(* ========================================================================= *)
(* Permutations, both general and specifically on finite sets.               *)
(* ========================================================================= *)

parse_as_infix("permutes",(12,"right"));;

let permutes = new_definition
 `p permutes s <=> (!x. ~(x IN s) ==> p(x) = x) /\ (!y. ?!x. p x = y)`;;
(* ------------------------------------------------------------------------- *) (* Inverse function (on whole universe). *) (* ------------------------------------------------------------------------- *)
let inverse = new_definition
 `inverse(f) = \y. @x. f x = y`;;
let SURJECTIVE_INVERSE = 
prove (`!f. (!y. ?x. f x = y) <=> !y. f(inverse f y) = y`,
REWRITE_TAC[SURJECTIVE_RIGHT_INVERSE; inverse] THEN MESON_TAC[]);;
let SURJECTIVE_INVERSE_o = 
prove (`!f. (!y. ?x. f x = y) <=> (f o inverse f = I)`,
let INJECTIVE_INVERSE = 
prove (`!f. (!x x'. f x = f x' ==> x = x') <=> !x. inverse f (f x) = x`,
MESON_TAC[inverse]);;
let INJECTIVE_INVERSE_o = 
prove (`!f. (!x x'. f x = f x' ==> x = x') <=> (inverse f o f = I)`,
let INVERSE_UNIQUE_o = 
prove (`!f g. f o g = I /\ g o f = I ==> inverse f = g`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN MESON_TAC[INJECTIVE_INVERSE; SURJECTIVE_INVERSE]);;
let INVERSE_I = 
prove (`inverse I = I`,
MATCH_MP_TAC INVERSE_UNIQUE_o THEN REWRITE_TAC[I_O_ID]);;
(* ------------------------------------------------------------------------- *) (* Transpositions. *) (* ------------------------------------------------------------------------- *)
let swap = new_definition
 `swap(i,j) k = if k = i then j else if k = j then i else k`;;
let SWAP_REFL = 
prove (`!a. swap(a,a) = I`,
REWRITE_TAC[FUN_EQ_THM; swap; I_THM] THEN MESON_TAC[]);;
let SWAP_SYM = 
prove (`!a b. swap(a,b) = swap(b,a)`,
REWRITE_TAC[FUN_EQ_THM; swap; I_THM] THEN MESON_TAC[]);;
let SWAP_IDEMPOTENT = 
prove (`!a b. swap(a,b) o swap(a,b) = I`,
REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN MESON_TAC[]);;
let INVERSE_SWAP = 
prove (`!a b. inverse(swap(a,b)) = swap(a,b)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC INVERSE_UNIQUE_o THEN REWRITE_TAC[SWAP_SYM; SWAP_IDEMPOTENT]);;
let SWAP_GALOIS = 
prove (`!a b x y. x = swap(a,b) y <=> y = swap(a,b) x`,
REWRITE_TAC[swap] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Basic consequences of the definition. *) (* ------------------------------------------------------------------------- *)
let PERMUTES_IN_IMAGE = 
prove (`!p s x. p permutes s ==> (p(x) IN s <=> x IN s)`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_IMAGE = 
prove (`!p s. p permutes s ==> IMAGE p s = s`,
REWRITE_TAC[permutes; EXTENSION; IN_IMAGE] THEN MESON_TAC[]);;
let PERMUTES_INJECTIVE = 
prove (`!p s. p permutes s ==> !x y. p(x) = p(y) <=> x = y`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_SURJECTIVE = 
prove (`!p s. p permutes s ==> !y. ?x. p(x) = y`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSES_o = 
prove (`!p s. p permutes s ==> p o inverse(p) = I /\ inverse(p) o p = I`,
REWRITE_TAC[GSYM INJECTIVE_INVERSE_o; GSYM SURJECTIVE_INVERSE_o] THEN REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSES = 
prove (`!p s. p permutes s ==> (!x. p(inverse p x) = x) /\ (!x. inverse p (p x) = x)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]);;
let PERMUTES_SUBSET = 
prove (`!p s t. p permutes s /\ s SUBSET t ==> p permutes t`,
REWRITE_TAC[permutes; SUBSET] THEN MESON_TAC[]);;
let PERMUTES_EMPTY = 
prove (`!p. p permutes {} <=> p = I`,
REWRITE_TAC[FUN_EQ_THM; I_THM; permutes; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let PERMUTES_SING = 
prove (`!p a. p permutes {a} <=> p = I`,
REWRITE_TAC[FUN_EQ_THM; I_THM; permutes; IN_SING] THEN MESON_TAC[]);;
let PERMUTES_UNIV = 
prove (`!p. p permutes UNIV <=> !y:A. ?!x. p x = y`,
REWRITE_TAC[permutes; IN_UNIV] THEN MESON_TAC[]);;
let PERMUTES_INVERSE_EQ = 
prove (`!p s. p permutes s ==> !x y. inverse p y = x <=> p x = y`,
REWRITE_TAC[permutes; inverse] THEN MESON_TAC[]);;
let PERMUTES_SWAP = 
prove (`!a b s. a IN s /\ b IN s ==> swap(a,b) permutes s`,
REWRITE_TAC[permutes; swap] THEN MESON_TAC[]);;
let PERMUTES_SUPERSET = 
prove (`!p s t. p permutes s /\ (!x. x IN (s DIFF t) ==> p(x) = x) ==> p permutes t`,
REWRITE_TAC[permutes; IN_DIFF] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Group properties. *) (* ------------------------------------------------------------------------- *)
let PERMUTES_I = 
prove (`!s. I permutes s`,
REWRITE_TAC[permutes; I_THM] THEN MESON_TAC[]);;
let PERMUTES_COMPOSE = 
prove (`!p q s. p permutes s /\ q permutes s ==> (q o p) permutes s`,
REWRITE_TAC[permutes; o_THM] THEN MESON_TAC[]);;
let PERMUTES_INVERSE = 
prove (`!p s. p permutes s ==> inverse(p) permutes s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_INVERSE_EQ) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSE_INVERSE = 
prove (`!p. p permutes s ==> inverse(inverse p) = p`,
SIMP_TAC[FUN_EQ_THM] THEN MESON_TAC[PERMUTES_INVERSE_EQ; PERMUTES_INVERSE]);;
(* ------------------------------------------------------------------------- *) (* The number of permutations on a finite set. *) (* ------------------------------------------------------------------------- *)
let PERMUTES_INSERT_LEMMA = 
prove (`!p a:A s. p permutes (a INSERT s) ==> (swap(a,p(a)) o p) permutes s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PERMUTES_SUPERSET THEN EXISTS_TAC `(a:A) INSERT s` THEN CONJ_TAC THENL [ASM_MESON_TAC[PERMUTES_SWAP; PERMUTES_IN_IMAGE; IN_INSERT; PERMUTES_COMPOSE]; REWRITE_TAC[o_THM; swap; IN_INSERT; IN_DIFF] THEN ASM_MESON_TAC[]]);;
let PERMUTES_INSERT = 
prove (`{p:A->A | p permutes (a INSERT s)} = IMAGE (\(b,p). swap(a,b) o p) {(b,p) | b IN a INSERT s /\ p IN {p | p permutes s}}`,
REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; IN_IMAGE; EXISTS_PAIR_THM] THEN X_GEN_TAC `p:A->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN EQ_TAC THENL [DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`(p:A->A) a`; `swap(a,p a) o (p:A->A)`] THEN ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID; PERMUTES_INSERT_LEMMA] THEN ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`b:A`; `q:A->A`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC PERMUTES_COMPOSE THEN CONJ_TAC THENL [ASM_MESON_TAC[PERMUTES_SUBSET; SUBSET; IN_INSERT]; MATCH_MP_TAC PERMUTES_SWAP THEN ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT]]]);;
let HAS_SIZE_PERMUTATIONS = 
prove (`!s:A->bool n. s HAS_SIZE n ==> {p | p permutes s} HAS_SIZE (FACT n)`,
REWRITE_TAC[HAS_SIZE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[PERMUTES_EMPTY; CARD_CLAUSES; SET_RULE `{x | x = a} = {a}`] THEN SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[NOT_IN_EMPTY] THEN CONJ_TAC THENL [GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC NUM_REDUCE_CONV; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN REWRITE_TAC[GSYM HAS_SIZE] THEN STRIP_TAC THEN X_GEN_TAC `k:num` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[FACT; PERMUTES_INSERT] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_SIMP_TAC[HAS_SIZE_PRODUCT; HAS_SIZE; FINITE_INSERT; CARD_CLAUSES] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_ELIM_THM; PAIR_EQ] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MAP_EVERY X_GEN_TAC [`b:A`; `q:A->A`; `c:A`; `r:A->A`] THEN STRIP_TAC THEN SUBGOAL_THEN `c:A = b` SUBST_ALL_TAC THENL [FIRST_X_ASSUM(MP_TAC o C AP_THM `a:A`) THEN REWRITE_TAC[o_THM; swap] THEN SUBGOAL_THEN `(q:A->A) a = a /\ (r:A->A) a = a` (fun t -> SIMP_TAC[t]) THEN ASM_MESON_TAC[permutes]; FIRST_X_ASSUM(MP_TAC o AP_TERM `(\q:A->A. swap(a:A,b) o q)`) THEN ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID]]);;
let FINITE_PERMUTATIONS = 
prove (`!s. FINITE s ==> FINITE {p | p permutes s}`,
let CARD_PERMUTATIONS = 
prove (`!s. FINITE s ==> CARD {p | p permutes s} = FACT(CARD s)`,
(* ------------------------------------------------------------------------- *) (* Alternative characterizations of permutation of finite set. *) (* ------------------------------------------------------------------------- *)
let PERMUTES_FINITE_INJECTIVE = 
prove (`!s:A->bool p. FINITE s ==> (p permutes s <=> (!x. ~(x IN s) ==> p x = x) /\ (!x. x IN s ==> p x IN s) /\ (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y))`,
REWRITE_TAC[permutes] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `p:A->A` o MATCH_MP (REWRITE_RULE[IMP_CONJ] SURJECTIVE_IFF_INJECTIVE)) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_IMP; GSYM CONJ_ASSOC] THEN STRIP_TAC THEN X_GEN_TAC `y:A` THEN ASM_CASES_TAC `(y:A) IN s` THEN ASM_MESON_TAC[]);;
let PERMUTES_FINITE_SURJECTIVE = 
prove (`!s:A->bool p. FINITE s ==> (p permutes s <=> (!x. ~(x IN s) ==> p x = x) /\ (!x. x IN s ==> p x IN s) /\ (!y. y IN s ==> ?x. x IN s /\ p x = y))`,
REWRITE_TAC[permutes] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `p:A->A` o MATCH_MP (REWRITE_RULE[IMP_CONJ] SURJECTIVE_IFF_INJECTIVE)) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_IMP; GSYM CONJ_ASSOC] THEN STRIP_TAC THEN X_GEN_TAC `y:A` THEN ASM_CASES_TAC `(y:A) IN s` THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Permutations of index set for iterated operations. *) (* ------------------------------------------------------------------------- *)
let ITERATE_PERMUTE = 
prove (`!op. monoidal op ==> !f p s. p permutes s ==> iterate op s f = iterate op s (f o p)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_BIJECTION) THEN ASM_MESON_TAC[permutes]);;
let NSUM_PERMUTE = 
prove (`!f p s. p permutes s ==> nsum s f = nsum s (f o p)`,
REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN REWRITE_TAC[MONOIDAL_ADD]);;
let NSUM_PERMUTE_NUMSEG = 
prove (`!f p m n. p permutes m..n ==> nsum(m..n) f = nsum(m..n) (f o p)`,
MESON_TAC[NSUM_PERMUTE; FINITE_NUMSEG]);;
let SUM_PERMUTE = 
prove (`!f p s. p permutes s ==> sum s f = sum s (f o p)`,
REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;
let SUM_PERMUTE_NUMSEG = 
prove (`!f p m n. p permutes m..n ==> sum(m..n) f = sum(m..n) (f o p)`,
MESON_TAC[SUM_PERMUTE; FINITE_NUMSEG]);;
(* ------------------------------------------------------------------------- *) (* Various combinations of transpositions with 2, 1 and 0 common elements. *) (* ------------------------------------------------------------------------- *)
let SWAP_COMMON = 
prove (`!a b c:A. ~(a = c) /\ ~(b = c) ==> swap(a,b) o swap(a,c) = swap(b,c) o swap(a,b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN MAP_EVERY ASM_CASES_TAC [`x:A = a`; `x:A = b`; `x:A = c`] THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let SWAP_COMMON' = 
prove (`!a b c:A. ~(a = b) /\ ~(a = c) ==> swap(a,c) o swap(b,c) = swap(b,c) o swap(a,b)`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SWAP_SYM] THEN ASM_SIMP_TAC[GSYM SWAP_COMMON] THEN REWRITE_TAC[SWAP_SYM]);;
let SWAP_INDEPENDENT = 
prove (`!a b c d:A. ~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d) ==> swap(a,b) o swap(c,d) = swap(c,d) o swap(a,b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN MAP_EVERY ASM_CASES_TAC [`x:A = a`; `x:A = b`; `x:A = c`] THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *) (* Permutations as transposition sequences. *) (* ------------------------------------------------------------------------- *) let swapseq_RULES,swapseq_INDUCT,swapseq_CASES = new_inductive_definition `(swapseq 0 I) /\ (!a b p n. swapseq n p /\ ~(a = b) ==> swapseq (SUC n) (swap(a,b) o p))`;;
let permutation = new_definition
 `permutation p <=> ?n. swapseq n p`;;
(* ------------------------------------------------------------------------- *) (* Some closure properties of the set of permutations, with lengths. *) (* ------------------------------------------------------------------------- *) let SWAPSEQ_I = CONJUNCT1 swapseq_RULES;;
let PERMUTATION_I = 
prove (`permutation I`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_I]);;
let SWAPSEQ_SWAP = 
prove (`!a b. swapseq (if a = b then 0 else 1) (swap(a,b))`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[num_CONV `1`] THEN ASM_MESON_TAC[swapseq_RULES; I_O_ID; SWAPSEQ_I; SWAP_REFL]);;
let PERMUTATION_SWAP = 
prove (`!a b. permutation(swap(a,b))`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_SWAP]);;
let SWAPSEQ_COMPOSE = 
prove (`!n p m q. swapseq n p /\ swapseq m q ==> swapseq (n + m) (p o q)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN MATCH_MP_TAC swapseq_INDUCT THEN REWRITE_TAC[ADD_CLAUSES; I_O_ID; GSYM o_ASSOC] THEN MESON_TAC[swapseq_RULES]);;
let PERMUTATION_COMPOSE = 
prove (`!p q. permutation p /\ permutation q ==> permutation(p o q)`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_COMPOSE]);;
let SWAPSEQ_ENDSWAP = 
prove (`!n p a b:A. swapseq n p /\ ~(a = b) ==> swapseq (SUC n) (p o swap(a,b))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN MATCH_MP_TAC swapseq_INDUCT THEN REWRITE_TAC[I_O_ID; GSYM o_ASSOC] THEN MESON_TAC[o_ASSOC; swapseq_RULES; I_O_ID]);;
let SWAPSEQ_INVERSE_EXISTS = 
prove (`!n p:A->A. swapseq n p ==> ?q. swapseq n q /\ p o q = I /\ q o p = I`,
MATCH_MP_TAC swapseq_INDUCT THEN CONJ_TAC THENL [MESON_TAC[I_O_ID; swapseq_RULES]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MP_TAC(SPECL [`n:num`; `q:A->A`; `a:A`; `b:A`] SWAPSEQ_ENDSWAP) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN EXISTS_TAC `(q:A->A) o swap (a,b)` THEN ASM_REWRITE_TAC[GSYM o_ASSOC] THEN GEN_REWRITE_TAC (BINOP_CONV o LAND_CONV o RAND_CONV) [o_ASSOC] THEN ASM_REWRITE_TAC[SWAP_IDEMPOTENT; I_O_ID]);;
let SWAPSEQ_INVERSE = 
prove (`!n p. swapseq n p ==> swapseq n (inverse p)`,
let PERMUTATION_INVERSE = 
prove (`!p. permutation p ==> permutation(inverse p)`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_INVERSE]);;
(* ------------------------------------------------------------------------- *) (* The identity map only has even transposition sequences. *) (* ------------------------------------------------------------------------- *)
let SYMMETRY_LEMMA = 
prove (`(!a b c d. P a b c d ==> P a b d c) /\ (!a b c d. ~(a = b) /\ ~(c = d) /\ (a = c /\ b = d \/ a = c /\ ~(b = d) \/ ~(a = c) /\ b = d \/ ~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d)) ==> P a b c d) ==> (!a b c d:A. ~(a = b) /\ ~(c = d) ==> P a b c d)`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`a:A = c`; `a:A = d`; `b:A = c`; `b:A = d`] THEN ASM_MESON_TAC[]);;
let SWAP_GENERAL = 
prove (`!a b c d:A. ~(a = b) /\ ~(c = d) ==> swap(a,b) o swap(c,d) = I \/ ?x y z. ~(x = a) /\ ~(y = a) /\ ~(z = a) /\ ~(x = y) /\ swap(a,b) o swap(c,d) = swap(x,y) o swap(a,z)`,
MATCH_MP_TAC SYMMETRY_LEMMA THEN CONJ_TAC THENL [REWRITE_TAC[SWAP_SYM] THEN SIMP_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THENL [MESON_TAC[SWAP_IDEMPOTENT]; DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`b:A`; `d:A`; `b:A`] THEN ASM_MESON_TAC[SWAP_COMMON]; DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`c:A`; `d:A`; `c:A`] THEN ASM_MESON_TAC[SWAP_COMMON']; DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`c:A`; `d:A`; `b:A`] THEN ASM_MESON_TAC[SWAP_INDEPENDENT]]);;
let FIXING_SWAPSEQ_DECREASE = 
prove (`!n p a b:A. swapseq n p /\ ~(a = b) /\ (swap(a,b) o p) a = a ==> ~(n = 0) /\ swapseq (n - 1) (swap(a,b) o p)`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [swapseq_CASES] THEN REWRITE_TAC[NOT_SUC] THENL [DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[I_THM; o_THM; swap] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`c:A`; `d:A`; `q:A->A`; `m:num`] THEN REWRITE_TAC[SUC_INJ; GSYM CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[o_ASSOC] THEN STRIP_TAC THEN MP_TAC(SPECL [`a:A`; `b:A`; `c:A`; `d:A`] SWAP_GENERAL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THEN ASM_REWRITE_TAC[I_O_ID; SUC_SUB1; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`q:A->A`; `a:A`; `z:A`]) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o check(is_eq o concl)) THEN REWRITE_TAC[GSYM o_ASSOC] THEN ABBREV_TAC `r:A->A = swap(a:A,z) o q` THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; swap] THEN ASM_MESON_TAC[]; SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_SUB1; GSYM o_ASSOC] THEN ASM_MESON_TAC[swapseq_RULES]]);;
let SWAPSEQ_IDENTITY_EVEN = 
prove (`!n. swapseq n (I:A->A) ==> EVEN n`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [swapseq_CASES] THEN DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o CONJUNCT1) MP_TAC) THEN REWRITE_TAC[EVEN; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`; `m:num`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN MP_TAC(SPECL [`m:num`; `p:A->A`; `a:A`; `b:A`] FIXING_SWAPSEQ_DECREASE) THEN ASM_REWRITE_TAC[I_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `m - 1`) THEN UNDISCH_THEN `SUC m = n` (SUBST_ALL_TAC o SYM) THEN ASM_REWRITE_TAC[ARITH_RULE `m - 1 < SUC m`] THEN UNDISCH_TAC `~(m = 0)` THEN SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[SUC_SUB1; EVEN]);;
(* ------------------------------------------------------------------------- *) (* Therefore we have a welldefined notion of parity. *) (* ------------------------------------------------------------------------- *)
let evenperm = new_definition `evenperm(p) = EVEN(@n. swapseq n p)`;;
let SWAPSEQ_EVEN_EVEN = 
prove (`!m n p:A->A. swapseq m p /\ swapseq n p ==> (EVEN m <=> EVEN n)`,
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP SWAPSEQ_INVERSE_EXISTS) THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `swapseq (n + m) :(A->A)->bool`) THEN ASM_SIMP_TAC[SWAPSEQ_COMPOSE] THEN DISCH_THEN(MP_TAC o MATCH_MP SWAPSEQ_IDENTITY_EVEN) THEN SIMP_TAC[EVEN_ADD]);;
let EVENPERM_UNIQUE = 
prove (`!n p b. swapseq n p /\ EVEN n = b ==> evenperm p = b`,
REWRITE_TAC[evenperm] THEN MESON_TAC[SWAPSEQ_EVEN_EVEN]);;
(* ------------------------------------------------------------------------- *) (* And it has the expected composition properties. *) (* ------------------------------------------------------------------------- *)
let EVENPERM_I = 
prove (`evenperm I = T`,
MATCH_MP_TAC EVENPERM_UNIQUE THEN MESON_TAC[swapseq_RULES; EVEN]);;
let EVENPERM_SWAP = 
prove (`!a b:A. evenperm(swap(a,b)) = (a = b)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC EVENPERM_UNIQUE THEN MESON_TAC[SWAPSEQ_SWAP; NUM_RED_CONV `EVEN 0`; NUM_RED_CONV `EVEN 1`]);;
let EVENPERM_COMPOSE = 
prove (`!p q. permutation p /\ permutation q ==> evenperm (p o q) = (evenperm p = evenperm q)`,
REWRITE_TAC[permutation; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN ASSUME_TAC(MATCH_MP SWAPSEQ_COMPOSE th)) THEN ASM_MESON_TAC[EVENPERM_UNIQUE; SWAPSEQ_COMPOSE; EVEN_ADD]);;
let EVENPERM_INVERSE = 
prove (`!p. permutation p ==> evenperm(inverse p) = evenperm p`,
REWRITE_TAC[permutation] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC EVENPERM_UNIQUE THEN ASM_MESON_TAC[SWAPSEQ_INVERSE; EVENPERM_UNIQUE]);;
(* ------------------------------------------------------------------------- *) (* A more abstract characterization of permutations. *) (* ------------------------------------------------------------------------- *)
let PERMUTATION_BIJECTIVE = 
prove (`!p. permutation p ==> !y. ?!x. p(x) = y`,
REWRITE_TAC[permutation] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP SWAPSEQ_INVERSE_EXISTS) THEN REWRITE_TAC[FUN_EQ_THM; I_THM; o_THM; LEFT_IMP_EXISTS_THM] THEN MESON_TAC[]);;
let PERMUTATION_FINITE_SUPPORT = 
prove (`!p. permutation p ==> FINITE {x:A | ~(p x = x)}`,
REWRITE_TAC[permutation; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC swapseq_INDUCT THEN REWRITE_TAC[I_THM; FINITE_RULES; SET_RULE `{x | F} = {}`] THEN MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`] THEN STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `(a:A) INSERT b INSERT {x | ~(p x = x)}` THEN ASM_REWRITE_TAC[FINITE_INSERT; SUBSET; IN_INSERT; IN_ELIM_THM] THEN REWRITE_TAC[o_THM; swap] THEN MESON_TAC[]);;
let PERMUTATION_LEMMA = 
prove (`!s p:A->A. FINITE s /\ (!y. ?!x. p(x) = y) /\ (!x. ~(x IN s) ==> p x = x) ==> permutation p`,
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [REWRITE_TAC[NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `p:A->A = I` (fun th -> REWRITE_TAC[th; PERMUTATION_I]) THEN ASM_REWRITE_TAC[FUN_EQ_THM; I_THM]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN STRIP_TAC THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `permutation((swap(a,p(a)) o swap(a,p(a))) o (p:A->A))` MP_TAC THENL [ALL_TAC; REWRITE_TAC[SWAP_IDEMPOTENT; I_O_ID]] THEN REWRITE_TAC[GSYM o_ASSOC] THEN MATCH_MP_TAC PERMUTATION_COMPOSE THEN REWRITE_TAC[PERMUTATION_SWAP] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [UNDISCH_TAC `!y. ?!x. (p:A->A) x = y` THEN REWRITE_TAC[EXISTS_UNIQUE_THM; swap; o_THM] THEN ASM_CASES_TAC `(p:A->A) a = a` THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[TAUT `(if p then x else y) = a <=> if p then x = a else y = a`] THEN REWRITE_TAC[TAUT `(if p then x else y) <=> p /\ x \/ ~p /\ y`] THEN ASM_MESON_TAC[]; REWRITE_TAC[swap; o_THM] THEN ASM_CASES_TAC `(p:A->A) a = a` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
let PERMUTATION = 
prove (`!p. permutation p <=> (!y. ?!x. p(x) = y) /\ FINITE {x:A | ~(p(x) = x)}`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PERMUTATION_BIJECTIVE; PERMUTATION_FINITE_SUPPORT] THEN STRIP_TAC THEN MATCH_MP_TAC PERMUTATION_LEMMA THEN EXISTS_TAC `{x:A | ~(p x = x)}` THEN ASM_SIMP_TAC[IN_ELIM_THM]);;
let PERMUTATION_INVERSE_WORKS = 
prove (`!p. permutation p ==> inverse p o p = I /\ p o inverse p = I`,
let PERMUTATION_INVERSE_COMPOSE = 
prove (`!p q. permutation p /\ permutation q ==> inverse(p o q) = inverse q o inverse p`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INVERSE_UNIQUE_o THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP PERMUTATION_INVERSE_WORKS)) THEN REWRITE_TAC[GSYM o_ASSOC] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [o_ASSOC] THEN ASM_REWRITE_TAC[I_O_ID]);;
let PERMUTATION_COMPOSE_EQ = 
prove (`(!p q:A->A. permutation(p) ==> (permutation(p o q) <=> permutation q)) /\ (!p q:A->A. permutation(q) ==> (permutation(p o q) <=> permutation p))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PERMUTATION_INVERSE) THEN EQ_TAC THEN ASM_SIMP_TAC[PERMUTATION_COMPOSE] THENL [DISCH_THEN(MP_TAC o SPEC `inverse(p:A->A)` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PERMUTATION_COMPOSE)); DISCH_THEN(MP_TAC o SPEC `inverse(q:A->A)` o MATCH_MP (REWRITE_RULE[IMP_CONJ] PERMUTATION_COMPOSE))] THEN ASM_SIMP_TAC[GSYM o_ASSOC; PERMUTATION_INVERSE_WORKS] THEN ASM_SIMP_TAC[o_ASSOC; PERMUTATION_INVERSE_WORKS] THEN REWRITE_TAC[I_O_ID]);;
let PERMUTATION_COMPOSE_SWAP = 
prove (`(!p a b:A. permutation(swap(a,b) o p) <=> permutation p) /\ (!p a b:A. permutation(p o swap(a,b)) <=> permutation p)`,
(* ------------------------------------------------------------------------- *) (* Relation to "permutes". *) (* ------------------------------------------------------------------------- *)
let PERMUTATION_PERMUTES = 
prove (`!p:A->A. permutation p <=> ?s. FINITE s /\ p permutes s`,
GEN_TAC THEN REWRITE_TAC[PERMUTATION; permutes] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `{x:A | ~(p x = x)}` THEN ASM_SIMP_TAC[IN_ELIM_THM]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool` THEN ASM_SIMP_TAC[IN_ELIM_THM; SUBSET] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *) (* Hence a sort of induction principle composing by swaps. *) (* ------------------------------------------------------------------------- *)
let PERMUTES_INDUCT = 
prove (`!P s. FINITE s /\ P I /\ (!a b:A p. a IN s /\ b IN s /\ P p /\ permutation p ==> P (swap(a,b) o p)) ==> (!p. p permutes s ==> P p)`,
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b ==> a ==> c ==> d`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_REWRITE_TAC[PERMUTES_EMPTY; IN_INSERT] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `p = swap(x,p x) o swap(x,p x) o (p:A->A)` SUBST1_TAC THENL [REWRITE_TAC[o_ASSOC; SWAP_IDEMPOTENT; I_O_ID]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN ASSUME_TAC th) THEN ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT; PERMUTES_INSERT_LEMMA; PERMUTATION_PERMUTES; FINITE_INSERT; PERMUTATION_COMPOSE; PERMUTATION_SWAP]);;
(* ------------------------------------------------------------------------- *) (* Sign of a permutation as a real number. *) (* ------------------------------------------------------------------------- *)
let sign = new_definition
 `(sign p):real = if evenperm p then &1 else -- &1`;;
let SIGN_NZ = 
prove (`!p. ~(sign p = &0)`,
REWRITE_TAC[sign] THEN REAL_ARITH_TAC);;
let SIGN_I = 
prove (`sign I = &1`,
REWRITE_TAC[sign; EVENPERM_I]);;
let SIGN_INVERSE = 
prove (`!p. permutation p ==> sign(inverse p) = sign p`,
SIMP_TAC[sign; EVENPERM_INVERSE] THEN REAL_ARITH_TAC);;
let SIGN_COMPOSE = 
prove (`!p q. permutation p /\ permutation q ==> sign(p o q) = sign(p) * sign(q)`,
SIMP_TAC[sign; EVENPERM_COMPOSE] THEN REAL_ARITH_TAC);;
let SIGN_SWAP = 
prove (`!a b. sign(swap(a,b)) = if a = b then &1 else -- &1`,
REWRITE_TAC[sign; EVENPERM_SWAP]);;
let SIGN_IDEMPOTENT = 
prove (`!p. sign(p) * sign(p) = &1`,
GEN_TAC THEN REWRITE_TAC[sign] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let REAL_ABS_SIGN = 
prove (`!p. abs(sign p) = &1`,
REWRITE_TAC[sign] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* More lemmas about permutations. *) (* ------------------------------------------------------------------------- *)
let PERMUTES_NUMSET_LE = 
prove (`!p s:num->bool. p permutes s /\ (!i. i IN s ==> p(i) <= i) ==> p = I`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; I_THM] THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN ASM_CASES_TAC `(n:num) IN s` THENL [ALL_TAC; ASM_MESON_TAC[permutes]] THEN ASM_SIMP_TAC[GSYM LE_ANTISYM] THEN REWRITE_TAC[GSYM NOT_LT] THEN ASM_MESON_TAC[PERMUTES_INJECTIVE; LT_REFL]);;
let PERMUTES_NUMSET_GE = 
prove (`!p s:num->bool. p permutes s /\ (!i. i IN s ==> i <= p(i)) ==> p = I`,
REPEAT STRIP_TAC THEN MP_TAC(SPECL [`inverse(p:num->num)`; `s:num->bool`] PERMUTES_NUMSET_LE) THEN ANTS_TAC THENL [ASM_MESON_TAC[PERMUTES_INVERSE; PERMUTES_INVERSES; PERMUTES_IN_IMAGE]; ASM_MESON_TAC[PERMUTES_INVERSE_INVERSE; INVERSE_I]]);;
let IMAGE_INVERSE_PERMUTATIONS = 
prove (`!s:A->bool. {inverse p | p permutes s} = {p | p permutes s}`,
let IMAGE_COMPOSE_PERMUTATIONS_L = 
prove (`!s q:A->A. q permutes s ==> {q o p | p permutes s} = {p | p permutes s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `p:A->A` THEN EQ_TAC THENL [ASM_MESON_TAC[PERMUTES_COMPOSE]; DISCH_TAC THEN EXISTS_TAC `inverse(q:A->A) o (p:A->A)` THEN ASM_SIMP_TAC[o_ASSOC; PERMUTES_INVERSE; PERMUTES_COMPOSE] THEN ASM_MESON_TAC[PERMUTES_INVERSES_o; I_O_ID]]);;
let IMAGE_COMPOSE_PERMUTATIONS_R = 
prove (`!s q:A->A. q permutes s ==> {p o q | p permutes s} = {p | p permutes s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `p:A->A` THEN EQ_TAC THENL [ASM_MESON_TAC[PERMUTES_COMPOSE]; DISCH_TAC THEN EXISTS_TAC `(p:A->A) o inverse(q:A->A)` THEN ASM_SIMP_TAC[GSYM o_ASSOC; PERMUTES_INVERSE; PERMUTES_COMPOSE] THEN ASM_MESON_TAC[PERMUTES_INVERSES_o; I_O_ID]]);;
let PERMUTES_IN_NUMSEG = 
prove (`!p n i. p permutes 1..n /\ i IN 1..n ==> 1 <= p(i) /\ p(i) <= n`,
REWRITE_TAC[permutes; IN_NUMSEG] THEN MESON_TAC[]);;
let SUM_PERMUTATIONS_INVERSE = 
prove (`!f m n. sum {p | p permutes m..n} f = sum {p | p permutes m..n} (\p. f(inverse p))`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM IMAGE_INVERSE_PERMUTATIONS] THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN MATCH_MP_TAC SUM_IMAGE THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN MESON_TAC[PERMUTES_INVERSE_INVERSE]);;
let SUM_PERMUTATIONS_COMPOSE_L = 
prove (`!f m n q. q permutes m..n ==> sum {p | p permutes m..n} f = sum {p | p permutes m..n} (\p. f(q o p))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM(MATCH_MP IMAGE_COMPOSE_PERMUTATIONS_L th)]) THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN MATCH_MP_TAC SUM_IMAGE THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\p:num->num. inverse(q:num->num) o p`) THEN REWRITE_TAC[o_ASSOC] THEN EVERY_ASSUM(CONJUNCTS_THEN SUBST1_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN REWRITE_TAC[I_O_ID]);;
let SUM_PERMUTATIONS_COMPOSE_R = 
prove (`!f m n q. q permutes m..n ==> sum {p | p permutes m..n} f = sum {p | p permutes m..n} (\p. f(p o q))`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM(MATCH_MP IMAGE_COMPOSE_PERMUTATIONS_R th)]) THEN GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN MATCH_MP_TAC SUM_IMAGE THEN SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\p:num->num. p o inverse(q:num->num)`) THEN REWRITE_TAC[GSYM o_ASSOC] THEN EVERY_ASSUM(CONJUNCTS_THEN SUBST1_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN REWRITE_TAC[I_O_ID]);;
(* ------------------------------------------------------------------------- *) (* Conversion for `{p | p permutes s}` where s is a set enumeration. *) (* ------------------------------------------------------------------------- *) let PERMSET_CONV =
let pth_empty = 
prove (`{p | p permutes {}} = {I}`,
REWRITE_TAC[PERMUTES_EMPTY] THEN SET_TAC[]) and pth_cross = SET_RULE `IMAGE f {x,y | x IN {} /\ y IN t} = {} /\ IMAGE f {x,y | x IN (a INSERT s) /\ y IN t} = (IMAGE (\y. f(a,y)) t) UNION (IMAGE f {x,y | x IN s /\ y IN t})` and pth_union = SET_RULE `{} UNION t = t /\ (x INSERT s) UNION t = x INSERT (s UNION t)` in let rec PERMSET_CONV tm = (GEN_REWRITE_CONV I [pth_empty] ORELSEC (GEN_REWRITE_CONV I [PERMUTES_INSERT] THENC ONCE_DEPTH_CONV PERMSET_CONV THENC REWRITE_CONV[pth_cross] THENC REWRITE_CONV[IMAGE_CLAUSES] THENC REWRITE_CONV[pth_union] THENC REWRITE_CONV[SWAP_REFL; I_O_ID])) tm in PERMSET_CONV;;
(* ------------------------------------------------------------------------- *) (* Sum over a set of permutations (could generalize to iteration). *) (* ------------------------------------------------------------------------- *)
let SUM_OVER_PERMUTATIONS_INSERT = 
prove (`!f a s. FINITE s /\ ~(a IN s) ==> sum {p:A->A | p permutes (a INSERT s)} f = sum (a INSERT s) (\b. sum {p | p permutes s} (\q. f(swap(a,b) o q)))`,
let lemma = prove
   (`(\(b,p). f (swap (a,b) o p)) = f o (\(b,p). swap(a,b) o p)`,
    REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]) in
  REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTES_INSERT] THEN
  ASM_SIMP_TAC[FINITE_PERMUTATIONS; FINITE_INSERT; SUM_SUM_PRODUCT] THEN
  REWRITE_TAC[lemma] THEN MATCH_MP_TAC SUM_IMAGE THEN
  REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  MAP_EVERY X_GEN_TAC [`b:A`; `p:A->A`; `c:A`; `q:A->A`] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[PAIR_EQ] THEN
  MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o C AP_THM `a:A`) THEN
    REWRITE_TAC[o_THM; swap] THEN ASM_MESON_TAC[permutes];
    DISCH_THEN SUBST_ALL_TAC THEN
    FIRST_X_ASSUM(MP_TAC o AP_TERM `(\p:A->A. swap(a:A,c) o p)`) THEN
    REWRITE_TAC[o_ASSOC; SWAP_IDEMPOTENT; I_O_ID]]);;
let SUM_OVER_PERMUTATIONS_NUMSEG = 
prove (`!f m n. m <= n ==> sum {p | p permutes (m..n)} f = sum(m..n) (\i. sum {p | p permutes (m+1..n)} (\q. f(swap(m,i) o q)))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC] THEN MATCH_MP_TAC SUM_OVER_PERMUTATIONS_INSERT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN ARITH_TAC);;