_RULE `m <= n:num ==> m <= n + p`]);;
let FSTCART_ADD = 
prove (`!x:real^(M,N)finite_sum y. fstcart(x + y) = fstcart(x) + fstcart(y)`,
REWRITE_TAC[REWRITE_RULE[linear] LINEAR_FSTCART]);;
let FSTCART_CMUL = 
prove (`!x:real^(M,N)finite_sum c. fstcart(c % x) = c % fstcart(x)`,
REWRITE_TAC[REWRITE_RULE[linear] LINEAR_FSTCART]);;
let FSTCART_NEG = 
prove (`!x:real^(M,N)finite_sum. --(fstcart x) = fstcart(--x)`,
ONCE_REWRITE_TAC[VECTOR_ARITH `--x = --(&1) % x`] THEN REWRITE_TAC[FSTCART_CMUL]);;
let FSTCART_SUB = 
prove (`!x:real^(M,N)finite_sum y. fstcart(x - y) = fstcart(x) - fstcart(y)`,
let FSTCART_VSUM = 
prove (`!k x. FINITE k ==> (fstcart(vsum k x) = vsum k (\i. fstcart(x i)))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES; FINITE_RULES; FSTCART_ADD; FSTCART_VEC]);;
let SNDCART_VEC = 
prove (`!n. sndcart(vec n) = vec n`,
SIMP_TAC[vec; sndcart; LAMBDA_BETA; CART_EQ; DIMINDEX_FINITE_SUM; ARITH_RULE `x <= a ==> x <= a + b:num`; ARITH_RULE `x <= b ==> x + a <= a + b:num`]);;
let SNDCART_ADD = 
prove (`!x:real^(M,N)finite_sum y. sndcart(x + y) = sndcart(x) + sndcart(y)`,
REWRITE_TAC[REWRITE_RULE[linear] LINEAR_SNDCART]);;
let SNDCART_CMUL = 
prove (`!x:real^(M,N)finite_sum c. sndcart(c % x) = c % sndcart(x)`,
REWRITE_TAC[REWRITE_RULE[linear] LINEAR_SNDCART]);;
let SNDCART_NEG = 
prove (`!x:real^(M,N)finite_sum. --(sndcart x) = sndcart(--x)`,
ONCE_REWRITE_TAC[VECTOR_ARITH `--x = --(&1) % x`] THEN REWRITE_TAC[SNDCART_CMUL]);;
let SNDCART_SUB = 
prove (`!x:real^(M,N)finite_sum y. sndcart(x - y) = sndcart(x) - sndcart(y)`,
let SNDCART_VSUM = 
prove (`!k x. FINITE k ==> (sndcart(vsum k x) = vsum k (\i. sndcart(x i)))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES; FINITE_RULES; SNDCART_ADD; SNDCART_VEC]);;
let PASTECART_VEC = 
prove (`!n. pastecart (vec n) (vec n) = vec n`,
let PASTECART_ADD = 
prove (`!x1 y1 x2:real^M y2:real^N. pastecart x1 y1 + pastecart x2 y2 = pastecart (x1 + x2) (y1 + y2)`,
let PASTECART_CMUL = 
prove (`!x1 y1 c. pastecart (c % x1) (c % y1) = c % pastecart x1 y1`,
let PASTECART_NEG = 
prove (`!x:real^M y:real^N. pastecart (--x) (--y) = --(pastecart x y)`,
ONCE_REWRITE_TAC[VECTOR_ARITH `--x = --(&1) % x`] THEN REWRITE_TAC[PASTECART_CMUL]);;
let PASTECART_SUB = 
prove (`!x1 y1 x2:real^M y2:real^N. pastecart x1 y1 - pastecart x2 y2 = pastecart (x1 - x2) (y1 - y2)`,
REWRITE_TAC[VECTOR_SUB; GSYM PASTECART_NEG; PASTECART_ADD]);;
let PASTECART_VSUM = 
prove (`!k x y. FINITE k ==> (pastecart (vsum k x) (vsum k y) = vsum k (\i. pastecart (x i) (y i)))`,
let PASTECART_EQ_VEC = 
prove (`!x y n. pastecart x y = vec n <=> x = vec n /\ y = vec n`,
let NORM_FSTCART = 
prove (`!x. norm(fstcart x) <= norm x`,
GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM PASTECART_FST_SND] THEN SIMP_TAC[SQRT_MONO_LE_EQ; DOT_POS_LE; vector_norm] THEN SIMP_TAC[pastecart; dot; DIMINDEX_FINITE_SUM; LAMBDA_BETA; DIMINDEX_NONZERO; SUM_ADD_SPLIT; REAL_LE_ADDR; SUM_POS_LE; FINITE_NUMSEG; REAL_LE_SQUARE; ARITH_RULE `x <= a ==> x <= a + b:num`; ARITH_RULE `~(d = 0) ==> 1 <= d + 1`]);;
let DIST_FSTCART = 
prove (`!x y. dist(fstcart x,fstcart y) <= dist(x,y)`,
REWRITE_TAC[dist; GSYM FSTCART_SUB; NORM_FSTCART]);;
let NORM_SNDCART = 
prove (`!x. norm(sndcart x) <= norm x`,
GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM PASTECART_FST_SND] THEN SIMP_TAC[SQRT_MONO_LE_EQ; DOT_POS_LE; vector_norm] THEN SIMP_TAC[pastecart; dot; DIMINDEX_FINITE_SUM; LAMBDA_BETA; DIMINDEX_NONZERO; SUM_ADD_SPLIT; ARITH_RULE `x <= a ==> x <= a + b:num`; ARITH_RULE `~(d = 0) ==> 1 <= d + 1`] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE] THEN SIMP_TAC[SUM_IMAGE; FINITE_NUMSEG; EQ_ADD_RCANCEL; o_DEF; ADD_SUB] THEN SIMP_TAC[ARITH_RULE `1 <= x ==> ~(x + a <= a)`; SUM_POS_LE; FINITE_NUMSEG; REAL_LE_ADDL; REAL_LE_SQUARE]);;
let DIST_SNDCART = 
prove (`!x y. dist(sndcart x,sndcart y) <= dist(x,y)`,
REWRITE_TAC[dist; GSYM SNDCART_SUB; NORM_SNDCART]);;
let DOT_PASTECART = 
prove (`!x1 x2 y1 y2. (pastecart x1 x2) dot (pastecart y1 y2) = x1 dot y1 + x2 dot y2`,
SIMP_TAC[pastecart; dot; LAMBDA_BETA; DIMINDEX_FINITE_SUM] THEN SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `~(d = 0) ==> 1 <= d + 1`; DIMINDEX_NONZERO; REAL_LE_LADD] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[NUMSEG_OFFSET_IMAGE] THEN SIMP_TAC[SUM_IMAGE; FINITE_NUMSEG; EQ_ADD_RCANCEL; o_DEF; ADD_SUB] THEN SIMP_TAC[ARITH_RULE `1 <= x ==> ~(x + a <= a)`; REAL_LE_REFL]);;
let SQNORM_PASTECART = 
prove (`!x y. norm(pastecart x y) pow 2 = norm(x) pow 2 + norm(y) pow 2`,
REWRITE_TAC[NORM_POW_2; DOT_PASTECART]);;
let NORM_PASTECART = 
prove (`!x y. norm(pastecart x y) = sqrt(norm(x) pow 2 + norm(y) pow 2)`,
REWRITE_TAC[NORM_EQ_SQUARE] THEN SIMP_TAC[SQRT_POS_LE; SQRT_POW_2; REAL_LE_ADD; REAL_LE_POW_2] THEN REWRITE_TAC[DOT_PASTECART; NORM_POW_2]);;
let NORM_PASTECART_LE = 
prove (`!x y. norm(pastecart x y) <= norm(x) + norm(y)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC TRIANGLE_LEMMA THEN REWRITE_TAC[NORM_POS_LE; NORM_POW_2; DOT_PASTECART; REAL_LE_REFL]);;
let NORM_LE_PASTECART = 
prove (`!x:real^M y:real^N. norm(x) <= norm(pastecart x y) /\ norm(y) <= norm(pastecart x y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[NORM_PASTECART] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_RSQRT THEN REWRITE_TAC[REAL_LE_ADDL; REAL_LE_ADDR; REAL_LE_POW_2]);;
let NORM_PASTECART_0 = 
prove (`(!x. norm(pastecart x (vec 0)) = norm x) /\ (!y. norm(pastecart (vec 0) y) = norm y)`,
REWRITE_TAC[NORM_EQ_SQUARE; NORM_POW_2; NORM_POS_LE] THEN REWRITE_TAC[DOT_PASTECART; DOT_LZERO; REAL_ADD_LID; REAL_ADD_RID]);;
let DIST_PASTECART_CANCEL = 
prove (`(!x x' y. dist(pastecart x y,pastecart x' y) = dist(x,x')) /\ (!x y y'. dist(pastecart x y,pastecart x y') = dist(y,y'))`,
let LINEAR_PASTECART = 
prove (`!f:real^M->real^N g:real^M->real^P. linear f /\ linear g ==> linear (\x. pastecart (f x) (g x))`,
SIMP_TAC[linear; PASTECART_ADD; GSYM PASTECART_CMUL]);;
(* ------------------------------------------------------------------------- *) (* A bit of linear algebra. *) (* ------------------------------------------------------------------------- *)
let subspace = new_definition
 `subspace s <=>
        vec(0) IN s /\
        (!x y. x IN s /\ y IN s ==> (x + y) IN s) /\
        (!c x. x IN s ==> (c % x) IN s)`;;
let span = new_definition
  `span s = subspace hull s`;;
let dependent = new_definition
 `dependent s <=> ?a. a IN s /\ a IN span(s DELETE a)`;;
let independent = new_definition
 `independent s <=> ~(dependent s)`;;
(* ------------------------------------------------------------------------- *) (* Closure properties of subspaces. *) (* ------------------------------------------------------------------------- *)
let SUBSPACE_UNIV = 
prove (`subspace(UNIV:real^N->bool)`,
REWRITE_TAC[subspace; IN_UNIV]);;
let SUBSPACE_IMP_NONEMPTY = 
prove (`!s. subspace s ==> ~(s = {})`,
REWRITE_TAC[subspace] THEN SET_TAC[]);;
let SUBSPACE_0 = 
prove (`subspace s ==> vec(0) IN s`,
SIMP_TAC[subspace]);;
let SUBSPACE_ADD = 
prove (`!x y s. subspace s /\ x IN s /\ y IN s ==> (x + y) IN s`,
SIMP_TAC[subspace]);;
let SUBSPACE_MUL = 
prove (`!x c s. subspace s /\ x IN s ==> (c % x) IN s`,
SIMP_TAC[subspace]);;
let SUBSPACE_NEG = 
prove (`!x s. subspace s /\ x IN s ==> (--x) IN s`,
SIMP_TAC[VECTOR_ARITH `--x = --(&1) % x`; SUBSPACE_MUL]);;
let SUBSPACE_SUB = 
prove (`!x y s. subspace s /\ x IN s /\ y IN s ==> (x - y) IN s`,
let SUBSPACE_VSUM = 
prove (`!s f t. subspace s /\ FINITE t /\ (!x. x IN t ==> f(x) IN s) ==> (vsum t f) IN s`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[VSUM_CLAUSES; SUBSPACE_0; IN_INSERT; SUBSPACE_ADD]);;
let SUBSPACE_LINEAR_IMAGE = 
prove (`!f s. linear f /\ subspace s ==> subspace(IMAGE f s)`,
REWRITE_TAC[subspace; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[linear; LINEAR_0]);;
let SUBSPACE_LINEAR_PREIMAGE = 
prove (`!f s. linear f /\ subspace s ==> subspace {x | f(x) IN s}`,
REWRITE_TAC[subspace; IN_ELIM_THM] THEN MESON_TAC[linear; LINEAR_0]);;
let SUBSPACE_TRIVIAL = 
prove (`subspace {vec 0}`,
SIMP_TAC[subspace; IN_SING] THEN CONJ_TAC THEN VECTOR_ARITH_TAC);;
let SUBSPACE_INTER = 
prove (`!s t. subspace s /\ subspace t ==> subspace (s INTER t)`,
REWRITE_TAC[subspace; IN_INTER] THEN MESON_TAC[]);;
let SUBSPACE_INTERS = 
prove (`!f. (!s. s IN f ==> subspace s) ==> subspace(INTERS f)`,
SIMP_TAC[subspace; IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_INTERS]);;
let LINEAR_INJECTIVE_0_SUBSPACE = 
prove (`!f:real^M->real^N s. linear f /\ subspace s ==> ((!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=> (!x. x IN s /\ f x = vec 0 ==> x = vec 0))`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM VECTOR_SUB_EQ] THEN ASM_SIMP_TAC[GSYM LINEAR_SUB] THEN ASM_MESON_TAC[VECTOR_SUB_RZERO; SUBSPACE_SUB; SUBSPACE_0]);;
let SUBSPACE_UNION_CHAIN = 
prove (`!s t:real^N->bool. subspace s /\ subspace t /\ subspace(s UNION t) ==> s SUBSET t \/ t SUBSET s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `s SUBSET t \/ t SUBSET s <=> ~(?x y. x IN s /\ ~(x IN t) /\ y IN t /\ ~(y IN s))`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x + y:real^N) IN s UNION t` MP_TAC THENL [MATCH_MP_TAC SUBSPACE_ADD THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN ASM_MESON_TAC[SUBSPACE_SUB; VECTOR_ARITH `(x + y) - x:real^N = y /\ (x + y) - y = x`]]);;
let SUBSPACE_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. subspace s /\ subspace t ==> subspace(s PCROSS t)`,
REWRITE_TAC[subspace; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_PCROSS; GSYM PASTECART_CMUL; PASTECART_ADD] THEN REWRITE_TAC[GSYM PASTECART_VEC; PASTECART_IN_PCROSS] THEN SIMP_TAC[]);;
let SUBSPACE_PCROSS_EQ = 
prove (`!s:real^M->bool t:real^N->bool. subspace(s PCROSS t) <=> subspace s /\ subspace t`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:real^M->bool = {}` THENL [ASM_MESON_TAC[PCROSS_EMPTY; SUBSPACE_IMP_NONEMPTY]; ALL_TAC] THEN ASM_CASES_TAC `t:real^N->bool = {}` THENL [ASM_MESON_TAC[PCROSS_EMPTY; SUBSPACE_IMP_NONEMPTY]; ALL_TAC] THEN EQ_TAC THEN REWRITE_TAC[SUBSPACE_PCROSS] THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`fstcart:real^(M,N)finite_sum->real^M`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] SUBSPACE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_FSTCART]; MP_TAC(ISPECL [`sndcart:real^(M,N)finite_sum->real^N`; `(s:real^M->bool) PCROSS (t:real^N->bool)`] SUBSPACE_LINEAR_IMAGE) THEN ASM_REWRITE_TAC[LINEAR_SNDCART]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PASTECART; PASTECART_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART] THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Lemmas. *) (* ------------------------------------------------------------------------- *)
let SPAN_SPAN = 
prove (`!s. span(span s) = span s`,
REWRITE_TAC[span; HULL_HULL]);;
let SPAN_MONO = 
prove (`!s t. s SUBSET t ==> span s SUBSET span t`,
REWRITE_TAC[span; HULL_MONO]);;
let SUBSPACE_SPAN = 
prove (`!s. subspace(span s)`,
GEN_TAC THEN REWRITE_TAC[span] THEN MATCH_MP_TAC P_HULL THEN SIMP_TAC[subspace; IN_INTERS]);;
let SPAN_CLAUSES = 
prove (`(!a s. a IN s ==> a IN span s) /\ (vec(0) IN span s) /\ (!x y s. x IN span s /\ y IN span s ==> (x + y) IN span s) /\ (!x c s. x IN span s ==> (c % x) IN span s)`,
MESON_TAC[span; HULL_SUBSET; SUBSET; SUBSPACE_SPAN; subspace]);;
let SPAN_INDUCT = 
prove (`!s h. (!x. x IN s ==> x IN h) /\ subspace h ==> !x. x IN span(s) ==> h(x)`,
REWRITE_TAC[span] THEN MESON_TAC[SUBSET; HULL_MINIMAL; IN]);;
let SPAN_EMPTY = 
prove (`span {} = {vec 0}`,
REWRITE_TAC[span] THEN MATCH_MP_TAC HULL_UNIQUE THEN SIMP_TAC[subspace; SUBSET; IN_SING; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let INDEPENDENT_EMPTY = 
prove (`independent {}`,
REWRITE_TAC[independent; dependent; NOT_IN_EMPTY]);;
let INDEPENDENT_NONZERO = 
prove (`!s. independent s ==> ~(vec 0 IN s)`,
REWRITE_TAC[independent; dependent] THEN MESON_TAC[SPAN_CLAUSES]);;
let INDEPENDENT_MONO = 
prove (`!s t. independent t /\ s SUBSET t ==> independent s`,
REWRITE_TAC[independent; dependent] THEN ASM_MESON_TAC[SPAN_MONO; SUBSET; IN_DELETE]);;
let DEPENDENT_MONO = 
prove (`!s t:real^N->bool. dependent s /\ s SUBSET t ==> dependent t`,
ONCE_REWRITE_TAC[TAUT `p /\ q ==> r <=> ~r /\ q ==> ~p`] THEN REWRITE_TAC[GSYM independent; INDEPENDENT_MONO]);;
let SPAN_SUBSPACE = 
prove (`!b s. b SUBSET s /\ s SUBSET (span b) /\ subspace s ==> (span b = s)`,
MESON_TAC[SUBSET_ANTISYM; span; HULL_MINIMAL]);;
let SPAN_INDUCT_ALT = 
prove (`!s h. h(vec 0) /\ (!c x y. x IN s /\ h(y) ==> h(c % x + y)) ==> !x:real^N. x IN span(s) ==> h(x)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o prove_inductive_relations_exist o concl) THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!x:real^N. x IN span(s) ==> g(x)` (fun th -> ASM_MESON_TAC[th]) THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[subspace; IN_ELIM_THM] THEN REWRITE_TAC[IN; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT CONJ_TAC THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN REWRITE_TAC[VECTOR_ADD_LDISTRIB; VECTOR_MUL_ASSOC] THEN ASM_MESON_TAC[IN; VECTOR_ADD_LID; VECTOR_ADD_ASSOC; VECTOR_ADD_SYM; VECTOR_MUL_LID; VECTOR_MUL_RZERO]);;
(* ------------------------------------------------------------------------- *) (* Individual closure properties. *) (* ------------------------------------------------------------------------- *)
let SPAN_SUPERSET = 
prove (`!x. x IN s ==> x IN span s`,
MESON_TAC[SPAN_CLAUSES]);;
let SPAN_INC = 
prove (`!s. s SUBSET span s`,
REWRITE_TAC[SUBSET; SPAN_SUPERSET]);;
let SPAN_UNION_SUBSET = 
prove (`!s t. span s UNION span t SUBSET span(s UNION t)`,
REWRITE_TAC[span; HULL_UNION_SUBSET]);;
let SPAN_UNIV = 
prove (`span(:real^N) = (:real^N)`,
SIMP_TAC[SPAN_INC; SET_RULE `UNIV SUBSET s ==> s = UNIV`]);;
let SPAN_0 = 
prove (`vec(0) IN span s`,
MESON_TAC[SUBSPACE_SPAN; SUBSPACE_0]);;
let SPAN_ADD = 
prove (`!x y s. x IN span s /\ y IN span s ==> (x + y) IN span s`,
MESON_TAC[SUBSPACE_SPAN; SUBSPACE_ADD]);;
let SPAN_MUL = 
prove (`!x c s. x IN span s ==> (c % x) IN span s`,
MESON_TAC[SUBSPACE_SPAN; SUBSPACE_MUL]);;
let SPAN_MUL_EQ = 
prove (`!x:real^N c s. ~(c = &0) ==> ((c % x) IN span s <=> x IN span s)`,
REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN ASM_SIMP_TAC[SPAN_MUL] THEN SUBGOAL_THEN `(inv(c) % c % x:real^N) IN span s` MP_TAC THENL [ASM_SIMP_TAC[SPAN_MUL]; ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID]]);;
let SPAN_NEG = 
prove (`!x s. x IN span s ==> (--x) IN span s`,
MESON_TAC[SUBSPACE_SPAN; SUBSPACE_NEG]);;
let SPAN_NEG_EQ = 
prove (`!x s. --x IN span s <=> x IN span s`,
MESON_TAC[SPAN_NEG; VECTOR_NEG_NEG]);;
let SPAN_SUB = 
prove (`!x y s. x IN span s /\ y IN span s ==> (x - y) IN span s`,
MESON_TAC[SUBSPACE_SPAN; SUBSPACE_SUB]);;
let SPAN_VSUM = 
prove (`!s f t. FINITE t /\ (!x. x IN t ==> f(x) IN span(s)) ==> (vsum t f) IN span(s)`,
let SPAN_ADD_EQ = 
prove (`!s x y. x IN span s ==> ((x + y) IN span s <=> y IN span s)`,
MESON_TAC[SPAN_ADD; SPAN_SUB; VECTOR_ARITH `(x + y) - x:real^N = y`]);;
let SPAN_EQ_SELF = 
prove (`!s. span s = s <=> subspace s`,
GEN_TAC THEN EQ_TAC THENL [MESON_TAC[SUBSPACE_SPAN]; ALL_TAC] THEN DISCH_TAC THEN MATCH_MP_TAC SPAN_SUBSPACE THEN ASM_REWRITE_TAC[SUBSET_REFL; SPAN_INC]);;
let SPAN_OF_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> span s = s`,
REWRITE_TAC[SPAN_EQ_SELF]);;
let SPAN_SUBSET_SUBSPACE = 
prove (`!s t:real^N->bool. s SUBSET t /\ subspace t ==> span s SUBSET t`,
MESON_TAC[SPAN_MONO; SPAN_EQ_SELF]);;
let SUBSPACE_TRANSLATION_SELF = 
prove (`!s a. subspace s /\ a IN s ==> IMAGE (\x. a + x) s = s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN FIRST_ASSUM(SUBST1_TAC o SYM o GEN_REWRITE_RULE I [GSYM SPAN_EQ_SELF]) THEN ASM_SIMP_TAC[SPAN_ADD_EQ; SPAN_CLAUSES] THEN REWRITE_TAC[VECTOR_ARITH `a + x:real^N = y <=> x = y - a`; EXISTS_REFL]);;
let SUBSPACE_TRANSLATION_SELF_EQ = 
prove (`!s a:real^N. subspace s ==> (IMAGE (\x. a + x) s = s <=> a IN s)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[SUBSPACE_TRANSLATION_SELF] THEN DISCH_THEN(MP_TAC o AP_TERM `\s. (a:real^N) IN s`) THEN REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `vec 0:real^N` THEN ASM_MESON_TAC[subspace; VECTOR_ADD_RID]);;
let SUBSPACE_SUMS = 
prove (`!s t. subspace s /\ subspace t ==> subspace {x + y | x IN s /\ y IN t}`,
REWRITE_TAC[subspace; FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[VECTOR_ADD_LID]; ONCE_REWRITE_TAC[VECTOR_ARITH `(x + y) + (x' + y'):real^N = (x + x') + (y + y')`] THEN ASM_MESON_TAC[]; REWRITE_TAC[VECTOR_ADD_LDISTRIB] THEN ASM_MESON_TAC[]]);;
let SPAN_UNION = 
prove (`!s t. span(s UNION t) = {x + y:real^N | x IN span s /\ y IN span t}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN SIMP_TAC[SUBSPACE_SUMS; SUBSPACE_SPAN] THEN REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THENL [MAP_EVERY EXISTS_TAC [`x:real^N`; `vec 0:real^N`] THEN ASM_SIMP_TAC[SPAN_SUPERSET; SPAN_0; VECTOR_ADD_RID]; MAP_EVERY EXISTS_TAC [`vec 0:real^N`; `x:real^N`] THEN ASM_SIMP_TAC[SPAN_SUPERSET; SPAN_0; VECTOR_ADD_LID]]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_ADD THEN ASM_MESON_TAC[SPAN_MONO; SUBSET_UNION; SUBSET]]);;
(* ------------------------------------------------------------------------- *) (* Mapping under linear image. *) (* ------------------------------------------------------------------------- *)
let SPAN_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f ==> (span(IMAGE f s) = IMAGE f (span s))`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:real^N` THEN EQ_TAC THENL [SPEC_TAC(`x:real^N`,`x:real^N`) THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[SET_RULE `(\x. x IN s) = s`] THEN ASM_SIMP_TAC[SUBSPACE_SPAN; SUBSPACE_LINEAR_IMAGE] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[SPAN_SUPERSET; SUBSET]; SPEC_TAC(`x:real^N`,`x:real^N`) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[SET_RULE `(\x. f x IN span(s)) = {x | f(x) IN span s}`] THEN ASM_SIMP_TAC[SUBSPACE_LINEAR_PREIMAGE; SUBSPACE_SPAN] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[SPAN_SUPERSET; SUBSET; IN_IMAGE]]);;
let DEPENDENT_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (dependent(IMAGE f s) <=> dependent s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[dependent; EXISTS_IN_IMAGE] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `a:real^M` THEN ASM_CASES_TAC `(a:real^M) IN s` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `(f:real^M->real^N) a IN span(IMAGE f (s DELETE a))` THEN CONJ_TAC THENL [AP_TERM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]; ASM_SIMP_TAC[SPAN_LINEAR_IMAGE] THEN ASM SET_TAC[]]);;
let DEPENDENT_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ dependent(s) ==> dependent(IMAGE f s)`,
REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[dependent; EXISTS_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real^M` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) s DELETE f a = IMAGE f (s DELETE a)` (fun th -> ASM_SIMP_TAC[FUN_IN_IMAGE; SPAN_LINEAR_IMAGE; th]) THEN ASM SET_TAC[]);;
let INDEPENDENT_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> (independent(IMAGE f s) <=> independent s)`,
REWRITE_TAC[independent; TAUT `(~p <=> ~q) <=> (p <=> q)`] THEN REWRITE_TAC[DEPENDENT_LINEAR_IMAGE_EQ]);;
(* ------------------------------------------------------------------------- *) (* The key breakdown property. *) (* ------------------------------------------------------------------------- *)
let SPAN_BREAKDOWN = 
prove (`!b s a:real^N. b IN s /\ a IN span s ==> ?k. (a - k % b) IN span(s DELETE b)`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[subspace; IN_ELIM_THM] THEN CONJ_TAC THENL [GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `a:real^N = b`; ALL_TAC] THEN ASM_MESON_TAC[SPAN_CLAUSES; IN_DELETE; VECTOR_ARITH `(a - &1 % a = vec 0) /\ (a - &0 % b = a) /\ ((x + y) - (k1 + k2) % b = (x - k1 % b) + (y - k2 % b)) /\ (c % x - (c * k) % y = c % (x - k % y))`]);;
let SPAN_BREAKDOWN_EQ = 
prove (`!a:real^N s. (x IN span(a INSERT s) <=> (?k. (x - k % a) IN span s))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o CONJ(SET_RULE `(a:real^N) IN (a INSERT s)`)) THEN DISCH_THEN(MP_TAC o MATCH_MP SPAN_BREAKDOWN) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real` THEN SPEC_TAC(`x - k % a:real^N`,`y:real^N`) THEN REWRITE_TAC[GSYM SUBSET] THEN MATCH_MP_TAC SPAN_MONO THEN SET_TAC[]; DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN SUBST1_TAC(VECTOR_ARITH `x = (x - k % a) + k % a:real^N`) THEN MATCH_MP_TAC SPAN_ADD THEN ASM_MESON_TAC[SPAN_MONO; SUBSET; IN_INSERT; SPAN_CLAUSES]]);;
let SPAN_INSERT_0 = 
prove (`!s. span(vec 0 INSERT s) = span s`,
let SPAN_SING = 
prove (`!a. span {a} = {u % a | u IN (:real)}`,
let SPAN_2 = 
prove (`!a b. span {a,b} = {u % a + v % b | u IN (:real) /\ v IN (:real)}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; SPAN_BREAKDOWN_EQ; SPAN_EMPTY] THEN REWRITE_TAC[IN_UNIV; IN_SING; VECTOR_SUB_EQ] THEN REWRITE_TAC[VECTOR_ARITH `x - y:real^N = z <=> x = y + z`]);;
let SPAN_3 = 
prove (`!a b c. span {a,b,c} = {u % a + v % b + w % c | u IN (:real) /\ v IN (:real) /\ w IN (:real)}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; SPAN_BREAKDOWN_EQ; SPAN_EMPTY] THEN REWRITE_TAC[IN_UNIV; IN_SING; VECTOR_SUB_EQ] THEN REWRITE_TAC[VECTOR_ARITH `x - y:real^N = z <=> x = y + z`]);;
(* ------------------------------------------------------------------------- *) (* Hence some "reversal" results. *) (* ------------------------------------------------------------------------- *)
let IN_SPAN_INSERT = 
prove (`!a b:real^N s. a IN span(b INSERT s) /\ ~(a IN span s) ==> b IN span(a INSERT s)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`b:real^N`; `(b:real^N) INSERT s`; `a:real^N`] SPAN_BREAKDOWN) THEN ASM_REWRITE_TAC[IN_INSERT] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` MP_TAC) THEN ASM_CASES_TAC `k = &0` THEN ASM_REWRITE_TAC[VECTOR_ARITH `a - &0 % b = a`; DELETE_INSERT] THENL [ASM_MESON_TAC[SPAN_MONO; SUBSET; DELETE_SUBSET]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `inv(k)` o MATCH_MP SPAN_MUL) THEN ASM_SIMP_TAC[VECTOR_SUB_LDISTRIB; VECTOR_MUL_ASSOC; REAL_MUL_LINV] THEN DISCH_TAC THEN SUBST1_TAC(VECTOR_ARITH `b:real^N = inv(k) % a - (inv(k) % a - &1 % b)`) THEN MATCH_MP_TAC SPAN_SUB THEN ASM_MESON_TAC[SPAN_CLAUSES; IN_INSERT; SUBSET; IN_DELETE; SPAN_MONO]);;
let IN_SPAN_DELETE = 
prove (`!a b s. a IN span s /\ ~(a IN span (s DELETE b)) ==> b IN span (a INSERT (s DELETE b))`,
let EQ_SPAN_INSERT_EQ = 
prove (`!s x y:real^N. (x - y) IN span s ==> span(x INSERT s) = span(y INSERT s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SPAN_BREAKDOWN_EQ; EXTENSION] THEN ASM_MESON_TAC[SPAN_ADD; SPAN_SUB; SPAN_MUL; VECTOR_ARITH `(z - k % y) - k % (x - y) = z - k % x`; VECTOR_ARITH `(z - k % x) + k % (x - y) = z - k % y`]);;
(* ------------------------------------------------------------------------- *) (* Transitivity property. *) (* ------------------------------------------------------------------------- *)
let SPAN_TRANS = 
prove (`!x y:real^N s. x IN span(s) /\ y IN span(x INSERT s) ==> y IN span(s)`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`x:real^N`; `(x:real^N) INSERT s`; `y:real^N`] SPAN_BREAKDOWN) THEN ASM_REWRITE_TAC[IN_INSERT] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN SUBST1_TAC(VECTOR_ARITH `y:real^N = (y - k % x) + k % x`) THEN MATCH_MP_TAC SPAN_ADD THEN ASM_SIMP_TAC[SPAN_MUL] THEN ASM_MESON_TAC[SPAN_MONO; SUBSET; IN_INSERT; IN_DELETE]);;
(* ------------------------------------------------------------------------- *) (* An explicit expansion is sometimes needed. *) (* ------------------------------------------------------------------------- *)
let SPAN_EXPLICIT = 
prove (`!(p:real^N -> bool). span p = {y | ?s u. FINITE s /\ s SUBSET p /\ vsum s (\v. u v % v) = y}`,
GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC SPAN_VSUM THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SPAN_SUPERSET; SPAN_MUL]] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MATCH_MP_TAC SPAN_INDUCT_ALT THEN CONJ_TAC THENL [EXISTS_TAC `{}:real^N->bool` THEN REWRITE_TAC[FINITE_RULES; VSUM_CLAUSES; EMPTY_SUBSET; NOT_IN_EMPTY]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`c:real`; `x:real^N`; `y:real^N`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `u:real^N->real`] THEN STRIP_TAC THEN EXISTS_TAC `(x:real^N) INSERT s` THEN EXISTS_TAC `\y. if y = x then (if x IN s then (u:real^N->real) y + c else c) else u y` THEN ASM_SIMP_TAC[FINITE_INSERT; IN_INSERT; VSUM_CLAUSES] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `x IN s ==> s = x INSERT (s DELETE x)`)) THEN ASM_SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; FINITE_DELETE; IN_DELETE] THEN MATCH_MP_TAC(VECTOR_ARITH `y = z ==> (c + d) % x + y = d % x + c % x + z`); AP_TERM_TAC] THEN MATCH_MP_TAC VSUM_EQ THEN ASM_MESON_TAC[IN_DELETE]);;
let DEPENDENT_EXPLICIT = 
prove (`!p. dependent (p:real^N -> bool) <=> ?s u. FINITE s /\ s SUBSET p /\ (?v. v IN s /\ ~(u v = &0)) /\ vsum s (\v. u v % v) = vec 0`,
GEN_TAC THEN REWRITE_TAC[dependent; SPAN_EXPLICIT; IN_ELIM_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [MAP_EVERY X_GEN_TAC [`a:real^N`; `s:real^N->bool`; `u:real^N->real`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(a:real^N) INSERT s`; `\y. if y = a then -- &1 else (u:real^N->real) y`; `a:real^N`] THEN ASM_REWRITE_TAC[IN_INSERT; INSERT_SUBSET; FINITE_INSERT] THEN CONJ_TAC THENL [ASM SET_TAC[]; CONV_TAC REAL_RAT_REDUCE_CONV] THEN ASM_SIMP_TAC[VSUM_CLAUSES] THEN COND_CASES_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[VECTOR_ARITH `-- &1 % a + s = vec 0 <=> a = s`] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [SYM th]) THEN MATCH_MP_TAC VSUM_EQ THEN ASM SET_TAC[]; MAP_EVERY X_GEN_TAC [`s:real^N->bool`; `u:real^N->real`; `a:real^N`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`a:real^N`; `s DELETE (a:real^N)`; `\i. --((u:real^N->real) i) / (u a)`] THEN ASM_SIMP_TAC[VSUM_DELETE; FINITE_DELETE] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[VECTOR_MUL_LNEG; GSYM VECTOR_MUL_ASSOC; VSUM_LMUL; VSUM_NEG; VECTOR_MUL_RNEG; VECTOR_MUL_RZERO] THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV] THEN VECTOR_ARITH_TAC]);;
let DEPENDENT_FINITE = 
prove (`!s:real^N->bool. FINITE s ==> (dependent s <=> ?u. (?v. v IN s /\ ~(u v = &0)) /\ vsum s (\v. u(v) % v) = vec 0)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[DEPENDENT_EXPLICIT] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:real^N->real`] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN EXISTS_TAC `\v:real^N. if v IN t then u(v) else &0` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[VECTOR_MUL_LZERO; GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`]; GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`; `u:real^N->real`] THEN ASM_REWRITE_TAC[SUBSET_REFL]]);;
let SPAN_FINITE = 
prove (`!s:real^N->bool. FINITE s ==> span s = {y | ?u. vsum s (\v. u v % v) = y}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[SPAN_EXPLICIT; EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `y:real^N` THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:real^N->real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN EXISTS_TAC `\x:real^N. if x IN t then u(x) else &0` THEN REWRITE_TAC[COND_RAND; COND_RATOR; VECTOR_MUL_LZERO] THEN ASM_SIMP_TAC[GSYM VSUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET s ==> {x | x IN s /\ x IN t} = t`]; X_GEN_TAC `u:real^N->real` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`; `u:real^N->real`] THEN ASM_REWRITE_TAC[SUBSET_REFL]]);;
(* ------------------------------------------------------------------------- *) (* Standard bases are a spanning set, and obviously finite. *) (* ------------------------------------------------------------------------- *)
let SPAN_STDBASIS = 
prove (`span {basis i :real^N | 1 <= i /\ i <= dimindex(:N)} = UNIV`,
REWRITE_TAC[EXTENSION; IN_UNIV] THEN X_GEN_TAC `x:real^N` THEN GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN MATCH_MP_TAC SPAN_VSUM THEN SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]);;
let HAS_SIZE_STDBASIS = 
prove (`{basis i :real^N | 1 <= i /\ i <= dimindex(:N)} HAS_SIZE dimindex(:N)`,
ONCE_REWRITE_TAC[SET_RULE `{f x | P x} = IMAGE f {x | P x}`] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN REWRITE_TAC[GSYM numseg; HAS_SIZE_NUMSEG_1; IN_NUMSEG] THEN MESON_TAC[BASIS_INJ]);;
let FINITE_STDBASIS = 
prove (`FINITE {basis i :real^N | 1 <= i /\ i <= dimindex(:N)}`,
MESON_TAC[HAS_SIZE_STDBASIS; HAS_SIZE]);;
let CARD_STDBASIS = 
prove (`CARD {basis i :real^N | 1 <= i /\ i <= dimindex(:N)} = dimindex(:N)`,
MESON_TAC[HAS_SIZE_STDBASIS; HAS_SIZE]);;
let IN_SPAN_IMAGE_BASIS = 
prove (`!x:real^N s. x IN span(IMAGE basis s) <=> !i. 1 <= i /\ i <= dimindex(:N) /\ ~(i IN s) ==> x$i = &0`,
REPEAT GEN_TAC THEN EQ_TAC THENL [SPEC_TAC(`x:real^N`,`x:real^N`) THEN MATCH_MP_TAC SPAN_INDUCT THEN SIMP_TAC[subspace; IN_ELIM_THM; VEC_COMPONENT; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; REAL_MUL_RZERO; REAL_ADD_RID] THEN SIMP_TAC[FORALL_IN_IMAGE; BASIS_COMPONENT] THEN MESON_TAC[]; DISCH_TAC THEN REWRITE_TAC[SPAN_EXPLICIT; IN_ELIM_THM] THEN EXISTS_TAC `(IMAGE basis ((1..dimindex(:N)) INTER s)):real^N->bool` THEN SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN EXISTS_TAC `\v:real^N. x dot v` THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN ANTS_TAC THENL [SIMP_TAC[FINITE_IMAGE; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[IN_INTER; IN_NUMSEG] THEN MESON_TAC[BASIS_INJ]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[]] THEN REWRITE_TAC[o_DEF] THEN SIMP_TAC[CART_EQ; VSUM_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[MESON[] `(if x = y then p else q) = (if y = x then p else q)`] THEN SIMP_TAC[SUM_DELTA; REAL_MUL_RZERO; IN_INTER; IN_NUMSEG; DOT_BASIS] THEN ASM_MESON_TAC[REAL_MUL_RID]]);;
let INDEPENDENT_STDBASIS = 
prove (`independent {basis i :real^N | 1 <= i /\ i <= dimindex(:N)}`,
REWRITE_TAC[independent; dependent] THEN ONCE_REWRITE_TAC[SET_RULE `{f x | P x} = IMAGE f {x | P x}`] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `k:num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `IMAGE basis {i | 1 <= i /\ i <= dimindex(:N)} DELETE (basis k:real^N) = IMAGE basis ({i | 1 <= i /\ i <= dimindex(:N)} DELETE k)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_ELIM_THM] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[BASIS_INJ]; ALL_TAC] THEN REWRITE_TAC[IN_SPAN_IMAGE_BASIS] THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_SIMP_TAC[IN_DELETE; BASIS_COMPONENT; REAL_OF_NUM_EQ; ARITH]);;
(* ------------------------------------------------------------------------- *) (* This is useful for building a basis step-by-step. *) (* ------------------------------------------------------------------------- *)
let INDEPENDENT_INSERT = 
prove (`!a:real^N s. independent(a INSERT s) <=> if a IN s then independent s else independent s /\ ~(a IN span s)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `(a:real^N) IN s` THEN ASM_SIMP_TAC[SET_RULE `x IN s ==> (x INSERT s = s)`] THEN EQ_TAC THENL [DISCH_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[INDEPENDENT_MONO; SUBSET; IN_INSERT]; POP_ASSUM MP_TAC THEN REWRITE_TAC[independent; dependent] THEN ASM_MESON_TAC[IN_INSERT; SET_RULE `~(a IN s) ==> ((a INSERT s) DELETE a = s)`]]; ALL_TAC] THEN REWRITE_TAC[independent; dependent; NOT_EXISTS_THM] THEN STRIP_TAC THEN X_GEN_TAC `b:real^N` THEN REWRITE_TAC[IN_INSERT] THEN ASM_CASES_TAC `b:real^N = a` THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> ((a INSERT s) DELETE a = s)`] THEN ASM_SIMP_TAC[SET_RULE `~(a IN s) /\ ~(b = a) ==> ((a INSERT s) DELETE b = a INSERT (s DELETE b))`] THEN ASM_MESON_TAC[IN_SPAN_INSERT; SET_RULE `b IN s ==> (b INSERT (s DELETE b) = s)`]);;
(* ------------------------------------------------------------------------- *) (* The degenerate case of the Exchange Lemma. *) (* ------------------------------------------------------------------------- *)
let SPANNING_SUBSET_INDEPENDENT = 
prove (`!s t:real^N->bool. t SUBSET s /\ independent s /\ s SUBSET span(t) ==> (s = t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [independent]) THEN REWRITE_TAC[dependent; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `a:real^N`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SPAN_MONO; SUBSET; IN_DELETE]);;
(* ------------------------------------------------------------------------- *) (* The general case of the Exchange Lemma, the key to what follows. *) (* ------------------------------------------------------------------------- *)
let EXCHANGE_LEMMA = 
prove (`!s t:real^N->bool. FINITE t /\ independent s /\ s SUBSET span t ==> ?t'. t' HAS_SIZE (CARD t) /\ s SUBSET t' /\ t' SUBSET (s UNION t) /\ s SUBSET (span t')`,
REPEAT GEN_TAC THEN WF_INDUCT_TAC `CARD(t DIFF s :real^N->bool)` THEN ASM_CASES_TAC `(s:real^N->bool) SUBSET t` THENL [ASM_MESON_TAC[HAS_SIZE; SUBSET_UNION]; ALL_TAC] THEN ASM_CASES_TAC `t SUBSET (s:real^N->bool)` THENL [ASM_MESON_TAC[SPANNING_SUBSET_INDEPENDENT; HAS_SIZE]; ALL_TAC] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[SUBSET] o check(is_neg o concl)) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `s SUBSET span(t DELETE (b:real^N))` THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`t DELETE (b:real^N)`; `s:real^N->bool`]) THEN ASM_REWRITE_TAC[SET_RULE `s DELETE a DIFF t = (s DIFF t) DELETE a`] THEN ASM_SIMP_TAC[CARD_DELETE; FINITE_DIFF; IN_DIFF; FINITE_DELETE; CARD_EQ_0; ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN ANTS_TAC THENL [UNDISCH_TAC `~((s:real^N->bool) SUBSET t)` THEN ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(b:real^N) INSERT u` THEN ASM_SIMP_TAC[SUBSET_INSERT; INSERT_SUBSET; IN_UNION] THEN CONJ_TAC THENL [UNDISCH_TAC `(u:real^N->bool) HAS_SIZE CARD(t:real^N->bool) - 1` THEN SIMP_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN STRIP_TAC THEN COND_CASES_TAC THENL [ASM_MESON_TAC[SUBSET; IN_UNION; IN_DELETE]; ALL_TAC] THEN ASM_MESON_TAC[ARITH_RULE `~(n = 0) ==> (SUC(n - 1) = n)`; CARD_EQ_0; MEMBER_NOT_EMPTY]; ALL_TAC] THEN CONJ_TAC THENL [UNDISCH_TAC `u SUBSET s UNION t DELETE (b:real^N)` THEN SET_TAC[]; ASM_MESON_TAC[SUBSET; SPAN_MONO; IN_INSERT]]; ALL_TAC] THEN UNDISCH_TAC `~(s SUBSET span (t DELETE (b:real^N)))` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SUBSET] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `~(a:real^N = b)` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~((a:real^N) IN t)` ASSUME_TAC THENL [ASM_MESON_TAC[IN_DELETE; SPAN_CLAUSES]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`(a:real^N) INSERT (t DELETE b)`; `s:real^N->bool`]) THEN ANTS_TAC THENL [ASM_SIMP_TAC[SET_RULE `a IN s ==> ((a INSERT (t DELETE b) DIFF s) = (t DIFF s) DELETE b)`] THEN ASM_SIMP_TAC[CARD_DELETE; FINITE_DELETE; FINITE_DIFF; IN_DIFF] THEN ASM_SIMP_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`; CARD_EQ_0; FINITE_DIFF] THEN UNDISCH_TAC `~((s:real^N->bool) SUBSET t)` THEN ASM SET_TAC[]; ALL_TAC] THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_RULES; FINITE_DELETE] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC SPAN_TRANS THEN EXISTS_TAC `b:real^N` THEN ASM_MESON_TAC[IN_SPAN_DELETE; SUBSET; SPAN_MONO; SET_RULE `t SUBSET (b INSERT (a INSERT (t DELETE b)))`]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[HAS_SIZE; CARD_CLAUSES; CARD_DELETE; FINITE_DELETE; IN_DELETE; ARITH_RULE `(SUC(n - 1) = n) <=> ~(n = 0)`; CARD_EQ_0] THEN UNDISCH_TAC `(b:real^N) IN t` THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *) (* This implies corresponding size bounds. *) (* ------------------------------------------------------------------------- *)
let INDEPENDENT_SPAN_BOUND = 
prove (`!s t. FINITE t /\ independent s /\ s SUBSET span(t) ==> FINITE s /\ CARD(s) <= CARD(t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP EXCHANGE_LEMMA) THEN ASM_MESON_TAC[HAS_SIZE; CARD_SUBSET; FINITE_SUBSET]);;
let INDEPENDENT_BOUND = 
prove (`!s:real^N->bool. independent s ==> FINITE s /\ CARD(s) <= dimindex(:N)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM CARD_STDBASIS] THEN MATCH_MP_TAC INDEPENDENT_SPAN_BOUND THEN ASM_REWRITE_TAC[FINITE_STDBASIS; SPAN_STDBASIS; SUBSET_UNIV]);;
let DEPENDENT_BIGGERSET = 
prove (`!s:real^N->bool. (FINITE s ==> CARD(s) > dimindex(:N)) ==> dependent s`,
MP_TAC INDEPENDENT_BOUND THEN MATCH_MP_TAC MONO_FORALL THEN REWRITE_TAC[GT; GSYM NOT_LE; independent] THEN MESON_TAC[]);;
let INDEPENDENT_IMP_FINITE = 
prove (`!s:real^N->bool. independent s ==> FINITE s`,
SIMP_TAC[INDEPENDENT_BOUND]);;
(* ------------------------------------------------------------------------- *) (* Explicit formulation of independence. *) (* ------------------------------------------------------------------------- *)
let INDEPENDENT_EXPLICIT = 
prove (`!b:real^N->bool. independent b <=> FINITE b /\ !c. vsum b (\v. c(v) % v) = vec 0 ==> !v. v IN b ==> c(v) = &0`,
GEN_TAC THEN ASM_CASES_TAC `FINITE(b:real^N->bool)` THENL [ALL_TAC; ASM_MESON_TAC[INDEPENDENT_BOUND]] THEN ASM_SIMP_TAC[independent; DEPENDENT_FINITE] THEN MESON_TAC[]);;
let INDEPENDENT_SING = 
prove (`!x. independent {x} <=> ~(x = vec 0)`,
REWRITE_TAC[INDEPENDENT_INSERT; NOT_IN_EMPTY; SPAN_EMPTY] THEN REWRITE_TAC[INDEPENDENT_EMPTY] THEN SET_TAC[]);;
let DEPENDENT_SING = 
prove (`!x. dependent {x} <=> x = vec 0`,
MESON_TAC[independent; INDEPENDENT_SING]);;
let DEPENDENT_2 = 
prove (`!a b:real^N. dependent {a,b} <=> if a = b then a = vec 0 else ?x y. x % a + y % b = vec 0 /\ ~(x = &0 /\ y = &0)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DEPENDENT_SING; SET_RULE `{x,x} = {x}`] THEN SIMP_TAC[DEPENDENT_FINITE; VSUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ASM_REWRITE_TAC[IN_SING; NOT_IN_EMPTY; VECTOR_ADD_RID; EXISTS_IN_INSERT] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [X_GEN_TAC `u:real^N->real` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(u:real^N->real) a`; `(u:real^N->real) b`] THEN ASM_REWRITE_TAC[]; MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN DISCH_TAC THEN EXISTS_TAC `\v:real^N. if v = a then x else if v = b then y else z:real` THEN ASM_MESON_TAC[]]);;
let DEPENDENT_3 = 
prove (`!a b c:real^N. ~(a = b) /\ ~(a = c) /\ ~(b = c) ==> (dependent {a,b,c} <=> ?x y z. x % a + y % b + z % c = vec 0 /\ ~(x = &0 /\ y = &0 /\ z = &0))`,
REPEAT STRIP_TAC THEN SIMP_TAC[DEPENDENT_FINITE; VSUM_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ASM_REWRITE_TAC[IN_SING; NOT_IN_EMPTY; VECTOR_ADD_RID; IN_INSERT] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL [X_GEN_TAC `u:real^N->real` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(u:real^N->real) a`; `(u:real^N->real) b`; `(u:real^N->real) c`]; MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `z:real`] THEN DISCH_TAC THEN EXISTS_TAC `\v:real^N. if v = a then x else if v = b then y else z:real`] THEN ASM_MESON_TAC[]);;
let INDEPENDENT_2 = 
prove (`!a b:real^N x y. independent{a,b} /\ ~(a = b) ==> (x % a + y % b = vec 0 <=> x = &0 /\ y = &0)`,
SIMP_TAC[IMP_CONJ_ALT; independent; DEPENDENT_2] THEN MESON_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID]);;
let INDEPENDENT_3 = 
prove (`!a b c:real^N x y z. independent{a,b,c} /\ ~(a = b) /\ ~(a = c) /\ ~(b = c) ==> (x % a + y % b + z % c = vec 0 <=> x = &0 /\ y = &0 /\ z = &0)`,
SIMP_TAC[IMP_CONJ_ALT; independent; DEPENDENT_3] THEN MESON_TAC[VECTOR_MUL_LZERO; VECTOR_ADD_LID]);;
(* ------------------------------------------------------------------------- *) (* Hence we can create a maximal independent subset. *) (* ------------------------------------------------------------------------- *)
let MAXIMAL_INDEPENDENT_SUBSET_EXTEND = 
prove (`!s v:real^N->bool. s SUBSET v /\ independent s ==> ?b. s SUBSET b /\ b SUBSET v /\ independent b /\ v SUBSET (span b)`,
REPEAT GEN_TAC THEN WF_INDUCT_TAC `dimindex(:N) - CARD(s:real^N->bool)` THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `v SUBSET (span(s:real^N->bool))` THENL [ASM_MESON_TAC[SUBSET_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [SUBSET]) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `(a:real^N) INSERT s`) THEN REWRITE_TAC[IMP_IMP] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[INSERT_SUBSET]] THEN SUBGOAL_THEN `independent ((a:real^N) INSERT s)` ASSUME_TAC THENL [ASM_REWRITE_TAC[INDEPENDENT_INSERT; COND_ID]; ALL_TAC] THEN ASM_REWRITE_TAC[INSERT_SUBSET] THEN MATCH_MP_TAC(ARITH_RULE `(b = a + 1) /\ b <= n ==> n - b < n - a`) THEN ASM_SIMP_TAC[CARD_CLAUSES; INDEPENDENT_BOUND] THEN ASM_MESON_TAC[SPAN_SUPERSET; ADD1]);;
let MAXIMAL_INDEPENDENT_SUBSET = 
prove (`!v:real^N->bool. ?b. b SUBSET v /\ independent b /\ v SUBSET (span b)`,
MP_TAC(SPEC `EMPTY:real^N->bool` MAXIMAL_INDEPENDENT_SUBSET_EXTEND) THEN REWRITE_TAC[EMPTY_SUBSET; INDEPENDENT_EMPTY]);;
(* ------------------------------------------------------------------------- *) (* A kind of closed graph property for linearity. *) (* ------------------------------------------------------------------------- *)
let LINEAR_SUBSPACE_GRAPH = 
prove (`!f:real^M->real^N. linear f <=> subspace {pastecart x (f x) | x IN (:real^M)}`,
REWRITE_TAC[linear; subspace; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GSPEC; GSYM(SPEC `0` PASTECART_VEC); IN_UNIV] THEN REWRITE_TAC[IN_ELIM_THM; PASTECART_INJ; UNWIND_THM1; PASTECART_ADD; GSYM PASTECART_CMUL] THEN MESON_TAC[VECTOR_MUL_LZERO]);;
(* ------------------------------------------------------------------------- *) (* Notion of dimension. *) (* ------------------------------------------------------------------------- *)
let dim = new_definition
  `dim v = @n. ?b. b SUBSET v /\ independent b /\ v SUBSET (span b) /\
                   b HAS_SIZE n`;;
let BASIS_EXISTS = 
prove (`!v. ?b. b SUBSET v /\ independent b /\ v SUBSET (span b) /\ b HAS_SIZE (dim v)`,
GEN_TAC THEN REWRITE_TAC[dim] THEN CONV_TAC SELECT_CONV THEN MESON_TAC[MAXIMAL_INDEPENDENT_SUBSET; HAS_SIZE; INDEPENDENT_BOUND]);;
let BASIS_EXISTS_FINITE = 
prove (`!v. ?b. FINITE b /\ b SUBSET v /\ independent b /\ v SUBSET (span b) /\ b HAS_SIZE (dim v)`,
let BASIS_SUBSPACE_EXISTS = 
prove (`!s:real^N->bool. subspace s ==> ?b. FINITE b /\ b SUBSET s /\ independent b /\ span b = s /\ b HAS_SIZE dim s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` BASIS_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN ASM_MESON_TAC[SPAN_EQ_SELF; SPAN_MONO; INDEPENDENT_IMP_FINITE]);;
(* ------------------------------------------------------------------------- *) (* Consequences of independence or spanning for cardinality. *) (* ------------------------------------------------------------------------- *)
let INDEPENDENT_CARD_LE_DIM = 
prove (`!v b:real^N->bool. b SUBSET v /\ independent b ==> FINITE b /\ CARD(b) <= dim v`,
let SPAN_CARD_GE_DIM = 
prove (`!v b:real^N->bool. v SUBSET (span b) /\ FINITE b ==> dim(v) <= CARD(b)`,
let BASIS_CARD_EQ_DIM = 
prove (`!v b. b SUBSET v /\ v SUBSET (span b) /\ independent b ==> FINITE b /\ (CARD b = dim v)`,
let BASIS_HAS_SIZE_DIM = 
prove (`!v b. independent b /\ span b = v ==> b HAS_SIZE (dim v)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_SIZE] THEN MATCH_MP_TAC BASIS_CARD_EQ_DIM THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[SPAN_INC]);;
let DIM_UNIQUE = 
prove (`!v b. b SUBSET v /\ v SUBSET (span b) /\ independent b /\ b HAS_SIZE n ==> (dim v = n)`,
MESON_TAC[BASIS_CARD_EQ_DIM; HAS_SIZE]);;
let DIM_LE_CARD = 
prove (`!s. FINITE s ==> dim s <= CARD s`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SPAN_CARD_GE_DIM THEN ASM_REWRITE_TAC[SPAN_INC; SUBSET_REFL]);;
(* ------------------------------------------------------------------------- *) (* More lemmas about dimension. *) (* ------------------------------------------------------------------------- *)
let DIM_UNIV = 
prove (`dim(:real^N) = dimindex(:N)`,
MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `{basis i :real^N | 1 <= i /\ i <= dimindex(:N)}` THEN REWRITE_TAC[SUBSET_UNIV; SPAN_STDBASIS; HAS_SIZE_STDBASIS; INDEPENDENT_STDBASIS]);;
let DIM_SUBSET = 
prove (`!s t:real^N->bool. s SUBSET t ==> dim(s) <= dim(t)`,
let DIM_SUBSET_UNIV = 
prove (`!s:real^N->bool. dim(s) <= dimindex(:N)`,
GEN_TAC THEN REWRITE_TAC[GSYM DIM_UNIV] THEN MATCH_MP_TAC DIM_SUBSET THEN REWRITE_TAC[SUBSET_UNIV]);;
let BASIS_HAS_SIZE_UNIV = 
prove (`!b. independent b /\ span b = (:real^N) ==> b HAS_SIZE (dimindex(:N))`,
REWRITE_TAC[GSYM DIM_UNIV; BASIS_HAS_SIZE_DIM]);;
(* ------------------------------------------------------------------------- *) (* Converses to those. *) (* ------------------------------------------------------------------------- *)
let CARD_GE_DIM_INDEPENDENT = 
prove (`!v b:real^N->bool. b SUBSET v /\ independent b /\ dim v <= CARD(b) ==> v SUBSET (span b)`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!a:real^N. ~(a IN v /\ ~(a IN span b))` MP_TAC THENL [ALL_TAC; SET_TAC[]] THEN X_GEN_TAC `a:real^N` THEN STRIP_TAC THEN SUBGOAL_THEN `independent((a:real^N) INSERT b)` ASSUME_TAC THENL [ASM_MESON_TAC[INDEPENDENT_INSERT]; ALL_TAC] THEN MP_TAC(ISPECL [`v:real^N->bool`; `(a:real^N) INSERT b`] INDEPENDENT_CARD_LE_DIM) THEN ASM_SIMP_TAC[INSERT_SUBSET; CARD_CLAUSES; INDEPENDENT_BOUND] THEN ASM_MESON_TAC[SPAN_SUPERSET; SUBSET; ARITH_RULE `x <= y ==> ~(SUC y <= x)`]);;
let CARD_LE_DIM_SPANNING = 
prove (`!v b:real^N->bool. v SUBSET (span b) /\ FINITE b /\ CARD(b) <= dim v ==> independent b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[independent; dependent] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `dim(v:real^N->bool) <= CARD(b DELETE (a:real^N))` MP_TAC THENL [ALL_TAC; ASM_SIMP_TAC[CARD_DELETE] THEN MATCH_MP_TAC (ARITH_RULE `b <= n /\ ~(b = 0) ==> ~(n <= b - 1)`) THEN ASM_SIMP_TAC[CARD_EQ_0] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY]] THEN MATCH_MP_TAC SPAN_CARD_GE_DIM THEN ASM_SIMP_TAC[FINITE_DELETE] THEN REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_TRANS THEN EXISTS_TAC `a:real^N` THEN ASM_SIMP_TAC[SET_RULE `a IN b ==> (a INSERT (b DELETE a) = b)`] THEN ASM_MESON_TAC[SUBSET]);;
let CARD_EQ_DIM = 
prove (`!v b. b SUBSET v /\ b HAS_SIZE (dim v) ==> (independent b <=> v SUBSET (span b))`,
REWRITE_TAC[HAS_SIZE; GSYM LE_ANTISYM] THEN MESON_TAC[CARD_LE_DIM_SPANNING; CARD_GE_DIM_INDEPENDENT]);;
(* ------------------------------------------------------------------------- *) (* More general size bound lemmas. *) (* ------------------------------------------------------------------------- *)
let INDEPENDENT_BOUND_GENERAL = 
prove (`!s:real^N->bool. independent s ==> FINITE s /\ CARD(s) <= dim(s)`,
let DEPENDENT_BIGGERSET_GENERAL = 
prove (`!s:real^N->bool. (FINITE s ==> CARD(s) > dim(s)) ==> dependent s`,
MP_TAC INDEPENDENT_BOUND_GENERAL THEN MATCH_MP_TAC MONO_FORALL THEN REWRITE_TAC[GT; GSYM NOT_LE; independent] THEN MESON_TAC[]);;
let DIM_SPAN = 
prove (`!s:real^N->bool. dim(span s) = dim s`,
GEN_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC DIM_SUBSET THEN MESON_TAC[SUBSET; SPAN_SUPERSET]] THEN MP_TAC(ISPEC `s:real^N->bool` BASIS_EXISTS) THEN REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC SPAN_CARD_GE_DIM THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [GSYM SPAN_SPAN] THEN MATCH_MP_TAC SPAN_MONO THEN ASM_REWRITE_TAC[]);;
let DIM_INSERT_0 = 
prove (`!s:real^N->bool. dim(vec 0 INSERT s) = dim s`,
ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN REWRITE_TAC[SPAN_INSERT_0]);;
let DIM_EQ_CARD = 
prove (`!s:real^N->bool. independent s ==> dim s = CARD s`,
REPEAT STRIP_TAC THEN MP_TAC (ISPECL [`span s:real^N->bool`; `s:real^N->bool`] BASIS_CARD_EQ_DIM) THEN ASM_SIMP_TAC[SUBSET_REFL; SPAN_INC; DIM_SPAN]);;
let SUBSET_LE_DIM = 
prove (`!s t:real^N->bool. s SUBSET (span t) ==> dim s <= dim t`,
MESON_TAC[DIM_SPAN; DIM_SUBSET]);;
let SPAN_EQ_DIM = 
prove (`!s t. span s = span t ==> dim s = dim t`,
MESON_TAC[DIM_SPAN]);;
let SPANS_IMAGE = 
prove (`!f b v. linear f /\ v SUBSET (span b) ==> (IMAGE f v) SUBSET span(IMAGE f b)`,
let DIM_LINEAR_IMAGE_LE = 
prove (`!f:real^M->real^N s. linear f ==> dim(IMAGE f s) <= dim s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^M->bool` BASIS_EXISTS) THEN REWRITE_TAC[HAS_SIZE] THEN STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(IMAGE (f:real^M->real^N) b)` THEN ASM_SIMP_TAC[CARD_IMAGE_LE] THEN MATCH_MP_TAC SPAN_CARD_GE_DIM THEN ASM_MESON_TAC[SPAN_LINEAR_IMAGE; SPANS_IMAGE; SUBSET_IMAGE; FINITE_IMAGE]);;
(* ------------------------------------------------------------------------- *) (* Some stepping theorems. *) (* ------------------------------------------------------------------------- *)
let DIM_EMPTY = 
prove (`dim({}:real^N->bool) = 0`,
MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `{}:real^N->bool` THEN REWRITE_TAC[SUBSET_REFL; SPAN_EMPTY; INDEPENDENT_EMPTY; HAS_SIZE_0; EMPTY_SUBSET]);;
let DIM_INSERT = 
prove (`!x:real^N s. dim(x INSERT s) = if x IN span s then dim s else dim s + 1`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL [MATCH_MP_TAC SPAN_EQ_DIM THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_MESON_TAC[SPAN_TRANS; SUBSET; SPAN_MONO; IN_INSERT]; ALL_TAC] THEN X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC (ISPEC `span s:real^N->bool` BASIS_EXISTS) THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `(x:real^N) INSERT b` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[INSERT_SUBSET] THEN ASM_MESON_TAC[SUBSET; SPAN_MONO; IN_INSERT; SPAN_SUPERSET]; REWRITE_TAC[SUBSET; SPAN_BREAKDOWN_EQ] THEN ASM_MESON_TAC[SUBSET]; REWRITE_TAC[INDEPENDENT_INSERT] THEN ASM_MESON_TAC[SUBSET; SPAN_SUPERSET; SPAN_MONO; SPAN_SPAN]; RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_SIMP_TAC[HAS_SIZE; CARD_CLAUSES; FINITE_INSERT; ADD1] THEN ASM_MESON_TAC[SUBSET; SPAN_SUPERSET; SPAN_MONO; SPAN_SPAN]]);;
let DIM_SING = 
prove (`!x. dim{x} = if x = vec 0 then 0 else 1`,
REWRITE_TAC[DIM_INSERT; DIM_EMPTY; SPAN_EMPTY; IN_SING; ARITH]);;
let DIM_EQ_0 = 
prove (`!s:real^N->bool. dim s = 0 <=> s SUBSET {vec 0}`,
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [MATCH_MP_TAC(SET_RULE `~(?b. ~(b = a) /\ {b} SUBSET s) ==> s SUBSET {a}`) THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP DIM_SUBSET); MATCH_MP_TAC(ARITH_RULE `!m. m = 0 /\ n <= m ==> n = 0`) THEN EXISTS_TAC `dim{vec 0:real^N}` THEN ASM_SIMP_TAC[DIM_SUBSET]] THEN ASM_REWRITE_TAC[DIM_SING; ARITH]);;
(* ------------------------------------------------------------------------- *) (* Choosing a subspace of a given dimension. *) (* ------------------------------------------------------------------------- *)
let CHOOSE_SUBSPACE_OF_SUBSPACE = 
prove (`!s:real^N->bool n. n <= dim s ==> ?t. subspace t /\ t SUBSET span s /\ dim t = n`,
GEN_TAC THEN INDUCT_TAC THENL [DISCH_TAC THEN EXISTS_TAC `{vec 0:real^N}` THEN REWRITE_TAC[SUBSPACE_TRIVIAL; DIM_SING; SING_SUBSET; SPAN_0]; DISCH_THEN(fun th -> POP_ASSUM MP_TAC THEN ASSUME_TAC th) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `span (s:real^N->bool) SUBSET span t` THENL [SUBGOAL_THEN `dim(s:real^N->bool) = dim(t:real^N->bool)` MP_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN MATCH_MP_TAC SPAN_EQ_DIM THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN ASM_REWRITE_TAC[SUBSPACE_SPAN]; FIRST_ASSUM(X_CHOOSE_THEN `y:real^N` STRIP_ASSUME_TAC o MATCH_MP(SET_RULE `~(s SUBSET t) ==> ?a. a IN s /\ ~(a IN t)`)) THEN EXISTS_TAC `span((y:real^N) INSERT t)` THEN REWRITE_TAC[SUBSPACE_SPAN] THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN ASM_REWRITE_TAC[SUBSPACE_SPAN] THEN ASM SET_TAC[]; ASM_REWRITE_TAC[DIM_SPAN; DIM_INSERT; ADD1]]]]);;
(* ------------------------------------------------------------------------- *) (* Relation between bases and injectivity/surjectivity of map. *) (* ------------------------------------------------------------------------- *)
let SPANNING_SURJECTIVE_IMAGE = 
prove (`!f:real^M->real^N s. UNIV SUBSET (span s) /\ linear f /\ (!y. ?x. f(x) = y) ==> UNIV SUBSET span(IMAGE f s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `IMAGE (f:real^M->real^N) UNIV` THEN ASM_SIMP_TAC[SPANS_IMAGE] THEN REWRITE_TAC[SUBSET; IN_UNIV; IN_IMAGE] THEN ASM_MESON_TAC[]);;
let INDEPENDENT_INJECTIVE_IMAGE_GEN = 
prove (`!f:real^M->real^N s. independent s /\ linear f /\ (!x y. x IN span s /\ y IN span s /\ f(x) = f(y) ==> x = y) ==> independent (IMAGE f s)`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[independent; DEPENDENT_EXPLICIT] THEN REWRITE_TAC[CONJ_ASSOC; FINITE_SUBSET_IMAGE] THEN REWRITE_TAC[MESON[] `(?s u. ((?t. p t /\ s = f t) /\ q s u) /\ r s u) <=> (?t u. p t /\ q (f t) u /\ r (f t) u)`] THEN REWRITE_TAC[EXISTS_IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`t:real^M->bool`; `u:real^N->real`] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MAP_EVERY EXISTS_TAC [`t:real^M->bool`; `(u:real^N->real) o (f:real^M->real^N)`] THEN ASM_REWRITE_TAC[o_THM] THEN FIRST_ASSUM MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC SPAN_VSUM THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[]; REWRITE_TAC[SPAN_0]; ASM_SIMP_TAC[LINEAR_VSUM] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP LINEAR_0) THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN CONV_TAC SYM_CONV THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN ASM_SIMP_TAC[o_DEF; LINEAR_CMUL] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[SPAN_SUPERSET; SUBSET]]);;
let INDEPENDENT_INJECTIVE_IMAGE = 
prove (`!f:real^M->real^N s. independent s /\ linear f /\ (!x y. (f(x) = f(y)) ==> (x = y)) ==> independent (IMAGE f s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INDEPENDENT_INJECTIVE_IMAGE_GEN THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Picking an orthogonal replacement for a spanning set. *) (* ------------------------------------------------------------------------- *)
let VECTOR_SUB_PROJECT_ORTHOGONAL = 
prove (`!b:real^N x. b dot (x - ((b dot x) / (b dot b)) % b) = &0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `b = vec 0 :real^N` THENL [ASM_REWRITE_TAC[DOT_LZERO]; ALL_TAC] THEN ASM_SIMP_TAC[DOT_RSUB; DOT_RMUL] THEN ASM_SIMP_TAC[REAL_SUB_REFL; REAL_DIV_RMUL; DOT_EQ_0]);;
let BASIS_ORTHOGONAL = 
prove (`!b:real^N->bool. FINITE b ==> ?c. FINITE c /\ CARD c <= CARD b /\ span c = span b /\ pairwise orthogonal c`,
REWRITE_TAC[pairwise; orthogonal] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [EXISTS_TAC `{}:real^N->bool` THEN REWRITE_TAC[FINITE_RULES; NOT_IN_EMPTY; LE_REFL]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) STRIP_ASSUME_TAC) THEN EXISTS_TAC `(a - vsum c (\x. ((x dot a) / (x dot x)) % x):real^N) INSERT c` THEN ASM_SIMP_TAC[FINITE_RULES; CARD_CLAUSES] THEN REPEAT CONJ_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[EXTENSION; SPAN_BREAKDOWN_EQ] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[VECTOR_SUB_LDISTRIB] THEN REWRITE_TAC[VECTOR_ARITH `a - (x - y):real^N = y + (a - x)`] THEN MATCH_MP_TAC SPAN_ADD_EQ THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_VSUM THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN ASM_SIMP_TAC[SPAN_SUPERSET]; REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[]; FIRST_X_ASSUM SUBST_ALL_TAC; FIRST_X_ASSUM SUBST_ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[DOT_LSUB; DOT_RSUB; REAL_SUB_0] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (SET_RULE `x IN s ==> s = x INSERT (s DELETE x)`)) THEN ASM_SIMP_TAC[VSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN REWRITE_TAC[DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL] THEN MATCH_MP_TAC(REAL_ARITH `s = &0 /\ a = b ==> b = a + s`) THEN ASM_SIMP_TAC[DOT_LSUM; DOT_RSUM; FINITE_DELETE] THEN (CONJ_TAC THENL [MATCH_MP_TAC SUM_EQ_0 THEN ASM_SIMP_TAC[DOT_LMUL; DOT_RMUL; IN_DELETE; REAL_MUL_RZERO; REAL_MUL_LZERO]; W(MP_TAC o PART_MATCH (lhand o rand) REAL_DIV_RMUL o lhand o snd) THEN REWRITE_TAC[DOT_SYM] THEN MATCH_MP_TAC(TAUT `(p ==> q) ==> (~p ==> q) ==> q`) THEN SIMP_TAC[] THEN SIMP_TAC[DOT_EQ_0; DOT_RZERO; DOT_LZERO] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO]])]);;
let ORTHOGONAL_BASIS_EXISTS = 
prove (`!v:real^N->bool. ?b. independent b /\ b SUBSET span v /\ v SUBSET span b /\ b HAS_SIZE dim v /\ pairwise orthogonal b`,
GEN_TAC THEN MP_TAC(ISPEC `v:real^N->bool` BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(SPEC `b:real^N->bool` BASIS_ORTHOGONAL) THEN ANTS_TAC THENL [ASM_MESON_TAC[HAS_SIZE]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC CARD_LE_DIM_SPANNING THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `span(v):real^N->bool` THEN CONJ_TAC THENL [ASM_MESON_TAC[SPAN_SPAN; SPAN_MONO]; ASM_MESON_TAC[LE_TRANS; HAS_SIZE; DIM_SPAN]]; ASM_MESON_TAC[SUBSET_TRANS; SPAN_INC; SPAN_SPAN; SPAN_MONO]; RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_REWRITE_TAC[HAS_SIZE; GSYM LE_ANTISYM] THEN CONJ_TAC THENL [ASM_MESON_TAC[LE_TRANS]; ALL_TAC] THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN MATCH_MP_TAC SPAN_CARD_GE_DIM THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SPAN_SPAN; SPAN_MONO; SUBSET_TRANS; SPAN_INC]]);;
let SPAN_EQ = 
prove (`!s t. span s = span t <=> s SUBSET span t /\ t SUBSET span s`,
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN MESON_TAC[SUBSET_TRANS; SPAN_SPAN; SPAN_MONO; SPAN_INC]);;
let SPAN_EQ_INSERT = 
prove (`!s x. span(x INSERT s) = span s <=> x IN span s`,
REWRITE_TAC[SPAN_EQ; INSERT_SUBSET] THEN MESON_TAC[SPAN_INC; SUBSET; SET_RULE `s SUBSET (x INSERT s)`]);;
let SPAN_SPECIAL_SCALE = 
prove (`!s a x:real^N. span((a % x) INSERT s) = if a = &0 then span s else span(x INSERT s)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO; SPAN_INSERT_0] THEN REWRITE_TAC[SPAN_EQ; SUBSET; FORALL_IN_INSERT] THEN SIMP_TAC[SPAN_MUL; SPAN_SUPERSET; IN_INSERT] THEN REWRITE_TAC[SPAN_BREAKDOWN_EQ] THEN EXISTS_TAC `inv a:real` THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; VECTOR_MUL_LID] THEN REWRITE_TAC[SPAN_0; VECTOR_SUB_REFL]);;
(* ------------------------------------------------------------------------- *) (* We can extend a linear basis-basis injection to the whole set. *) (* ------------------------------------------------------------------------- *)
let LINEAR_INDEP_IMAGE_LEMMA = 
prove (`!f b. linear(f:real^M->real^N) /\ FINITE b /\ independent (IMAGE f b) /\ (!x y. x IN b /\ y IN b /\ (f x = f y) ==> (x = y)) ==> !x. x IN span b ==> (f(x) = vec 0) ==> (x = vec 0)`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN GEN_REWRITE_TAC (BINDER_CONV o RAND_CONV) [IMP_IMP] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [SIMP_TAC[IN_SING; SPAN_EMPTY]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:real^M`; `b:real^M->bool`] THEN STRIP_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ANTS_TAC THENL [ASM_MESON_TAC[INDEPENDENT_MONO; IMAGE_CLAUSES; SUBSET; IN_INSERT]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN MP_TAC(ISPECL [`a:real^M`; `(a:real^M) INSERT b`; `x:real^M`] SPAN_BREAKDOWN) THEN ASM_REWRITE_TAC[IN_INSERT] THEN SIMP_TAC[ASSUME `~((a:real^M) IN b)`; SET_RULE `~(a IN b) ==> ((a INSERT b) DELETE a = b)`] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN SUBGOAL_THEN `(f:real^M->real^N)(x - k % a) IN span(IMAGE f b)` MP_TAC THENL [ASM_MESON_TAC[SPAN_LINEAR_IMAGE; IN_IMAGE]; ALL_TAC] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_SUB th]) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_CMUL th]) THEN ASM_REWRITE_TAC[VECTOR_ARITH `vec 0 - k % x = (--k) % x`] THEN ASM_CASES_TAC `k = &0` THENL [ASM_MESON_TAC[VECTOR_ARITH `x - &0 % y = x`]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `--inv(k)` o MATCH_MP SPAN_MUL) THEN REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN SIMP_TAC[REAL_NEGNEG; REAL_MUL_LINV; ASSUME `~(k = &0)`] THEN REWRITE_TAC[VECTOR_MUL_LID] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [independent]) THEN REWRITE_TAC[dependent; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `(f:real^M->real^N) a`) THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) (a INSERT b) DELETE f a = IMAGE f ((a INSERT b) DELETE a)` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE; IN_INSERT] THEN ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN ASM_REWRITE_TAC[DELETE_INSERT] THEN SIMP_TAC[SET_RULE `~(a IN b) ==> (b DELETE a = b)`; ASSUME `~(a:real^M IN b)`] THEN SIMP_TAC[IMAGE_CLAUSES; IN_INSERT]);;
(* ------------------------------------------------------------------------- *) (* We can extend a linear mapping from basis. *) (* ------------------------------------------------------------------------- *)
let LINEAR_INDEPENDENT_EXTEND_LEMMA = 
prove (`!f b. FINITE b ==> independent b ==> ?g:real^M->real^N. (!x y. x IN span b /\ y IN span b ==> (g(x + y) = g(x) + g(y))) /\ (!x c. x IN span b ==> (g(c % x) = c % g(x))) /\ (!x. x IN b ==> (g x = f x))`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_IN_EMPTY; INDEPENDENT_INSERT] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN EXISTS_TAC `(\x. vec 0):real^M->real^N` THEN SIMP_TAC[SPAN_EMPTY] THEN REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC; ALL_TAC] THEN SIMP_TAC[] THEN MAP_EVERY X_GEN_TAC [`a:real^M`; `b:real^M->bool`] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC) THEN ABBREV_TAC `h = \z:real^M. @k. (z - k % a) IN span b` THEN SUBGOAL_THEN `!z:real^M. z IN span(a INSERT b) ==> (z - h(z) % a) IN span(b) /\ !k. (z - k % a) IN span(b) ==> (k = h(z))` MP_TAC THENL [GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [EXPAND_TAC "h" THEN CONV_TAC SELECT_CONV THEN ASM_MESON_TAC[SPAN_BREAKDOWN_EQ]; ALL_TAC] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SPAN_SUB) THEN REWRITE_TAC[VECTOR_ARITH `(z - a % v) - (z - b % v) = (b - a) % v`] THEN ASM_CASES_TAC `k = (h:real^M->real) z` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `inv(k - (h:real^M->real) z)` o MATCH_MP SPAN_MUL) THEN ASM_SIMP_TAC[REAL_MUL_LINV; VECTOR_MUL_ASSOC; REAL_SUB_0] THEN ASM_REWRITE_TAC[VECTOR_MUL_LID]; ALL_TAC] THEN REWRITE_TAC[TAUT `(a ==> b /\ c) <=> (a ==> b) /\ (a ==> c)`] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN GEN_REWRITE_TAC LAND_CONV [FORALL_AND_THM] THEN STRIP_TAC THEN EXISTS_TAC `\z:real^M. h(z) % (f:real^M->real^N)(a) + g(z - h(z) % a)` THEN REPEAT CONJ_TAC THENL [MAP_EVERY X_GEN_TAC [`x:real^M`; `y:real^M`] THEN STRIP_TAC THEN SUBGOAL_THEN `(h:real^M->real)(x + y) = h(x) + h(y)` ASSUME_TAC THENL [CONV_TAC SYM_CONV THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[VECTOR_ARITH `(x + y) - (k + l) % a = (x - k % a) + (y - l % a)`] THEN CONJ_TAC THEN MATCH_MP_TAC SPAN_ADD THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[VECTOR_ARITH `(x + y) - (k + l) % a = (x - k % a) + (y - l % a)`] THEN ASM_SIMP_TAC[] THEN VECTOR_ARITH_TAC; MAP_EVERY X_GEN_TAC [`x:real^M`; `c:real`] THEN STRIP_TAC THEN SUBGOAL_THEN `(h:real^M->real)(c % x) = c * h(x)` ASSUME_TAC THENL [CONV_TAC SYM_CONV THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[VECTOR_ARITH `c % x - (c * k) % a = c % (x - k % a)`] THEN CONJ_TAC THEN MATCH_MP_TAC SPAN_MUL THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[VECTOR_ARITH `c % x - (c * k) % a = c % (x - k % a)`] THEN ASM_SIMP_TAC[] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN X_GEN_TAC `x:real^M` THEN REWRITE_TAC[IN_INSERT] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THENL [SUBGOAL_THEN `&1 = h(a:real^M)` (SUBST1_TAC o SYM) THENL [FIRST_X_ASSUM MATCH_MP_TAC; ALL_TAC] THEN REWRITE_TAC[VECTOR_ARITH `a - &1 % a = vec 0`; SPAN_0] THENL [ASM_MESON_TAC[SPAN_SUPERSET; SUBSET; IN_INSERT]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`vec 0:real^M`; `vec 0:real^M`]) THEN REWRITE_TAC[SPAN_0; VECTOR_ADD_LID] THEN REWRITE_TAC[VECTOR_ARITH `(a = a + a) <=> (a = vec 0)`] THEN DISCH_THEN SUBST1_TAC THEN VECTOR_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&0 = h(x:real^M)` (SUBST1_TAC o SYM) THENL [FIRST_X_ASSUM MATCH_MP_TAC; ALL_TAC] THEN REWRITE_TAC[VECTOR_ADD_LID; VECTOR_MUL_LZERO; VECTOR_SUB_RZERO] THEN ASM_MESON_TAC[SUBSET; IN_INSERT; SPAN_SUPERSET]);;
let LINEAR_INDEPENDENT_EXTEND = 
prove (`!f b. independent b ==> ?g:real^M->real^N. linear g /\ (!x. x IN b ==> (g x = f x))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`b:real^M->bool`; `(:real^M)`] MAXIMAL_INDEPENDENT_SUBSET_EXTEND) THEN ASM_REWRITE_TAC[SUBSET_UNIV; UNIV_SUBSET] THEN REWRITE_TAC[EXTENSION; IN_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `c:real^M->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`f:real^M->real^N`; `c:real^M->bool`] LINEAR_INDEPENDENT_EXTEND_LEMMA) THEN ASM_SIMP_TAC[INDEPENDENT_BOUND; linear] THEN ASM_MESON_TAC[SUBSET]);;
(* ------------------------------------------------------------------------- *) (* Linear functions are equal on a subspace if they are on a spanning set. *) (* ------------------------------------------------------------------------- *)
let SUBSPACE_KERNEL = 
prove (`!f. linear f ==> subspace {x | f(x) = vec 0}`,
REWRITE_TAC[subspace; IN_ELIM_THM] THEN SIMP_TAC[LINEAR_ADD; LINEAR_CMUL; VECTOR_ADD_LID; VECTOR_MUL_RZERO] THEN MESON_TAC[LINEAR_0]);;
let LINEAR_EQ_0_SPAN = 
prove (`!f:real^M->real^N b. linear f /\ (!x. x IN b ==> f(x) = vec 0) ==> !x. x IN span(b) ==> f(x) = vec 0`,
REPEAT GEN_TAC THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN MATCH_MP_TAC SPAN_INDUCT THEN ASM_REWRITE_TAC[IN] THEN MP_TAC(ISPEC `f:real^M->real^N` SUBSPACE_KERNEL) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM]);;
let LINEAR_EQ_0 = 
prove (`!f b s. linear f /\ s SUBSET (span b) /\ (!x. x IN b ==> f(x) = vec 0) ==> !x. x IN s ==> f(x) = vec 0`,
MESON_TAC[LINEAR_EQ_0_SPAN; SUBSET]);;
let LINEAR_EQ = 
prove (`!f g b s. linear f /\ linear g /\ s SUBSET (span b) /\ (!x. x IN b ==> f(x) = g(x)) ==> !x. x IN s ==> f(x) = g(x)`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN STRIP_TAC THEN MATCH_MP_TAC LINEAR_EQ_0 THEN ASM_MESON_TAC[LINEAR_COMPOSE_SUB]);;
let LINEAR_EQ_STDBASIS = 
prove (`!f:real^M->real^N g. linear f /\ linear g /\ (!i. 1 <= i /\ i <= dimindex(:M) ==> f(basis i) = g(basis i)) ==> f = g`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x. x IN UNIV ==> (f:real^M->real^N) x = g x` (fun th -> MP_TAC th THEN REWRITE_TAC[FUN_EQ_THM; IN_UNIV]) THEN MATCH_MP_TAC LINEAR_EQ THEN EXISTS_TAC `{basis i :real^M | 1 <= i /\ i <= dimindex(:M)}` THEN ASM_REWRITE_TAC[SPAN_STDBASIS; SUBSET_REFL; IN_ELIM_THM] THEN ASM_MESON_TAC[]);;
let SUBSPACE_LINEAR_FIXED_POINTS = 
prove (`!f:real^N->real^N. linear f ==> subspace {x | f(x) = x}`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN MATCH_MP_TAC SUBSPACE_KERNEL THEN ASM_SIMP_TAC[LINEAR_COMPOSE_SUB; LINEAR_ID]);;
(* ------------------------------------------------------------------------- *) (* Similar results for bilinear functions. *) (* ------------------------------------------------------------------------- *)
let BILINEAR_EQ = 
prove (`!f:real^M->real^N->real^P g b c s. bilinear f /\ bilinear g /\ s SUBSET (span b) /\ t SUBSET (span c) /\ (!x y. x IN b /\ y IN c ==> f x y = g x y) ==> !x y. x IN s /\ y IN t ==> f x y = g x y`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x:real^M. x IN span b ==> !y:real^N. y IN span c ==> (f x y :real^P = g x y)` (fun th -> ASM_MESON_TAC[th; SUBSET]) THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[subspace; IN_ELIM_THM] THEN CONJ_TAC THENL [GEN_TAC THEN DISCH_TAC; ASM_SIMP_TAC[BILINEAR_LADD; BILINEAR_LMUL] THEN ASM_MESON_TAC[BILINEAR_LZERO]] THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[subspace; IN_ELIM_THM] THEN ASM_SIMP_TAC[BILINEAR_RADD; BILINEAR_RMUL] THEN ASM_MESON_TAC[BILINEAR_RZERO]);;
let BILINEAR_EQ_STDBASIS = 
prove (`!f:real^M->real^N->real^P g. bilinear f /\ bilinear g /\ (!i j. 1 <= i /\ i <= dimindex(:M) /\ 1 <= j /\ j <= dimindex(:N) ==> f (basis i) (basis j) = g (basis i) (basis j)) ==> f = g`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x y. x IN UNIV /\ y IN UNIV ==> (f:real^M->real^N->real^P) x y = g x y` (fun th -> MP_TAC th THEN REWRITE_TAC[FUN_EQ_THM; IN_UNIV]) THEN MATCH_MP_TAC BILINEAR_EQ THEN EXISTS_TAC `{basis i :real^M | 1 <= i /\ i <= dimindex(:M)}` THEN EXISTS_TAC `{basis i :real^N | 1 <= i /\ i <= dimindex(:N)}` THEN ASM_REWRITE_TAC[SPAN_STDBASIS; SUBSET_REFL; IN_ELIM_THM] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Detailed theorems about left and right invertibility in general case. *) (* ------------------------------------------------------------------------- *)
let LEFT_INVERTIBLE_TRANSP = 
prove (`!A:real^N^M. (?B:real^N^M. B ** transp A = mat 1) <=> (?B:real^M^N. A ** B = mat 1)`,
let RIGHT_INVERTIBLE_TRANSP = 
prove (`!A:real^N^M. (?B:real^N^M. transp A ** B = mat 1) <=> (?B:real^M^N. B ** A = mat 1)`,
let INVERTIBLE_TRANSP = 
prove (`!A:real^N^M. invertible(transp A) <=> invertible A`,
GEN_TAC THEN REWRITE_TAC[invertible] THEN GEN_REWRITE_TAC LAND_CONV [MESON[TRANSP_TRANSP] `(?A:real^M^N. P A) <=> (?A:real^N^M. P(transp A))`] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM TRANSP_MAT] THEN REWRITE_TAC[GSYM MATRIX_TRANSP_MUL; TRANSP_EQ] THEN MESON_TAC[]);;
let LINEAR_INJECTIVE_LEFT_INVERSE = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> ?g. linear g /\ g o f = I`,
REWRITE_TAC[INJECTIVE_LEFT_INVERSE] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?h. linear(h:real^N->real^M) /\ !x. x IN IMAGE (f:real^M->real^N) {basis i | 1 <= i /\ i <= dimindex(:M)} ==> h x = g x` MP_TAC THENL [MATCH_MP_TAC LINEAR_INDEPENDENT_EXTEND THEN MATCH_MP_TAC INDEPENDENT_INJECTIVE_IMAGE THEN ASM_MESON_TAC[INJECTIVE_LEFT_INVERSE; INDEPENDENT_STDBASIS]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:real^N->real^M` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LINEAR_EQ_STDBASIS THEN ASM_SIMP_TAC[I_DEF; LINEAR_COMPOSE; LINEAR_ID; o_THM] THEN ASM_MESON_TAC[]]);;
let LINEAR_SURJECTIVE_RIGHT_INVERSE = 
prove (`!f:real^M->real^N. linear f /\ (!y. ?x. f x = y) ==> ?g. linear g /\ f o g = I`,
REWRITE_TAC[SURJECTIVE_RIGHT_INVERSE] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?h. linear(h:real^N->real^M) /\ !x. x IN {basis i | 1 <= i /\ i <= dimindex(:N)} ==> h x = g x` MP_TAC THENL [MATCH_MP_TAC LINEAR_INDEPENDENT_EXTEND THEN REWRITE_TAC[INDEPENDENT_STDBASIS]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:real^N->real^M` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LINEAR_EQ_STDBASIS THEN ASM_SIMP_TAC[I_DEF; LINEAR_COMPOSE; LINEAR_ID; o_THM] THEN ASM_MESON_TAC[]]);;
let MATRIX_LEFT_INVERTIBLE_INJECTIVE = 
prove (`!A:real^N^M. (?B:real^M^N. B ** A = mat 1) <=> !x y:real^N. A ** x = A ** y ==> x = y`,
GEN_TAC THEN EQ_TAC THENL [STRIP_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `\x:real^M. (B:real^M^N) ** x`) THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]; DISCH_TAC THEN MP_TAC(ISPEC `\x:real^N. (A:real^N^M) ** x` LINEAR_INJECTIVE_LEFT_INVERSE) THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR; FUN_EQ_THM; I_THM; o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `matrix(g):real^M^N` THEN REWRITE_TAC[MATRIX_EQ; MATRIX_VECTOR_MUL_LID] THEN ASM_MESON_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_WORKS]]);;
let MATRIX_LEFT_INVERTIBLE_KER = 
prove (`!A:real^N^M. (?B:real^M^N. B ** A = mat 1) <=> !x. A ** x = vec 0 ==> x = vec 0`,
GEN_TAC THEN REWRITE_TAC[MATRIX_LEFT_INVERTIBLE_INJECTIVE] THEN MATCH_MP_TAC LINEAR_INJECTIVE_0 THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR]);;
let MATRIX_RIGHT_INVERTIBLE_SURJECTIVE = 
prove (`!A:real^N^M. (?B:real^M^N. A ** B = mat 1) <=> !y. ?x. A ** x = y`,
GEN_TAC THEN EQ_TAC THENL [STRIP_TAC THEN X_GEN_TAC `y:real^M` THEN EXISTS_TAC `(B:real^M^N) ** (y:real^M)` THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]; DISCH_TAC THEN MP_TAC(ISPEC `\x:real^N. (A:real^N^M) ** x` LINEAR_SURJECTIVE_RIGHT_INVERSE) THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR; FUN_EQ_THM; I_THM; o_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `matrix(g):real^M^N` THEN REWRITE_TAC[MATRIX_EQ; MATRIX_VECTOR_MUL_LID] THEN ASM_MESON_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_WORKS]]);;
let MATRIX_LEFT_INVERTIBLE_INDEPENDENT_COLUMNS = 
prove (`!A:real^N^M. (?B:real^M^N. B ** A = mat 1) <=> !c. vsum(1..dimindex(:N)) (\i. c(i) % column i A) = vec 0 ==> !i. 1 <= i /\ i <= dimindex(:N) ==> c(i) = &0`,
GEN_TAC THEN REWRITE_TAC[MATRIX_LEFT_INVERTIBLE_KER; MATRIX_MUL_VSUM] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `c:num->real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(lambda i. c(i)):real^N`); X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\i. (x:real^N)$i`)] THEN ASM_SIMP_TAC[LAMBDA_BETA; CART_EQ; VEC_COMPONENT]);;
let MATRIX_RIGHT_INVERTIBLE_INDEPENDENT_ROWS = 
prove (`!A:real^N^M. (?B:real^M^N. A ** B = mat 1) <=> !c. vsum(1..dimindex(:M)) (\i. c(i) % row i A) = vec 0 ==> !i. 1 <= i /\ i <= dimindex(:M) ==> c(i) = &0`,
ONCE_REWRITE_TAC[GSYM LEFT_INVERTIBLE_TRANSP] THEN REWRITE_TAC[MATRIX_LEFT_INVERTIBLE_INDEPENDENT_COLUMNS] THEN SIMP_TAC[COLUMN_TRANSP]);;
let MATRIX_RIGHT_INVERTIBLE_SPAN_COLUMNS = 
prove (`!A:real^N^M. (?B:real^M^N. A ** B = mat 1) <=> span(columns A) = (:real^M)`,
GEN_TAC THEN REWRITE_TAC[MATRIX_RIGHT_INVERTIBLE_SURJECTIVE] THEN REWRITE_TAC[MATRIX_MUL_VSUM; EXTENSION; IN_UNIV] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `y:real^M` THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `x:real^N` (SUBST1_TAC o SYM)) THEN MATCH_MP_TAC SPAN_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC(CONJUNCT1 SPAN_CLAUSES) THEN REWRITE_TAC[columns; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SPEC_TAC(`y:real^M`,`y:real^M`) THEN MATCH_MP_TAC SPAN_INDUCT_ALT THEN CONJ_TAC THENL [EXISTS_TAC `vec 0 :real^N` THEN SIMP_TAC[VEC_COMPONENT; VECTOR_MUL_LZERO; VSUM_0]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`c:real`; `y1:real^M`; `y2:real^M`] THEN REWRITE_TAC[columns; IN_ELIM_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `i:num` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `x:real^N` (SUBST1_TAC o SYM))) THEN EXISTS_TAC `(lambda j. if j = i then c + (x:real^N)$i else x$j):real^N` THEN SUBGOAL_THEN `1..dimindex(:N) = i INSERT ((1..dimindex(:N)) DELETE i)` SUBST1_TAC THENL [ASM_MESON_TAC[INSERT_DELETE; IN_NUMSEG]; ALL_TAC] THEN SIMP_TAC[VSUM_CLAUSES; FINITE_DELETE; FINITE_NUMSEG; IN_DELETE] THEN ASM_SIMP_TAC[LAMBDA_BETA; VECTOR_ADD_RDISTRIB; VECTOR_ADD_ASSOC] THEN AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN SIMP_TAC[FINITE_DELETE; IN_DELETE; FINITE_NUMSEG; LAMBDA_BETA; IN_NUMSEG]);;
let MATRIX_LEFT_INVERTIBLE_SPAN_ROWS = 
prove (`!A:real^N^M. (?B:real^M^N. B ** A = mat 1) <=> span(rows A) = (:real^N)`,
(* ------------------------------------------------------------------------- *) (* An injective map real^N->real^N is also surjective. *) (* ------------------------------------------------------------------------- *)
let LINEAR_INJECTIVE_IMP_SURJECTIVE = 
prove (`!f:real^N->real^N. linear f /\ (!x y. (f(x) = f(y)) ==> (x = y)) ==> !y. ?x. f(x) = y`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `(:real^N)` BASIS_EXISTS) THEN REWRITE_TAC[SUBSET_UNIV; HAS_SIZE] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `UNIV SUBSET span(IMAGE (f:real^N->real^N) b)` MP_TAC THENL [MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN ASM_MESON_TAC[INDEPENDENT_INJECTIVE_IMAGE; LE_REFL; SUBSET_UNIV; CARD_IMAGE_INJ]; ASM_SIMP_TAC[SPAN_LINEAR_IMAGE] THEN ASM_MESON_TAC[SUBSET; IN_IMAGE; IN_UNIV]]);;
(* ------------------------------------------------------------------------- *) (* And vice versa. *) (* ------------------------------------------------------------------------- *)
let LINEAR_SURJECTIVE_IMP_INJECTIVE = 
prove (`!f:real^N->real^N. linear f /\ (!y. ?x. f(x) = y) ==> !x y. (f(x) = f(y)) ==> (x = y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPEC `(:real^N)` BASIS_EXISTS) THEN REWRITE_TAC[SUBSET_UNIV; HAS_SIZE] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!x. x IN span b ==> (f:real^N->real^N) x = vec 0 ==> x = vec 0` (fun th -> ASM_MESON_TAC[th; LINEAR_INJECTIVE_0; SUBSET; IN_UNIV]) THEN MATCH_MP_TAC LINEAR_INDEP_IMAGE_LEMMA THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_LE_DIM_SPANNING THEN EXISTS_TAC `(:real^N)` THEN ASM_SIMP_TAC[SUBSET_UNIV; FINITE_IMAGE; SPAN_LINEAR_IMAGE] THEN REWRITE_TAC[SUBSET; IN_UNIV; IN_IMAGE] THEN ASM_MESON_TAC[CARD_IMAGE_LE; SUBSET; IN_UNIV]; ALL_TAC] THEN SUBGOAL_THEN `dim(:real^N) <= CARD(IMAGE (f:real^N->real^N) b)` MP_TAC THENL [MATCH_MP_TAC SPAN_CARD_GE_DIM THEN ASM_SIMP_TAC[SUBSET_UNIV; FINITE_IMAGE] THEN ASM_SIMP_TAC[SPAN_LINEAR_IMAGE] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `IMAGE (f:real^N->real^N) UNIV` THEN ASM_SIMP_TAC[IMAGE_SUBSET] THEN ASM_REWRITE_TAC[SUBSET; IN_IMAGE; IN_UNIV] THEN ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o ISPEC `f:real^N->real^N` o MATCH_MP CARD_IMAGE_LE) THEN ASM_REWRITE_TAC[IMP_IMP; LE_ANTISYM] THEN DISCH_TAC THEN MP_TAC(ISPECL [`b:real^N->bool`; `IMAGE (f:real^N->real^N) b`; `f:real^N->real^N`] SURJECTIVE_IFF_INJECTIVE_GEN) THEN ASM_SIMP_TAC[FINITE_IMAGE; INDEPENDENT_BOUND; SUBSET_REFL] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN MESON_TAC[]);;
let LINEAR_SURJECTIVE_IFF_INJECTIVE = 
prove (`!f:real^N->real^N. linear f ==> ((!y. ?x. f x = y) <=> (!x y. f x = f y ==> x = y))`,
(* ------------------------------------------------------------------------- *) (* Hence either is enough for isomorphism. *) (* ------------------------------------------------------------------------- *)
let LEFT_RIGHT_INVERSE_EQ = 
prove (`!f:A->A g h. f o g = I /\ g o h = I ==> f = h`,
MESON_TAC[o_ASSOC; I_O_ID]);;
let ISOMORPHISM_EXPAND = 
prove (`!f g. f o g = I /\ g o f = I <=> (!x. f(g x) = x) /\ (!x. g(f x) = x)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]);;
let LINEAR_INJECTIVE_ISOMORPHISM = 
prove (`!f:real^N->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> ?f'. linear f' /\ (!x. f'(f x) = x) /\ (!x. f(f' x) = x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM ISOMORPHISM_EXPAND] THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_SURJECTIVE_RIGHT_INVERSE) THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_INJECTIVE_IMP_SURJECTIVE) THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN MESON_TAC[LEFT_RIGHT_INVERSE_EQ]);;
let LINEAR_SURJECTIVE_ISOMORPHISM = 
prove (`!f:real^N->real^N. linear f /\ (!y. ?x. f x = y) ==> ?f'. linear f' /\ (!x. f'(f x) = x) /\ (!x. f(f' x) = x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM ISOMORPHISM_EXPAND] THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_SURJECTIVE_RIGHT_INVERSE) THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_SURJECTIVE_IMP_INJECTIVE) THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN MESON_TAC[LEFT_RIGHT_INVERSE_EQ]);;
(* ------------------------------------------------------------------------- *) (* Left and right inverses are the same for R^N->R^N. *) (* ------------------------------------------------------------------------- *)
let LINEAR_INVERSE_LEFT = 
prove (`!f:real^N->real^N f'. linear f /\ linear f' ==> ((f o f' = I) <=> (f' o f = I))`,
SUBGOAL_THEN `!f:real^N->real^N f'. linear f /\ linear f' /\ (f o f' = I) ==> (f' o f = I)` (fun th -> MESON_TAC[th]) THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `f:real^N->real^N` LINEAR_SURJECTIVE_ISOMORPHISM) THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Moreover, a one-sided inverse is automatically linear. *) (* ------------------------------------------------------------------------- *)
let LEFT_INVERSE_LINEAR = 
prove (`!f g:real^N->real^N. linear f /\ (g o f = I) ==> linear g`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `?h:real^N->real^N. linear h /\ (!x. h(f x) = x) /\ (!x. f(h x) = x)` CHOOSE_TAC THENL [MATCH_MP_TAC LINEAR_INJECTIVE_ISOMORPHISM THEN ASM_MESON_TAC[]; SUBGOAL_THEN `g:real^N->real^N = h` (fun th -> ASM_REWRITE_TAC[th]) THEN REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]]);;
let RIGHT_INVERSE_LINEAR = 
prove (`!f g:real^N->real^N. linear f /\ (f o g = I) ==> linear g`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `?h:real^N->real^N. linear h /\ (!x. h(f x) = x) /\ (!x. f(h x) = x)` CHOOSE_TAC THENL [ASM_MESON_TAC[LINEAR_SURJECTIVE_ISOMORPHISM]; ALL_TAC] THEN SUBGOAL_THEN `g:real^N->real^N = h` (fun th -> ASM_REWRITE_TAC[th]) THEN REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Without (ostensible) constraints on types, though dimensions must match. *) (* ------------------------------------------------------------------------- *)
let LEFT_RIGHT_INVERSE_LINEAR = 
prove (`!f g:real^M->real^N. linear f /\ g o f = I /\ f o g = I ==> linear g`,
REWRITE_TAC[linear; FUN_EQ_THM; o_THM; I_THM] THEN MESON_TAC[]);;
let LINEAR_BIJECTIVE_LEFT_RIGHT_INVERSE = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> ?g. linear g /\ (!x. g(f x) = x) /\ (!y. f(g y) = y)`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BIJECTIVE_LEFT_RIGHT_INVERSE]) THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LEFT_RIGHT_INVERSE_LINEAR THEN EXISTS_TAC `f:real^M->real^N` THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]);;
(* ------------------------------------------------------------------------- *) (* The same result in terms of square matrices. *) (* ------------------------------------------------------------------------- *)
let MATRIX_LEFT_RIGHT_INVERSE = 
prove (`!A:real^N^N A':real^N^N. (A ** A' = mat 1) <=> (A' ** A = mat 1)`,
SUBGOAL_THEN `!A:real^N^N A':real^N^N. (A ** A' = mat 1) ==> (A' ** A = mat 1)` (fun th -> MESON_TAC[th]) THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\x:real^N. A:(real^N^N) ** x` LINEAR_SURJECTIVE_ISOMORPHISM) THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN ANTS_TAC THENL [X_GEN_TAC `x:real^N` THEN EXISTS_TAC `(A':real^N^N) ** (x:real^N)` THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `f':real^N->real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `matrix (f':real^N->real^N) ** (A:real^N^N) = mat 1` MP_TAC THENL [ASM_SIMP_TAC[MATRIX_EQ; MATRIX_WORKS; GSYM MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o AP_TERM `(\m:real^N^N. m ** (A':real^N^N))`) THEN REWRITE_TAC[GSYM MATRIX_MUL_ASSOC] THEN ASM_REWRITE_TAC[MATRIX_MUL_RID; MATRIX_MUL_LID] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Invertibility of matrices and corresponding linear functions. *) (* ------------------------------------------------------------------------- *)
let MATRIX_LEFT_INVERTIBLE = 
prove (`!f:real^M->real^N. linear f ==> ((?B:real^N^M. B ** matrix f = mat 1) <=> (?g. linear g /\ g o f = I))`,
GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL [EXISTS_TAC `\y:real^N. (B:real^N^M) ** y` THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [MATCH_MP MATRIX_VECTOR_MUL th]) THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]; EXISTS_TAC `matrix(g:real^N->real^M)` THEN ASM_SIMP_TAC[GSYM MATRIX_COMPOSE; MATRIX_I]]);;
let MATRIX_RIGHT_INVERTIBLE = 
prove (`!f:real^M->real^N. linear f ==> ((?B:real^N^M. matrix f ** B = mat 1) <=> (?g. linear g /\ f o g = I))`,
GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL [EXISTS_TAC `\y:real^N. (B:real^N^M) ** y` THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [MATCH_MP MATRIX_VECTOR_MUL th]) THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID]; EXISTS_TAC `matrix(g:real^N->real^M)` THEN ASM_SIMP_TAC[GSYM MATRIX_COMPOSE; MATRIX_I]]);;
let INVERTIBLE_LEFT_INVERSE = 
prove (`!A:real^N^N. invertible(A) <=> ?B:real^N^N. B ** A = mat 1`,
MESON_TAC[invertible; MATRIX_LEFT_RIGHT_INVERSE]);;
let INVERTIBLE_RIGHT_INVERSE = 
prove (`!A:real^N^N. invertible(A) <=> ?B:real^N^N. A ** B = mat 1`,
MESON_TAC[invertible; MATRIX_LEFT_RIGHT_INVERSE]);;
let MATRIX_INVERTIBLE = 
prove (`!f:real^N->real^N. linear f ==> (invertible(matrix f) <=> ?g. linear g /\ f o g = I /\ g o f = I)`,
let MATRIX_INV_UNIQUE_LEFT = 
prove (`!A:real^N^N B. A ** B = mat 1 ==> matrix_inv B = A`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MATRIX_INV_UNIQUE THEN ASM_MESON_TAC[MATRIX_LEFT_RIGHT_INVERSE]);;
let MATRIX_INV_UNIQUE_RIGHT = 
prove (`!A:real^N^N B. A ** B = mat 1 ==> matrix_inv A = B`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MATRIX_INV_UNIQUE THEN ASM_MESON_TAC[MATRIX_LEFT_RIGHT_INVERSE]);;
(* ------------------------------------------------------------------------- *) (* Left-invertible linear transformation has a lower bound. *) (* ------------------------------------------------------------------------- *)
let LINEAR_INVERTIBLE_BOUNDED_BELOW_POS = 
prove (`!f:real^M->real^N g. linear f /\ linear g /\ (g o f = I) ==> ?B. &0 < B /\ !x. B * norm(x) <= norm(f x)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `g:real^N->real^M` LINEAR_BOUNDED_POS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `inv B:real` THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN X_GEN_TAC `x:real^M` THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `inv(B) * norm(((g:real^N->real^M) o (f:real^M->real^N)) x)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[I_THM; REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `inv B * x = x / B`] THEN ASM_SIMP_TAC[o_THM; REAL_LE_LDIV_EQ] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[]);;
let LINEAR_INVERTIBLE_BOUNDED_BELOW = 
prove (`!f:real^M->real^N g. linear f /\ linear g /\ (g o f = I) ==> ?B. !x. B * norm(x) <= norm(f x)`,
let LINEAR_INJECTIVE_BOUNDED_BELOW_POS = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> ?B. &0 < B /\ !x. norm(x) * B <= norm(f x)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_MP_TAC LINEAR_INVERTIBLE_BOUNDED_BELOW_POS THEN ASM_MESON_TAC[LINEAR_INJECTIVE_LEFT_INVERSE]);;
(* ------------------------------------------------------------------------- *) (* Preservation of dimension by injective map. *) (* ------------------------------------------------------------------------- *)
let DIM_INJECTIVE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N s. linear f /\ (!x y. f x = f y ==> x = y) ==> dim(IMAGE f s) = dim s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN CONJ_TAC THENL [ASM_MESON_TAC[DIM_LINEAR_IMAGE_LE]; ALL_TAC] THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `dim(IMAGE (g:real^N->real^M) (IMAGE (f:real^M->real^N) s))` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID; LE_REFL]; MATCH_MP_TAC DIM_LINEAR_IMAGE_LE THEN ASM_REWRITE_TAC[]]);;
let LINEAR_INJECTIVE_DIMINDEX_LE = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> dimindex(:M) <= dimindex(:N)`,
REWRITE_TAC[GSYM DIM_UNIV] THEN REPEAT GEN_TAC THEN DISCH_THEN (SUBST1_TAC o SYM o SPEC `(:real^M)` o MATCH_MP DIM_INJECTIVE_LINEAR_IMAGE) THEN MATCH_MP_TAC DIM_SUBSET THEN REWRITE_TAC[SUBSET_UNIV]);;
let LINEAR_SURJECTIVE_DIMINDEX_LE = 
prove (`!f:real^M->real^N. linear f /\ (!y. ?x. f x = y) ==> dimindex(:N) <= dimindex(:M)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM (MP_TAC o MATCH_MP LINEAR_SURJECTIVE_RIGHT_INVERSE) THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:real^N->real^M` THEN STRIP_TAC THEN MATCH_MP_TAC LINEAR_INJECTIVE_DIMINDEX_LE THEN EXISTS_TAC `g:real^N->real^M` THEN ASM_MESON_TAC[]);;
let LINEAR_BIJECTIVE_DIMINDEX_EQ = 
prove (`!f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> dimindex(:M) = dimindex(:N)`,
REWRITE_TAC[GSYM LE_ANTISYM] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC LINEAR_INJECTIVE_DIMINDEX_LE; MATCH_MP_TAC LINEAR_SURJECTIVE_DIMINDEX_LE] THEN EXISTS_TAC `f:real^M->real^N` THEN ASM_REWRITE_TAC[]);;
let INVERTIBLE_IMP_SQUARE_MATRIX = 
prove (`!A:real^N^M. invertible A ==> dimindex(:M) = dimindex(:N)`,
GEN_TAC THEN REWRITE_TAC[invertible; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `B:real^M^N` THEN STRIP_TAC THEN MATCH_MP_TAC LINEAR_BIJECTIVE_DIMINDEX_EQ THEN EXISTS_TAC `\x:real^M. (B:real^M^N) ** x` THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR; GSYM MATRIX_LEFT_INVERTIBLE_INJECTIVE; GSYM MATRIX_RIGHT_INVERTIBLE_SURJECTIVE] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Considering an n-element vector as an n-by-1 or 1-by-n matrix. *) (* ------------------------------------------------------------------------- *)
let rowvector = new_definition
 `(rowvector:real^N->real^N^1) v = lambda i j. v$j`;;
let columnvector = new_definition
 `(columnvector:real^N->real^1^N) v = lambda i j. v$i`;;
let TRANSP_COLUMNVECTOR = 
prove (`!v. transp(columnvector v) = rowvector v`,
SIMP_TAC[transp; columnvector; rowvector; CART_EQ; LAMBDA_BETA]);;
let TRANSP_ROWVECTOR = 
prove (`!v. transp(rowvector v) = columnvector v`,
SIMP_TAC[transp; columnvector; rowvector; CART_EQ; LAMBDA_BETA]);;
let DOT_ROWVECTOR_COLUMNVECTOR = 
prove (`!A:real^N^M v:real^N. columnvector(A ** v) = A ** columnvector v`,
REWRITE_TAC[rowvector; columnvector; matrix_mul; matrix_vector_mul] THEN SIMP_TAC[CART_EQ; LAMBDA_BETA]);;
let DOT_MATRIX_PRODUCT = 
prove (`!x y:real^N. x dot y = (rowvector x ** columnvector y)$1$1`,
REWRITE_TAC[matrix_mul; columnvector; rowvector; dot] THEN SIMP_TAC[LAMBDA_BETA; DIMINDEX_1; LE_REFL]);;
let DOT_MATRIX_VECTOR_MUL = 
prove (`!A:real^N^N B:real^N^N x:real^N y:real^N. (A ** x) dot (B ** y) = ((rowvector x) ** (transp(A) ** B) ** (columnvector y))$1$1`,
REWRITE_TAC[DOT_MATRIX_PRODUCT] THEN ONCE_REWRITE_TAC[GSYM TRANSP_COLUMNVECTOR] THEN REWRITE_TAC[DOT_ROWVECTOR_COLUMNVECTOR; MATRIX_TRANSP_MUL] THEN REWRITE_TAC[MATRIX_MUL_ASSOC]);;
(* ------------------------------------------------------------------------- *) (* Rank of a matrix. Equivalence of row and column rank is taken from *) (* George Mackiw's paper, Mathematics Magazine 1995, p. 285. *) (* ------------------------------------------------------------------------- *)
let MATRIX_VECTOR_MUL_IN_COLUMNSPACE = 
prove (`!A:real^M^N x:real^M. (A ** x) IN span(columns A)`,
REPEAT GEN_TAC THEN REWRITE_TAC[MATRIX_VECTOR_COLUMN; columns] THEN MATCH_MP_TAC SPAN_VSUM THEN SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; transp; LAMBDA_BETA] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM; column] THEN EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[]);;
let SUBSPACE_ORTHOGONAL_TO_VECTOR = 
prove (`!x. subspace {y | orthogonal x y}`,
SIMP_TAC[subspace; IN_ELIM_THM; ORTHOGONAL_CLAUSES]);;
let SUBSPACE_ORTHOGONAL_TO_VECTORS = 
prove (`!s. subspace {y | (!x. x IN s ==> orthogonal x y)}`,
SIMP_TAC[subspace; IN_ELIM_THM; ORTHOGONAL_CLAUSES]);;
let ORTHOGONAL_TO_SPAN = 
prove (`!s x. (!y. y IN s ==> orthogonal x y) ==> !y. y IN span(s) ==> orthogonal x y`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[SET_RULE `(\y. orthogonal x y) = {y | orthogonal x y}`] THEN ASM_SIMP_TAC[SUBSPACE_ORTHOGONAL_TO_VECTOR; IN_ELIM_THM]);;
let ORTHOGONAL_TO_SPAN_EQ = 
prove (`!s x. (!y. y IN span(s) ==> orthogonal x y) <=> (!y. y IN s ==> orthogonal x y)`,
let ORTHOGONAL_TO_SPANS_EQ = 
prove (`!s t. (!x y. x IN span(s) /\ y IN span(t) ==> orthogonal x y) <=> (!x y. x IN s /\ y IN t ==> orthogonal x y)`,
let ORTHOGONAL_NULLSPACE_ROWSPACE = 
prove (`!A:real^M^N x y:real^M. A ** x = vec 0 /\ y IN span(rows A) ==> orthogonal x y`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[SET_RULE `(\y. orthogonal x y) = {y | orthogonal x y}`] THEN REWRITE_TAC[SUBSPACE_ORTHOGONAL_TO_VECTOR; rows; FORALL_IN_GSPEC] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\y:real^N. y$k`) THEN ASM_SIMP_TAC[MATRIX_VECTOR_MUL_COMPONENT; VEC_COMPONENT; row; dot; orthogonal; LAMBDA_BETA] THEN REWRITE_TAC[REAL_MUL_SYM]);;
let NULLSPACE_INTER_ROWSPACE = 
prove (`!A:real^M^N x:real^M. A ** x = vec 0 /\ x IN span(rows A) <=> x = vec 0`,
REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[ORTHOGONAL_NULLSPACE_ROWSPACE; ORTHOGONAL_REFL]; SIMP_TAC[MATRIX_VECTOR_MUL_RZERO; SPAN_0]]);;
let MATRIX_VECTOR_MUL_INJECTIVE_ON_ROWSPACE = 
prove (`!A:real^M^N x y:real^M. x IN span(rows A) /\ y IN span(rows A) /\ A ** x = A ** y ==> x = y`,
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_SUB_LDISTRIB] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM NULLSPACE_INTER_ROWSPACE] THEN ASM_SIMP_TAC[SPAN_SUB]);;
let DIM_ROWS_LE_DIM_COLUMNS = 
prove (`!A:real^M^N. dim(rows A) <= dim(columns A)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN X_CHOOSE_THEN `b:real^M->bool` STRIP_ASSUME_TAC (ISPEC `span(rows(A:real^M^N))` BASIS_EXISTS) THEN SUBGOAL_THEN `FINITE(IMAGE (\x:real^M. (A:real^M^N) ** x) b) /\ CARD (IMAGE (\x:real^M. (A:real^M^N) ** x) b) <= dim(span(columns A))` MP_TAC THENL [MATCH_MP_TAC INDEPENDENT_CARD_LE_DIM THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; MATRIX_VECTOR_MUL_IN_COLUMNSPACE] THEN MATCH_MP_TAC INDEPENDENT_INJECTIVE_IMAGE_GEN THEN ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN SUBGOAL_THEN `span(b) = span(rows(A:real^M^N))` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[MATRIX_VECTOR_MUL_INJECTIVE_ON_ROWSPACE]] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [GSYM SPAN_SPAN] THEN ASM_SIMP_TAC[SPAN_MONO]; DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM) o GEN_REWRITE_RULE I [HAS_SIZE]) THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC (ISPEC `A:real^M^N` MATRIX_VECTOR_MUL_INJECTIVE_ON_ROWSPACE) THEN ASM SET_TAC[]]);;
let rank = new_definition
 `rank(A:real^M^N) = dim(columns A)`;;
let RANK_ROW = 
prove (`!A:real^M^N. rank(A) = dim(rows A)`,
GEN_TAC THEN REWRITE_TAC[rank] THEN MP_TAC(ISPEC `A:real^M^N` DIM_ROWS_LE_DIM_COLUMNS) THEN MP_TAC(ISPEC `transp(A:real^M^N)` DIM_ROWS_LE_DIM_COLUMNS) THEN REWRITE_TAC[ROWS_TRANSP; COLUMNS_TRANSP] THEN ARITH_TAC);;
let RANK_TRANSP = 
prove (`!A:real^M^N. rank(transp A) = rank A`,
GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [RANK_ROW] THEN REWRITE_TAC[rank; COLUMNS_TRANSP]);;
let MATRIX_VECTOR_MUL_BASIS = 
prove (`!A:real^M^N k. 1 <= k /\ k <= dimindex(:M) ==> A ** (basis k) = column k A`,
let COLUMNS_IMAGE_BASIS = 
prove (`!A:real^M^N. columns A = IMAGE (\x. A ** x) {basis i | 1 <= i /\ i <= dimindex(:M)}`,
GEN_TAC THEN REWRITE_TAC[columns] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN SIMP_TAC[IN_ELIM_THM; MATRIX_VECTOR_MUL_BASIS]);;
let RANK_DIM_IM = 
prove (`!A:real^M^N. rank A = dim(IMAGE (\x. A ** x) (:real^M))`,
GEN_TAC THEN REWRITE_TAC[rank] THEN MATCH_MP_TAC SPAN_EQ_DIM THEN REWRITE_TAC[COLUMNS_IMAGE_BASIS] THEN SIMP_TAC[SPAN_LINEAR_IMAGE; MATRIX_VECTOR_MUL_LINEAR] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM SPAN_SPAN] THEN REWRITE_TAC[SPAN_STDBASIS]);;
let DIM_EQ_SPAN = 
prove (`!s t:real^N->bool. s SUBSET t /\ dim t <= dim s ==> span s = span t`,
REPEAT STRIP_TAC THEN X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC (ISPEC `span s:real^N->bool` BASIS_EXISTS) THEN MP_TAC(ISPECL [`span t:real^N->bool`; `b:real^N->bool`] CARD_GE_DIM_INDEPENDENT) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_REWRITE_TAC[DIM_SPAN] THEN ASM_MESON_TAC[SPAN_MONO; SPAN_SPAN; SUBSET_TRANS; SUBSET_ANTISYM]);;
let DIM_EQ_FULL = 
prove (`!s:real^N->bool. dim s = dimindex(:N) <=> span s = (:real^N)`,
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN EQ_TAC THEN SIMP_TAC[DIM_UNIV] THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM SPAN_UNIV] THEN MATCH_MP_TAC DIM_EQ_SPAN THEN ASM_REWRITE_TAC[SUBSET_UNIV; DIM_UNIV] THEN ASM_MESON_TAC[LE_REFL; DIM_SPAN]);;
let DIM_PSUBSET = 
prove (`!s t. (span s) PSUBSET (span t) ==> dim s < dim t`,
ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN SIMP_TAC[PSUBSET; DIM_SUBSET; LT_LE] THEN MESON_TAC[EQ_IMP_LE; DIM_EQ_SPAN; SPAN_SPAN]);;
let RANK_BOUND = 
prove (`!A:real^M^N. rank(A) <= MIN (dimindex(:M)) (dimindex(:N))`,
GEN_TAC THEN REWRITE_TAC[ARITH_RULE `x <= MIN a b <=> x <= a /\ x <= b`] THEN CONJ_TAC THENL [REWRITE_TAC[DIM_SUBSET_UNIV; RANK_ROW]; REWRITE_TAC[DIM_SUBSET_UNIV; rank]]);;
let FULL_RANK_INJECTIVE = 
prove (`!A:real^M^N. rank A = dimindex(:M) <=> (!x y:real^M. A ** x = A ** y ==> x = y)`,
REWRITE_TAC[GSYM MATRIX_LEFT_INVERTIBLE_INJECTIVE] THEN REWRITE_TAC[MATRIX_LEFT_INVERTIBLE_SPAN_ROWS] THEN REWRITE_TAC[RANK_ROW; DIM_EQ_FULL]);;
let FULL_RANK_SURJECTIVE = 
prove (`!A:real^M^N. rank A = dimindex(:N) <=> (!y:real^N. ?x:real^M. A ** x = y)`,
REWRITE_TAC[GSYM MATRIX_RIGHT_INVERTIBLE_SURJECTIVE] THEN REWRITE_TAC[GSYM LEFT_INVERTIBLE_TRANSP] THEN REWRITE_TAC[MATRIX_LEFT_INVERTIBLE_INJECTIVE] THEN REWRITE_TAC[GSYM FULL_RANK_INJECTIVE; RANK_TRANSP]);;
let RANK_I = 
prove (`rank(mat 1:real^N^N) = dimindex(:N)`,
let MATRIX_FULL_LINEAR_EQUATIONS = 
prove (`!A:real^M^N b:real^N. rank A = dimindex(:N) ==> ?x. A ** x = b`,
SIMP_TAC[FULL_RANK_SURJECTIVE]);;
let MATRIX_NONFULL_LINEAR_EQUATIONS_EQ = 
prove (`!A:real^M^N. (?x. ~(x = vec 0) /\ A ** x = vec 0) <=> ~(rank A = dimindex(:M))`,
REPEAT GEN_TAC THEN REWRITE_TAC[FULL_RANK_INJECTIVE] THEN SIMP_TAC[LINEAR_INJECTIVE_0; MATRIX_VECTOR_MUL_LINEAR] THEN MESON_TAC[]);;
let MATRIX_NONFULL_LINEAR_EQUATIONS = 
prove (`!A:real^M^N. ~(rank A = dimindex(:M)) ==> ?x. ~(x = vec 0) /\ A ** x = vec 0`,
let MATRIX_TRIVIAL_LINEAR_EQUATIONS = 
prove (`!A:real^M^N. dimindex(:N) < dimindex(:M) ==> ?x. ~(x = vec 0) /\ A ** x = vec 0`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC MATRIX_NONFULL_LINEAR_EQUATIONS THEN MATCH_MP_TAC(ARITH_RULE `!a. x <= MIN b a /\ a < b ==> ~(x = b)`) THEN EXISTS_TAC `dimindex(:N)` THEN ASM_REWRITE_TAC[RANK_BOUND]);;
let RANK_EQ_0 = 
prove (`!A:real^M^N. rank A = 0 <=> A = mat 0`,
REWRITE_TAC[RANK_DIM_IM; DIM_EQ_0; SUBSET; FORALL_IN_IMAGE; IN_SING; IN_UNIV] THEN GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CART_EQ] THEN SIMP_TAC[CART_EQ; MATRIX_MUL_DOT; VEC_COMPONENT; LAMBDA_BETA; mat] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; FORALL_DOT_EQ_0; COND_ID] THEN REWRITE_TAC[CART_EQ; VEC_COMPONENT]);;
let RANK_0 = 
prove (`rank(mat 0) = 0`,
REWRITE_TAC[RANK_EQ_0]);;
let RANK_MUL_LE_RIGHT = 
prove (`!A:real^N^M B:real^P^N. rank(A ** B) <= rank(B)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `dim(IMAGE (\y. (A:real^N^M) ** y) (IMAGE (\x. (B:real^P^N) ** x) (:real^P)))` THEN REWRITE_TAC[RANK_DIM_IM] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM IMAGE_o; o_DEF; MATRIX_VECTOR_MUL_ASSOC; LE_REFL]; MATCH_MP_TAC DIM_LINEAR_IMAGE_LE THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR]]);;
let RANK_MUL_LE_LEFT = 
prove (`!A:real^N^M B:real^P^N. rank(A ** B) <= rank(A)`,
ONCE_REWRITE_TAC[GSYM RANK_TRANSP] THEN REWRITE_TAC[MATRIX_TRANSP_MUL] THEN REWRITE_TAC[RANK_MUL_LE_RIGHT]);;
(* ------------------------------------------------------------------------- *) (* Some bounds on components etc. relative to operator norm. *) (* ------------------------------------------------------------------------- *)
let NORM_COLUMN_LE_ONORM = 
prove (`!A:real^N^M i. norm(column i A) <= onorm(\x. A ** x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[column] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$i = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN MP_TAC(ISPEC `\x:real^N. (A:real^N^M) ** x` ONORM) THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR] THEN DISCH_THEN(MP_TAC o SPEC `basis l:real^N` o CONJUNCT1) THEN ASM_SIMP_TAC[MATRIX_VECTOR_MUL_BASIS; NORM_BASIS; column; REAL_MUL_RID]);;
let MATRIX_COMPONENT_LE_ONORM = 
prove (`!A:real^N^M i j. abs(A$i$j) <= onorm(\x. A ** x)`,
REPEAT GEN_TAC THEN SUBGOAL_THEN `?k. 1 <= k /\ k <= dimindex(:M) /\ !A:real^N^M. A$i = A$k` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN SUBGOAL_THEN `?l. 1 <= l /\ l <= dimindex(:N) /\ !z:real^N. z$j = z$l` CHOOSE_TAC THENL [REWRITE_TAC[FINITE_INDEX_INRANGE]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(column l (A:real^N^M))` THEN REWRITE_TAC[NORM_COLUMN_LE_ONORM] THEN MP_TAC(ISPECL [`column l (A:real^N^M)`; `k:num`] COMPONENT_LE_NORM) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN ASM_SIMP_TAC[column; LAMBDA_BETA; REAL_LE_REFL]);;
let COMPONENT_LE_ONORM = 
prove (`!f:real^M->real^N i j. linear f ==> abs(matrix f$i$j) <= onorm f`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [MATCH_MP MATRIX_VECTOR_MUL th]) THEN REWRITE_TAC[MATRIX_COMPONENT_LE_ONORM]);;
(* ------------------------------------------------------------------------- *) (* Basic lemmas about hyperplanes and halfspaces. *) (* ------------------------------------------------------------------------- *)
let HYPERPLANE_EQ_EMPTY = 
prove (`!a:real^N b. {x | a dot x = b} = {} <=> a = vec 0 /\ ~(b = &0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THENL [MESON_TAC[]; DISCH_THEN(MP_TAC o SPEC `b / (a dot a) % a:real^N`) THEN ASM_SIMP_TAC[DOT_RMUL; REAL_DIV_RMUL; DOT_EQ_0]]);;
let HYPERPLANE_EQ_UNIV = 
prove (`!a b. {x | a dot x = b} = (:real^N) <=> a = vec 0 /\ b = &0`,
REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV] THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THENL [MESON_TAC[]; DISCH_THEN(MP_TAC o SPEC `(b + &1) / (a dot a) % a:real^N`) THEN ASM_SIMP_TAC[DOT_RMUL; REAL_DIV_RMUL; DOT_EQ_0] THEN REAL_ARITH_TAC]);;
let HALFSPACE_EQ_EMPTY_LT = 
prove (`!a:real^N b. {x | a dot x < b} = {} <=> a = vec 0 /\ b <= &0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THENL [ASM_SIMP_TAC[DOT_LZERO; SET_RULE `{x | p} = if p then UNIV else {}`] THEN COND_CASES_TAC THEN REWRITE_TAC[UNIV_NOT_EMPTY] THEN ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN EXISTS_TAC `(b - &1) / (a dot a) % a:real^N` THEN ASM_SIMP_TAC[DOT_RMUL; REAL_DIV_RMUL; DOT_EQ_0] THEN REAL_ARITH_TAC]);;
let HALFSPACE_EQ_EMPTY_GT = 
prove (`!a:real^N b. {x | a dot x > b} = {} <=> a = vec 0 /\ b >= &0`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`--a:real^N`; `--b:real`] HALFSPACE_EQ_EMPTY_LT) THEN SIMP_TAC[real_gt; DOT_LNEG; REAL_LT_NEG2; VECTOR_NEG_EQ_0] THEN DISCH_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC);;
let HALFSPACE_EQ_EMPTY_LE = 
prove (`!a:real^N b. {x | a dot x <= b} = {} <=> a = vec 0 /\ b < &0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THENL [ASM_SIMP_TAC[DOT_LZERO; SET_RULE `{x | p} = if p then UNIV else {}`] THEN COND_CASES_TAC THEN REWRITE_TAC[UNIV_NOT_EMPTY] THEN ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN EXISTS_TAC `(b - &1) / (a dot a) % a:real^N` THEN ASM_SIMP_TAC[DOT_RMUL; REAL_DIV_RMUL; DOT_EQ_0] THEN REAL_ARITH_TAC]);;
let HALFSPACE_EQ_EMPTY_GE = 
prove (`!a:real^N b. {x | a dot x >= b} = {} <=> a = vec 0 /\ b > &0`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL [`--a:real^N`; `--b:real`] HALFSPACE_EQ_EMPTY_LE) THEN SIMP_TAC[real_ge; DOT_LNEG; REAL_LE_NEG2; VECTOR_NEG_EQ_0] THEN DISCH_TAC THEN AP_TERM_TAC THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* A non-injective linear function maps into a hyperplane. *) (* ------------------------------------------------------------------------- *)
let ADJOINT_INJECTIVE = 
prove (`!f:real^M->real^N. linear f ==> ((!x y. adjoint f x = adjoint f y ==> x = y) <=> (!y. ?x. f x = y))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o GSYM o MATCH_MP MATRIX_WORKS o MATCH_MP ADJOINT_LINEAR) THEN FIRST_ASSUM(ASSUME_TAC o GSYM o MATCH_MP MATRIX_WORKS) THEN ASM_REWRITE_TAC[GSYM FULL_RANK_INJECTIVE; GSYM FULL_RANK_SURJECTIVE] THEN ASM_SIMP_TAC[MATRIX_ADJOINT; RANK_TRANSP]);;
let ADJOINT_SURJECTIVE = 
prove (`!f:real^M->real^N. linear f ==> ((!y. ?x. adjoint f x = y) <=> (!x y. f x = f y ==> x = y))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM(MATCH_MP ADJOINT_ADJOINT th)]) THEN ASM_SIMP_TAC[ADJOINT_INJECTIVE; ADJOINT_LINEAR]);;
let ADJOINT_INJECTIVE_INJECTIVE = 
prove (`!f:real^N->real^N. linear f ==> ((!x y. adjoint f x = adjoint f y ==> x = y) <=> (!x y. f x = f y ==> x = y))`,
let ADJOINT_INJECTIVE_INJECTIVE_0 = 
prove (`!f:real^N->real^N. linear f ==> ((!x. adjoint f x = vec 0 ==> x = vec 0) <=> (!x. f x = vec 0 ==> x = vec 0))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ADJOINT_INJECTIVE_INJECTIVE) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP ADJOINT_LINEAR) THEN ASM_MESON_TAC[LINEAR_INJECTIVE_0]);;
let LINEAR_SINGULAR_INTO_HYPERPLANE = 
prove (`!f:real^N->real^N. linear f ==> (~(!x y. f(x) = f(y) ==> x = y) <=> ?a. ~(a = vec 0) /\ !x. a dot f(x) = &0)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DOT_SYM] THEN ASM_SIMP_TAC[ADJOINT_WORKS; FORALL_DOT_EQ_0] THEN REWRITE_TAC[MESON[] `(?a. ~p a /\ q a) <=> ~(!a. q a ==> p a)`] THEN ASM_SIMP_TAC[ADJOINT_INJECTIVE_INJECTIVE_0; LINEAR_INJECTIVE_0]);;
let LINEAR_SINGULAR_IMAGE_HYPERPLANE = 
prove (`!f:real^N->real^N. linear f /\ ~(!x y. f(x) = f(y) ==> x = y) ==> ?a. ~(a = vec 0) /\ !s. IMAGE f s SUBSET {x | a dot x = &0}`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[LINEAR_SINGULAR_INTO_HYPERPLANE] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);;
let LOWDIM_EXPAND_DIMENSION = 
prove (`!s:real^N->bool n. dim s <= n /\ n <= dimindex(:N) ==> ?t. dim(t) = n /\ span s SUBSET span t`,
GEN_TAC THEN GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV o LAND_CONV) [LE_EXISTS] THEN SIMP_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN INDUCT_TAC THENL [MESON_TAC[ADD_CLAUSES; SUBSET_REFL]; ALL_TAC] THEN REWRITE_TAC[ARITH_RULE `s + SUC d <= n <=> s + d < n`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ASM_SIMP_TAC[LT_IMP_LE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN REWRITE_TAC[ADD_CLAUSES] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN SUBGOAL_THEN `~(span t = (:real^N))` MP_TAC THENL [REWRITE_TAC[GSYM DIM_EQ_FULL] THEN ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[EXTENSION; IN_UNIV; NOT_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN EXISTS_TAC `(a:real^N) INSERT t` THEN ASM_REWRITE_TAC[DIM_INSERT; ADD1] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `span(t:real^N->bool)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SPAN_MONO THEN SET_TAC[]);;
let LOWDIM_EXPAND_BASIS = 
prove (`!s:real^N->bool n. dim s <= n /\ n <= dimindex(:N) ==> ?b. b HAS_SIZE n /\ independent b /\ span s SUBSET span b`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC o MATCH_MP LOWDIM_EXPAND_DIMENSION) THEN MP_TAC(ISPEC `t:real^N->bool` BASIS_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:real^N->bool` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SPAN_SPAN; SUBSET_TRANS; SPAN_MONO]);;
(* ------------------------------------------------------------------------- *) (* Orthogonal bases, Gram-Schmidt process, and related theorems. *) (* ------------------------------------------------------------------------- *)
let SPAN_DELETE_0 = 
prove (`!s:real^N->bool. span(s DELETE vec 0) = span s`,
GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[DELETE_SUBSET; SPAN_MONO] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `span((vec 0:real^N) INSERT (s DELETE vec 0))` THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_MONO THEN SET_TAC[]; SIMP_TAC[SUBSET; SPAN_BREAKDOWN_EQ; VECTOR_MUL_RZERO; VECTOR_SUB_RZERO]]);;
let SPAN_IMAGE_SCALE = 
prove (`!c s. FINITE s /\ (!x. x IN s ==> ~(c x = &0)) ==> span (IMAGE (\x:real^N. c(x) % x) s) = span s`,
GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[IMAGE_CLAUSES; SPAN_BREAKDOWN_EQ; EXTENSION; FORALL_IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `t:real^N->bool`] THEN STRIP_TAC THEN STRIP_TAC THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[VECTOR_MUL_ASSOC] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `k:real`) THEN EXISTS_TAC `k / (c:real^N->real) x` THEN ASM_SIMP_TAC[REAL_DIV_RMUL]);;
let PAIRWISE_ORTHOGONAL_INDEPENDENT = 
prove (`!s:real^N->bool. pairwise orthogonal s /\ ~(vec 0 IN s) ==> independent s`,
REWRITE_TAC[pairwise; orthogonal] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[independent; dependent] THEN DISCH_THEN(X_CHOOSE_THEN `a:real^N` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[SPAN_EXPLICIT; IN_ELIM_THM; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`t:real^N->bool`; `u:real^N->real`] THEN REWRITE_TAC[SUBSET; IN_DELETE] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\x:real^N. a dot x`) THEN ASM_SIMP_TAC[DOT_RSUM; DOT_RMUL; REAL_MUL_RZERO; SUM_0] THEN ASM_MESON_TAC[DOT_EQ_0]);;
let PAIRWISE_ORTHOGONAL_IMP_FINITE = 
prove (`!s:real^N->bool. pairwise orthogonal s ==> FINITE s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `independent (s DELETE (vec 0:real^N))` MP_TAC THENL [MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN REWRITE_TAC[IN_DELETE] THEN MATCH_MP_TAC PAIRWISE_MONO THEN EXISTS_TAC `s:real^N->bool` THEN ASM_SIMP_TAC[SUBSET; IN_DELETE]; DISCH_THEN(MP_TAC o MATCH_MP INDEPENDENT_IMP_FINITE) THEN REWRITE_TAC[FINITE_DELETE]]);;
let GRAM_SCHMIDT_STEP = 
prove (`!s a x. pairwise orthogonal s /\ x IN span s ==> orthogonal x (a - vsum s (\b:real^N. (b dot a) / (b dot b) % b))`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[ONCE_REWRITE_RULE[ORTHOGONAL_SYM] ORTHOGONAL_TO_SPAN_EQ] THEN X_GEN_TAC `s:real^N->bool` THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `x:real^N`] THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PAIRWISE_ORTHOGONAL_IMP_FINITE) THEN REWRITE_TAC[orthogonal; DOT_RSUB] THEN ASM_SIMP_TAC[DOT_RSUM] THEN REWRITE_TAC[REAL_SUB_0; DOT_RMUL] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum s (\y:real^N. if y = x then y dot a else &0)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUM_DELTA; DOT_SYM]; ALL_TAC] THEN MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise; orthogonal]) THEN ASM_CASES_TAC `x:real^N = y` THEN ASM_SIMP_TAC[DOT_LMUL; REAL_MUL_RZERO] THEN ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_SIMP_TAC[REAL_DIV_RMUL; DOT_EQ_0; DOT_LZERO; REAL_MUL_RZERO]);;
let ORTHOGONAL_EXTENSION = 
prove (`!s t:real^N->bool. pairwise orthogonal s ==> ?u. pairwise orthogonal (s UNION u) /\ span (s UNION u) = span (s UNION t)`,
let lemma = prove
   (`!t s:real^N->bool.
        FINITE t /\ FINITE s /\ pairwise orthogonal s
        ==> ?u. pairwise orthogonal (s UNION u) /\
                span (s UNION u) = span (s UNION t)`,
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
     [REPEAT STRIP_TAC THEN EXISTS_TAC `{}:real^N->bool` THEN
      ASM_REWRITE_TAC[UNION_EMPTY];
      ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`a:real^N`; `t:real^N->bool`] THEN
    REWRITE_TAC[pairwise; orthogonal] THEN REPEAT STRIP_TAC THEN
    ABBREV_TAC `a' = a - vsum s (\b:real^N. (b dot a) / (b dot b) % b)` THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `(a':real^N) INSERT s`) THEN
    ASM_REWRITE_TAC[FINITE_INSERT] THEN ANTS_TAC THENL
     [SUBGOAL_THEN `!x:real^N. x IN s ==> a' dot x = &0`
       (fun th -> REWRITE_TAC[IN_INSERT] THEN ASM_MESON_TAC[DOT_SYM; th]) THEN
      REPEAT STRIP_TAC THEN EXPAND_TAC "a'" THEN
      REWRITE_TAC[GSYM orthogonal] THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN
      MATCH_MP_TAC GRAM_SCHMIDT_STEP THEN
      ASM_SIMP_TAC[pairwise; orthogonal; SPAN_CLAUSES];
      DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(a':real^N) INSERT u` THEN
      ASM_REWRITE_TAC[SET_RULE `s UNION a INSERT u = a INSERT s UNION u`] THEN
      REWRITE_TAC[SET_RULE `(x INSERT s) UNION t = x INSERT (s UNION t)`] THEN
      MATCH_MP_TAC EQ_SPAN_INSERT_EQ THEN EXPAND_TAC "a'" THEN
      REWRITE_TAC[VECTOR_ARITH `a - x - a:real^N = --x`] THEN
      MATCH_MP_TAC SPAN_NEG THEN MATCH_MP_TAC SPAN_VSUM THEN
      ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
      MATCH_MP_TAC SPAN_MUL THEN ASM_SIMP_TAC[SPAN_SUPERSET; IN_UNION]]) in
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `span t:real^N->bool` BASIS_SUBSPACE_EXISTS) THEN
  REWRITE_TAC[SUBSPACE_SPAN; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `b:real^N->bool` THEN STRIP_TAC THEN
  MP_TAC(ISPECL [`b:real^N->bool`; `s:real^N->bool`] lemma) THEN
  ANTS_TAC THENL
   [ASM_MESON_TAC[HAS_SIZE; PAIRWISE_ORTHOGONAL_IMP_FINITE];
    MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    ASM_REWRITE_TAC[SPAN_UNION]]);;
let ORTHOGONAL_EXTENSION_STRONG = 
prove (`!s t:real^N->bool. pairwise orthogonal s ==> ?u. DISJOINT u (vec 0 INSERT s) /\ pairwise orthogonal (s UNION u) /\ span (s UNION u) = span (s UNION t)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:real^N->bool` o MATCH_MP ORTHOGONAL_EXTENSION) THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `u DIFF ((vec 0:real^N) INSERT s)` THEN REPEAT CONJ_TAC THENL [SET_TAC[]; FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_MONO)) THEN SET_TAC[]; FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN GEN_REWRITE_TAC BINOP_CONV [GSYM SPAN_DELETE_0] THEN AP_TERM_TAC THEN SET_TAC[]]);;
let ORTHONORMAL_EXTENSION = 
prove (`!s t:real^N->bool. pairwise orthogonal s /\ (!x. x IN s ==> norm x = &1) ==> ?u. DISJOINT u s /\ pairwise orthogonal (s UNION u) /\ (!x. x IN u ==> norm x = &1) /\ span(s UNION u) = span(s UNION t)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:real^N->bool` o MATCH_MP ORTHOGONAL_EXTENSION_STRONG) THEN REWRITE_TAC[SET_RULE `DISJOINT u s <=> !x. x IN u ==> ~(x IN s)`] THEN REWRITE_TAC[IN_INSERT; DE_MORGAN_THM; pairwise] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (\x:real^N. inv(norm x) % x) u` THEN REWRITE_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ASM_CASES_TAC `norm(x:real^N) = &1` THEN ASM_SIMP_TAC[REAL_INV_1; VECTOR_MUL_LID] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `inv(norm x) % x:real^N`]) THEN ASM_REWRITE_TAC[IN_UNION; VECTOR_MUL_EQ_0; REAL_SUB_0; REAL_INV_EQ_1; VECTOR_ARITH `x:real^N = a % x <=> (a - &1) % x = vec 0`] THEN ASM_CASES_TAC `x:real^N = vec 0` THENL [ASM_MESON_TAC[VECTOR_MUL_RZERO]; ASM_REWRITE_TAC[orthogonal; DOT_RMUL; REAL_ENTIRE; DOT_EQ_0] THEN ASM_REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0]]; REWRITE_TAC[IN_UNION; IN_IMAGE] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[orthogonal; DOT_LMUL; DOT_RMUL; REAL_ENTIRE; DOT_EQ_0; REAL_INV_EQ_0; NORM_EQ_0] THEN REWRITE_TAC[GSYM orthogonal] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_UNION] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM SET_TAC[]; ASM_SIMP_TAC[NORM_MUL; REAL_MUL_LINV; NORM_EQ_0; REAL_ABS_INV; REAL_ABS_NORM]; FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[SPAN_EQ; UNION_SUBSET] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; SPAN_SUPERSET; SPAN_MUL; IN_UNION] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `x:real^N = norm(x) % inv(norm x) % x` (fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THENL [ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RINV; NORM_EQ_0; VECTOR_MUL_LID]; MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_UNION; IN_IMAGE] THEN ASM_MESON_TAC[]]]);;
let VECTOR_IN_ORTHOGONAL_SPANNINGSET = 
prove (`!a. ?s. a IN s /\ pairwise orthogonal s /\ span s = (:real^N)`,
GEN_TAC THEN MP_TAC(ISPECL [`{a:real^N}`; `(IMAGE basis (1..dimindex(:N))):real^N->bool`] ORTHOGONAL_EXTENSION) THEN REWRITE_TAC[PAIRWISE_SING] THEN DISCH_THEN(X_CHOOSE_THEN `u:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `{a:real^N} UNION u` THEN ASM_REWRITE_TAC[IN_UNION; IN_SING] THEN MATCH_MP_TAC(SET_RULE `!s. s = UNIV /\ s SUBSET t ==> t = UNIV`) THEN EXISTS_TAC `span {basis i:real^N | 1 <= i /\ i <= dimindex (:N)}` THEN CONJ_TAC THENL [REWRITE_TAC[SPAN_STDBASIS]; MATCH_MP_TAC SPAN_MONO] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; GSYM IN_NUMSEG] THEN SET_TAC[]);;
let VECTOR_IN_ORTHOGONAL_BASIS = 
prove (`!a. ~(a = vec 0) ==> ?s. a IN s /\ ~(vec 0 IN s) /\ pairwise orthogonal s /\ independent s /\ s HAS_SIZE (dimindex(:N)) /\ span s = (:real^N)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `a:real^N` VECTOR_IN_ORTHOGONAL_SPANNINGSET) THEN DISCH_THEN(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `s DELETE (vec 0:real^N)` THEN ASM_REWRITE_TAC[IN_DELETE] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise; IN_DELETE]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN ASM_SIMP_TAC[IN_DELETE]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [ASM_MESON_TAC[SPAN_DELETE_0]; DISCH_TAC THEN ASM_SIMP_TAC[BASIS_HAS_SIZE_UNIV]]);;
let VECTOR_IN_ORTHONORMAL_BASIS = 
prove (`!a. norm a = &1 ==> ?s. a IN s /\ pairwise orthogonal s /\ (!x. x IN s ==> norm x = &1) /\ independent s /\ s HAS_SIZE (dimindex(:N)) /\ span s = (:real^N)`,
GEN_TAC THEN ASM_CASES_TAC `a:real^N = vec 0` THEN ASM_REWRITE_TAC[NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP VECTOR_IN_ORTHOGONAL_BASIS) THEN DISCH_THEN(X_CHOOSE_THEN `s:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (\x:real^N. inv(norm x) % x) s` THEN CONJ_TAC THENL [REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `a:real^N` THEN ASM_REWRITE_TAC[REAL_INV_1; VECTOR_MUL_LID]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[pairwise; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_MESON_TAC[ORTHOGONAL_CLAUSES]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_IMAGE; NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN ASM_MESON_TAC[REAL_MUL_LINV; NORM_EQ_0]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_IMAGE] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0; NORM_EQ_0] THEN ASM_MESON_TAC[]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[BASIS_HAS_SIZE_UNIV]] THEN UNDISCH_THEN `span s = (:real^N)` (SUBST1_TAC o SYM) THEN MATCH_MP_TAC SPAN_IMAGE_SCALE THEN REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0] THEN ASM_MESON_TAC[HAS_SIZE]);;
let BESSEL_INEQUALITY = 
prove (`!s x:real^N. pairwise orthogonal s /\ (!x. x IN s ==> norm x = &1) ==> sum s (\e. (e dot x) pow 2) <= norm(x) pow 2`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PAIRWISE_ORTHOGONAL_IMP_FINITE) THEN MP_TAC(ISPEC `x - vsum s (\e. (e dot x) % e):real^N` DOT_POS_LE) THEN REWRITE_TAC[NORM_POW_2; VECTOR_ARITH `(a - b:real^N) dot (a - b) = a dot a + b dot b - &2 * b dot a`] THEN ASM_SIMP_TAC[DOT_LSUM; REAL_POW_2; DOT_LMUL] THEN MATCH_MP_TAC(REAL_ARITH `t = s ==> &0 <= x + t - &2 * s ==> s <= x`) THEN MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `e:real^N` THEN DISCH_TAC THEN ASM_SIMP_TAC[DOT_RSUM] THEN AP_TERM_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `sum s (\k:real^N. if k = e then e dot x else &0)` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[SUM_DELTA]] THEN MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `k:real^N` THEN DISCH_TAC THEN REWRITE_TAC[DOT_RMUL] THEN COND_CASES_TAC THENL [ASM_REWRITE_TAC[REAL_RING `a * x = a <=> a = &0 \/ x = &1`] THEN DISJ2_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real^N`) THEN ASM_REWRITE_TAC[NORM_EQ_SQUARE] THEN REAL_ARITH_TAC; RULE_ASSUM_TAC(REWRITE_RULE[pairwise; orthogonal]) THEN ASM_SIMP_TAC[REAL_ENTIRE]]);;
(* ------------------------------------------------------------------------- *) (* Analogous theorems for existence of orthonormal basis for a subspace. *) (* ------------------------------------------------------------------------- *)
let ORTHOGONAL_SPANNINGSET_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> ?b. b SUBSET s /\ pairwise orthogonal b /\ span b = s`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s:real^N->bool` BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL[`{}:real^N->bool`; `b:real^N->bool`] ORTHOGONAL_EXTENSION) THEN REWRITE_TAC[PAIRWISE_EMPTY; UNION_EMPTY] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_SUBSPACE THEN ASM_REWRITE_TAC[]; DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_MESON_TAC[SPAN_INC]]);;
let ORTHOGONAL_BASIS_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> ?b. ~(vec 0 IN b) /\ b SUBSET s /\ pairwise orthogonal b /\ independent b /\ b HAS_SIZE (dim s) /\ span b = s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORTHOGONAL_SPANNINGSET_SUBSPACE) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `b DELETE (vec 0:real^N)` THEN ASM_REWRITE_TAC[IN_DELETE] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise; IN_DELETE]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN ASM_SIMP_TAC[IN_DELETE]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [ASM_MESON_TAC[SPAN_DELETE_0]; DISCH_TAC THEN ASM_SIMP_TAC[BASIS_HAS_SIZE_DIM]]);;
let ORTHONORMAL_BASIS_SUBSPACE = 
prove (`!s:real^N->bool. subspace s ==> ?b. b SUBSET s /\ pairwise orthogonal b /\ (!x. x IN b ==> norm x = &1) /\ independent b /\ b HAS_SIZE (dim s) /\ span b = s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORTHOGONAL_BASIS_SUBSPACE) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (\x:real^N. inv(norm x) % x) b` THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[SPAN_MUL; SPAN_INC; SUBSET]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[pairwise; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_MESON_TAC[ORTHOGONAL_CLAUSES]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_IMAGE; NORM_MUL; REAL_ABS_INV; REAL_ABS_NORM] THEN ASM_MESON_TAC[REAL_MUL_LINV; NORM_EQ_0]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_IMAGE] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN SIMP_TAC[VECTOR_MUL_EQ_0; REAL_INV_EQ_0; NORM_EQ_0] THEN ASM_MESON_TAC[]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[BASIS_HAS_SIZE_DIM]] THEN UNDISCH_THEN `span b = (s:real^N->bool)` (SUBST1_TAC o SYM) THEN MATCH_MP_TAC SPAN_IMAGE_SCALE THEN REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0] THEN ASM_MESON_TAC[HAS_SIZE]);;
let ORTHOGONAL_TO_SUBSPACE_EXISTS_GEN = 
prove (`!s t:real^N->bool. span s PSUBSET span t ==> ?x. ~(x = vec 0) /\ x IN span t /\ (!y. y IN span s ==> orthogonal x y)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `span s:real^N->bool` ORTHOGONAL_BASIS_SUBSPACE) THEN REWRITE_TAC[SUBSPACE_SPAN] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [PSUBSET_ALT]) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `u:real^N` STRIP_ASSUME_TAC)) THEN MP_TAC(ISPECL [`b:real^N->bool`; `{u:real^N}`] ORTHOGONAL_EXTENSION) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `ns:real^N->bool` MP_TAC) THEN ASM_CASES_TAC `ns SUBSET (vec 0:real^N) INSERT b` THENL [DISCH_THEN(MP_TAC o AP_TERM `(IN) (u:real^N)` o CONJUNCT2) THEN SIMP_TAC[SPAN_SUPERSET; IN_UNION; IN_SING] THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN SUBGOAL_THEN `~(u IN span (b UNION {vec 0:real^N}))` MP_TAC THENL [ASM_REWRITE_TAC[SET_RULE `s UNION {a} = a INSERT s`; SPAN_INSERT_0]; MATCH_MP_TAC(SET_RULE `s SUBSET t ==> ~(x IN t) ==> ~(x IN s)`) THEN MATCH_MP_TAC SPAN_MONO THEN ASM SET_TAC[]]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `~(s SUBSET t) ==> ?z. z IN s /\ ~(z IN t)`)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_INSERT; DE_MORGAN_THM] THEN X_GEN_TAC `n:real^N` THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[pairwise; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_THEN(MP_TAC o SPEC `n:real^N`) THEN ASM_REWRITE_TAC[IN_UNION] THEN REWRITE_TAC[IMP_IMP] THEN DISCH_TAC THEN EXISTS_TAC `n:real^N` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [SUBGOAL_THEN `(n:real^N) IN span (b UNION ns)` MP_TAC THENL [MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[]; ASM_REWRITE_TAC[] THEN SPEC_TAC(`n:real^N`,`n:real^N`) THEN REWRITE_TAC[GSYM SUBSET] THEN MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN REWRITE_TAC[SUBSPACE_SPAN] THEN ASM_REWRITE_TAC[SET_RULE `s UNION {a} SUBSET t <=> s SUBSET t /\ a IN t`] THEN ASM_MESON_TAC[SPAN_INC; SUBSET_TRANS]]; MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[SET_RULE `(\y. orthogonal n y) = {y | orthogonal n y}`] THEN REWRITE_TAC[SUBSPACE_ORTHOGONAL_TO_VECTOR] THEN ASM SET_TAC[]]);;
let ORTHOGONAL_TO_SUBSPACE_EXISTS = 
prove (`!s:real^N->bool. dim s < dimindex(:N) ==> ?x. ~(x = vec 0) /\ !y. y IN s ==> orthogonal x y`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `(:real^N)`] ORTHOGONAL_TO_SUBSPACE_EXISTS_GEN) THEN ANTS_TAC THENL [REWRITE_TAC[PSUBSET]; MESON_TAC[SPAN_SUPERSET]] THEN REWRITE_TAC[SPAN_UNIV; SUBSET_UNIV] THEN ASM_MESON_TAC[DIM_SPAN; DIM_UNIV; LT_REFL]);;
let ORTHOGONAL_TO_VECTOR_EXISTS = 
prove (`!x:real^N. 2 <= dimindex(:N) ==> ?y. ~(y = vec 0) /\ orthogonal x y`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `{x:real^N}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN SIMP_TAC[DIM_SING; IN_SING; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN ANTS_TAC THENL [ASM_ARITH_TAC; MESON_TAC[ORTHOGONAL_SYM]]);;
let SPAN_NOT_UNIV_ORTHOGONAL = 
prove (`!s. ~(span s = (:real^N)) ==> ?a. ~(a = vec 0) /\ !x. x IN span s ==> a dot x = &0`,
REWRITE_TAC[GSYM DIM_EQ_FULL; GSYM LE_ANTISYM; DIM_SUBSET_UNIV; NOT_LE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM orthogonal] THEN MATCH_MP_TAC ORTHOGONAL_TO_SUBSPACE_EXISTS THEN ASM_REWRITE_TAC[DIM_SPAN]);;
let SPAN_NOT_UNIV_SUBSET_HYPERPLANE = 
prove (`!s. ~(span s = (:real^N)) ==> ?a. ~(a = vec 0) /\ span s SUBSET {x | a dot x = &0}`,
let LOWDIM_SUBSET_HYPERPLANE = 
prove (`!s. dim s < dimindex(:N) ==> ?a:real^N. ~(a = vec 0) /\ span s SUBSET {x | a dot x = &0}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SPAN_NOT_UNIV_SUBSET_HYPERPLANE THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_UNIV] THEN DISCH_THEN(MP_TAC o MATCH_MP DIM_SUBSET) THEN ASM_REWRITE_TAC[NOT_LE; DIM_SPAN; DIM_UNIV]);;
let VECTOR_EQ_DOT_SPAN = 
prove (`!b x y:real^N. (!v. v IN b ==> v dot x = v dot y) /\ x IN span b /\ y IN span b ==> x = y`,
ONCE_REWRITE_TAC[GSYM REAL_SUB_0; GSYM VECTOR_SUB_EQ] THEN REWRITE_TAC[GSYM DOT_RSUB; GSYM ORTHOGONAL_REFL; GSYM orthogonal] THEN MESON_TAC[ORTHOGONAL_TO_SPAN; SPAN_SUB; ORTHOGONAL_SYM]);;
let ORTHONORMAL_BASIS_EXPAND = 
prove (`!b x:real^N. pairwise orthogonal b /\ (!v. v IN b ==> norm v = &1) /\ x IN span b ==> vsum b (\v. (v dot x) % v) = x`,
REWRITE_TAC[NORM_EQ_1] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_EQ_DOT_SPAN THEN EXISTS_TAC `b:real^N->bool` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PAIRWISE_ORTHOGONAL_IMP_FINITE) THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise; orthogonal]) THEN ASM_SIMP_TAC[SPAN_VSUM; SPAN_MUL; DOT_RSUM; DOT_RMUL; SPAN_SUPERSET] THEN X_GEN_TAC `v:real^N` THEN DISCH_TAC THEN TRANS_TAC EQ_TRANS `sum b (\w:real^N. if w = v then v dot x else &0)` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[SUM_DELTA]] THEN MATCH_MP_TAC SUM_EQ THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `w:real^N` THEN DISCH_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_MUL_RID; REAL_MUL_RZERO]);;
(* ------------------------------------------------------------------------- *) (* Decomposing a vector into parts in orthogonal subspaces. *) (* ------------------------------------------------------------------------- *)
let ORTHOGONAL_SUBSPACE_DECOMP_UNIQUE = 
prove (`!s t x y x' y':real^N. (!a b. a IN s /\ b IN t ==> orthogonal a b) /\ x IN span s /\ x' IN span s /\ y IN span t /\ y' IN span t /\ x + y = x' + y' ==> x = x' /\ y = y'`,
REWRITE_TAC[VECTOR_ARITH `x + y:real^N = x' + y' <=> x - x' = y' - y`] THEN ONCE_REWRITE_TAC[GSYM ORTHOGONAL_TO_SPANS_EQ] THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[VECTOR_ARITH `x:real^N = x' /\ y:real^N = y' <=> x - x' = vec 0 /\ y' - y = vec 0`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM ORTHOGONAL_REFL] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN ASM_MESON_TAC[ORTHOGONAL_CLAUSES; ORTHOGONAL_SYM]);;
let ORTHOGONAL_SUBSPACE_DECOMP_EXISTS = 
prove (`!s x:real^N. ?y z. y IN span s /\ (!w. w IN span s ==> orthogonal z w) /\ x = y + z`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `span s:real^N->bool` ORTHOGONAL_BASIS_SUBSPACE) THEN REWRITE_TAC[SUBSPACE_SPAN; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `t:real^N->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN EXISTS_TAC `vsum t (\b:real^N. (b dot x) / (b dot b) % b)` THEN EXISTS_TAC `x - vsum t (\b:real^N. (b dot x) / (b dot b) % b)` THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC SPAN_VSUM THEN ASM_SIMP_TAC[INDEPENDENT_IMP_FINITE; SPAN_CLAUSES]; REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN MATCH_MP_TAC GRAM_SCHMIDT_STEP THEN ASM_SIMP_TAC[]; VECTOR_ARITH_TAC]);;
let ORTHOGONAL_SUBSPACE_DECOMP = 
prove (`!s x. ?!(y,z). y IN span s /\ z IN {z:real^N | !x. x IN span s ==> orthogonal z x} /\ x = y + z`,
REWRITE_TAC[EXISTS_UNIQUE_DEF; IN_ELIM_THM] THEN REWRITE_TAC[EXISTS_PAIRED_THM; FORALL_PAIRED_THM] THEN REWRITE_TAC[FORALL_PAIR_THM; ORTHOGONAL_SUBSPACE_DECOMP_EXISTS] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[PAIR_EQ] THEN MATCH_MP_TAC ORTHOGONAL_SUBSPACE_DECOMP_UNIQUE THEN MAP_EVERY EXISTS_TAC [`s:real^N->bool`; `{z:real^N | !x. x IN span s ==> orthogonal z x}`] THEN ASM_SIMP_TAC[SPAN_CLAUSES; IN_ELIM_THM] THEN ASM_MESON_TAC[SPAN_CLAUSES; ORTHOGONAL_SYM]);;
(* ------------------------------------------------------------------------- *) (* Existence of isometry between subspaces of same dimension. *) (* ------------------------------------------------------------------------- *)
let ISOMETRY_SUBSET_SUBSPACE = 
prove (`!s:real^M->bool t:real^N->bool. subspace s /\ subspace t /\ dim s <= dim t ==> ?f. linear f /\ IMAGE f s SUBSET t /\ (!x. x IN s ==> norm(f x) = norm(x))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `t:real^N->bool` ORTHONORMAL_BASIS_SUBSPACE) THEN MP_TAC(ISPEC `s:real^M->bool` ORTHONORMAL_BASIS_SUBSPACE) THEN ASM_REWRITE_TAC[HAS_SIZE] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^M->bool` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`b:real^M->bool`; `c:real^N->bool`] CARD_LE_INJ) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; INJECTIVE_ON_ALT] THEN X_GEN_TAC `fb:real^M->real^N` THEN STRIP_TAC THEN MP_TAC(ISPECL [`fb:real^M->real^N`; `b:real^M->bool`] LINEAR_INDEPENDENT_EXTEND) THEN ASM_REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM; INJECTIVE_ON_ALT] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^M->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[SYM(ASSUME `span b:real^M->bool = s`)] THEN ASM_SIMP_TAC[GSYM SPAN_LINEAR_IMAGE] THEN REWRITE_TAC[SYM(ASSUME `span c:real^N->bool = t`)] THEN MATCH_MP_TAC SPAN_MONO THEN ASM SET_TAC[]; UNDISCH_THEN `span b:real^M->bool = s` (SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[SPAN_FINITE] THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`z:real^M`; `u:real^M->real`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[LINEAR_VSUM] THEN REWRITE_TAC[o_DEF; NORM_EQ_SQUARE; NORM_POS_LE; GSYM NORM_POW_2] THEN ASM_SIMP_TAC[LINEAR_CMUL] THEN W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o rand o snd) THEN W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o lhand o rand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise; ORTHOGONAL_CLAUSES] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[ORTHOGONAL_MUL] THEN ASM SET_TAC[]; REPEAT(DISCH_THEN SUBST1_TAC) THEN ASM_SIMP_TAC[NORM_MUL] THEN MATCH_MP_TAC SUM_EQ THEN ASM SET_TAC[]]]);;
let ISOMETRIES_SUBSPACES = 
prove (`!s:real^M->bool t:real^N->bool. subspace s /\ subspace t /\ dim s = dim t ==> ?f g. linear f /\ linear g /\ IMAGE f s = t /\ IMAGE g t = s /\ (!x. x IN s ==> norm(f x) = norm x) /\ (!y. y IN t ==> norm(g y) = norm y) /\ (!x. x IN s ==> g(f x) = x) /\ (!y. y IN t ==> f(g y) = y)`,
REPEAT STRIP_TAC THEN ABBREV_TAC `n = dim(t:real^N->bool)` THEN MP_TAC(ISPEC `t:real^N->bool` ORTHONORMAL_BASIS_SUBSPACE) THEN MP_TAC(ISPEC `s:real^M->bool` ORTHONORMAL_BASIS_SUBSPACE) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `b:real^M->bool` STRIP_ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`b:real^M->bool`; `c:real^N->bool`] CARD_EQ_BIJECTIONS) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`fb:real^M->real^N`; `gb:real^N->real^M`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`gb:real^N->real^M`; `c:real^N->bool`] LINEAR_INDEPENDENT_EXTEND) THEN MP_TAC(ISPECL [`fb:real^M->real^N`; `b:real^M->bool`] LINEAR_INDEPENDENT_EXTEND) THEN ASM_REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:real^M->real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^M` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SYM(ASSUME `span b:real^M->bool = s`)] THEN ASM_SIMP_TAC[GSYM SPAN_LINEAR_IMAGE] THEN REWRITE_TAC[SYM(ASSUME `span c:real^N->bool = t`)] THEN AP_TERM_TAC THEN ASM SET_TAC[]; REWRITE_TAC[SYM(ASSUME `span c:real^N->bool = t`)] THEN ASM_SIMP_TAC[GSYM SPAN_LINEAR_IMAGE] THEN REWRITE_TAC[SYM(ASSUME `span b:real^M->bool = s`)] THEN AP_TERM_TAC THEN ASM SET_TAC[]; UNDISCH_THEN `span b:real^M->bool = s` (SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[SPAN_FINITE] THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`z:real^M`; `u:real^M->real`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[LINEAR_VSUM] THEN REWRITE_TAC[o_DEF; NORM_EQ_SQUARE; NORM_POS_LE; GSYM NORM_POW_2] THEN ASM_SIMP_TAC[LINEAR_CMUL] THEN W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o rand o snd) THEN W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o lhand o rand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise; ORTHOGONAL_CLAUSES] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[ORTHOGONAL_MUL] THEN ASM SET_TAC[]; REPEAT(DISCH_THEN SUBST1_TAC) THEN ASM_SIMP_TAC[NORM_MUL]]; UNDISCH_THEN `span c:real^N->bool = t` (SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[SPAN_FINITE] THEN REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`z:real^N`; `u:real^N->real`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[LINEAR_VSUM] THEN REWRITE_TAC[o_DEF; NORM_EQ_SQUARE; NORM_POS_LE; GSYM NORM_POW_2] THEN ASM_SIMP_TAC[LINEAR_CMUL] THEN W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o rand o snd) THEN W(MP_TAC o PART_MATCH (lhand o rand) NORM_VSUM_PYTHAGOREAN o lhand o rand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise; ORTHOGONAL_CLAUSES] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[ORTHOGONAL_MUL] THEN ASM SET_TAC[]; REPEAT(DISCH_THEN SUBST1_TAC) THEN ASM_SIMP_TAC[NORM_MUL]]; REWRITE_TAC[SYM(ASSUME `span b:real^M->bool = s`)] THEN MATCH_MP_TAC SPAN_INDUCT THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; IN]; ALL_TAC] THEN REWRITE_TAC[subspace; IN] THEN ASM_MESON_TAC[linear; LINEAR_0]; REWRITE_TAC[SYM(ASSUME `span c:real^N->bool = t`)] THEN MATCH_MP_TAC SPAN_INDUCT THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET; IN]; ALL_TAC] THEN REWRITE_TAC[subspace; IN] THEN ASM_MESON_TAC[linear; LINEAR_0]]);;
let ISOMETRY_SUBSPACES = 
prove (`!s:real^M->bool t:real^N->bool. subspace s /\ subspace t /\ dim s = dim t ==> ?f:real^M->real^N. linear f /\ IMAGE f s = t /\ (!x. x IN s ==> norm(f x) = norm(x))`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMETRIES_SUBSPACES) THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[]);;
let ISOMETRY_UNIV_SUBSPACE = 
prove (`!s. subspace s /\ dimindex(:M) = dim s ==> ?f:real^M->real^N. linear f /\ IMAGE f (:real^M) = s /\ (!x. norm(f x) = norm(x))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(:real^M)`; `s:real^N->bool`] ISOMETRY_SUBSPACES) THEN ASM_REWRITE_TAC[SUBSPACE_UNIV; IN_UNIV; DIM_UNIV]);;
let ISOMETRY_UNIV_SUPERSET_SUBSPACE = 
prove (`!s. subspace s /\ dim s <= dimindex(:M) /\ dimindex(:M) <= dimindex(:N) ==> ?f:real^M->real^N. linear f /\ s SUBSET (IMAGE f (:real^M)) /\ (!x. norm(f x) = norm(x))`,
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP LOWDIM_EXPAND_DIMENSION) THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`(:real^M)`; `span t:real^N->bool`] ISOMETRY_SUBSPACES) THEN ASM_REWRITE_TAC[SUBSPACE_SPAN; SUBSPACE_UNIV; DIM_UNIV; DIM_SPAN] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[IN_UNIV] THEN ASM_MESON_TAC[SUBSET; SPAN_INC]);;
let ISOMETRY_UNIV_UNIV = 
prove (`dimindex(:M) <= dimindex(:N) ==> ?f:real^M->real^N. linear f /\ (!x. norm(f x) = norm(x))`,
DISCH_TAC THEN MP_TAC(ISPEC `{vec 0:real^N}`ISOMETRY_UNIV_SUPERSET_SUBSPACE) THEN ASM_REWRITE_TAC[SUBSPACE_TRIVIAL] THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN MATCH_MP_TAC(ARITH_RULE `x = 0 /\ 1 <= y ==> x <= y`) THEN ASM_REWRITE_TAC[DIM_EQ_0; DIMINDEX_GE_1] THEN SET_TAC[]);;
let SUBSPACE_ISOMORPHISM = 
prove (`!s t. subspace s /\ subspace t /\ dim(s) = dim(t) ==> ?f:real^M->real^N. linear f /\ (IMAGE f s = t) /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> (x = y))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ISOMETRY_SUBSPACES) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[LINEAR_INJECTIVE_0_SUBSPACE] THEN MESON_TAC[NORM_EQ_0]);;
let ISOMORPHISMS_UNIV_UNIV = 
prove (`dimindex(:M) = dimindex(:N) ==> ?f:real^M->real^N g. linear f /\ linear g /\ (!x. norm(f x) = norm x) /\ (!y. norm(g y) = norm y) /\ (!x. g(f x) = x) /\ (!y. f(g y) = y)`,
REPEAT STRIP_TAC THEN EXISTS_TAC `(\x. lambda i. x$i):real^M->real^N` THEN EXISTS_TAC `(\x. lambda i. x$i):real^N->real^M` THEN SIMP_TAC[vector_norm; dot; LAMBDA_BETA] THEN SIMP_TAC[linear; CART_EQ; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; LAMBDA_BETA] THEN FIRST_ASSUM SUBST1_TAC THEN SIMP_TAC[LAMBDA_BETA] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN SIMP_TAC[LAMBDA_BETA]);;
(* ------------------------------------------------------------------------- *) (* Properties of special hyperplanes. *) (* ------------------------------------------------------------------------- *)
let SUBSPACE_HYPERPLANE = 
prove (`!a. subspace {x:real^N | a dot x = &0}`,
SIMP_TAC[subspace; DOT_RADD; DOT_RMUL; IN_ELIM_THM; REAL_ADD_LID; REAL_MUL_RZERO; DOT_RZERO]);;
let SUBSPACE_SPECIAL_HYPERPLANE = 
prove (`!k. subspace {x:real^N | x$k = &0}`,
SIMP_TAC[subspace; IN_ELIM_THM; VEC_COMPONENT; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT] THEN REAL_ARITH_TAC);;
let SPECIAL_HYPERPLANE_SPAN = 
prove (`!k. 1 <= k /\ k <= dimindex(:N) ==> {x:real^N | x$k = &0} = span(IMAGE basis ((1..dimindex(:N)) DELETE k))`,
REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SPAN_SUBSPACE THEN ASM_SIMP_TAC[SUBSPACE_SPECIAL_HYPERPLANE] THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN ASM_SIMP_TAC[BASIS_COMPONENT; IN_DELETE]; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN SIMP_TAC[SPAN_FINITE; FINITE_IMAGE; FINITE_DELETE; FINITE_NUMSEG] THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `\v:real^N. x dot v` THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhs o snd) THEN ANTS_TAC THENL [REWRITE_TAC[FINITE_DELETE; FINITE_NUMSEG; IN_NUMSEG; IN_DELETE] THEN MESON_TAC[BASIS_INJ]; DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN ASM_SIMP_TAC[VSUM_DELETE; FINITE_NUMSEG; IN_NUMSEG; DOT_BASIS] THEN REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_SUB_RZERO]]]);;
let DIM_SPECIAL_HYPERPLANE = 
prove (`!k. 1 <= k /\ k <= dimindex(:N) ==> dim {x:real^N | x$k = &0} = dimindex(:N) - 1`,
SIMP_TAC[SPECIAL_HYPERPLANE_SPAN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `IMAGE (basis:num->real^N) ((1..dimindex(:N)) DELETE k)` THEN REWRITE_TAC[SUBSET_REFL; SPAN_INC] THEN CONJ_TAC THENL [MATCH_MP_TAC INDEPENDENT_MONO THEN EXISTS_TAC `{basis i:real^N | 1 <= i /\ i <= dimindex(:N)}` THEN REWRITE_TAC[INDEPENDENT_STDBASIS; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_DELETE; IN_NUMSEG; IN_ELIM_THM] THEN MESON_TAC[]; MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL [REWRITE_TAC[FINITE_DELETE; FINITE_NUMSEG; IN_NUMSEG; IN_DELETE] THEN MESON_TAC[BASIS_INJ]; ASM_SIMP_TAC[HAS_SIZE; FINITE_DELETE; FINITE_NUMSEG; CARD_DELETE; FINITE_IMAGE; IN_NUMSEG; CARD_NUMSEG_1]]]);;
(* ------------------------------------------------------------------------- *) (* More theorems about dimensions of different subspaces. *) (* ------------------------------------------------------------------------- *)
let DIM_IMAGE_KERNEL_GEN = 
prove (`!f:real^M->real^N s. linear f /\ subspace s ==> dim(IMAGE f s) + dim {x | x IN s /\ f x = vec 0} = dim(s)`,
REPEAT STRIP_TAC THEN MP_TAC (ISPEC `{x | x IN s /\ (f:real^M->real^N) x = vec 0}` BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `v:real^M->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`v:real^M->bool`; `s:real^M->bool`] MAXIMAL_INDEPENDENT_SUBSET_EXTEND) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `w:real^M->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `span(w:real^M->bool) = s` (fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM th] THEN ASSUME_TAC th) THENL [ASM_SIMP_TAC[SPAN_SUBSPACE]; ALL_TAC] THEN SUBGOAL_THEN `subspace {x | x IN s /\ (f:real^M->real^N) x = vec 0}` ASSUME_TAC THENL [REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN ASM_SIMP_TAC[SUBSPACE_INTER; SUBSPACE_KERNEL]; ALL_TAC] THEN SUBGOAL_THEN `{x | x IN s /\ (f:real^M->real^N) x = vec 0} = span v` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET_ANTISYM; SPAN_SUBSET_SUBSPACE; SUBSPACE_KERNEL]; ALL_TAC] THEN ASM_SIMP_TAC[DIM_SPAN; DIM_EQ_CARD] THEN SUBGOAL_THEN `!x. x IN span(w DIFF v) /\ (f:real^M->real^N) x = vec 0 ==> x = vec 0` (LABEL_TAC "*") THENL [MATCH_MP_TAC(SET_RULE `!t. s SUBSET t /\ (!x. x IN s /\ x IN t /\ P x ==> Q x) ==> (!x. x IN s /\ P x ==> Q x)`) THEN EXISTS_TAC `s:real^M->bool` THEN CONJ_TAC THENL [ASM_MESON_TAC[SPAN_MONO; SUBSET_DIFF]; ALL_TAC] THEN ASM_SIMP_TAC[SPAN_FINITE; IN_ELIM_THM; IMP_CONJ; FINITE_DIFF; INDEPENDENT_IMP_FINITE; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `u:real^M->real` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[SET_RULE `y IN s /\ f y = a <=> y IN {x | x IN s /\ f x = a}`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SPAN_FINITE; INDEPENDENT_IMP_FINITE; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `t:real^M->real`) THEN MP_TAC(ISPEC `w:real^M->bool` INDEPENDENT_EXPLICIT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(\x. if x IN w DIFF v then --u x else t x):real^M->real`) THEN ASM_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[VSUM_CASES; INDEPENDENT_IMP_FINITE] THEN REWRITE_TAC[SET_RULE `{x | x IN w /\ x IN (w DIFF v)} = w DIFF v`] THEN SIMP_TAC[ASSUME `(v:real^M->bool) SUBSET w`; SET_RULE `v SUBSET w ==> {x | x IN w /\ ~(x IN (w DIFF v))} = v`] THEN ASM_REWRITE_TAC[VECTOR_MUL_LNEG; VSUM_NEG; VECTOR_ADD_LINV] THEN DISCH_THEN(fun th -> MATCH_MP_TAC VSUM_EQ_0 THEN MP_TAC th) THEN REWRITE_TAC[REAL_NEG_EQ_0; VECTOR_MUL_EQ_0; IN_DIFF] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x y. x IN (w DIFF v) /\ y IN (w DIFF v) /\ (f:real^M->real^N) x = f y ==> x = y` ASSUME_TAC THENL [REMOVE_THEN "*" MP_TAC THEN ASM_SIMP_TAC[GSYM LINEAR_INJECTIVE_0_SUBSPACE; SUBSPACE_SPAN] THEN MP_TAC(ISPEC `w DIFF v:real^M->bool` SPAN_INC) THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `IMAGE (f:real^M->real^N) s = span(IMAGE f (w DIFF v))` SUBST1_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBSPACE_LINEAR_IMAGE; SPAN_MONO; IMAGE_SUBSET; SUBSET_TRANS; SUBSET_DIFF; SPAN_EQ_SELF]] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN UNDISCH_TAC `span w:real^M->bool = s` THEN REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "*" (MP_TAC o SPEC `x:real^M`) THEN (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [IN_UNIV; SPAN_FINITE; INDEPENDENT_IMP_FINITE; IN_ELIM_THM; FINITE_IMAGE; FINITE_DIFF; ASSUME `independent(w:real^M->bool)`] THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN DISCH_TAC THEN X_GEN_TAC `u:real^M->real` THEN DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN DISCH_THEN(X_CHOOSE_TAC `g:real^N->real^M`) THEN EXISTS_TAC `(u:real^M->real) o (g:real^N->real^M)` THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[FINITE_DIFF; INDEPENDENT_IMP_FINITE; LINEAR_VSUM] THEN DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[o_DEF] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_EQ_SUPERSET THEN SIMP_TAC[SUBSET_DIFF; FINITE_DIFF; INDEPENDENT_IMP_FINITE; LINEAR_CMUL; IN_DIFF; TAUT `a /\ ~(a /\ ~b) <=> a /\ b`; ASSUME `independent(w:real^M->bool)`; ASSUME `linear(f:real^M->real^N)`] THEN REWRITE_TAC[VECTOR_MUL_EQ_0] THEN ASM SET_TAC[]; SUBGOAL_THEN `independent(IMAGE (f:real^M->real^N) (w DIFF v))` ASSUME_TAC THENL [MATCH_MP_TAC INDEPENDENT_INJECTIVE_IMAGE_GEN THEN ASM_SIMP_TAC[LINEAR_INJECTIVE_0_SUBSPACE; SUBSPACE_SPAN] THEN ASM_MESON_TAC[INDEPENDENT_MONO; SUBSET_DIFF]; ASM_SIMP_TAC[DIM_SPAN; DIM_EQ_CARD] THEN W(MP_TAC o PART_MATCH (lhs o rand) CARD_IMAGE_INJ o lhand o lhand o snd) THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[FINITE_DIFF; CARD_DIFF; INDEPENDENT_IMP_FINITE] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SUB_ADD THEN ASM_MESON_TAC[CARD_SUBSET; INDEPENDENT_IMP_FINITE]]]);;
let DIM_IMAGE_KERNEL = 
prove (`!f:real^M->real^N. linear f ==> dim(IMAGE f (:real^M)) + dim {x | f x = vec 0} = dimindex(:M)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `(:real^M)`] DIM_IMAGE_KERNEL_GEN) THEN ASM_REWRITE_TAC[SUBSPACE_UNIV; IN_UNIV; DIM_UNIV]);;
let DIM_SUMS_INTER = 
prove (`!s t:real^N->bool. subspace s /\ subspace t ==> dim {x + y | x IN s /\ y IN t} + dim(s INTER t) = dim(s) + dim(t)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `s INTER t:real^N->bool` BASIS_EXISTS) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`b:real^N->bool`; `s:real^N->bool`] MAXIMAL_INDEPENDENT_SUBSET_EXTEND) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`b:real^N->bool`; `t:real^N->bool`] MAXIMAL_INDEPENDENT_SUBSET_EXTEND) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:real^N->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(c:real^N->bool) INTER d = b` ASSUME_TAC THENL [MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[SUBSET_INTER] THEN REWRITE_TAC[SUBSET; IN_INTER] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN MP_TAC(ISPEC `c:real^N->bool` independent) THEN ASM_REWRITE_TAC[dependent; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN STRIP_TAC THEN REWRITE_TAC[] THEN SUBGOAL_THEN `(x:real^N) IN span b` MP_TAC THENL [ASM_MESON_TAC[SUBSET; IN_INTER; SPAN_INC]; MP_TAC(ISPECL [`b:real^N->bool`; `c DELETE (x:real^N)`] SPAN_MONO) THEN ASM SET_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `dim (s INTER t:real^N->bool) = CARD(b:real^N->bool) /\ dim s = CARD c /\ dim t = CARD d /\ dim {x + y:real^N | x IN s /\ y IN t} = CARD(c UNION d:real^N->bool)` (REPEAT_TCL CONJUNCTS_THEN SUBST1_TAC) THENL [ALL_TAC; ASM_SIMP_TAC[CARD_UNION_GEN; INDEPENDENT_IMP_FINITE] THEN MATCH_MP_TAC(ARITH_RULE `b:num <= c ==> (c + d) - b + b = c + d`) THEN ASM_SIMP_TAC[CARD_SUBSET; INDEPENDENT_IMP_FINITE]] THEN REPEAT CONJ_TAC THEN MATCH_MP_TAC DIM_UNIQUE THENL [EXISTS_TAC `b:real^N->bool`; EXISTS_TAC `c:real^N->bool`; EXISTS_TAC `d:real^N->bool`; EXISTS_TAC `c UNION d:real^N->bool`] THEN ASM_SIMP_TAC[HAS_SIZE; INDEPENDENT_IMP_FINITE; FINITE_UNION] THEN REWRITE_TAC[UNION_SUBSET; GSYM CONJ_ASSOC] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; FORALL_IN_GSPEC] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:real^N`; `vec 0:real^N`] THEN ASM_SIMP_TAC[SUBSPACE_0; VECTOR_ADD_RID] THEN ASM SET_TAC[]; X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`vec 0:real^N`; `x:real^N`] THEN ASM_SIMP_TAC[SUBSPACE_0; VECTOR_ADD_LID] THEN ASM SET_TAC[]; MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN MATCH_MP_TAC SPAN_ADD THEN CONJ_TAC THENL [MP_TAC(ISPECL[`c:real^N->bool`; `c UNION d:real^N->bool`] SPAN_MONO); MP_TAC(ISPECL[`d:real^N->bool`; `c UNION d:real^N->bool`] SPAN_MONO)] THEN REWRITE_TAC[SUBSET_UNION] THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN MATCH_MP_TAC THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[INDEPENDENT_EXPLICIT; FINITE_UNION; INDEPENDENT_IMP_FINITE] THEN X_GEN_TAC `a:real^N->real` THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SET_RULE `s UNION t = s UNION (t DIFF s)`] THEN ASM_SIMP_TAC[VSUM_UNION; SET_RULE `DISJOINT c (d DIFF c)`; INDEPENDENT_IMP_FINITE; FINITE_DIFF; FINITE_UNION] THEN DISCH_TAC THEN SUBGOAL_THEN `(vsum (d DIFF c) (\v:real^N. a v % v)) IN span b` MP_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[IN_INTER] THEN CONJ_TAC THENL [FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (VECTOR_ARITH `a + b = vec 0 ==> b = --a`)) THEN MATCH_MP_TAC SUBSPACE_NEG THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC SUBSPACE_VSUM THEN ASM_SIMP_TAC[FINITE_DIFF; INDEPENDENT_IMP_FINITE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSPACE_MUL THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[SPAN_FINITE; INDEPENDENT_IMP_FINITE; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `e:real^N->real`) THEN MP_TAC(ISPEC `c:real^N->bool` INDEPENDENT_EXPLICIT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `(\x. if x IN b then a x + e x else a x):real^N->real`)) THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[VSUM_CASES] THEN REWRITE_TAC[VECTOR_ADD_RDISTRIB; GSYM DIFF] THEN ASM_SIMP_TAC[SET_RULE `b SUBSET c ==> {x | x IN c /\ x IN b} = b`] THEN ASM_SIMP_TAC[VSUM_ADD; INDEPENDENT_IMP_FINITE] THEN ONCE_REWRITE_TAC[VECTOR_ARITH `(a + b) + c:real^N = (a + c) + b`] THEN ASM_SIMP_TAC[GSYM VSUM_UNION; FINITE_DIFF; INDEPENDENT_IMP_FINITE; SET_RULE `DISJOINT b (c DIFF b)`] THEN ASM_SIMP_TAC[SET_RULE `b SUBSET c ==> b UNION (c DIFF b) = c`] THEN DISCH_TAC THEN SUBGOAL_THEN `!v:real^N. v IN (c DIFF b) ==> a v = &0` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPEC `d:real^N->bool` INDEPENDENT_EXPLICIT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `a:real^N->real`)) THEN SUBGOAL_THEN `d:real^N->bool = b UNION (d DIFF c)` (fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [ASM SET_TAC[]; ALL_TAC] THEN ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ASM_SIMP_TAC[VSUM_UNION; FINITE_DIFF; INDEPENDENT_IMP_FINITE; SET_RULE `c INTER d = b ==> DISJOINT b (d DIFF c)`] THEN SUBGOAL_THEN `vsum b (\x:real^N. a x % x) = vsum c (\x. a x % x)` (fun th -> ASM_REWRITE_TAC[th]) THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN ASM_SIMP_TAC[VECTOR_MUL_EQ_0] THEN ASM_MESON_TAC[]);;
let DIM_KERNEL_COMPOSE = 
prove (`!f:real^M->real^N g:real^N->real^P. linear f /\ linear g ==> dim {x | (g o f) x = vec 0} <= dim {x | f(x) = vec 0} + dim {y | g(y) = vec 0}`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `{x | (f:real^M->real^N) x = vec 0}` BASIS_EXISTS_FINITE) THEN DISCH_THEN(X_CHOOSE_THEN `b:real^M->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?c. FINITE c /\ IMAGE f c SUBSET {y | g(y):real^P = vec 0} /\ independent (IMAGE (f:real^M->real^N) c) /\ IMAGE f (:real^M) INTER {y | g(y) = vec 0} SUBSET span(IMAGE f c) /\ (!x y. x IN c /\ y IN c ==> (f x = f y <=> x = y)) /\ (IMAGE f c) HAS_SIZE dim (IMAGE f (:real^M) INTER {y | g(y) = vec 0})` STRIP_ASSUME_TAC THENL [MP_TAC(ISPEC `IMAGE (f:real^M->real^N) (:real^M) INTER {x | (g:real^N->real^P) x = vec 0}` BASIS_EXISTS_FINITE) THEN REWRITE_TAC[SUBSET_INTER; GSYM CONJ_ASSOC; EXISTS_FINITE_SUBSET_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `c:real^M->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`f:real^M->real^N`; `c:real^M->bool`] IMAGE_INJECTIVE_IMAGE_OF_SUBSET) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real^M->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[FINITE_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `dim(span(b UNION c:real^M->bool))` THEN CONJ_TAC THENL [MATCH_MP_TAC DIM_SUBSET THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; o_THM] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN SUBGOAL_THEN `(f:real^M->real^N) x IN span(IMAGE f c)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[SPAN_LINEAR_IMAGE; IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:real^M` THEN STRIP_TAC THEN SUBST1_TAC(VECTOR_ARITH `x:real^M = y + (x - y)`) THEN MATCH_MP_TAC SPAN_ADD THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_UNION; SPAN_MONO; SUBSET]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `!t. x IN t /\ t SUBSET s ==> x IN s`) THEN EXISTS_TAC `{x | (f:real^M->real^N) x = vec 0}` THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[LINEAR_SUB; VECTOR_SUB_EQ]; ASM_MESON_TAC[SUBSET_TRANS; SUBSET_UNION; SPAN_MONO]]; REWRITE_TAC[DIM_SPAN] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(b UNION c:real^M->bool)` THEN ASM_SIMP_TAC[DIM_LE_CARD; FINITE_UNION; INDEPENDENT_IMP_FINITE] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(b:real^M->bool) + CARD(c:real^M->bool)` THEN ASM_SIMP_TAC[CARD_UNION_LE] THEN MATCH_MP_TAC LE_ADD2 THEN CONJ_TAC THENL [ASM_SIMP_TAC[GSYM DIM_EQ_CARD; DIM_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `dim(IMAGE (f:real^M->real^N) c)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[DIM_EQ_CARD] THEN ASM_MESON_TAC[CARD_IMAGE_INJ; LE_REFL]; ASM_SIMP_TAC[GSYM DIM_EQ_CARD; DIM_SUBSET]]]);;
let DIM_ORTHOGONAL_SUM = 
prove (`!s t:real^N->bool. (!x y. x IN s /\ y IN t ==> x dot y = &0) ==> dim(s UNION t) = dim(s) + dim(t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN REWRITE_TAC[SPAN_UNION] THEN SIMP_TAC[GSYM DIM_SUMS_INTER; SUBSPACE_SPAN] THEN REWRITE_TAC[ARITH_RULE `x = x + y <=> y = 0`] THEN REWRITE_TAC[DIM_EQ_0; SUBSET; IN_INTER] THEN SUBGOAL_THEN `!x:real^N. x IN span s ==> !y:real^N. y IN span t ==> x dot y = &0` MP_TAC THENL [MATCH_MP_TAC SPAN_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC SPAN_INDUCT THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN SIMP_TAC[subspace; IN_ELIM_THM; DOT_RMUL; DOT_RADD; DOT_RZERO] THEN REAL_ARITH_TAC; SIMP_TAC[subspace; IN_ELIM_THM; DOT_LMUL; DOT_LADD; DOT_LZERO] THEN REAL_ARITH_TAC]; REWRITE_TAC[IN_SING] THEN MESON_TAC[DOT_EQ_0]]);;
let DIM_SUBSPACE_ORTHOGONAL_TO_VECTORS = 
prove (`!s t:real^N->bool. subspace s /\ subspace t /\ s SUBSET t ==> dim {y | y IN t /\ !x. x IN s ==> orthogonal x y} + dim s = dim t`,
REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) DIM_ORTHOGONAL_SUM o lhand o snd) THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM; orthogonal] THEN MESON_TAC[DOT_SYM]; DISCH_THEN(SUBST1_TAC o SYM)] THEN ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SPAN_MONO THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN REWRITE_TAC[SUBSPACE_SPAN] THEN REWRITE_TAC[SPAN_UNION; SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MP_TAC(ISPECL [`s:real^N->bool`; `x:real^N`] ORTHOGONAL_SUBSPACE_DECOMP_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real^N` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ADD_SYM] THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [FIRST_ASSUM(SUBST1_TAC o MATCH_MP (VECTOR_ARITH `x:real^N = y + z ==> z = x - y`)) THEN MATCH_MP_TAC SUBSPACE_SUB THEN ASM_MESON_TAC[SUBSET; SPAN_EQ_SELF]; ASM_MESON_TAC[SPAN_SUPERSET; ORTHOGONAL_SYM]]);;
let DIM_SPECIAL_SUBSPACE = 
prove (`!k. dim {x:real^N | !i. 1 <= i /\ i <= dimindex(:N) /\ i IN k ==> x$i = &0} = CARD((1..dimindex(:N)) DIFF k)`,
GEN_TAC THEN MATCH_MP_TAC DIM_UNIQUE THEN EXISTS_TAC `IMAGE (basis:num->real^N) ((1..dimindex(:N)) DIFF k)` THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN SIMP_TAC[BASIS_COMPONENT; IN_DIFF; IN_NUMSEG] THEN MESON_TAC[]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN MATCH_MP_TAC SPAN_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN ASM_CASES_TAC `(x:real^N)$j = &0` THEN ASM_REWRITE_TAC[SPAN_0; VECTOR_MUL_LZERO] THEN MATCH_MP_TAC SPAN_MUL THEN MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `j:num` THEN REWRITE_TAC[IN_NUMSEG; IN_DIFF] THEN ASM_MESON_TAC[]; MATCH_MP_TAC PAIRWISE_ORTHOGONAL_INDEPENDENT THEN REWRITE_TAC[pairwise; IMP_CONJ; RIGHT_FORALL_IMP_THM; SET_RULE `~(a IN IMAGE f s) <=> (!x. x IN s ==> ~(f x = a))`] THEN SIMP_TAC[FORALL_IN_IMAGE; ORTHOGONAL_BASIS_BASIS; BASIS_INJ_EQ; IN_DIFF; IN_NUMSEG; BASIS_NONZERO]; SIMP_TAC[HAS_SIZE; FINITE_IMAGE; FINITE_DIFF; FINITE_NUMSEG] THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN SIMP_TAC[FINITE_DIFF; FINITE_NUMSEG; IMP_CONJ; RIGHT_FORALL_IMP_THM; SET_RULE `~(a IN IMAGE f s) <=> (!x. x IN s ==> ~(f x = a))`] THEN SIMP_TAC[FORALL_IN_IMAGE; ORTHOGONAL_BASIS_BASIS; BASIS_INJ_EQ; IN_DIFF; IN_NUMSEG; BASIS_NONZERO]]);;
(* ------------------------------------------------------------------------- *) (* More injective/surjective versus dimension variants. *) (* ------------------------------------------------------------------------- *)
let LINEAR_INJECTIVE_IFF_DIM = 
prove (`!f:real^M->real^N. linear f ==> ((!x y. f x = f y ==> x = y) <=> dim(IMAGE f (:real^M)) = dimindex(:M))`,
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `f:real^M->real^N` DIM_IMAGE_KERNEL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP (ARITH_RULE `x + y:num = m ==> (x = m <=> y = 0)`)) THEN REWRITE_TAC[DIM_EQ_0; SUBSET; IN_ELIM_THM; IN_SING] THEN ASM_MESON_TAC[LINEAR_INJECTIVE_0]);;
let LINEAR_SURJECTIVE_IFF_DIM = 
prove (`!f:real^M->real^N. linear f ==> ((!y. ?x. f x = y) <=> dim(IMAGE f (:real^M)) = dimindex(:N))`,
SIMP_TAC[DIM_EQ_FULL; SPAN_LINEAR_IMAGE; SPAN_UNIV] THEN SET_TAC[]);;
let LINEAR_SURJECTIVE_IFF_INJECTIVE_GEN = 
prove (`!f:real^M->real^N. dimindex(:M) = dimindex(:N) /\ linear f ==> ((!y. ?x. f x = y) <=> (!x y. f x = f y ==> x = y))`,
SIMP_TAC[LINEAR_INJECTIVE_IFF_DIM; LINEAR_SURJECTIVE_IFF_DIM] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* More about product spaces. *) (* ------------------------------------------------------------------------- *)
let PASTECART_AS_ORTHOGONAL_SUM = 
prove (`!x:real^M y:real^N. pastecart x y = pastecart x (vec 0) + pastecart (vec 0) y`,
let PCROSS_AS_ORTHOGONAL_SUM = 
prove (`!s:real^M->bool t:real^N->bool. s PCROSS t = {u + v | u IN IMAGE (\x. pastecart x (vec 0)) s /\ v IN IMAGE (\y. pastecart (vec 0) y) t}`,
REPEAT GEN_TAC THEN REWRITE_TAC[PCROSS] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [PASTECART_AS_ORTHOGONAL_SUM] THEN SET_TAC[]);;
let DIM_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. subspace s /\ subspace t ==> dim(s PCROSS t) = dim s + dim t`,
REPEAT STRIP_TAC THEN REWRITE_TAC[PCROSS_AS_ORTHOGONAL_SUM] THEN W(MP_TAC o PART_MATCH (lhand o lhand o rand) DIM_SUMS_INTER o lhand o snd) THEN ANTS_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC SUBSPACE_LINEAR_IMAGE; MATCH_MP_TAC(ARITH_RULE `c = d /\ b = 0 ==> a + b = c ==> a = d`) THEN CONJ_TAC THENL [BINOP_TAC THEN MATCH_MP_TAC DIM_INJECTIVE_LINEAR_IMAGE THEN SIMP_TAC[PASTECART_INJ]; REWRITE_TAC[DIM_EQ_0; SUBSET; IN_INTER; IN_IMAGE; IN_SING] THEN REWRITE_TAC[PASTECART_EQ; FSTCART_PASTECART; SNDCART_PASTECART] THEN MESON_TAC[FSTCART_VEC; SNDCART_VEC]]] THEN ASM_REWRITE_TAC[linear; GSYM PASTECART_VEC] THEN REWRITE_TAC[PASTECART_ADD; GSYM PASTECART_CMUL; PASTECART_INJ] THEN VECTOR_ARITH_TAC);;
let SPAN_PCROSS_SUBSET = 
prove (`!s:real^M->bool t:real^N->bool. span(s PCROSS t) SUBSET (span s) PCROSS (span t)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN SIMP_TAC[SUBSPACE_PCROSS; SUBSPACE_SPAN; PCROSS_MONO; SPAN_INC]);;
let SPAN_PCROSS = 
prove (`!s:real^M->bool t:real^N->bool. ~(s = {}) /\ ~(t = {}) /\ (vec 0 IN s \/ vec 0 IN t) ==> span(s PCROSS t) = (span s) PCROSS (span t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SPAN_PCROSS_SUBSET] THEN REWRITE_TAC[SUBSET; FORALL_IN_PCROSS] THEN ONCE_REWRITE_TAC[PASTECART_AS_ORTHOGONAL_SUM] THEN SUBGOAL_THEN `(!x:real^M. x IN span s ==> pastecart x (vec 0) IN span(s PCROSS t)) /\ (!y:real^N. y IN span t ==> pastecart (vec 0) y IN span(s PCROSS t))` (fun th -> ASM_MESON_TAC[th; SPAN_ADD]) THEN CONJ_TAC THEN MATCH_MP_TAC SPAN_INDUCT THEN REWRITE_TAC[IN_ELIM_THM] THEN (CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN ASM_SIMP_TAC[SPAN_SUPERSET; PASTECART_IN_PCROSS]; REWRITE_TAC[subspace; IN_ELIM_THM; PASTECART_VEC; SPAN_0] THEN CONJ_TAC THEN REPEAT GEN_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP SPAN_ADD) THEN REWRITE_TAC[PASTECART_ADD; VECTOR_ADD_LID]; DISCH_THEN(MP_TAC o MATCH_MP SPAN_MUL) THEN SIMP_TAC[GSYM PASTECART_CMUL; VECTOR_MUL_RZERO]]]) THENL [X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN UNDISCH_TAC `~(t:real^N->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `y:real^N`) THEN SUBGOAL_THEN `pastecart x (vec 0) = pastecart (x:real^M) (y:real^N) - pastecart (vec 0) y` SUBST1_TAC THENL [REWRITE_TAC[PASTECART_SUB; PASTECART_INJ] THEN VECTOR_ARITH_TAC; MATCH_MP_TAC SPAN_SUB THEN ASM_SIMP_TAC[SPAN_SUPERSET; PASTECART_IN_PCROSS]]; X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN UNDISCH_TAC `~(s:real^M->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `x:real^M`) THEN SUBGOAL_THEN `pastecart (vec 0) y = pastecart (x:real^M) (y:real^N) - pastecart x (vec 0)` SUBST1_TAC THENL [REWRITE_TAC[PASTECART_SUB; PASTECART_INJ] THEN VECTOR_ARITH_TAC; MATCH_MP_TAC SPAN_SUB THEN ASM_SIMP_TAC[SPAN_SUPERSET; PASTECART_IN_PCROSS]]]);;
let DIM_PCROSS_STRONG = 
prove (`!s:real^M->bool t:real^N->bool. ~(s = {}) /\ ~(t = {}) /\ (vec 0 IN s \/ vec 0 IN t) ==> dim(s PCROSS t) = dim s + dim t`,
ONCE_REWRITE_TAC[GSYM DIM_SPAN] THEN SIMP_TAC[SPAN_PCROSS; DIM_PCROSS; SUBSPACE_SPAN]);;
let SPAN_SUMS = 
prove (`!s t:real^N->bool. ~(s = {}) /\ ~(t = {}) /\ vec 0 IN (s UNION t) ==> span {x + y | x IN s /\ y IN t} = {x + y | x IN span s /\ y IN span t}`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SPAN_UNION] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN MATCH_MP_TAC SPAN_SUBSET_SUBSPACE THEN REWRITE_TAC[SUBSPACE_SPAN; SUBSET; FORALL_IN_GSPEC] THEN SIMP_TAC[SPAN_ADD; IN_UNION; SPAN_SUPERSET] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [IN_UNION]) THENL [UNDISCH_TAC `~(t:real^N->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `y:real^N`) THEN SUBST1_TAC(VECTOR_ARITH `x:real^N = (x + y) - (vec 0 + y)`) THEN MATCH_MP_TAC SPAN_SUB THEN CONJ_TAC THEN MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[]; MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[VECTOR_ADD_RID]; MATCH_MP_TAC SPAN_SUPERSET THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[VECTOR_ADD_LID]; UNDISCH_TAC `~(s:real^N->bool = {})` THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `y:real^N`) THEN SUBST1_TAC(VECTOR_ARITH `x:real^N = (y + x) - (y + vec 0)`) THEN MATCH_MP_TAC SPAN_SUB THEN CONJ_TAC THEN MATCH_MP_TAC SPAN_SUPERSET THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* More about rank from the rank/nullspace formula. *) (* ------------------------------------------------------------------------- *)
let RANK_NULLSPACE = 
prove (`!A:real^M^N. rank A + dim {x | A ** x = vec 0} = dimindex(:M)`,
GEN_TAC THEN REWRITE_TAC[RANK_DIM_IM] THEN MATCH_MP_TAC DIM_IMAGE_KERNEL THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR]);;
let RANK_SYLVESTER = 
prove (`!A:real^N^M B:real^P^N. rank(A) + rank(B) <= rank(A ** B) + dimindex(:N)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC(ARITH_RULE `!ia ib iab p:num. ra + ia = n /\ rb + ib = p /\ rab + iab = p /\ iab <= ia + ib ==> ra + rb <= rab + n`) THEN MAP_EVERY EXISTS_TAC [`dim {x | (A:real^N^M) ** x = vec 0}`; `dim {x | (B:real^P^N) ** x = vec 0}`; `dim {x | ((A:real^N^M) ** (B:real^P^N)) ** x = vec 0}`; `dimindex(:P)`] THEN REWRITE_TAC[RANK_NULLSPACE] THEN REWRITE_TAC[GSYM MATRIX_VECTOR_MUL_ASSOC] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] DIM_KERNEL_COMPOSE) THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN REWRITE_TAC[MATRIX_VECTOR_MUL_LINEAR]);;
let RANK_GRAM = 
prove (`!A:real^M^N. rank(transp A ** A) = rank A`,
GEN_TAC THEN MATCH_MP_TAC(ARITH_RULE `!n n' k. r + n:num = k /\ r' + n' = k /\ n = n' ==> r = r'`) THEN MAP_EVERY EXISTS_TAC [`dim {x | (transp A ** (A:real^M^N)) ** x = vec 0}`; `dim {x | (A:real^M^N) ** x = vec 0}`; `dimindex(:M)`] THEN REWRITE_TAC[RANK_NULLSPACE] THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBSET; IN_ELIM_THM; GSYM MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_RZERO] THEN X_GEN_TAC `x:real^M` THEN DISCH_THEN(MP_TAC o AP_TERM `(dot) (x:real^M)`) THEN ONCE_REWRITE_TAC[GSYM DOT_LMUL_MATRIX] THEN REWRITE_TAC[VECTOR_MATRIX_MUL_TRANSP; TRANSP_TRANSP; DOT_RZERO] THEN REWRITE_TAC[DOT_EQ_0]);;
let RANK_TRIANGLE = 
prove (`!A B:real^M^N. rank(A + B) <= rank(A) + rank(B)`,
REPEAT GEN_TAC THEN REWRITE_TAC[RANK_DIM_IM] THEN MP_TAC(ISPECL [`IMAGE (\x. (A:real^M^N) ** x) (:real^M)`; `IMAGE (\x. (B:real^M^N) ** x) (:real^M)`] DIM_SUMS_INTER) THEN ASM_SIMP_TAC[SUBSPACE_LINEAR_IMAGE; SUBSPACE_UNIV; MATRIX_VECTOR_MUL_LINEAR] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(ARITH_RULE `x:num <= y ==> x <= y + z`) THEN MATCH_MP_TAC DIM_SUBSET THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; MATRIX_VECTOR_MUL_ADD_RDISTRIB] THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Infinity norm. *) (* ------------------------------------------------------------------------- *)
let infnorm = define
 `infnorm (x:real^N) = sup { abs(x$i) | 1 <= i /\ i <= dimindex(:N) }`;;
let NUMSEG_DIMINDEX_NONEMPTY = 
prove (`?i. i IN 1..dimindex(:N)`,
let INFNORM_SET_IMAGE = 
prove (`{abs(x$i) | 1 <= i /\ i <= dimindex(:N)} = IMAGE (\i. abs(x$i)) (1..dimindex(:N))`,
REWRITE_TAC[numseg] THEN SET_TAC[]);;
let INFNORM_SET_LEMMA = 
prove (`FINITE {abs((x:real^N)$i) | 1 <= i /\ i <= dimindex(:N)} /\ ~({abs(x$i) | 1 <= i /\ i <= dimindex(:N)} = {})`,
let INFNORM_POS_LE = 
prove (`!x. &0 <= infnorm x`,
let INFNORM_TRIANGLE = 
prove (`!x y. infnorm(x + y) <= infnorm x + infnorm y`,
REWRITE_TAC[infnorm] THEN SIMP_TAC[REAL_SUP_LE_FINITE; INFNORM_SET_LEMMA] THEN ONCE_REWRITE_TAC[GSYM REAL_LE_SUB_RADD] THEN SIMP_TAC[REAL_LE_SUP_FINITE; INFNORM_SET_LEMMA] THEN ONCE_REWRITE_TAC[REAL_ARITH `x - y <= z <=> x - z <= y`] THEN SIMP_TAC[REAL_LE_SUP_FINITE; INFNORM_SET_LEMMA] THEN REWRITE_TAC[INFNORM_SET_IMAGE; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN SIMP_TAC[VECTOR_ADD_COMPONENT; GSYM IN_NUMSEG] THEN MESON_TAC[NUMSEG_DIMINDEX_NONEMPTY; REAL_ARITH `abs(x + y) - abs(x) <= abs(y)`]);;
let INFNORM_EQ_0 = 
prove (`!x. infnorm x = &0 <=> x = vec 0`,
REWRITE_TAC[GSYM REAL_LE_ANTISYM; INFNORM_POS_LE] THEN SIMP_TAC[infnorm; REAL_SUP_LE_FINITE; INFNORM_SET_LEMMA] THEN SIMP_TAC[FORALL_IN_IMAGE; INFNORM_SET_IMAGE; CART_EQ; VEC_COMPONENT] THEN REWRITE_TAC[IN_NUMSEG; REAL_ARITH `abs(x) <= &0 <=> x = &0`]);;
let INFNORM_0 = 
prove (`infnorm(vec 0) = &0`,
REWRITE_TAC[INFNORM_EQ_0]);;
let INFNORM_NEG = 
prove (`!x. infnorm(--x) = infnorm x`,
GEN_TAC THEN REWRITE_TAC[infnorm] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[REAL_ABS_NEG; VECTOR_NEG_COMPONENT]);;
let INFNORM_SUB = 
prove (`!x y. infnorm(x - y) = infnorm(y - x)`,
MESON_TAC[INFNORM_NEG; VECTOR_NEG_SUB]);;
let REAL_ABS_SUB_INFNORM = 
prove (`abs(infnorm x - infnorm y) <= infnorm(x - y)`,
MATCH_MP_TAC(REAL_ARITH `nx <= n + ny /\ ny <= n + nx ==> abs(nx - ny) <= n`) THEN MESON_TAC[INFNORM_SUB; VECTOR_SUB_ADD2; INFNORM_TRIANGLE; VECTOR_ADD_SYM]);;
let REAL_ABS_INFNORM = 
prove (`!x. abs(infnorm x) = infnorm x`,
REWRITE_TAC[real_abs; INFNORM_POS_LE]);;
let COMPONENT_LE_INFNORM = 
prove (`!x:real^N i. 1 <= i /\ i <= dimindex (:N) ==> abs(x$i) <= infnorm x`,
REPEAT GEN_TAC THEN REWRITE_TAC[infnorm] THEN MP_TAC(SPEC `{ abs((x:real^N)$i) | 1 <= i /\ i <= dimindex(:N) }` SUP_FINITE) THEN REWRITE_TAC[INFNORM_SET_LEMMA] THEN SIMP_TAC[INFNORM_SET_IMAGE; FORALL_IN_IMAGE; IN_NUMSEG]);;
let INFNORM_MUL_LEMMA = 
prove (`!a x. infnorm(a % x) <= abs a * infnorm x`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [infnorm] THEN SIMP_TAC[REAL_SUP_LE_FINITE; INFNORM_SET_LEMMA] THEN REWRITE_TAC[FORALL_IN_IMAGE; INFNORM_SET_IMAGE] THEN SIMP_TAC[REAL_ABS_MUL; VECTOR_MUL_COMPONENT; IN_NUMSEG] THEN SIMP_TAC[COMPONENT_LE_INFNORM; REAL_LE_LMUL; REAL_ABS_POS]);;
let INFNORM_MUL = 
prove (`!a x:real^N. infnorm(a % x) = abs a * infnorm x`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO; INFNORM_0; REAL_ABS_0; REAL_MUL_LZERO] THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM; INFNORM_MUL_LEMMA] THEN GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV) [GSYM VECTOR_MUL_LID] THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP REAL_MUL_LINV) THEN REWRITE_TAC[GSYM VECTOR_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(a) * abs(inv a) * infnorm(a % x:real^N)` THEN ASM_SIMP_TAC[INFNORM_MUL_LEMMA; REAL_LE_LMUL; REAL_ABS_POS] THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; GSYM REAL_ABS_MUL; REAL_MUL_RINV] THEN REAL_ARITH_TAC);;
let INFNORM_POS_LT = 
prove (`!x. &0 < infnorm x <=> ~(x = vec 0)`,
(* ------------------------------------------------------------------------- *) (* Prove that it differs only up to a bound from Euclidean norm. *) (* ------------------------------------------------------------------------- *)
let INFNORM_LE_NORM = 
prove (`!x. infnorm(x) <= norm(x)`,
SIMP_TAC[infnorm; REAL_SUP_LE_FINITE; INFNORM_SET_LEMMA] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[COMPONENT_LE_NORM]);;
let NORM_LE_INFNORM = 
prove (`!x:real^N. norm(x) <= sqrt(&(dimindex(:N))) * infnorm(x)`,
GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o funpow 2 RAND_CONV) [GSYM CARD_NUMSEG_1] THEN REWRITE_TAC[vector_norm] THEN MATCH_MP_TAC REAL_LE_LSQRT THEN SIMP_TAC[DOT_POS_LE; SQRT_POS_LE; REAL_POS; REAL_LE_MUL; INFNORM_POS_LE; SQRT_POW_2; REAL_POW_MUL] THEN REWRITE_TAC[dot] THEN MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM REAL_POW_2] THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN MATCH_MP_TAC REAL_POW_LE2 THEN REWRITE_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC(REAL_ARITH `x <= y ==> x <= abs(y)`) THEN SIMP_TAC[infnorm; REAL_LE_SUP_FINITE; INFNORM_SET_LEMMA] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[REAL_LE_REFL]);;
(* ------------------------------------------------------------------------- *) (* Equality in Cauchy-Schwarz and triangle inequalities. *) (* ------------------------------------------------------------------------- *)
let NORM_CAUCHY_SCHWARZ_EQ = 
prove (`!x:real^N y. x dot y = norm(x) * norm(y) <=> norm(x) % y = norm(y) % x`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN ASM_REWRITE_TAC[NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO; DOT_LZERO; DOT_RZERO; VECTOR_MUL_LZERO; VECTOR_MUL_RZERO] THEN MP_TAC(ISPEC `norm(y:real^N) % x - norm(x:real^N) % y` DOT_EQ_0) THEN REWRITE_TAC[DOT_RSUB; DOT_LSUB; DOT_LMUL; DOT_RMUL; GSYM NORM_POW_2; REAL_POW_2; VECTOR_SUB_EQ] THEN REWRITE_TAC[DOT_SYM; REAL_ARITH `y * (y * x * x - x * d) - x * (y * d - x * y * y) = &2 * x * y * (x * y - d)`] THEN ASM_SIMP_TAC[REAL_ENTIRE; NORM_EQ_0; REAL_SUB_0; REAL_OF_NUM_EQ; ARITH] THEN REWRITE_TAC[EQ_SYM_EQ]);;
let NORM_CAUCHY_SCHWARZ_ABS_EQ = 
prove (`!x:real^N y. abs(x dot y) = norm(x) * norm(y) <=> norm(x) % y = norm(y) % x \/ norm(x) % y = --norm(y) % x`,
SIMP_TAC[REAL_ARITH `&0 <= a ==> (abs x = a <=> x = a \/ --x = a)`; REAL_LE_MUL; NORM_POS_LE; GSYM DOT_RNEG] THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o funpow 3 RAND_CONV) [GSYM NORM_NEG] THEN REWRITE_TAC[NORM_CAUCHY_SCHWARZ_EQ] THEN REWRITE_TAC[NORM_NEG] THEN BINOP_TAC THEN VECTOR_ARITH_TAC);;
let NORM_TRIANGLE_EQ = 
prove (`!x y:real^N. norm(x + y) = norm(x) + norm(y) <=> norm(x) % y = norm(y) % x`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQ] THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `norm(x + y:real^N) pow 2 = (norm(x) + norm(y)) pow 2` THEN CONJ_TAC THENL [REWRITE_TAC[REAL_RING `x pow 2 = y pow 2 <=> x = y \/ x + y = &0`] THEN MAP_EVERY (MP_TAC o C ISPEC NORM_POS_LE) [`x + y:real^N`; `x:real^N`; `y:real^N`] THEN REAL_ARITH_TAC; REWRITE_TAC[NORM_POW_2; DOT_LADD; DOT_RADD; REAL_ARITH `(x + y) pow 2 = x pow 2 + y pow 2 + &2 * x * y`] THEN REWRITE_TAC[DOT_SYM] THEN REAL_ARITH_TAC]);;
let DIST_TRIANGLE_EQ = 
prove (`!x y z. dist(x,z) = dist(x,y) + dist(y,z) <=> norm (x - y) % (y - z) = norm (y - z) % (x - y)`,
REWRITE_TAC[GSYM NORM_TRIANGLE_EQ] THEN NORM_ARITH_TAC);;
let NORM_CROSS_MULTIPLY = 
prove (`!a b x y:real^N. a % x = b % y /\ &0 < a /\ &0 < b ==> norm y % x = norm x % y`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_SIMP_TAC[VECTOR_MUL_EQ_0; REAL_LT_IMP_NZ; VECTOR_MUL_RZERO] THEN DISCH_THEN(MP_TAC o AP_TERM `\x:real^N. inv(a) % x`) THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; REAL_LT_IMP_NZ; VECTOR_MUL_LID; NORM_MUL; REAL_ABS_MUL; REAL_ABS_INV] THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE; REAL_MUL_AC]);;
(* ------------------------------------------------------------------------- *) (* Collinearity. *) (* ------------------------------------------------------------------------- *)
let collinear = new_definition
 `collinear s <=> ?u. !x y. x IN s /\ y IN s ==> ?c. x - y = c % u`;;
let COLLINEAR_SUBSET = 
prove (`!s t. collinear t /\ s SUBSET t ==> collinear s`,
REWRITE_TAC[collinear] THEN SET_TAC[]);;
let COLLINEAR_EMPTY = 
prove (`collinear {}`,
REWRITE_TAC[collinear; NOT_IN_EMPTY]);;
let COLLINEAR_SING = 
prove (`!x. collinear {x}`,
SIMP_TAC[collinear; IN_SING; VECTOR_SUB_REFL] THEN MESON_TAC[VECTOR_MUL_LZERO]);;
let COLLINEAR_2 = 
prove (`!x y:real^N. collinear {x,y}`,
REPEAT GEN_TAC THEN REWRITE_TAC[collinear; IN_INSERT; NOT_IN_EMPTY] THEN EXISTS_TAC `x - y:real^N` THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `&0`; EXISTS_TAC `&1`; EXISTS_TAC `-- &1`; EXISTS_TAC `&0`] THEN VECTOR_ARITH_TAC);;
let COLLINEAR_SMALL = 
prove (`!s. FINITE s /\ CARD s <= 2 ==> collinear s`,
REWRITE_TAC[ARITH_RULE `s <= 2 <=> s = 0 \/ s = 1 \/ s = 2`] THEN REWRITE_TAC[LEFT_OR_DISTRIB; GSYM HAS_SIZE] THEN CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[COLLINEAR_EMPTY; COLLINEAR_SING; COLLINEAR_2]);;
let COLLINEAR_3 = 
prove (`!x y z. collinear {x,y,z} <=> collinear {vec 0,x - y,z - y}`,
REPEAT GEN_TAC THEN REWRITE_TAC[collinear; FORALL_IN_INSERT; IMP_CONJ; RIGHT_FORALL_IMP_THM; NOT_IN_EMPTY] THEN AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[VECTOR_ARITH `x - y = (x - y) - vec 0`; VECTOR_ARITH `y - x = vec 0 - (x - y)`; VECTOR_ARITH `x - z:real^N = (x - y) - (z - y)`]);;
let COLLINEAR_LEMMA = 
prove (`!x y:real^N. collinear {vec 0,x,y} <=> x = vec 0 \/ y = vec 0 \/ ?c. y = c % x`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN TRY(ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SING; COLLINEAR_2] THEN NO_TAC) THEN ASM_REWRITE_TAC[collinear] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `u:real^N` (fun th -> MP_TAC(SPECL [`x:real^N`; `vec 0:real^N`] th) THEN MP_TAC(SPECL [`y:real^N`; `vec 0:real^N`] th))) THEN REWRITE_TAC[IN_INSERT; VECTOR_SUB_RZERO] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` SUBST_ALL_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `d:real` SUBST_ALL_TAC) THEN EXISTS_TAC `e / d` THEN REWRITE_TAC[VECTOR_MUL_ASSOC] THEN RULE_ASSUM_TAC(REWRITE_RULE[VECTOR_MUL_EQ_0; DE_MORGAN_THM]) THEN ASM_SIMP_TAC[REAL_DIV_RMUL]; STRIP_TAC THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `&0`; EXISTS_TAC `-- &1`; EXISTS_TAC `--c`; EXISTS_TAC `&1`; EXISTS_TAC `&0`; EXISTS_TAC `&1 - c`; EXISTS_TAC `c:real`; EXISTS_TAC `c - &1`; EXISTS_TAC `&0`] THEN VECTOR_ARITH_TAC]);;
let COLLINEAR_LEMMA_ALT = 
prove (`!x y. collinear {vec 0,x,y} <=> x = vec 0 \/ ?c. y = c % x`,
REWRITE_TAC[COLLINEAR_LEMMA] THEN MESON_TAC[VECTOR_MUL_LZERO]);;
let NORM_CAUCHY_SCHWARZ_EQUAL = 
prove (`!x y:real^N. abs(x dot y) = norm(x) * norm(y) <=> collinear {vec 0,x,y}`,
REPEAT GEN_TAC THEN REWRITE_TAC[NORM_CAUCHY_SCHWARZ_ABS_EQ] THEN MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN TRY(ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SING; COLLINEAR_2; NORM_0; VECTOR_MUL_LZERO; VECTOR_MUL_RZERO] THEN NO_TAC) THEN ASM_REWRITE_TAC[COLLINEAR_LEMMA] THEN EQ_TAC THENL [STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o AP_TERM `(%) (inv(norm(x:real^N))):real^N->real^N`); FIRST_X_ASSUM(MP_TAC o AP_TERM `(%) (--inv(norm(x:real^N))):real^N->real^N`)] THEN ASM_REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LNEG] THEN ASM_SIMP_TAC[REAL_MUL_LINV; NORM_EQ_0; VECTOR_MUL_LNEG; VECTOR_MUL_LID; VECTOR_ARITH `--x = --y <=> x:real^N = y`] THEN MESON_TAC[]; STRIP_TAC THEN ASM_REWRITE_TAC[NORM_MUL; VECTOR_MUL_ASSOC] THEN MATCH_MP_TAC(MESON[] `t = a \/ t = b ==> t % x = a % x \/ t % x = b % x`) THEN REWRITE_TAC[GSYM REAL_MUL_LNEG; REAL_ARITH `x * c = d * x <=> x * (c - d) = &0`] THEN ASM_REWRITE_TAC[REAL_ENTIRE; NORM_EQ_0] THEN REAL_ARITH_TAC]);;
let DOT_CAUCHY_SCHWARZ_EQUAL = 
prove (`!x y:real^N. (x dot y) pow 2 = (x dot x) * (y dot y) <=> collinear {vec 0,x,y}`,
REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQUAL] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ (u:real = v <=> x = abs y) ==> (u = v <=> x = y)`) THEN SIMP_TAC[NORM_POS_LE; REAL_LE_MUL] THEN REWRITE_TAC[REAL_EQ_SQUARE_ABS] THEN REWRITE_TAC[REAL_POW_MUL; NORM_POW_2]);;
let COLLINEAR_3_EXPAND = 
prove (`!a b c:real^N. collinear{a,b,c} <=> a = c \/ ?u. b = u % a + (&1 - u) % c`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SET_RULE `{a,b,c} = {a,c,b}`] THEN ONCE_REWRITE_TAC[COLLINEAR_3] THEN REWRITE_TAC[COLLINEAR_LEMMA; VECTOR_SUB_EQ] THEN ASM_CASES_TAC `a:real^N = c` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `b:real^N = c` THEN ASM_REWRITE_TAC[VECTOR_ARITH `u % c + (&1 - u) % c = c`] THENL [EXISTS_TAC `&0` THEN VECTOR_ARITH_TAC; AP_TERM_TAC THEN ABS_TAC THEN VECTOR_ARITH_TAC]);;
let COLLINEAR_TRIPLES = 
prove (`!s a b:real^N. ~(a = b) ==> (collinear(a INSERT b INSERT s) <=> !x. x IN s ==> collinear{a,b,x})`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] COLLINEAR_SUBSET)) THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[SET_RULE `{a,b,x} = {a,x,b}`] THEN ASM_REWRITE_TAC[COLLINEAR_3_EXPAND] THEN DISCH_TAC THEN SUBGOAL_THEN `!x:real^N. x IN (a INSERT b INSERT s) ==> ?u. x = u % a + (&1 - u) % b` MP_TAC THENL [ASM_REWRITE_TAC[FORALL_IN_INSERT] THEN CONJ_TAC THENL [EXISTS_TAC `&1` THEN VECTOR_ARITH_TAC; EXISTS_TAC `&0` THEN VECTOR_ARITH_TAC]; POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_TAC THEN REWRITE_TAC[collinear] THEN EXISTS_TAC `b - a:real^N` THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `x:real^N` th) THEN MP_TAC(SPEC `y:real^N` th)) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[VECTOR_ARITH `(u % a + (&1 - u) % b) - (v % a + (&1 - v) % b):real^N = (v - u) % (b - a)`] THEN MESON_TAC[]]]);;
let COLLINEAR_4_3 = 
prove (`!a b c d:real^N. ~(a = b) ==> (collinear {a,b,c,d} <=> collinear{a,b,c} /\ collinear{a,b,d})`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`{c:real^N,d}`; `a:real^N`; `b:real^N`] COLLINEAR_TRIPLES) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let COLLINEAR_3_TRANS = 
prove (`!a b c d:real^N. collinear{a,b,c} /\ collinear{b,c,d} /\ ~(b = c) ==> collinear{a,b,d}`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC COLLINEAR_SUBSET THEN EXISTS_TAC `{b:real^N,c,a,d}` THEN ASM_SIMP_TAC[COLLINEAR_4_3] THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[INSERT_AC]);;
let ORTHOGONAL_TO_ORTHOGONAL_2D = 
prove (`!x y z:real^2. ~(x = vec 0) /\ orthogonal x y /\ orthogonal x z ==> collinear {vec 0,y,z}`,
REWRITE_TAC[orthogonal; GSYM DOT_CAUCHY_SCHWARZ_EQUAL; GSYM DOT_EQ_0] THEN REWRITE_TAC[DOT_2] THEN CONV_TAC REAL_RING);;
let COLLINEAR_3_2D = 
prove (`!x y z:real^2. collinear{x,y,z} <=> (z$1 - x$1) * (y$2 - x$2) = (y$1 - x$1) * (z$2 - x$2)`,
ONCE_REWRITE_TAC[COLLINEAR_3] THEN REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL] THEN REWRITE_TAC[DOT_2; VECTOR_SUB_COMPONENT] THEN CONV_TAC REAL_RING);;
let COLLINEAR_3_DOT_MULTIPLES = 
prove (`!a b c:real^N. collinear {a,b,c} <=> ((b - a) dot (b - a)) % (c - a) = ((c - a) dot (b - a)) % (b - a)`,
REWRITE_TAC[VECTOR_SUB_RZERO] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL [ASM_REWRITE_TAC[COLLINEAR_2; INSERT_AC; DOT_RZERO; VECTOR_MUL_LZERO; VECTOR_SUB_REFL]; ONCE_REWRITE_TAC[COLLINEAR_3] THEN POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL; GSYM DOT_EQ_0] THEN REWRITE_TAC[GSYM DOT_EQ_0; DOT_RSUB; DOT_LSUB; DOT_RMUL; DOT_LMUL] THEN REWRITE_TAC[DOT_SYM] THEN CONV_TAC REAL_RING]);;
(* ------------------------------------------------------------------------- *) (* Between-ness. *) (* ------------------------------------------------------------------------- *)
let between = new_definition
 `between x (a,b) <=> dist(a,b) = dist(a,x) + dist(x,b)`;;
let BETWEEN_REFL = 
prove (`!a b. between a (a,b) /\ between b (a,b) /\ between a (a,a)`,
REWRITE_TAC[between] THEN NORM_ARITH_TAC);;
let BETWEEN_REFL_EQ = 
prove (`!a x. between x (a,a) <=> x = a`,
REWRITE_TAC[between] THEN NORM_ARITH_TAC);;
let BETWEEN_SYM = 
prove (`!a b x. between x (a,b) <=> between x (b,a)`,
REWRITE_TAC[between] THEN NORM_ARITH_TAC);;
let BETWEEN_ANTISYM = 
prove (`!a b c. between a (b,c) /\ between b (a,c) ==> a = b`,
REWRITE_TAC[between; DIST_SYM] THEN NORM_ARITH_TAC);;
let BETWEEN_TRANS = 
prove (`!a b c d. between a (b,c) /\ between d (a,c) ==> between d (b,c)`,
REWRITE_TAC[between; DIST_SYM] THEN NORM_ARITH_TAC);;
let BETWEEN_TRANS_2 = 
prove (`!a b c d. between a (b,c) /\ between d (a,b) ==> between a (c,d)`,
REWRITE_TAC[between; DIST_SYM] THEN NORM_ARITH_TAC);;
let BETWEEN_NORM = 
prove (`!a b x:real^N. between x (a,b) <=> norm(x - a) % (b - x) = norm(b - x) % (x - a)`,
REPEAT GEN_TAC THEN REWRITE_TAC[between; DIST_TRIANGLE_EQ] THEN REWRITE_TAC[NORM_SUB] THEN VECTOR_ARITH_TAC);;
let BETWEEN_DOT = 
prove (`!a b x:real^N. between x (a,b) <=> (x - a) dot (b - x) = norm(x - a) * norm(b - x)`,
let BETWEEN_EXISTS_EXTENSION = 
prove (`!a b x:real^N. between b (a,x) /\ ~(b = a) ==> ?d. &0 <= d /\ x = b + d % (b - a)`,
REPEAT GEN_TAC THEN REWRITE_TAC[BETWEEN_NORM] THEN STRIP_TAC THEN EXISTS_TAC `norm(x - b:real^N) / norm(b - a)` THEN SIMP_TAC[REAL_LE_DIV; NORM_POS_LE] THEN FIRST_X_ASSUM (MP_TAC o AP_TERM `(%) (inv(norm(b - a:real^N))):real^N->real^N`) THEN ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_MUL_LINV; NORM_EQ_0; VECTOR_SUB_EQ] THEN VECTOR_ARITH_TAC);;
let BETWEEN_IMP_COLLINEAR = 
prove (`!a b x:real^N. between x (a,b) ==> collinear {a,x,b}`,
REPEAT GEN_TAC THEN MAP_EVERY (fun t -> ASM_CASES_TAC t THEN TRY(ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_2] THEN NO_TAC)) [`x:real^N = a`; `x:real^N = b`; `a:real^N = b`] THEN ONCE_REWRITE_TAC[COLLINEAR_3; BETWEEN_NORM] THEN DISCH_TAC THEN REWRITE_TAC[COLLINEAR_LEMMA] THEN REPEAT DISJ2_TAC THEN EXISTS_TAC `--(norm(b - x:real^N) / norm(x - a))` THEN MATCH_MP_TAC VECTOR_MUL_LCANCEL_IMP THEN EXISTS_TAC `norm(x - a:real^N)` THEN ASM_REWRITE_TAC[VECTOR_MUL_ASSOC; REAL_MUL_RNEG] THEN ASM_SIMP_TAC[REAL_DIV_LMUL; NORM_EQ_0; VECTOR_SUB_EQ] THEN VECTOR_ARITH_TAC);;
let COLLINEAR_BETWEEN_CASES = 
prove (`!a b c:real^N. collinear {a,b,c} <=> between a (b,c) \/ between b (c,a) \/ between c (a,b)`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [REWRITE_TAC[COLLINEAR_3_EXPAND] THEN ASM_CASES_TAC `c:real^N = a` THEN ASM_REWRITE_TAC[BETWEEN_REFL] THEN STRIP_TAC THEN ASM_REWRITE_TAC[between; dist] THEN REWRITE_TAC[VECTOR_ARITH `(u % a + (&1 - u) % c) - c = --u % (c - a)`; VECTOR_ARITH `(u % a + (&1 - u) % c) - a = (&1 - u) % (c - a)`; VECTOR_ARITH `c - (u % a + (&1 - u) % c) = u % (c - a)`; VECTOR_ARITH `a - (u % a + (&1 - u) % c) = (u - &1) % (c - a)`] THEN REWRITE_TAC[NORM_MUL] THEN SUBST1_TAC(NORM_ARITH `norm(a - c:real^N) = norm(c - a)`) THEN REWRITE_TAC[REAL_ARITH `a * c + c = (a + &1) * c`; GSYM REAL_ADD_RDISTRIB; REAL_ARITH `c + a * c = (a + &1) * c`] THEN ASM_REWRITE_TAC[REAL_EQ_MUL_RCANCEL; REAL_RING `n = x * n <=> n = &0 \/ x = &1`] THEN ASM_REWRITE_TAC[NORM_EQ_0; VECTOR_SUB_EQ] THEN REAL_ARITH_TAC; DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR)) THEN REWRITE_TAC[INSERT_AC]]);;
let COLLINEAR_DIST_BETWEEN = 
prove (`!a b x. collinear {x,a,b} /\ dist(x,a) <= dist(a,b) /\ dist(x,b) <= dist(a,b) ==> between x (a,b)`,
SIMP_TAC[COLLINEAR_BETWEEN_CASES; between; DIST_SYM] THEN NORM_ARITH_TAC);;
let BETWEEN_COLLINEAR_DIST_EQ = 
prove (`!a b x:real^N. between x (a,b) <=> collinear {a, x, b} /\ dist(x,a) <= dist(a,b) /\ dist(x,b) <= dist(a,b)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[BETWEEN_IMP_COLLINEAR] THEN REWRITE_TAC[between] THEN NORM_ARITH_TAC; MESON_TAC[COLLINEAR_DIST_BETWEEN; INSERT_AC]]);;
let COLLINEAR_1 = 
prove (`!s:real^1->bool. collinear s`,
GEN_TAC THEN MATCH_MP_TAC COLLINEAR_SUBSET THEN EXISTS_TAC `(vec 0:real^1) INSERT (vec 1) INSERT s` THEN CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN W(MP_TAC o PART_MATCH (lhs o rand) COLLINEAR_TRIPLES o snd) THEN REWRITE_TAC[VEC_EQ; ARITH_EQ] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[COLLINEAR_BETWEEN_CASES] THEN REWRITE_TAC[between; DIST_REAL; GSYM drop; DROP_VEC; REAL_ABS_NUM] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Midpoint between two points. *) (* ------------------------------------------------------------------------- *)
let midpoint = new_definition
 `midpoint(a,b) = inv(&2) % (a + b)`;;
let MIDPOINT_REFL = 
prove (`!x. midpoint(x,x) = x`,
REWRITE_TAC[midpoint] THEN VECTOR_ARITH_TAC);;
let MIDPOINT_SYM = 
prove (`!a b. midpoint(a,b) = midpoint(b,a)`,
REWRITE_TAC[midpoint; VECTOR_ADD_SYM]);;
let DIST_MIDPOINT = 
prove (`!a b. dist(a,midpoint(a,b)) = dist(a,b) / &2 /\ dist(b,midpoint(a,b)) = dist(a,b) / &2 /\ dist(midpoint(a,b),a) = dist(a,b) / &2 /\ dist(midpoint(a,b),b) = dist(a,b) / &2`,
REWRITE_TAC[midpoint] THEN NORM_ARITH_TAC);;
let MIDPOINT_EQ_ENDPOINT = 
prove (`!a b. (midpoint(a,b) = a <=> a = b) /\ (midpoint(a,b) = b <=> a = b) /\ (a = midpoint(a,b) <=> a = b) /\ (b = midpoint(a,b) <=> a = b)`,
REWRITE_TAC[midpoint] THEN NORM_ARITH_TAC);;
let BETWEEN_MIDPOINT = 
prove (`!a b. between (midpoint(a,b)) (a,b) /\ between (midpoint(a,b)) (b,a)`,
REWRITE_TAC[between; midpoint] THEN NORM_ARITH_TAC);;
let MIDPOINT_LINEAR_IMAGE = 
prove (`!f a b. linear f ==> midpoint(f a,f b) = f(midpoint(a,b))`,
SIMP_TAC[midpoint; LINEAR_ADD; LINEAR_CMUL]);;
let COLLINEAR_MIDPOINT = 
prove (`!a b. collinear{a,midpoint(a,b),b}`,
REPEAT GEN_TAC THEN REWRITE_TAC[COLLINEAR_3_EXPAND; midpoint] THEN DISJ2_TAC THEN EXISTS_TAC `&1 / &2` THEN VECTOR_ARITH_TAC);;
let MIDPOINT_COLLINEAR = 
prove (`!a b c:real^N. ~(a = c) ==> (b = midpoint(a,c) <=> collinear{a,b,c} /\ dist(a,b) = dist(b,c))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(a ==> b) /\ (b ==> (a <=> c)) ==> (a <=> b /\ c)`) THEN SIMP_TAC[COLLINEAR_MIDPOINT] THEN ASM_REWRITE_TAC[COLLINEAR_3_EXPAND] THEN STRIP_TAC THEN ASM_REWRITE_TAC[midpoint; dist] THEN REWRITE_TAC [VECTOR_ARITH `a - (u % a + (&1 - u) % c) = (&1 - u) % (a - c)`; VECTOR_ARITH `(u % a + (&1 - u) % c) - c = u % (a - c)`; VECTOR_ARITH `u % a + (&1 - u) % c = inv (&2) % (a + c) <=> (u - &1 / &2) % (a - c) = vec 0`] THEN ASM_SIMP_TAC[NORM_MUL; REAL_EQ_MUL_RCANCEL; NORM_EQ_0; VECTOR_SUB_EQ; VECTOR_MUL_EQ_0] THEN REAL_ARITH_TAC);;
let MIDPOINT_BETWEEN = 
prove (`!a b c:real^N. b = midpoint (a,c) <=> between b (a,c) /\ dist (a,b) = dist (b,c)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:real^N = c` THENL [ASM_SIMP_TAC[BETWEEN_REFL_EQ; MIDPOINT_REFL; DIST_SYM]; ALL_TAC] THEN EQ_TAC THEN SIMP_TAC[BETWEEN_MIDPOINT; DIST_MIDPOINT] THEN ASM_MESON_TAC[MIDPOINT_COLLINEAR; BETWEEN_IMP_COLLINEAR]);;
(* ------------------------------------------------------------------------- *) (* General "one way" lemma for properties preserved by injective map. *) (* ------------------------------------------------------------------------- *)
let WLOG_LINEAR_INJECTIVE_IMAGE_2 = 
prove (`!P Q. (!f s. P s /\ linear f ==> Q(IMAGE f s)) /\ (!g t. Q t /\ linear g ==> P(IMAGE g t)) ==> !f:real^M->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> !s. Q(IMAGE f s) <=> P s`,
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`g:real^N->real^M`; `IMAGE (f:real^M->real^N) s`]) THEN ASM_REWRITE_TAC[GSYM IMAGE_o; o_DEF; IMAGE_ID]);;
let WLOG_LINEAR_INJECTIVE_IMAGE_2_ALT = 
prove (`!P Q f s. (!h u. P u /\ linear h ==> Q(IMAGE h u)) /\ (!g t. Q t /\ linear g ==> P(IMAGE g t)) /\ linear f /\ (!x y. f x = f y ==> x = y) ==> (Q(IMAGE f s) <=> P s)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] WLOG_LINEAR_INJECTIVE_IMAGE_2) THEN ASM_REWRITE_TAC[]);;
let WLOG_LINEAR_INJECTIVE_IMAGE = 
prove (`!P. (!f s. P s /\ linear f ==> P(IMAGE f s)) ==> !f:real^N->real^N. linear f /\ (!x y. f x = f y ==> x = y) ==> !s. P(IMAGE f s) <=> P s`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC WLOG_LINEAR_INJECTIVE_IMAGE_2 THEN ASM_REWRITE_TAC[]);;
let WLOG_LINEAR_INJECTIVE_IMAGE_ALT = 
prove (`!P f s. (!g t. P t /\ linear g ==> P(IMAGE g t)) /\ linear f /\ (!x y. f x = f y ==> x = y) ==> (P(IMAGE f s) <=> P s)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] WLOG_LINEAR_INJECTIVE_IMAGE) THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Inference rule to apply it conveniently. *) (* *) (* |- !f s. P s /\ linear f ==> P(IMAGE f s) [or /\ commuted] *) (* --------------------------------------------------------------- *) (* |- !f s. linear f /\ (!x y. f x = f y ==> x = y) *) (* ==> (Q(IMAGE f s) <=> P s) *) (* ------------------------------------------------------------------------- *) let LINEAR_INVARIANT_RULE th = let [f;s] = fst(strip_forall(concl th)) in let (rm,rn) = dest_fun_ty (type_of f) in let m = last(snd(dest_type rm)) and n = last(snd(dest_type rn)) in let th' = INST_TYPE [m,n; n,m] th in let th0 = CONJ th th' in let th1 = try MATCH_MP WLOG_LINEAR_INJECTIVE_IMAGE_2 th0 with Failure _ -> MATCH_MP WLOG_LINEAR_INJECTIVE_IMAGE_2 (GEN_REWRITE_RULE (BINOP_CONV o ONCE_DEPTH_CONV) [CONJ_SYM] th0) in GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_FORALL_THM] th1;; (* ------------------------------------------------------------------------- *) (* Immediate application. *) (* ------------------------------------------------------------------------- *)
let SUBSPACE_LINEAR_IMAGE_EQ = 
prove (`!f s. linear f /\ (!x y. f x = f y ==> x = y) ==> (subspace (IMAGE f s) <=> subspace s)`,
MATCH_ACCEPT_TAC(LINEAR_INVARIANT_RULE SUBSPACE_LINEAR_IMAGE));;
(* ------------------------------------------------------------------------- *) (* Storage of useful "invariance under linear map / translation" theorems. *) (* ------------------------------------------------------------------------- *) let invariant_under_linear = ref([]:thm list);; let invariant_under_translation = ref([]:thm list);; let scaling_theorems = ref([]:thm list);; (* ------------------------------------------------------------------------- *) (* Scaling theorems and derivation from linear invariance. *) (* ------------------------------------------------------------------------- *)
let LINEAR_SCALING = 
prove (`!c. linear(\x:real^N. c % x)`,
REWRITE_TAC[linear] THEN VECTOR_ARITH_TAC);;
let INJECTIVE_SCALING = 
prove (`!c. (!x y:real^N. c % x = c % y ==> x = y) <=> ~(c = &0)`,
GEN_TAC THEN REWRITE_TAC[VECTOR_MUL_LCANCEL] THEN ASM_CASES_TAC `c:real = &0` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`vec 0:real^N`; `vec 1:real^N`]) THEN REWRITE_TAC[VEC_EQ; ARITH]);;
let SURJECTIVE_SCALING = 
prove (`!c. (!y:real^N. ?x. c % x = y) <=> ~(c = &0)`,
let SCALING_INVARIANT = let pths = (CONJUNCTS o UNDISCH o prove) (`&0 < c ==> linear(\x:real^N. c % x) /\ (!x y:real^N. c % x = c % y ==> x = y) /\ (!y:real^N. ?x. c % x = y)`, SIMP_TAC[REAL_LT_IMP_NZ; LINEAR_SCALING; INJECTIVE_SCALING; SURJECTIVE_SCALING]) and sc_tm = `\x:real^N. c % x` and sa_tm = `&0:real < c` and c_tm = `c:real` in fun th -> let ith = BETA_RULE(ISPEC sc_tm th) in let avs,bod = strip_forall(concl ith) in let cjs = conjuncts(lhand bod) in let cths = map (fun t -> find(fun th -> aconv (concl th) t) pths) cjs in let oth = MP (SPECL avs ith) (end_itlist CONJ cths) in GEN c_tm (DISCH sa_tm (GENL avs oth));; let scaling_theorems = ref([]:thm list);; (* ------------------------------------------------------------------------- *) (* Augmentation of the lists. The "add_linear_invariants" also updates *) (* the scaling theorems automatically, so only a few of those will need *) (* to be added explicitly. *) (* ------------------------------------------------------------------------- *) let add_scaling_theorems thl = (scaling_theorems := (!scaling_theorems) @ thl);; let add_linear_invariants thl = ignore(mapfilter (fun th -> add_scaling_theorems[SCALING_INVARIANT th]) thl); (invariant_under_linear := (!invariant_under_linear) @ thl);; let add_translation_invariants thl = (invariant_under_translation := (!invariant_under_translation) @ thl);; (* ------------------------------------------------------------------------- *) (* Start with some basic set equivalences. *) (* We give them all an injectivity hypothesis even if it's not necessary. *) (* For just the intersection theorem we add surjectivity (more manageable *) (* than assuming that the set isn't empty). *) (* ------------------------------------------------------------------------- *)
let th_sets = 
prove (`!f. (!x y. f x = f y ==> x = y) ==> (if p then f x else f y) = f(if p then x else y) /\ (if p then IMAGE f s else IMAGE f t) = IMAGE f (if p then s else t) /\ (f x) INSERT (IMAGE f s) = IMAGE f (x INSERT s) /\ (IMAGE f s) DELETE (f x) = IMAGE f (s DELETE x) /\ (IMAGE f s) INTER (IMAGE f t) = IMAGE f (s INTER t) /\ (IMAGE f s) UNION (IMAGE f t) = IMAGE f (s UNION t) /\ UNIONS(IMAGE (IMAGE f) u) = IMAGE f (UNIONS u) /\ (IMAGE f s) DIFF (IMAGE f t) = IMAGE f (s DIFF t) /\ (IMAGE f s (f x) <=> s x) /\ ((f x) IN (IMAGE f s) <=> x IN s) /\ ((f o xs) (n:num) = f(xs n)) /\ ((f o pt) (tt:real^1) = f(pt tt)) /\ (DISJOINT (IMAGE f s) (IMAGE f t) <=> DISJOINT s t) /\ ((IMAGE f s) SUBSET (IMAGE f t) <=> s SUBSET t) /\ ((IMAGE f s) PSUBSET (IMAGE f t) <=> s PSUBSET t) /\ (IMAGE f s = IMAGE f t <=> s = t) /\ ((IMAGE f s) HAS_SIZE n <=> s HAS_SIZE n) /\ (FINITE(IMAGE f s) <=> FINITE s) /\ (INFINITE(IMAGE f s) <=> INFINITE s)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[IMAGE_UNIONS] THEN REWRITE_TAC[o_THM; MESON[IN] `IMAGE f s y <=> y IN IMAGE f s`] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [MESON_TAC[]; ALL_TAC]) THEN REWRITE_TAC[INFINITE; TAUT `(~p <=> ~q) <=> (p <=> q)`] THEN REPLICATE_TAC 11 (CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN REWRITE_TAC[HAS_SIZE] THEN ASM_MESON_TAC[FINITE_IMAGE_INJ_EQ; CARD_IMAGE_INJ]) in let f = `f:real^M->real^N` and imf = `IMAGE (f:real^M->real^N)` and a = `a:real^N` and ima = `IMAGE (\x:real^N. a + x)` and vth = VECTOR_ARITH `!x y. a + x:real^N = a + y ==> x = y` in let th1 = UNDISCH(ISPEC f th_sets) and th1' = UNDISCH (GEN_REWRITE_RULE LAND_CONV [INJECTIVE_IMAGE] (ISPEC imf th_sets)) and th2 = MATCH_MP th_sets vth and th2' = MATCH_MP (BETA_RULE(GEN_REWRITE_RULE LAND_CONV [INJECTIVE_IMAGE] (ISPEC ima th_sets))) vth in let fn a th = GENL (a::subtract (frees(concl th)) [a]) th in add_linear_invariants(map (fn f o DISCH_ALL) (CONJUNCTS th1 @ CONJUNCTS th1')), add_translation_invariants(map (fn a) (CONJUNCTS th2 @ CONJUNCTS th2'));;
let th_set = 
prove (`!f:A->B s. (!x y. f x = f y ==> x = y) /\ (!y. ?x. f x = y) ==> INTERS (IMAGE (IMAGE f) s) = IMAGE f (INTERS s)`,
REWRITE_TAC[INTERS_IMAGE] THEN SET_TAC[]) in
let th_vec = prove
 (`!a:real^N s.
    INTERS (IMAGE (IMAGE (\x. a + x)) s) = IMAGE (\x. a + x) (INTERS s)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC th_set THEN
  REWRITE_TAC[VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN
  REWRITE_TAC[VECTOR_ARITH `a + x:real^N = y <=> x = y - a`; EXISTS_REFL]) in
add_linear_invariants [th_set],add_translation_invariants[th_vec];;
(* ------------------------------------------------------------------------- *) (* Now add arithmetical equivalences. *) (* ------------------------------------------------------------------------- *)
let PRESERVES_NORM_PRESERVES_DOT = 
prove (`!f:real^M->real^N x y. linear f /\ (!x. norm(f x) = norm x) ==> (f x) dot (f y) = x dot y`,
REWRITE_TAC[NORM_EQ] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `x + y:real^M`) THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP LINEAR_ADD th]) THEN ASM_REWRITE_TAC[DOT_LADD; DOT_RADD] THEN REWRITE_TAC[DOT_SYM] THEN REAL_ARITH_TAC);;
let PRESERVES_NORM_INJECTIVE = 
prove (`!f:real^M->real^N. linear f /\ (!x. norm(f x) = norm x) ==> !x y. f x = f y ==> x = y`,
SIMP_TAC[LINEAR_INJECTIVE_0; GSYM NORM_EQ_0]);;
let ORTHOGONAL_LINEAR_IMAGE_EQ = 
prove (`!f:real^M->real^N x y. linear f /\ (!x. norm(f x) = norm x) ==> (orthogonal (f x) (f y) <=> orthogonal x y)`,
SIMP_TAC[orthogonal; PRESERVES_NORM_PRESERVES_DOT]);;
add_linear_invariants [GSYM LINEAR_ADD; GSYM LINEAR_CMUL; GSYM LINEAR_SUB; GSYM LINEAR_NEG; MIDPOINT_LINEAR_IMAGE; MESON[] `!f:real^M->real^N x. (!x. norm(f x) = norm x) ==> norm(f x) = norm x`; PRESERVES_NORM_PRESERVES_DOT; MESON[dist; LINEAR_SUB] `!f:real^M->real^N x y. linear f /\ (!x. norm(f x) = norm x) ==> dist(f x,f y) = dist(x,y)`; MESON[] `!f:real^M->real^N x y. (!x y. f x = f y ==> x = y) ==> (f x = f y <=> x = y)`; SUBSPACE_LINEAR_IMAGE_EQ; ORTHOGONAL_LINEAR_IMAGE_EQ; SPAN_LINEAR_IMAGE; DEPENDENT_LINEAR_IMAGE_EQ; INDEPENDENT_LINEAR_IMAGE_EQ; DIM_INJECTIVE_LINEAR_IMAGE];; add_translation_invariants [VECTOR_ARITH `!a x y. a + x:real^N = a + y <=> x = y`; NORM_ARITH `!a x y. dist(a + x,a + y) = dist(x,y)`; VECTOR_ARITH `!a x y. &1 / &2 % ((a + x) + (a + y)) = a + &1 / &2 % (x + y)`; VECTOR_ARITH `!a x y. inv(&2) % ((a + x) + (a + y)) = a + inv(&2) % (x + y)`; VECTOR_ARITH `!a x y. (a + x) - (a + y):real^N = x - y`; (EQT_ELIM o (REWRITE_CONV[midpoint] THENC(EQT_INTRO o NORM_ARITH))) `!a x y. midpoint(a + x,a + y) = a + midpoint(x,y)`; (EQT_ELIM o (REWRITE_CONV[between] THENC(EQT_INTRO o NORM_ARITH))) `!a x y z. between (a + x) (a + y,a + z) <=> between x (y,z)`];;
let th = 
prove (`!a s b c:real^N. (a + b) + c IN IMAGE (\x. a + x) s <=> (b + c) IN s`,
REWRITE_TAC[IN_IMAGE; VECTOR_ARITH `(a + b) + c:real^N = a + x <=> x = b + c`] THEN MESON_TAC[]) in add_translation_invariants [th];;
(* ------------------------------------------------------------------------- *) (* A few for lists. *) (* ------------------------------------------------------------------------- *)
let MEM_TRANSLATION = 
prove (`!a:real^N x l. MEM (a + x) (MAP (\x. a + x) l) <=> MEM x l`,
REWRITE_TAC[MEM_MAP; VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN MESON_TAC[]);;
add_translation_invariants [MEM_TRANSLATION];;
let MEM_LINEAR_IMAGE = 
prove (`!f:real^M->real^N x l. linear f /\ (!x y. f x = f y ==> x = y) ==> (MEM (f x) (MAP f l) <=> MEM x l)`,
REWRITE_TAC[MEM_MAP] THEN MESON_TAC[]);;
add_linear_invariants [MEM_LINEAR_IMAGE];;
let LENGTH_TRANSLATION = 
prove (`!a:real^N l. LENGTH(MAP (\x. a + x) l) = LENGTH l`,
REWRITE_TAC[LENGTH_MAP]) in add_translation_invariants [LENGTH_TRANSLATION];;
let LENGTH_LINEAR_IMAGE = 
prove (`!f:real^M->real^N l. linear f ==> LENGTH(MAP f l) = LENGTH l`,
REWRITE_TAC[LENGTH_MAP]) in add_linear_invariants [LENGTH_LINEAR_IMAGE];;
let CONS_TRANSLATION = 
prove (`!a:real^N h t. CONS ((\x. a + x) h) (MAP (\x. a + x) t) = MAP (\x. a + x) (CONS h t)`,
REWRITE_TAC[MAP]) in add_translation_invariants [CONS_TRANSLATION];;
let CONS_LINEAR_IMAGE = 
prove (`!f:real^M->real^N h t. linear f ==> CONS (f h) (MAP f t) = MAP f (CONS h t)`,
REWRITE_TAC[MAP]) in add_linear_invariants [CONS_LINEAR_IMAGE];;
let APPEND_TRANSLATION = 
prove (`!a:real^N l1 l2. APPEND (MAP (\x. a + x) l1) (MAP (\x. a + x) l2) = MAP (\x. a + x) (APPEND l1 l2)`,
REWRITE_TAC[MAP_APPEND]) in add_translation_invariants [APPEND_TRANSLATION];;
let APPEND_LINEAR_IMAGE = 
prove (`!f:real^M->real^N l1 l2. linear f ==> APPEND (MAP f l1) (MAP f l2) = MAP f (APPEND l1 l2)`,
REWRITE_TAC[MAP_APPEND]) in add_linear_invariants [APPEND_LINEAR_IMAGE];;
let REVERSE_TRANSLATION = 
prove (`!a:real^N l. REVERSE(MAP (\x. a + x) l) = MAP (\x. a + x) (REVERSE l)`,
REWRITE_TAC[MAP_REVERSE]) in add_translation_invariants [REVERSE_TRANSLATION];;
let REVERSE_LINEAR_IMAGE = 
prove (`!f:real^M->real^N l. linear f ==> REVERSE(MAP f l) = MAP f (REVERSE l)`,
REWRITE_TAC[MAP_REVERSE]) in add_linear_invariants [REVERSE_LINEAR_IMAGE];;
(* ------------------------------------------------------------------------- *) (* A few scaling theorems that don't come from invariance theorems. Most are *) (* artificially weak with 0 < c hypotheses, so we don't bind them to names. *) (* ------------------------------------------------------------------------- *)
let DOT_SCALING = 
prove (`!c. &0 < c ==> !x y. (c % x) dot (c % y) = c pow 2 * (x dot y)`,
REWRITE_TAC[DOT_LMUL; DOT_RMUL] THEN REAL_ARITH_TAC) in add_scaling_theorems [DOT_SCALING];;
let DIST_SCALING = 
prove (`!c. &0 < c ==> !x y. dist(c % x,c % y) = c * dist(x,y)`,
SIMP_TAC[DIST_MUL; REAL_ARITH `&0 < c ==> abs c = c`]) in add_scaling_theorems [DIST_SCALING];;
let ORTHOGONAL_SCALING = 
prove (`!c. &0 < c ==> !x y. orthogonal (c % x) (c % y) <=> orthogonal x y`,
REWRITE_TAC[orthogonal; DOT_LMUL; DOT_RMUL] THEN CONV_TAC REAL_FIELD) in add_scaling_theorems [ORTHOGONAL_SCALING];;
let NORM_SCALING = 
prove (`!c. &0 < c ==> !x. norm(c % x) = c * norm x`,
SIMP_TAC[NORM_MUL; REAL_ARITH `&0 < c ==> abs c = c`]) in add_scaling_theorems [NORM_SCALING];;
add_scaling_theorems [REAL_ARITH `!c. &0 < c ==> !a b. a * c * b = c * a * b`; REAL_ARITH `!c. &0 < c ==> !a b. c * a + c * b = c * (a + b)`; REAL_ARITH `!c. &0 < c ==> !a b. c * a - c * b = c * (a - b)`; REAL_FIELD `!c. &0 < c ==> !a b. c * a = c * b <=> a = b`; MESON[REAL_LT_LMUL_EQ] `!c. &0 < c ==> !a b. c * a < c * b <=> a < b`; MESON[REAL_LE_LMUL_EQ] `!c. &0 < c ==> !a b. c * a <= c * b <=> a <= b`; MESON[REAL_LT_LMUL_EQ; real_gt] `!c. &0 < c ==> !a b. c * a > c * b <=> a > b`; MESON[REAL_LE_LMUL_EQ; real_ge] `!c. &0 < c ==> !a b. c * a >= c * b <=> a >= b`; MESON[REAL_POW_MUL] `!c. &0 < c ==> !a n. (c * a) pow n = c pow n * a pow n`; REAL_ARITH `!c. &0 < c ==> !a b n. a * c pow n * b = c pow n * a * b`; REAL_ARITH `!c. &0 < c ==> !a b n. c pow n * a + c pow n * b = c pow n * (a + b)`; REAL_ARITH `!c. &0 < c ==> !a b n. c pow n * a - c pow n * b = c pow n * (a - b)`; MESON[REAL_POW_LT; REAL_EQ_LCANCEL_IMP; REAL_LT_IMP_NZ] `!c. &0 < c ==> !a b n. c pow n * a = c pow n * b <=> a = b`; MESON[REAL_LT_LMUL_EQ; REAL_POW_LT] `!c. &0 < c ==> !a b n. c pow n * a < c pow n * b <=> a < b`; MESON[REAL_LE_LMUL_EQ; REAL_POW_LT] `!c. &0 < c ==> !a b n. c pow n * a <= c pow n * b <=> a <= b`; MESON[REAL_LT_LMUL_EQ; real_gt; REAL_POW_LT] `!c. &0 < c ==> !a b n. c pow n * a > c pow n * b <=> a > b`; MESON[REAL_LE_LMUL_EQ; real_ge; REAL_POW_LT] `!c. &0 < c ==> !a b n. c pow n * a >= c pow n * b <=> a >= b`];; (* ------------------------------------------------------------------------- *) (* Theorem deducing quantifier mappings from surjectivity. *) (* ------------------------------------------------------------------------- *)
let QUANTIFY_SURJECTION_THM = 
prove (`!f:A->B. (!y. ?x. f x = y) ==> ((!P. (!x. P x) <=> (!x. P (f x))) /\ (!P. (?x. P x) <=> (?x. P (f x))) /\ (!Q. (!s. Q s) <=> (!s. Q(IMAGE f s))) /\ (!Q. (?s. Q s) <=> (?s. Q(IMAGE f s)))) /\ (!P. {x | P x} = IMAGE f {x | P(f x)})`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [SURJECTIVE_RIGHT_INVERSE] THEN DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN SUBGOAL_THEN `!s. IMAGE (f:A->B) (IMAGE g s) = s` ASSUME_TAC THENL [ASM SET_TAC[]; CONJ_TAC THENL [ASM MESON_TAC[]; ASM SET_TAC[]]]);;
let QUANTIFY_SURJECTION_HIGHER_THM = 
prove (`!f:A->B. (!y. ?x. f x = y) ==> ((!P. (!x. P x) <=> (!x. P (f x))) /\ (!P. (?x. P x) <=> (?x. P (f x))) /\ (!Q. (!s. Q s) <=> (!s. Q(IMAGE f s))) /\ (!Q. (?s. Q s) <=> (?s. Q(IMAGE f s))) /\ (!Q. (!s. Q s) <=> (!s. Q(IMAGE (IMAGE f) s))) /\ (!Q. (?s. Q s) <=> (?s. Q(IMAGE (IMAGE f) s))) /\ (!P. (!g:real^1->B. P g) <=> (!g. P(f o g))) /\ (!P. (?g:real^1->B. P g) <=> (?g. P(f o g))) /\ (!P. (!g:num->B. P g) <=> (!g. P(f o g))) /\ (!P. (?g:num->B. P g) <=> (?g. P(f o g))) /\ (!Q. (!l. Q l) <=> (!l. Q(MAP f l))) /\ (!Q. (?l. Q l) <=> (?l. Q(MAP f l)))) /\ ((!P. {x | P x} = IMAGE f {x | P(f x)}) /\ (!Q. {s | Q s} = IMAGE (IMAGE f) {s | Q(IMAGE f s)}) /\ (!R. {l | R l} = IMAGE (MAP f) {l | R(MAP f l)}))`,
GEN_TAC THEN DISCH_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN ASM_REWRITE_TAC[GSYM SURJECTIVE_FORALL_THM; GSYM SURJECTIVE_EXISTS_THM; GSYM SURJECTIVE_IMAGE_THM; SURJECTIVE_IMAGE; SURJECTIVE_MAP] THEN REWRITE_TAC[FUN_EQ_THM; o_THM; GSYM SKOLEM_THM] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Apply such quantifier and set expansions once per level at depth. *) (* In the PARTIAL version, avoid expanding named variables in list. *) (* ------------------------------------------------------------------------- *) let PARTIAL_EXPAND_QUANTS_CONV avoid th = let ath,sth = CONJ_PAIR th in let conv1 = GEN_REWRITE_CONV I [ath] and conv2 = GEN_REWRITE_CONV I [sth] in let conv1' tm = let th = conv1 tm in if mem (fst(dest_var(fst(dest_abs(rand tm))))) avoid then failwith "Not going to expand this variable" else th in let rec conv tm = ((conv1' THENC BINDER_CONV conv) ORELSEC (conv2 THENC RAND_CONV(RAND_CONV(ABS_CONV(BINDER_CONV(LAND_CONV conv))))) ORELSEC SUB_CONV conv) tm in conv;; let EXPAND_QUANTS_CONV = PARTIAL_EXPAND_QUANTS_CONV [];;