(* ========================================================================== *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Chapter: Trigonometry *) (* Author: Thomas C. Hales *) (* Date: 2010-02-09 *) (* ========================================================================== *) (* summary of the trig chapter *) (* Known issues: -- Flypaper defines sin and cos by their power series. HOL Light defines them through complex analysis. -- NUHSVLM: 5 points in R3 ==> cayleyR = 0, moved to collect_geom2.ml. Slow to run. I will keep it out of the daily build. -- Some results (marked LEG) may have been formalized but not imported from legacy directory. Lemmas in Elementary Geometry. Now in leg/ directory. -- some minor results that haven't been done or located are marked UNKNOWN below -- polar_cycle deprecated 2011-08-01. *) module type Trigonometry_type = sig end;; flyspeck_needs "general/sphere.hl";; flyspeck_needs "leg/enclosed_def.hl";; flyspeck_needs "leg/collect_geom.hl";; flyspeck_needs "trigonometry/trig1.hl";; flyspeck_needs "trigonometry/trig2.hl";; module Trigonometry (* : Trigonometry_type *) = struct (* let LIST_MK_CONJ b = match b with [] -> TRUTH |b::bs as a-> let g = itlist (curry mk_conj) (map concl bs) (concl b) in prove(g,REWRITE_TAC a);; *) let LIST_MK_CONJ (b:thm list) = b;; let UNKNOWN = REWRITE_RULE[TRUTH] (new_definition `unknown = T`);; let elimin = REWRITE_RULE[IN];; let FOYTTIX1 = cos;; let FOYTTIX2 = sin;; let FOYTTIX=LIST_MK_CONJ [FOYTTIX1;FOYTTIX2];; let YIXJNJQ1 = SIN_0;; let YIXJNJQ2 = COS_0;; let YIXJNJQ = LIST_MK_CONJ [YIXJNJQ1;YIXJNJQ2];; let WPMXVYZ = SIN_CIRCLE;; let WNYVJPE1 = SIN_ADD;; let WNYVJPE2 = COS_ADD;; let WNYVJPE = LIST_MK_CONJ [WNYVJPE1;WNYVJPE2];; let KGLLRQT1 = COS_NEG;; let KGLLRQT2 = SIN_NEG;; let KGLLRQT = LIST_MK_CONJ [KGLLRQT1;KGLLRQT2];; (* cos(pi/2) = 0 *) let CFXEKKP1 = COS_PI2;; let CFXEKKP2 = COS_POS_PI2;; (* This is combined between two lemmas *) let ZSKECZV = COS_POS_PI_LE;; (* Lemma label{lemma:sin-pi2} *) let CPIREMF1 = SIN_PI2;; let CPIREMF2 = SIN_POS_PI_LE;; let CPIREMF = LIST_MK_CONJ [CPIREMF1;CPIREMF2];; (* Lemma label{lemma:cos-sin} *) let SCEZKRH1 = GSYM COS_SIN;; let SCEZKRH2 = GSYM SIN_COS;; let SCEZKRH = LIST_MK_CONJ [SCEZKRH1;SCEZKRH2];; let WIBGJRR = SIN_POS_PI_LE;; let LLOYXRK3 = SIN_PERIODIC_PI;; let LLOYXRK4 = COS_PERIODIC_PI;; let LLOYXRK5 = SIN_PERIODIC;; let LLOYXRK6 = COS_PERIODIC;; let LLOYXRK = LIST_MK_CONJ [LLOYXRK1;LLOYXRK2;LLOYXRK3;LLOYXRK4;LLOYXRK5;LLOYXRK6];; (* sin non-negative *) let WIBGJRR = SIN_POS_PI_LE;; (* definition label{def:tan} *) let BIRXGXP = tan ;; (* Lemma label{lemma:tan-add} *) let KWYPRWZ = TAN_ADD;; (* Lemma label{lemma:tan-pi4} *) let KSQDZSF = TAN_PI4;; (* tan increasing and one-to-one *) let UTNKIAC = TAN_MONO_LT;; let RIQVMHH1 = atn;; let RIQVMHH2 = ATN_BOUNDS ;; let RIQVMHH=LIST_MK_CONJ [RIQVMHH1;RIQVMHH2];; let EWITKLU = ATN_TAN ;; let YTXYLRB = ATN_1 ;; let OKENMAM= HAS_REAL_DERIVATIVE_ATN;; let LQCXGZX = ATN_MONO_LT_EQ ;; (* atan2 *) let GYKGARD = Sphere.atn2;; let QZTBJMH1 = acs;; let QZTBJMH2 = COS_ACS;; let QZTBJMH3 = ACS_COS;; let QZTBJMH = LIST_MK_CONJ [ QZTBJMH1; QZTBJMH2; QZTBJMH3];; let FMGMALU = SIN_ACS;; let OUIJTWY = Trigonometry2.acs_atn2 ;; (* let asn = asn;; *) (* VECTOR GEOMETRY *) let KRZJIAD = (`:real^N`,`v$i`,`vec 0`);; let WHIAXYD1 = [`(x:real^3) + (y:real^3)`;`(x:real^3) - (x:real^3)`; `-- (x:real^3)`;`t % (x:real^3)`];; let WHIAXYD2 = VECTOR_ADD_ASSOC;; let WHIAXYD3 = VECTOR_ADD_SYM;; let WHIAXYD = ( WHIAXYD1, WHIAXYD2, WHIAXYD3);; let VFPCZBI = [`(x:real^3) dot (y:real^3)`];; let XHVXJVB = vector_norm;; (*CAUCHY SCHWARZ Lemma label{} *) let JJKJALK = NORM_CAUCHY_SCHWARZ ;; (*TRIANGLE INEQ Lemma label{} *) let OIPLPTM1 = NORM_TRIANGLE ;; let OIPLPTM2 = NORM_TRIANGLE_EQ ;; let OIPLPTM = LIST_MK_CONJ [OIPLPTM1;OIPLPTM2];; (* AFFINE GEOMETRY *) let KVLZSAQ1 = AFFINE;; let KVLZSAQ2 = Sphere.aff;; (* deprecated *) let KVLZSAQ = LIST_MK_CONJ [KVLZSAQ1;KVLZSAQ2];; (* see also affsign;; lin_combo;; *) let BYFLKYM1 = Sphere.aff;; let BYFLKYM2 = Sphere.aff_ge_def;; let BYFLKYM3 = Sphere.aff_gt_def;; let BYFLKYM4 = Sphere.aff_lt_def;; let BYFLKYM5 = Sphere.aff_le_def;; let BYFLKYM = LIST_MK_CONJ [BYFLKYM1;BYFLKYM2;BYFLKYM3;BYFLKYM4;BYFLKYM5];; let OWECYNV1 = convex;; let OWECYNV2 = `(hull) convex`;; let OWECYNV = (OWECYNV1,OWECYNV2);; let GDCZMLO = CONVEX_HULL_AFF_GE;; let UIVNNRR2 = AFF_GT_EQ_AFFINE_HULL;; let UIVNNRR = LIST_MK_CONJ [UIVNNRR1;UIVNNRR2];; let LLOUBAX = cone ;; let SWKFLBJ1 = Sphere.line ;; let SWKFLBJ2 = collinear ;; let SWKFLBJ3 = parallel;; let SWKFLBJ = LIST_MK_CONJ [ SWKFLBJ1; SWKFLBJ2; SWKFLBJ3];; let JLWZFBH1 = plane ;; let JLWZFBH2 = Sphere.closed_half_plane;; let JLWZFBH3 = Sphere.open_half_plane;; let JLWZFBH4 = coplanar ;; let JLWZFBH = LIST_MK_CONJ [JLWZFBH1;JLWZFBH2;JLWZFBH3;JLWZFBH4];; let OAUVFPS1 = Sphere.closed_half_space ;; let OAUVFPS2 = Sphere.open_half_space ;; let OAUVFPS = LIST_MK_CONJ [OAUVFPS1;OAUVFPS2];; let AVWKGNB = delta_x;; let LBEVAKV = Collect_geom.DELTA_POS_4POINTS;; let CTCZHMR = LIST_MK_CONJ [LBEVAKV;Collect_geom.POLFLZY];; (* Delta pos LEG [line 2690;line 3010], *) let KZVHHBG = LIST_MK_CONJ [Collect_geom.LTCTBAN;Collect_geom.GJWYYPS;Collect_geom.GDLRUZB];; let NUHSVLM = UNKNOWN;; (* " implemented in collect_geom2.hl" ;; *) (* CayleyR results: lines from legacy/collect_geom.ml LEG: 2337/LTCTBAN: ups is leading coeff of quadratic cayleyR 2725/GJWYYPS: discriminant of cayleyR 2894/GDLRUZB: disc(cayleyR)=0 <=> one of tetra are coplanar 3010/NUHSVLM: 5 points in R3 ==> cayleyR = 0 RPFVZDI: enclosed function defined *) let RPFVZDI = Enclosed.enclosed;; (* "implemented in enclosed_def.hl ";; *) let WZYUXVC = arcV ;; let ACNBFRL = UNKNOWN ;; (* arcV atn2 *) let PQQDENV = Trigonometry1.ACS_ARCLENGTH;; let HQTBPCM1 = LAW_OF_COSINES ;; let HQTBPCM2 = Trigonometry1.DIST_LAW_OF_COS ;; let HQTBPCM = LIST_MK_CONJ [HQTBPCM1;HQTBPCM2];; let OBPIOXD = Sphere.ups_x;; (* upsilon def *) let QRAAWFS = LIST_MK_CONJ [Trigonometry2.UPS_X_POS;Collect_geom.FHFMKIY];; let IHIQXLM = Trigonometry1.UPS_X_SQUARES;; (* upsilon factors *) let UKBAHKV = Trigonometry1.VECTOR_LAW_OF_SINES ;; (* slightly different from book *) let GVWTZKY = UNKNOWN;; (* arc, atn2 *) (* cross product something *) let FCUAGA = cross;; let KVVWPNA = NORM_CROSS ;; (* norm cross and ups, combine with UKBAHKV *) (* Lemma label{} *) (* cross product order and distribution with dot product *) let BKMUSOX1 = CROSS_SKEW ;; let BKMUSOX2 = CROSS_TRIPLE ;; let BKMUSOX = LIST_MK_CONJ [ BKMUSOX1; BKMUSOX2];; (* Definition label{def:dih} *) let dihV = dihV ;; let RLXWSTK = Trigonometry2.RLXWSTK;; let NLVWBBW = Trigonometry2.NLVWBBW;; let OJEKOJF = Trigonometry2.OJEKOJF;; let JLPSDHF = Euler_main_theorem.EULER_TRIANGLE;; (* euler_triangle ;; *) let KEITDWB = Trigonometry2.ARCV_INEQUALTY ;; let FGNMPAV = Trigonometry2.FGNMPAV ;; let FEVNANL = LIST_MK_CONJ [Trigonometry1.atn2_spec;Trigonometry1.ATAN2_EXISTS];; let AXBTGQX = orthonormal;; (* much more has been proved about orthonormal vectors *) let QAUQIEC = UNKNOWN;; (* "not found, adapted orthonormization ";; *) let EYFCXPP = [Trigonometry2.EYFCXPP;(* see also CYLINDER_CORDINATE *) Trigonometry2.CYLINDER_CORDINATE];; let azim = azim ;; let QQZKTXU = Trigonometry2.QQZKTXU;; let JBDNJJB = Trigonometry2.JBDNJJB;; (* zenith angle *) let QAFHJNM =Trigonometry2.QAFHJNM;; let XPHCPNY = SPHERICAL_COORDINATES ;; (* Cycle *) (* DEPRECATED 2011-08-01. let TNZQDCX = Sphere.polar_cycle;; *) let PDPFQUK = Trigonometry2.PDPFQUK;; let ISRTTNZ = Trigonometry2.ISRTTNZ;; let KFKHLWK = Trigonometry2.cyclic_set;; let YESEEWW = Sphere.azim_cycle;; let NLOFMTR = UNKNOWN;; (* "not found, of doubtful use";; *) let YVREJIS = Trigonometry2.YVREJIS;; let ULEKUUB = UNKNOWN;; (* "not found, fan version given as Topology.ULEKUUB";; *) (* spherical triangle inequality *) let KEITDWB = Trigonometry2.KEITDWB;; let FGNMPAV = Trigonometry2.FGNMPAV;; end;;