(* ========================================================================= *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Authour : VU KHAC KY *) (* Book lemma: EMNWUUS *) (* Chaper : Packing (Marchal Cells) *) (* Date : October 3, 2010 *) (* *) (* ========================================================================= *) (* About this lemma: ! I have proved EMNWUUS1. ! In part EMNWUUS2, I have prove the implication part (==>) ! and haven't done the ! Inverse part (<==). ! So the only thing to do with this lemma is to prove the following : ! ! `mcell0 V ul = {} /\ mcell1 V ul = {} /\ mcell2 V ul = {} /\ mcell3 V ul = {} ! ==> hl ul < sqrt (&2)` *) (* ========================================================================= *) (* FILES NEED TO BE LOADED *) (* ========================================================================= *) flyspeck_needs "nonlinear/vukhacky_tactics.hl";; flyspeck_needs "packing/pack_defs.hl";; flyspeck_needs "packing/pack_concl.hl";; flyspeck_needs "packing/pack1.hl";; module EMNWUUS = struct (* dmtcp: needs "flyspeck_load.hl";; *) open Pack_defs;; open Pack_concl;; open Vukhacky_tactics;; open Pack1;; needs "marchal_cells.hl";; (* ============== Axioms in previous parts ===================================*) let XNHPWAB1 = new_axiom XNHPWAB1_concl;; let XNHPWAB4 = new_axiom XNHPWAB4_concl;; let WAUFCHE1 = new_axiom WAUFCHE1_concl;; let WAUFCHE2 = new_axiom WAUFCHE2_concl;; let OAPVION2 = new_axiom OAPVION2_concl;; let MHFTTZN1 = new_axiom MHFTTZN1_concl;; let MHFTTZN4 = new_axiom MHFTTZN4_concl;; (* ========================================================================= *)(* ========================================================================= *) g EMNWUUS2_concl;; e (REPEAT GEN_TAC THEN STRIP_TAC);; (* ! Note: The inverse part of this lemma has not been Done *) e (EQ_TAC);; e (REPEAT STRIP_TAC);; (* Break into 4 cases *) (* =============== Case 1 ================================ *) (* OK *) e (REWRITE_TAC[mcell0]);; e (REWRITE_TAC[SET_RULE `x DIFF y = {} <=> (!a. a IN x ==> a IN y)`]);; e (REWRITE_TAC[ROGERS;IMAGE;IN;ball;SUBSET;IN_ELIM_THM]);; e GEN_TAC;; e (MATCH_MP_TAC BALL_CONVEX_HULL_LEMMA);; e (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM]);; e (STRIP_TAC);; (* New_subgoal 1.1 *) e (NEW_GOAL `hl (truncate_simplex x' (ul:(real^3)list)) <= hl (truncate_simplex (LENGTH ul - 1) ul)`);; e (ASM_CASES_TAC `x' < LENGTH (ul:(real^3)list) - 1`);; e (MATCH_MP_TAC (REAL_ARITH `a < b ==> a <= b`));; e (NEW_GOAL `x' < (LENGTH (ul:(real^3)list) - 1) /\ LENGTH ul - 1 <= 3`);; e (ASM_REWRITE_TAC[] THEN UNDISCH_TAC `barV V 3 ul`);; e (REWRITE_TAC[BARV] THEN ARITH_TAC);; e (UP_ASM_TAC);; e (NEW_GOAL `ul IN barV V 3`);; e (ASM_MESON_TAC[IN]);; e (ASM_MESON_TAC[XNHPWAB4; ARITH_RULE `3 <= 3`]);; e (MATCH_MP_TAC (REAL_ARITH `a = b ==> a <= b`));; e (REWRITE_WITH `LENGTH (ul:(real^3)list) - 1 = x'`);; e (ASM_ARITH_TAC);; (* End subgoal 1.1 *) (* New subgoal 1.2 *) e (NEW_GOAL `hl (truncate_simplex (LENGTH ul - 1) ul) = hl (ul:(real^3)list)`);; e (AP_TERM_TAC);; e (REWRITE_TAC[TRUNCATE_SIMPLEX]);; e (MATCH_MP_TAC SELECT_UNIQUE);; e (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM;INITIAL_SUBLIST] THEN EQ_TAC);; e STRIP_TAC;; e (NEW_GOAL `LENGTH (ul:(real^3)list) = LENGTH (y:(real^3)list) + LENGTH (yl:(real^3)list)`);; e (ASM_MESON_TAC[LENGTH_APPEND]);; e (NEW_GOAL `LENGTH (yl:(real^3)list) = 0`);; e (ASM_ARITH_TAC);; e (NEW_GOAL `(yl:(real^3)list) = []`);; e (ASM_MESON_TAC[LENGTH_EQ_NIL]);; e (ASM_MESON_TAC[APPEND_NIL]);; e (REPEAT STRIP_TAC);; e (ASM_REWRITE_TAC[]);; e (ASM_ARITH_TAC);; e (EXISTS_TAC `[]:(real^3)list`);; e (ASM_MESON_TAC[APPEND_NIL]);; (* End subgoal 1.2 *) (* New subgoal 1.3 *) e (NEW_GOAL `?u0 u1 u2 u3:real^3. ul = [u0;u1;u2;u3]`);; e (ASM_MESON_TAC[BARV_3_EXPLICIT]);; e (REPEAT (FIRST_X_ASSUM CHOOSE_TAC));; e (REWRITE_TAC[ASSUME `ul = [u0:real^3; u1; u2; u3]`; HD]);; (* ---------------------------------------------- *) (* Consider case x' = 0 *) e (ASM_CASES_TAC `x' = 0`);; e (REWRITE_WITH `x:real^3 = u0`);; e (MP_TAC (ASSUME `x:real^3 = omega_list_n V ul x'`));; e (ASM_MESON_TAC[OMEGA_LIST_0_EXPLICIT; GSYM IN]);; e (ASM_REWRITE_TAC[DIST_REFL]);; e (MESON_TAC[SQRT_LT_0;REAL_ARITH `&0 <= &2 /\ &0 < &2`]);; (* ---------------------------------------------- *) (* Consider case x' = 1 *) e (ASM_CASES_TAC `x' = 1`);; e (REWRITE_WITH `x:real^3 = circumcenter {u0, u1}`);; e (MP_TAC (ASSUME `x:real^3 = omega_list_n V ul x'`));; e (ASM_MESON_TAC[OMEGA_LIST_1_EXPLICIT; GSYM IN]);; e (ONCE_REWRITE_TAC[DIST_SYM]);; e (REWRITE_WITH `dist (circumcenter {u0:real^3, u1},u0) = hl (truncate_simplex x' (ul:(real^3)list))`);; e (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1;HL;radV]);; e (ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e (MATCH_MP_TAC SELECT_UNIQUE);; e (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM; MESON[set_of_list] `set_of_list [u0:real^3;u1] = {u0, u1}`] THEN EQ_TAC);; e (DISCH_TAC THEN (FIRST_ASSUM MATCH_MP_TAC));; e (SET_TAC[]);; e (REPEAT STRIP_TAC);; e (NEW_GOAL `w IN {u0,u1:real^3}`);; e (UP_ASM_TAC THEN SET_TAC[]);; e (NEW_GOAL `(!w. w IN {u0,u1:real^3} ==> radV {u0,u1} = dist (circumcenter {u0,u1},w))`);; e (MATCH_MP_TAC OAPVION2);; e (REWRITE_TAC[AFFINE_INDEPENDENT_2]);; e (ASM_REWRITE_TAC[]);; e (NEW_GOAL `(radV {u0,u1:real^3} = dist (circumcenter {u0,u1},w))`);; e (ASM_SIMP_TAC[]);; e (NEW_GOAL `(radV {u0,u1:real^3} = dist (circumcenter {u0,u1},u0))`);; e (FIRST_ASSUM MATCH_MP_TAC);; e (SET_TAC[]);; e (ASM_MESON_TAC[]);; e (ASM_REAL_ARITH_TAC);; (* ---------------------------------------------- *) (* Consider case x' = 2 *) e (ASM_CASES_TAC `x' = 2`);; e (REWRITE_WITH `x:real^3 = circumcenter {u0, u1, u2}`);; e (MP_TAC (ASSUME `x:real^3 = omega_list_n V ul x'`));; e (ASM_MESON_TAC[OMEGA_LIST_2_EXPLICIT; GSYM IN]);; e (ONCE_REWRITE_TAC[DIST_SYM]);; e (REWRITE_WITH `dist (circumcenter {u0:real^3, u1, u2},u0) = hl (truncate_simplex x' (ul:(real^3)list))`);; e (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2;HL;radV]);; e (ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e (MATCH_MP_TAC SELECT_UNIQUE);; e (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM; MESON[set_of_list] `set_of_list [u0:real^3;u1;u2] = {u0, u1, u2}`] THEN EQ_TAC);; e (DISCH_TAC THEN (FIRST_ASSUM MATCH_MP_TAC));; e (SET_TAC[]);; e (REPEAT STRIP_TAC);; e (NEW_GOAL `w IN {u0,u1:real^3,u2}`);; e (UP_ASM_TAC THEN SET_TAC[]);; e (NEW_GOAL `(!w. w IN {u0,u1:real^3, u2} ==> radV {u0,u1,u2} = dist (circumcenter {u0,u1,u2},w))`);; e (MATCH_MP_TAC OAPVION2);; e (MATCH_MP_TAC AFFINE_INDEPENDENT_SUBSET);; e (EXISTS_TAC `{u0, u1, u2, u3:real^3}`);; e (REWRITE_TAC[SET_RULE `{a, b:A, c} SUBSET {a, b , c, d:A}`]);; e (REWRITE_TAC[AFFINE_INDEPENDENT_IFF_CARD]);; e STRIP_TAC;; e (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]);; e (NEW_GOAL `aff_dim {u0,u1,u2,u3:real^3} = &3`);; e (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]);; e (MATCH_MP_TAC MHFTTZN1);; e (EXISTS_TAC `V:real^3->bool`);; e (ASM_MESON_TAC[ARITH_RULE `3 <= 3`]);; e (ONCE_ASM_REWRITE_TAC[]);; e (NEW_GOAL `FINITE {u1, u2, u3:real^3}`);; e (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u1, u2,u3} = set_of_list [u1;u2:real^3;u3]`]);; e (MATCH_MP_TAC (ARITH_RULE `(a = int_of_num 4) ==> (int_of_num 3 = a - int_of_num 1)`));; e (MATCH_MP_TAC (ARITH_RULE `a = b ==> int_of_num a = int_of_num b`));; e (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1, u2, u3} then CARD {u1, u2, u3} else SUC (CARD {u1, u2, u3} ))`);; e (UP_ASM_TAC THEN REWRITE_TAC[CARD_CLAUSES]);; e (UP_ASM_TAC THEN COND_CASES_TAC);; e (DISCH_TAC);; e (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < &3`);; e (REWRITE_WITH `{u0,u1,u2,u3:real^3} = {u1, u2,u3}`);; e (ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e (NEW_GOAL `CARD {u1, u2, u3} = CARD {u0, u1, u2, u3} <=> {u1, u2, u3:real^3} = {u0, u1, u2, u3}`);; e (MATCH_MP_TAC SUBSET_CARD_EQ);; e (STRIP_TAC);; e (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (SET_TAC[]);; e (ASM_MESON_TAC[]);; e (REWRITE_TAC[MESON[set_of_list] `{u1:real^3,u2, u3} = set_of_list [u1;u2;u3]`]);; e (MATCH_MP_TAC AFF_DIM_LE_LENGTH);; e (REWRITE_TAC[LENGTH]);; e (ARITH_TAC);; e (NEW_GOAL `F`);; e (ASM_MESON_TAC[ARITH_RULE `a = int_of_num 3 /\ a < int_of_num 3 ==> F`]);; e (ASM_MESON_TAC[]);; e STRIP_TAC;; e (NEW_GOAL `CARD {u1:real^3, u2, u3} = 3`);; e (NEW_GOAL `CARD {u1,u2,u3:real^3} <= 3`);; e (MATCH_MP_TAC (ARITH_RULE `a <= LENGTH [u1;u2;u3:real^3] /\ LENGTH [u1;u2;u3:real^3] <= b ==> a <= b`));; e STRIP_TAC;; e (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;CARD_SET_OF_LIST_LE]);; e (REWRITE_TAC[LENGTH] THEN ARITH_TAC);; e (ASM_CASES_TAC `CARD {u1:real^3, u2, u3} <= 2`);; e (NEW_GOAL `CARD {u0,u1,u2,u3:real^3} <= 3`);; e (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1,u2,u3} then CARD {u1,u2,u3} else SUC (CARD {u1,u2,u3}))`);; e (NEW_GOAL `FINITE {u1,u2,u3:real^3}`);; e (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (ASM_REWRITE_TAC[CARD_CLAUSES]);; e (UP_ASM_TAC THEN COND_CASES_TAC);; e (ASM_ARITH_TAC);; e (ASM_ARITH_TAC);; e (ABBREV_TAC `xl = list_of_set {u0, u1, u2, u3:real^3}`);; e (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < int_of_num (CARD {u0, u1, u2, u3})`);; e (REWRITE_WITH `{u0,u1,u2,u3:real^3} = set_of_list (xl:(real^3)list)`);; e (EXPAND_TAC "xl");; e (ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e (MATCH_MP_TAC SET_OF_LIST_OF_SET);; e (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (MATCH_MP_TAC AFF_DIM_LE_LENGTH);; e (REWRITE_WITH `set_of_list (xl:(real^3)list) = {u0, u1, u2, u3:real^3}`);; e (EXPAND_TAC "xl");; e (MATCH_MP_TAC SET_OF_LIST_OF_SET);; e (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (EXPAND_TAC "xl");; e (MATCH_MP_TAC LENGTH_LIST_OF_SET);; e (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (NEW_GOAL `F`);; e (ASM_ARITH_TAC);; e (ASM_MESON_TAC[]);; e (ASM_ARITH_TAC);; e ASM_ARITH_TAC;; e (MATCH_MP_TAC (REAL_ARITH `radV {u0,u1,u2:real^3} = a /\ radV {u0,u1,u2} = b ==> a = b`));; e STRIP_TAC;; e (ASM_REWRITE_TAC[]);; e (FIRST_ASSUM MATCH_MP_TAC);; e (SET_TAC[]);; e (FIRST_ASSUM MATCH_MP_TAC);; e (ASM_REWRITE_TAC[]);; e (ASM_REAL_ARITH_TAC);; (* ---------------------------------------------- *) (* Consider case x' = 3 *) e (ASM_CASES_TAC `x' = 3`);; e (REWRITE_WITH `x = circumcenter {u0,u1,u2,u3:real^3}`);; e (ASM_REWRITE_TAC[]);; e (MATCH_MP_TAC OMEGA_LIST_3_EXPLICIT);; e (ASM_MESON_TAC[GSYM IN]);; e (NEW_GOAL `dist (u0,circumcenter {u0:real^3, u1, u2, u3}) = hl (ul:(real^3)list)`);; e (ASM_REWRITE_TAC[HL]);; e (REWRITE_WITH `set_of_list [u0:real^3; u1; u2; u3] = {u0,u1,u2,u3}`);; e (MESON_TAC[set_of_list]);; e (NEW_GOAL `(!w. w IN {u0,u1:real^3, u2,u3} ==> radV {u0,u1,u2,u3} = dist (circumcenter {u0,u1,u2,u3},w))`);; e (MATCH_MP_TAC OAPVION2);; e (REWRITE_TAC[AFFINE_INDEPENDENT_IFF_CARD]);; e STRIP_TAC;; e (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]);; e (NEW_GOAL `aff_dim {u0,u1,u2,u3:real^3} = &3`);; e (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]);; e (MATCH_MP_TAC MHFTTZN1);; e (EXISTS_TAC `V:real^3->bool`);; e (ASM_MESON_TAC[ARITH_RULE `3 <= 3`]);; e (ONCE_ASM_REWRITE_TAC[]);; e (MATCH_MP_TAC (ARITH_RULE `(a = int_of_num 4) ==> (int_of_num 3 = a - int_of_num 1)`));; e (MATCH_MP_TAC (ARITH_RULE `a = b ==> int_of_num a = int_of_num b`));; e (NEW_GOAL `FINITE {u1, u2, u3:real^3}`);; e (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u1, u2,u3} = set_of_list [u1;u2:real^3;u3]`]);; e (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1, u2, u3} then CARD {u1, u2, u3} else SUC (CARD {u1, u2, u3} ))`);; e (UP_ASM_TAC THEN REWRITE_TAC[CARD_CLAUSES]);; e (UP_ASM_TAC THEN COND_CASES_TAC);; e (DISCH_TAC);; e (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < &3`);; e (REWRITE_WITH `{u0,u1,u2,u3:real^3} = {u1, u2,u3}`);; e (ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e (NEW_GOAL `CARD {u1, u2, u3} = CARD {u0, u1, u2, u3} <=> {u1, u2, u3:real^3} = {u0, u1, u2, u3}`);; e (MATCH_MP_TAC SUBSET_CARD_EQ);; e (STRIP_TAC);; e (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (SET_TAC[]);; e (ASM_MESON_TAC[]);; e (REWRITE_TAC[MESON[set_of_list] `{u1:real^3,u2, u3} = set_of_list [u1;u2;u3]`]);; e (MATCH_MP_TAC AFF_DIM_LE_LENGTH);; e (REWRITE_TAC[LENGTH]);; e (ARITH_TAC);; e (NEW_GOAL `F`);; e (ASM_MESON_TAC[ARITH_RULE `a = int_of_num 3 /\ a < int_of_num 3 ==> F`]);; e (ASM_MESON_TAC[]);; e STRIP_TAC;; e (NEW_GOAL `CARD {u1:real^3, u2, u3} = 3`);; e (NEW_GOAL `CARD {u1,u2,u3:real^3} <= 3`);; e (MATCH_MP_TAC (ARITH_RULE `a <= LENGTH [u1;u2;u3:real^3] /\ LENGTH [u1;u2;u3:real^3] <= b ==> a <= b`));; e STRIP_TAC;; e (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;CARD_SET_OF_LIST_LE]);; e (REWRITE_TAC[LENGTH] THEN ARITH_TAC);; e (ASM_CASES_TAC `CARD {u1:real^3, u2, u3} <= 2`);; e (NEW_GOAL `CARD {u0,u1,u2,u3:real^3} <= 3`);; e (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1,u2,u3} then CARD {u1,u2,u3} else SUC (CARD {u1,u2,u3}))`);; e (NEW_GOAL `FINITE {u1,u2,u3:real^3}`);; e (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (ASM_REWRITE_TAC[CARD_CLAUSES]);; e (UP_ASM_TAC THEN COND_CASES_TAC);; e (ASM_ARITH_TAC);; e (ASM_ARITH_TAC);; e (ABBREV_TAC `xl = list_of_set {u0, u1, u2, u3:real^3}`);; e (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < int_of_num (CARD {u0, u1, u2, u3})`);; e (REWRITE_WITH `{u0,u1,u2,u3:real^3} = set_of_list (xl:(real^3)list)`);; e (EXPAND_TAC "xl");; e (ONCE_REWRITE_TAC[EQ_SYM_EQ]);; e (MATCH_MP_TAC SET_OF_LIST_OF_SET);; e (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (MATCH_MP_TAC AFF_DIM_LE_LENGTH);; e (REWRITE_WITH `set_of_list (xl:(real^3)list) = {u0, u1, u2, u3:real^3}`);; e (EXPAND_TAC "xl");; e (MATCH_MP_TAC SET_OF_LIST_OF_SET);; e (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (EXPAND_TAC "xl");; e (MATCH_MP_TAC LENGTH_LIST_OF_SET);; e (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]);; e (NEW_GOAL `F`);; e (ASM_ARITH_TAC);; e (ASM_MESON_TAC[]);; e (ASM_ARITH_TAC);; e ASM_ARITH_TAC;; e (MATCH_MP_TAC (REAL_ARITH `radV {u0,u1,u2:real^3,u3} = a /\ radV {u0,u1,u2,u3} = b ==> a = b`));; e STRIP_TAC;; e (ONCE_REWRITE_TAC[DIST_SYM] THEN FIRST_ASSUM MATCH_MP_TAC);; e (SET_TAC[]);; e (MESON_TAC[]);; e (ASM_MESON_TAC[]);; (* --------------------------------------------- *) e (UNDISCH_TAC `barV V 3 (ul:(real^3)list)`);; e (REWRITE_TAC[BARV]);; e (STRIP_TAC);; e (NEW_GOAL `F`);; e (ASM_ARITH_TAC);; e (ASM_MESON_TAC[]);; (* Here we have finished the first part `mcell0 V ul = {}`;there are 3 parts left: mcell1 V ul = {} mcell2 V ul = {} mcell3 V ul = {} *) (* =============== Case 2 =================================== *) ( Finished *) e (REWRITE_TAC[mcell1]);; e (COND_CASES_TAC);; e (NEW_GOAL `F`);; e (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC);; e (UP_ASM_TAC THEN MESON_TAC[]);; e (REWRITE_TAC[]);; (* =============== Case 3 =================================== *) (* Finished *) e (REWRITE_TAC[mcell2]);; e (COND_CASES_TAC);; e (NEW_GOAL `F`);; e (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC);; e (UP_ASM_TAC THEN MESON_TAC[]);; e (REWRITE_TAC[]);; (* =============== Case 4 =================================== *) ( Finished *) e (REWRITE_TAC[mcell3]);; e (COND_CASES_TAC);; e (NEW_GOAL `F`);; e (ASM_REAL_ARITH_TAC);; e (ASM_MESON_TAC[]);; e (MESON_TAC[]);; (* =============== Reverse part =============================== *) (* .............................................................*) (* ! Need to be done later ...................................... *) (* Good luck *) end;;let EMNWUUS1 = prove_by_refinement ( EMNWUUS1_concl, [ (REWRITE_TAC[mcell4] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN COND_CASES_TAC); (REPEAT STRIP_TAC); (NEW_GOAL `set_of_list (ul:(real^3)list) = {}`); (ASM_MESON_TAC[CONVEX_HULL_EQ_EMPTY]); (NEW_GOAL `ul:(real^3)list = []`); (NEW_GOAL `~(?h t. ul:(real^3)list = CONS h t)`); STRIP_TAC; (NEW_GOAL `(h:real^3) IN set_of_list ul`); (REWRITE_TAC [ASSUME `ul = CONS (h:real^3) t`; IN_SET_OF_LIST;MEM]); (ASM_SET_TAC[]); (ASM_MESON_TAC[list_CASES]); (UNDISCH_TAC `barV V 3 (ul:(real^3)list)`); (REWRITE_TAC[BARV]); STRIP_TAC; (NEW_GOAL `LENGTH (ul:(real^3)list) = 0`); (ASM_MESON_TAC[ASSUME `ul:(real^3)list =[]`;LENGTH]); (ASM_ARITH_TAC); (MESON_TAC[]); (MESON_TAC[]); (MESON_TAC[]) ]);;