(* Basic interval arithmetic for approximation of constants *)
needs "tame/tame_defs.hl";;
needs "tame/TameGeneral.hl";;

module Constants_approx = struct

let interval_arith = new_definition `interval_arith (x:real) (lo, hi) <=> lo <= x /\ x <= hi`;;
let CONST_INTERVAL = 
prove(`!x. interval_arith x (x,x)`,
REWRITE_TAC[interval_arith; REAL_LE_REFL]);;
let EPS_TO_INTERVAL = 
prove(`abs (f - x) <= e <=> interval_arith f (x - e, x + e)`,
REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);;
let APPROX_INTERVAL = 
prove(`(a <= lo /\ hi <= b) /\ interval_arith x (lo, hi) ==> interval_arith x (a,b)`,
REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);;
(* Numerical approximations for cos and acos *)
let COS_EQ_NEG_SIN = 
prove(`!x. cos (x + pi / &2) = --sin x`,
REWRITE_TAC[COS_SIN; REAL_ARITH `a - (b + a) = --b`; SIN_NEG]);;
let COS_DERIVATIVES = 
prove(`!x n. ((\x. cos (x + &n * pi / &2)) has_real_derivative cos (x + &(n + 1) * pi / &2)) (atreal x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[] THEN MP_TAC (REAL_DIFF_CONV `((\x. cos (x + &n * pi / &2)) has_real_derivative f) (atreal x)`) THEN SUBGOAL_THEN `(&1 + &0) * --sin (x + &n * pi / &2) = cos (x + &(n + 1) * pi / &2)` (fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[REAL_ARITH `(&1 + &0) * --a = --a`] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REWRITE_TAC[REAL_ARITH `x + (a + &1) * t = (x + a * t) + t`] THEN REWRITE_TAC[COS_EQ_NEG_SIN]);;
let REAL_TAYLOR_COS_RAW = 
prove(`!x n. abs (cos x - sum (0..n) (\k. if (EVEN k) then ((-- &1) pow (k DIV 2) * x pow k) / &(FACT k) else &0)) <= abs x pow (n + 1) / &(FACT (n + 1))`,
REPEAT GEN_TAC THEN MP_TAC (SPECL [`(\i x. cos (x + &i * pi / &2))`; `n:num`; `UNIV:real->bool`; `&1`] REAL_TAYLOR) THEN ANTS_TAC THENL [ REWRITE_TAC[is_realinterval; IN_UNIV; WITHINREAL_UNIV; COS_DERIVATIVES; COS_BOUND]; ALL_TAC ] THEN REWRITE_TAC[IN_UNIV] THEN DISCH_THEN (MP_TAC o SPECL [`&0`; `x:real`]) THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_RID; REAL_ADD_LID; REAL_SUB_RZERO; REAL_MUL_LID] THEN SUBGOAL_THEN `!i. cos (&i * pi / &2) * x pow i / &(FACT i) = if EVEN i then (-- &1 pow (i DIV 2) * x pow i) / &(FACT i) else &0` (fun th -> SIMP_TAC[th]) THEN GEN_TAC THEN ASM_CASES_TAC `EVEN i` THEN ASM_REWRITE_TAC[] THENL [ POP_ASSUM MP_TAC THEN REWRITE_TAC[EVEN_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(2 * m) DIV 2 = m` (fun th -> REWRITE_TAC[th]) THENL [ MATCH_MP_TAC DIV_MULT THEN ARITH_TAC; ALL_TAC ] THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN REWRITE_TAC[REAL_ARITH `(&2 * a) * b / &2 = a * b`] THEN REWRITE_TAC[COS_NPI] THEN REAL_ARITH_TAC; ALL_TAC ] THEN SUBGOAL_THEN `cos (&i * pi / &2) = &0` (fun th -> REWRITE_TAC[th]) THENL [ REWRITE_TAC[COS_ZERO] THEN DISJ1_TAC THEN EXISTS_TAC `i:num` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN REWRITE_TAC[REAL_MUL_LZERO]);;
let SUM_PAIR_0 = 
prove(`!f n. sum (0..2 * n + 1) f = sum(0..n) (\i. f (2 * i) + f (2 * i + 1))`,
REPEAT GEN_TAC THEN MP_TAC (SPECL [`f:num->real`; `0`; `n:num`] SUM_PAIR) THEN REWRITE_TAC[ARITH_RULE `2 * 0 = 0`]);;
let REAL_TAYLOR_COS = 
prove(`!x n. abs (cos x - sum (0..n) (\i. (-- &1) pow i * x pow (2 * i) / &(FACT (2 * i)))) <= abs x pow (2*n + 2) / &(FACT (2*n + 2))`,
REPEAT GEN_TAC THEN MP_TAC (SPECL [`x:real`; `2 * n + 1`] REAL_TAYLOR_COS_RAW) THEN REWRITE_TAC[SUM_PAIR_0; EVEN_DOUBLE; ARITH_RULE `(2 * n + 1) + 1 = 2 *n + 2`] THEN SUBGOAL_THEN `!i. ~(EVEN (2 * i + 1))` MP_TAC THENL [ GEN_TAC THEN REWRITE_TAC[NOT_EVEN] THEN REWRITE_TAC[ARITH_ODD; ODD_ADD; ODD_MULT]; ALL_TAC ] THEN DISCH_THEN (fun th -> SIMP_TAC[th]) THEN SUBGOAL_THEN `!i. (2 * i) DIV 2 = i` MP_TAC THENL [ GEN_TAC THEN MATCH_MP_TAC DIV_MULT THEN REWRITE_TAC[ARITH]; ALL_TAC ] THEN DISCH_THEN (fun th -> REWRITE_TAC[th; REAL_ADD_RID]) THEN REWRITE_TAC[REAL_ARITH `(a * b) / c = a * b / c`]);;
let gen_sum_thm n = let SUM_lemma n = let tm = list_mk_comb (`sum:(num->bool)->(num->real)->real`, [mk_comb (`(..) 0`, mk_small_numeral n); `f:num->real`]) in let suc_th = REWRITE_RULE[EQ_CLAUSES] (REWRITE_CONV[ARITH] (mk_eq (mk_small_numeral n, mk_comb (`SUC`, mk_small_numeral (n - 1))))) in let th1 = REWRITE_CONV[suc_th] tm in REWRITE_RULE[SUM_CLAUSES_NUMSEG; ARITH] th1 in let rec rewriter th n = if n > 0 then rewriter (REWRITE_RULE[SUM_lemma n; GSYM REAL_ADD_ASSOC] th) (n - 1) else th in GEN_ALL (rewriter (SUM_lemma n) (n - 1));; (* Evaluates cos at a given point using n terms from the cosine Taylor series *) let cos_eval x n = let th1 = (SPECL [x; mk_small_numeral n] REAL_TAYLOR_COS) in let th2 = REWRITE_RULE[gen_sum_thm n] th1 in let th4 = CONV_RULE (NUM_REDUCE_CONV) th2 in let th5 = CONV_RULE (DEPTH_CONV REAL_INT_POW_CONV) th4 in CONV_RULE (REAL_RAT_REDUCE_CONV) th5;;
let acs3_lo = 
prove(`#1.230959417 <= acs (&1 / &3)`,
SUBGOAL_THEN `#1.230959417 = acs (cos(#1.230959417))` (fun th -> ONCE_REWRITE_TAC[th]) THENL [ MATCH_MP_TAC (GSYM ACS_COS) THEN MP_TAC PI_APPROX_32 THEN REAL_ARITH_TAC; ALL_TAC ] THEN MATCH_MP_TAC ACS_MONO_LE THEN REWRITE_TAC[COS_BOUNDS] THEN MP_TAC (cos_eval `#1.230959417` 6) THEN REAL_ARITH_TAC);;
(* 1.23095941734077 *)
let acs3_hi = 
prove(`acs(&1 / &3) <= #1.230959418`,
SUBGOAL_THEN `#1.230959418 = acs(cos(#1.230959418))` (fun th -> ONCE_REWRITE_TAC[th]) THENL [ MATCH_MP_TAC (GSYM ACS_COS) THEN MP_TAC PI_APPROX_32 THEN REAL_ARITH_TAC; ALL_TAC ] THEN MATCH_MP_TAC ACS_MONO_LE THEN REWRITE_TAC[COS_BOUNDS] THEN MP_TAC (cos_eval `#1.230959418` 6) THEN REAL_ARITH_TAC);;
let le_op_real = `(<=):real->real->bool` and minus_op_real = `(-):real->real->real` and plus_op_real = `(+):real->real->real` and mul_op_real = `( * ):real->real->real` and div_op_real = `(/):real->real->real` and inv_op_real = `inv:real->real` and neg_op_real = `(--):real->real`;; let mk_decimal a b = let tm = mk_comb(mk_comb(`DECIMAL`, mk_numeral (Num.abs_num a)), mk_numeral b) in if (a </ Int 0) then mk_comb (neg_op_real, tm) else tm;; let approx_interval th precision = let th' = CONV_RULE (RAND_CONV (REWRITE_CONV[DECIMAL] THENC REAL_RAT_REDUCE_CONV)) th in let lo_tm, hi_tm = dest_pair (rand(concl th')) in let lo, hi = rat_of_term lo_tm, rat_of_term hi_tm in let m = (Int 10 **/ Int precision) in let lo_bound = floor_num (lo */ m) in let hi_bound = ceiling_num (hi */ m) in let conv = EQT_ELIM o REAL_RAT_LE_CONV in let lo_th = conv (mk_binop le_op_real (mk_decimal lo_bound m) lo_tm) in let hi_th = conv (mk_binop le_op_real hi_tm (mk_decimal hi_bound m)) in let th0 = CONJ (CONJ lo_th hi_th) th' in MATCH_MP APPROX_INTERVAL th0;; (* approx_interval th1 9;; let th = cos_eval `#0.61547970867` 5;; let th1 = (CONV_RULE REAL_RAT_REDUCE_CONV) (REWRITE_RULE[EPS_TO_INTERVAL] th);; float_of_num (rat_of_term (rand(concl th)));; approx_interval (concl th1) 10;; *) (************************************) (* Square root *)
let INTERVAL_SQRT = 
prove(`interval_arith x (a, b) /\ (c * c <= a /\ b <= d * d) ==> interval_arith (sqrt x) (abs c, abs d)`,
REWRITE_TAC[interval_arith] THEN REPEAT STRIP_TAC THENL [ MATCH_MP_TAC REAL_LE_RSQRT THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[REAL_ARITH `abs a pow 2 = a * a`]; MATCH_MP_TAC REAL_LE_LSQRT THEN ASM_REWRITE_TAC[REAL_ARITH `abs d pow 2 = d * d`; REAL_ABS_POS] THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c * c:real` THEN ASM_REWRITE_TAC[REAL_LE_SQUARE]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[] ] ]);;
let interval_sqrt th precision = let th' = CONV_RULE (REWRITE_CONV[DECIMAL] THENC REAL_RAT_REDUCE_CONV) th in let lo, hi = dest_pair(rand(concl th')) in let x_lo, x_hi = float_of_num (rat_of_term lo), float_of_num (rat_of_term hi) in let lo_sqrt, hi_sqrt = Pervasives.sqrt x_lo, Pervasives.sqrt x_hi in let m = 10.0 ** float_of_int precision in let hack n = num_of_string (Int64.to_string (Int64.of_float n)) in let sqrt_lo_num, sqrt_hi_num = hack (floor (lo_sqrt *. m)), hack (ceil (hi_sqrt *. m)) in let m_num = Int 10 **/ Int precision in let x_lo_tm = mk_decimal sqrt_lo_num m_num in let x_hi_tm = mk_decimal sqrt_hi_num m_num in let conv = EQT_ELIM o REAL_RAT_REDUCE_CONV in let lo_th = conv (mk_binop le_op_real (mk_binop mul_op_real x_lo_tm x_lo_tm) lo) in let hi_th = conv (mk_binop le_op_real hi (mk_binop mul_op_real x_hi_tm x_hi_tm)) in let th0 = CONJ th' (CONJ lo_th hi_th) in (CONV_RULE REAL_RAT_REDUCE_CONV) (MATCH_MP INTERVAL_SQRT th0);; (************************************) (* Arithmetic of intervals *)
let INTERVAL_ADD = 
prove(`interval_arith x (a, b) /\ interval_arith y (c, d) ==> interval_arith (x + y) (a + c, b + d)`,
REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);;
let INTERVAL_SUB = 
prove(`interval_arith x (a, b) /\ interval_arith y (c, d) ==> interval_arith (x - y) (a - d, b - c)`,
REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);;
let INTERVAL_NEG = 
prove(`interval_arith x (a, b) ==> interval_arith (--x) (--b, --a)`,
REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);;
let INTERVAL_INV = 
prove(`interval_arith x (a, b) /\ (&0 < a \/ b < &0) ==> interval_arith (inv x) (inv b, inv a)`,
REWRITE_TAC[interval_arith] THEN STRIP_TAC THENL [ CONJ_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[] THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; ALL_TAC ] THEN ONCE_REWRITE_TAC[REAL_ARITH `a <= b <=> --b <= --a`] THEN REWRITE_TAC[GSYM REAL_INV_NEG] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_INV2 THEN REPEAT (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC);;
let INTERVAL_INV_POS = 
prove(`interval_arith x (a,b) /\ &0 < a ==> interval_arith (inv x) (inv b, inv a)`,
SIMP_TAC[INTERVAL_INV]);;
let INTERVAL_INV_NEG = 
prove(`interval_arith x (a,b) /\ b < &0 ==> interval_arith (inv x) (inv b, inv a)`,
SIMP_TAC[INTERVAL_INV]);;
let INTERVAL_MUL_lemma = 
prove(`!x y a b c d. interval_arith x (a, b) /\ interval_arith y (c, d) /\ x <= y ==> x * y <= max (max (a * c) (a * d)) (max (b * c) (b * d))`,
REPEAT GEN_TAC THEN REWRITE_TAC[interval_arith] THEN DISCH_TAC THEN ABBREV_TAC `t = max (max (a * c) (a * d)) (max (b * c) (b * d))` THEN SUBGOAL_THEN `a * c <= t /\ a * d <= t /\ b * c <= t /\ b * d <= t:real` ASSUME_TAC THENL [ EXPAND_TAC "t" THEN REAL_ARITH_TAC; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= x \/ x <= &0`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= b \/ b <= &0`) THENL [ DISJ_CASES_TAC (REAL_ARITH `&0 <= y \/ y <= &0`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ ONCE_REWRITE_TAC[REAL_ARITH `&0 = &0 * y`] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `y:real` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * c:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM REAL_NEG_MUL2] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_LE_NEG; REAL_NEG_GE0]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= c \/ c <= &0`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * c:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * y <= b * c <=> (--b) * c <= (--x) * y`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_LE_NEG; REAL_NEG_GE0]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= y \/ y <= &0`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ ONCE_REWRITE_TAC[REAL_ARITH `&0 = &0 * y`] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * c:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM REAL_NEG_MUL2] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_NEG_GE0] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * c:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM REAL_NEG_MUL2] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_LE_NEG; REAL_NEG_GE0]);;
let INTERVAL_MUL_lemma2 = 
prove(`!x y a b c d. interval_arith x (a,b) /\ interval_arith y (c,d) ==> x * y <= max (max (a * c) (a * d)) (max (b * c) (b * d))`,
REPEAT STRIP_TAC THEN DISJ_CASES_TAC (REAL_ARITH `x <= y \/ y <= x:real`) THENL [ MATCH_MP_TAC INTERVAL_MUL_lemma THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MP_TAC (SPECL [`y:real`; `x:real`; `c:real`; `d:real`; `a:real`; `b:real`] INTERVAL_MUL_lemma) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
let INTERVAL_MUL = 
prove(`interval_arith x (a, b) /\ interval_arith y (c, d) ==> interval_arith (x * y) (min (min (a * c) (a * d)) (min (b * c) (b * d)), max (max (a * c) (a * d)) (max (b * c) (b * d)))`,
DISCH_TAC THEN REWRITE_TAC[interval_arith] THEN ASM_SIMP_TAC[INTERVAL_MUL_lemma2] THEN MP_TAC (SPECL[`--x:real`; `y:real`; `--b:real`; `--a:real`; `c:real`; `d:real`] INTERVAL_MUL_lemma2) THEN ASM_SIMP_TAC[INTERVAL_NEG] THEN REAL_ARITH_TAC);;
(**************************************) let const_interval tm = SPEC tm CONST_INTERVAL;; let interval_neg th = MATCH_MP INTERVAL_NEG th;; let interval_add th1 th2 = let th0 = MATCH_MP INTERVAL_ADD (CONJ th1 th2) in (CONV_RULE (RAND_CONV REAL_RAT_REDUCE_CONV)) th0;; let interval_sub th1 th2 = let th0 = MATCH_MP INTERVAL_SUB (CONJ th1 th2) in (CONV_RULE (RAND_CONV REAL_RAT_REDUCE_CONV)) th0;; let interval_mul th1 th2 = let th0 = MATCH_MP INTERVAL_MUL (CONJ th1 th2) in (CONV_RULE (RAND_CONV REAL_RAT_REDUCE_CONV)) th0;; let interval_inv th = let lt_op_real = `(<):real->real->bool` in let lo_tm, hi_tm = dest_pair(rand(concl th)) in let lo_ineq = REAL_RAT_LT_CONV (mk_binop lt_op_real `&0` lo_tm) in if (rand(concl lo_ineq) = `T`) then let th0 = CONJ th (EQT_ELIM lo_ineq) in (CONV_RULE (RAND_CONV REAL_RAT_REDUCE_CONV)) (MATCH_MP INTERVAL_INV_POS th0) else let hi_ineq = REAL_RAT_LT_CONV (mk_binop lt_op_real hi_tm `&0`) in if (rand(concl hi_ineq) = `T`) then let th0 = CONJ th (EQT_ELIM hi_ineq) in (CONV_RULE (RAND_CONV REAL_RAT_REDUCE_CONV)) (MATCH_MP INTERVAL_INV_NEG th0) else failwith("interval_inv: 0 is inside interval");; let interval_div th1 th2 = let th2' = interval_inv th2 in ONCE_REWRITE_RULE[GSYM real_div] (interval_mul th1 th2');; (*************************) let acs3_interval = REWRITE_RULE[GSYM interval_arith] (CONJ acs3_lo acs3_hi);;
let pi_interval = 
prove(`interval_arith pi (#3.141592653, #3.141592654)`,
REWRITE_TAC[interval_arith] THEN MP_TAC PI_APPROX_32 THEN REAL_ARITH_TAC);;
let tgt_interval = 
prove(`interval_arith tgt (#1.541, #1.541)`,
REWRITE_TAC[Tame_defs.tgt; interval_arith; REAL_LE_REFL]);;
let interval_table = Hashtbl.create 10;; let add_interval th = Hashtbl.add interval_table ((rand o rator o concl) th) th;; let rec create_interval tm = if Hashtbl.mem interval_table tm then Hashtbl.find interval_table tm else if (is_ratconst tm) then const_interval tm else if (is_binop plus_op_real tm) then let lhs, rhs = dest_binop plus_op_real tm in interval_add (create_interval lhs) (create_interval rhs) else if (is_binop minus_op_real tm) then let lhs, rhs = dest_binop minus_op_real tm in interval_sub (create_interval lhs) (create_interval rhs) else if (is_binop mul_op_real tm) then let lhs, rhs = dest_binop mul_op_real tm in interval_mul (create_interval lhs) (create_interval rhs) else if (is_binop div_op_real tm) then let lhs, rhs = dest_binop div_op_real tm in interval_div (create_interval lhs) (create_interval rhs) else if (is_comb tm) then let ltm, rtm = dest_comb tm in if (ltm = inv_op_real) then interval_inv (create_interval rtm) else if (ltm = neg_op_real) then interval_neg (create_interval rtm) else failwith "create_interval: unknown unary operation" else failwith "create_interval: unexpected term";; open Sphere;; add_interval pi_interval;; add_interval acs3_interval;; add_interval tgt_interval;; add_interval (REWRITE_RULE[GSYM sqrt8] (interval_sqrt (const_interval `&8`) 9));; add_interval (REWRITE_RULE[GSYM sol0] (create_interval `&3 * acs(&1 / &3) - pi`));; add_interval (create_interval `sol0 / pi`);;
let rho218 = new_definition `rho218 = rho(#2.18)`;;
let rho218_def = (REWRITE_CONV[rho218; rho; ly; interp; GSYM Tame_general.sol0_over_pi_EQ_const1] THENC REAL_RAT_REDUCE_CONV) `rho218`;; let rho218_interval = REWRITE_RULE[SYM rho218_def] (create_interval(rand(concl rho218_def)));; add_interval rho218_interval;; (* approx_interval (create_interval `rho (#2.18)`) 8;; approx_interval (create_interval `&2 * (pi + sol0)`) 6;; approx_interval (create_interval `sqrt8 - pi / sol0 + rho(#2.18) * &3`) 6;; approx_interval (create_interval `pi * pi`) 6;; *) end;;