(*
Volume files
Author: Thomas Hales
Date: 2010-02-08
*)
(* LBWOPAH *)
let LBWOPAH = RADIAL_EVENTUALLY_RADIAL;;
(* -- to here --
let VQFENMT1 = prove(`!r x C. volume_prop vol /\ measurable C /\ radial_norm r x C ==>
(vol C = sol C x * (r pow 3)/(&3))`,
);;
*)
(* -- work in progres --
let VQFENMT2 = prove(`!x C.
volume_prop vol /\ measurable C /\ (?r. (r > &0) /\ (!y. y IN C ==> dist(x,y) >= r)) ==>
eventually_radial_norm x C /\ (sol C (x:real^3) = &0)`,
REWRITE_TAC[TAUT `(a ==> b /\ c) = ((a ==> b) /\ (a /\ b ==> c))`] THEN
STRIP_TAC THEN STRIP_TAC THEN
CONJ_TAC THEN
REWRITE_TAC[eventually_radial_norm;radial_norm] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[NORMBALL_BALL] THEN
EXISTS_TAC `r:real` THEN
ASM_REWRITE_TAC[INTER_SUBSET] THEN
GEN_TAC THEN
SUBGOAL_THEN `C INTER ball((x:real^3),r) = EMPTY` ASSUME_TAC THEN
(* branch 1 *)
REWRITE_TAC[ball] THEN
ONCE_REWRITE_TAC[FUN_EQ_THM] THEN
REWRITE_TAC[elimin NOT_IN_EMPTY;elimin IN_INTER;elimin IN_ELIM_THM] THEN
ASM_MESON_TAC[IN;REAL_ARITH `!a b. a >= b ==> ~(a < b)`] THEN
(* branch 2 *)
ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
(* branch 3 *)
REPEAT STRIP_TAC THEN
*)