(* ========================================================================= *)
(* Derived properties of provability.                                        *)
(* ========================================================================= *)

let negativef = new_definition
  `negativef p = ?q. p = q --> False`;;
let negatef = new_definition
  `negatef p = if negativef p then @q. p = q --> False else p --> False`;;
(* ------------------------------------------------------------------------- *) (* The primitive basis, separated into its named components. *) (* ------------------------------------------------------------------------- *)
let axiom_addimp = 
prove (`!A p q. A |-- p --> (q --> p)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_distribimp = 
prove (`!A p q r. A |-- (p --> q --> r) --> (p --> q) --> (p --> r)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_doubleneg = 
prove (`!A p. A |-- ((p --> False) --> False) --> p`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_allimp = 
prove (`!A x p q. A |-- (!!x (p --> q)) --> (!!x p) --> (!!x q)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_impall = 
prove (`!A x p. ~(x IN FV p) ==> A |-- p --> !!x p`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_existseq = 
prove (`!A x t. ~(x IN FVT t) ==> A |-- ??x (V x === t)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_eqrefl = 
prove (`!A t. A |-- t === t`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_funcong = 
prove (`(!A s t. A |-- s === t --> Suc s === Suc t) /\ (!A s t u v. A |-- s === t --> u === v --> s ++ u === t ++ v) /\ (!A s t u v. A |-- s === t --> u === v --> s ** u === t ** v)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_predcong = 
prove (`(!A s t u v. A |-- s === t --> u === v --> s === u --> t === v) /\ (!A s t u v. A |-- s === t --> u === v --> s << u --> t << v) /\ (!A s t u v. A |-- s === t --> u === v --> s <<= u --> t <<= v)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_iffimp1 = 
prove (`!A p q. A |-- (p <-> q) --> p --> q`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_iffimp2 = 
prove (`!A p q. A |-- (p <-> q) --> q --> p`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_impiff = 
prove (`!A p q. A |-- (p --> q) --> (q --> p) --> (p <-> q)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_true = 
prove (`A |-- True <-> (False --> False)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_not = 
prove (`!A p. A |-- Not p <-> (p --> False)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_and = 
prove (`!A p q. A |-- (p && q) <-> (p --> q --> False) --> False`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_or = 
prove (`!A p q. A |-- (p || q) <-> Not(Not p && Not q)`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let axiom_exists = 
prove (`!A x p. A |-- (??x p) <-> Not(!!x (Not p))`,
MESON_TAC[proves_RULES; axiom_RULES]);;
let assume = 
prove (`!A p. p IN A ==> A |-- p`,
MESON_TAC[proves_RULES]);;
let modusponens = 
prove (`!A p. A |-- (p --> q) /\ A |-- p ==> A |-- q`,
MESON_TAC[proves_RULES]);;
let gen = 
prove (`!A p x. A |-- p ==> A |-- !!x p`,
MESON_TAC[proves_RULES]);;
(* ------------------------------------------------------------------------- *) (* Now some theorems corresponding to derived rules. *) (* ------------------------------------------------------------------------- *)
let iff_imp1 = 
prove (`!A p q. A |-- p <-> q ==> A |-- p --> q`,
MESON_TAC[modusponens; axiom_iffimp1]);;
let iff_imp2 = 
prove (`!A p q. A |-- p <-> q ==> A |-- q --> p`,
MESON_TAC[modusponens; axiom_iffimp2]);;
let imp_antisym = 
prove (`!A p q. A |-- p --> q /\ A |-- q --> p ==> A |-- p <-> q`,
MESON_TAC[modusponens; axiom_impiff]);;
let add_assum = 
prove (`!A p q. A |-- q ==> A |-- p --> q`,
MESON_TAC[modusponens; axiom_addimp]);;
let imp_refl = 
prove (`!A p. A |-- p --> p`,
let imp_add_assum = 
prove (`!A p q r. A |-- q --> r ==> A |-- (p --> q) --> (p --> r)`,
let imp_unduplicate = 
prove (`!A p q. A |-- p --> p --> q ==> A |-- p --> q`,
let imp_trans = 
prove (`!A p q. A |-- p --> q /\ A |-- q --> r ==> A |-- p --> r`,
MESON_TAC[modusponens; imp_add_assum]);;
let imp_swap = 
prove (`!A p q r. A |-- p --> q --> r ==> A |-- q --> p --> r`,
let imp_trans_chain_2 = 
prove (`!A p q1 q2 r. A |-- p --> q1 /\ A |-- p --> q2 /\ A |-- q1 --> q2 --> r ==> A |-- p --> r`,
ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate]);;
(***** let imp_trans_chain = prove (`!A p qs r. ALL (\q. A |-- p --> q) qs /\ A |-- ITLIST (-->) qs r ==> A |-- p --> r`, GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; ITLIST] THENL [ASM_MESON_TAC[add_assum]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC ASM_MESON_TAC[imp_trans; imp_swap; imp_unduplicate; axiom_distribimp; modusponens; add_assum] add_assum] THEN ... needs more thought. Maybe the REV *****)
let imp_trans_th = 
prove (`!A p q r. A |-- (q --> r) --> (p --> q) --> (p --> r)`,
let imp_add_concl = 
prove (`!A p q r. A |-- p --> q ==> A |-- (q --> r) --> (p --> r)`,
let imp_trans2 = 
prove (`!A p q r s. A |-- p --> q --> r /\ A |-- r --> s ==> A |-- p --> q --> s`,
let imp_swap_th = 
prove (`!A p q r. A |-- (p --> q --> r) --> (q --> p --> r)`,
let contrapos = 
prove (`!A p q. A |-- p --> q ==> A |-- Not q --> Not p`,
let imp_truefalse = 
prove (`!p q. A |-- (q --> False) --> p --> (p --> q) --> False`,
let imp_insert = 
prove (`!A p q r. A |-- p --> r ==> A |-- p --> q --> r`,
MESON_TAC[imp_trans; axiom_addimp]);;
let ex_falso = 
prove (`!A p. A |-- False --> p`,
let imp_contr = 
prove (`!A p q. A |-- (p --> False) --> (p --> r)`,
MESON_TAC[imp_add_assum; ex_falso]);;
let imp_contrf = 
prove (`!A p r. A |-- p --> negatef p --> r`,
REPEAT GEN_TAC THEN REWRITE_TAC[negatef; negativef] THEN COND_CASES_TAC THEN POP_ASSUM STRIP_ASSUME_TAC THEN ASM_REWRITE_TAC[form_INJ] THEN ASM_MESON_TAC[imp_contr; imp_swap]);;
let contrad = 
prove (`!A p. A |-- (p --> False) --> p ==> A |-- p`,
let bool_cases = 
prove (`!p q. A |-- p --> q /\ A |-- (p --> False) --> q ==> A |-- q`,
(**** let imp_front = prove (`...` a bi more structure);; ****) (*** This takes about a minute, but it does work ***)
let imp_false_rule = 
prove (`!p q r. A |-- (q --> False) --> p --> r ==> A |-- ((p --> q) --> False) --> r`,
let imp_true_rule = 
prove (`!A p q r. A |-- (p --> False) --> r /\ A |-- q --> r ==> A |-- (p --> q) --> r`,
let iff_def = 
prove (`!A p q. A |-- (p <-> q) <-> (p --> q) && (q --> p)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC imp_antisym THEN CONJ_TAC THENL [SUBGOAL_THEN `A |-- ((p --> q) --> (q --> p) --> False) --> (p <-> q) --> False` ASSUME_TAC THENL [ASM_MESON_TAC[imp_add_concl; imp_trans; axiom_distribimp; modusponens; imp_swap; axiom_iffimp1; axiom_iffimp2]; ALL_TAC] THEN ASM_MESON_TAC[imp_add_concl; imp_trans; imp_swap; imp_refl; iff_imp2; axiom_and]; SUBGOAL_THEN `A |-- (((p --> q) --> (q --> p) --> False) --> False) --> ((p <-> q) --> False) --> False` ASSUME_TAC THENL [ASM_MESON_TAC[imp_swap; imp_trans_th; modusponens; imp_add_assum; axiom_impiff; imp_add_concl]; ALL_TAC] THEN ASM_MESON_TAC[imp_trans; iff_imp1; axiom_and; axiom_doubleneg]]);;
(* ------------------------------------------------------------------------- *) (* Equality rules. *) (* ------------------------------------------------------------------------- *)
let eq_sym = 
prove (`!A s t. A |-- s === t --> t === s`,
let icongruence_general = 
prove (`!A p x s t tm. A |-- s === t --> termsubst ((x |-> s) v) tm === termsubst ((x |-> t) v) tm`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN REPEAT CONJ_TAC THENL [MESON_TAC[axiom_eqrefl; add_assum]; GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN REWRITE_TAC[imp_refl] THEN MESON_TAC[axiom_eqrefl; add_assum]; MESON_TAC[imp_trans; axiom_funcong]; MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]; MESON_TAC[imp_trans; axiom_funcong; imp_swap; imp_unduplicate]]);;
let icongruence = 
prove (`!A x s t tm. A |-- s === t --> termsubst (x |=> s) tm === termsubst (x |=> t) tm`,
REWRITE_TAC[assign; icongruence_general]);;
let icongruence_var = 
prove (`!A x t tm. A |-- V x === t --> tm === termsubst (x |=> t) tm`,
(* ------------------------------------------------------------------------- *) (* First-order rules. *) (* ------------------------------------------------------------------------- *)
let gen_right = 
prove (`!A x p q. ~(x IN FV(p)) /\ A |-- p --> q ==> A |-- p --> !!x q`,
let genimp = 
prove (`!x p q. A |-- p --> q ==> A |-- (!!x p) --> (!!x q)`,
MESON_TAC[modusponens; axiom_allimp; gen]);;
let eximp = 
prove (`!x p q. A |-- p --> q ==> A |-- (??x p) --> (??x q)`,
let exists_imp = 
prove (`!A x p q. A |-- ??x (p --> q) /\ ~(x IN FV(q)) ==> A |-- (!!x p) --> q`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `A |-- (q --> False) --> !!x (p --> Not(p --> q))` ASSUME_TAC THENL [MATCH_MP_TAC gen_right THEN ASM_REWRITE_TAC[FV; IN_UNION; NOT_IN_EMPTY] THEN ASM_MESON_TAC[iff_imp2; axiom_not; imp_trans2; imp_truefalse]; ALL_TAC] THEN SUBGOAL_THEN `A |-- (q --> False) --> !!x p --> !!x (Not(p --> q))` ASSUME_TAC THENL [ASM_MESON_TAC[imp_trans; axiom_allimp]; ALL_TAC] THEN SUBGOAL_THEN `A |-- ((q --> False) --> !!x (Not(p --> q))) --> (q --> False) --> False` ASSUME_TAC THENL [ASM_MESON_TAC[modusponens; iff_imp1; axiom_exists; axiom_not; imp_trans_th]; ALL_TAC] THEN ASM_MESON_TAC[imp_trans; imp_swap; axiom_doubleneg]);;
let subspec = 
prove (`!A x t p q. ~(x IN FVT(t)) /\ ~(x IN FV(q)) /\ A |-- V x === t --> p --> q ==> A |-- (!!x p) --> q`,
let subalpha = 
prove (`!A x y p q. ((x = y) \/ ~(x IN FV(q)) /\ ~(y IN FV(p))) /\ A |-- V x === V y --> p --> q ==> A |-- (!!x p) --> (!!y q)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_MESON_TAC[genimp; modusponens; axiom_eqrefl]; ALL_TAC] THEN MATCH_MP_TAC gen_right THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN MATCH_MP_TAC subspec THEN EXISTS_TAC `V y` THEN ASM_REWRITE_TAC[FVT; IN_SING]);;
let imp_mono_th = 
prove (`A |-- (p' --> p) --> (q --> q') --> (p --> q) --> (p' --> q')`,
(* ------------------------------------------------------------------------- *) (* We'll perform induction on this measure. *) (* ------------------------------------------------------------------------- *)
let complexity = new_recursive_definition form_RECURSION
  `(complexity False = 1) /\
   (complexity True = 1) /\
   (!s t. complexity (s === t) = 1) /\
   (!s t. complexity (s << t) = 1) /\
   (!s t. complexity (s <<= t) = 1) /\
   (!p. complexity (Not p) = complexity p + 3) /\
   (!p q. complexity (p && q) = complexity p + complexity q + 6) /\
   (!p q. complexity (p || q) = complexity p + complexity q + 16) /\
   (!p q. complexity (p --> q) = complexity p + complexity q + 1) /\
   (!p q. complexity (p <-> q) = 2 * (complexity p + complexity q) + 9) /\
   (!x p. complexity (!!x p) = complexity p + 1) /\
   (!x p. complexity (??x p) = complexity p + 8)`;;
let COMPLEXITY_FORMSUBST = 
prove (`!p i. complexity(formsubst i p) = complexity p`,
MATCH_MP_TAC form_INDUCT THEN SIMP_TAC[formsubst; complexity; LET_DEF; LET_END_DEF]);;
let isubst_general = 
prove (`!A p x v s t. A |-- s === t --> formsubst ((x |-> s) v) p --> formsubst ((x |-> t) v) p`,
GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC `complexity p` THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[formsubst; complexity] THEN REPEAT CONJ_TAC THENL [MESON_TAC[imp_refl; add_assum]; MESON_TAC[imp_refl; add_assum]; MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; MESON_TAC[imp_trans_chain_2; axiom_predcong; icongruence_general]; X_GEN_TAC `p:form` THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o SPEC `p --> False`) THEN REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[formsubst] THEN MESON_TAC[axiom_not; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(p --> q --> False) --> False`) THEN REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[formsubst] THEN MESON_TAC[axiom_and; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o SPEC `Not(Not p && Not q)`) THEN REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[formsubst] THEN MESON_TAC[axiom_or; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `p:form` th) THEN MP_TAC(SPEC `q:form` th)) THEN REWRITE_TAC[ARITH_RULE `p < p + q + 1 /\ q < p + q + 1`] THEN MESON_TAC[imp_mono_th; eq_sym; imp_trans; imp_trans_chain_2]; MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(p --> q) && (q --> p)`) THEN REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[formsubst] THEN MESON_TAC[iff_def; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]; ALL_TAC; MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(MP_TAC o SPEC `Not(!!x (Not p))`) THEN REWRITE_TAC[complexity] THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[formsubst] THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN REWRITE_TAC[FV] THEN REPEAT LET_TAC THEN ASM_MESON_TAC[axiom_exists; iff_imp1; iff_imp2; imp_swap; imp_trans; imp_trans2]] THEN MAP_EVERY X_GEN_TAC [`u:num`; `p:form`] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[ARITH_RULE `a < b + 1 <=> a <= b`] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`v:num`; `i:num->term`; `s:term`; `t:term`] THEN MAP_EVERY ABBREV_TAC [`x = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> s) i y) then VARIANT (FV (formsubst ((u |-> V u) ((v |-> s) i)) p)) else u`; `y = if ?y. y IN FV (!! u p) /\ u IN FVT ((v |-> t) i y) then VARIANT (FV (formsubst ((u |-> V u) ((v |-> t) i)) p)) else u`] THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN SUBGOAL_THEN `~(x IN FV(formsubst ((v |-> s) i) (!!u p))) /\ ~(y IN FV(formsubst ((v |-> t) i) (!!u p)))` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["x";
"y"] THEN CONJ_TAC THEN (COND_CASES_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM]] THEN MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[FV_FINITE] THEN REWRITE_TAC[SUBSET; FORMSUBST_FV; IN_ELIM_THM; FV; IN_DELETE] THEN REWRITE_TAC[valmod] THEN MESON_TAC[FVT; IN_SING]); ALL_TAC] THEN ASM_CASES_TAC `v:num = u` THENL [ASM_REWRITE_TAC[VALMOD_VALMOD_BASIC] THEN MATCH_MP_TAC add_assum THEN MATCH_MP_TAC subalpha THEN ASM_SIMP_TAC[LE_REFL] THEN ASM_CASES_TAC `y:num = x` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`; UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN ASM_REWRITE_TAC[valmod; FVT; IN_SING]; ALL_TAC] THEN SUBGOAL_THEN `?z. ~(z IN FVT s) /\ ~(z IN FVT t) /\ A |-- !!x (formsubst ((u |-> V x) ((v |-> s) i)) p) --> !!z (formsubst ((u |-> V z) ((v |-> s) i)) p) /\ A |-- !!z (formsubst ((u |-> V z) ((v |-> t) i)) p) --> !!y (formsubst ((u |-> V y) ((v |-> t) i)) p)` MP_TAC THENL [ALL_TAC; DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC imp_trans THEN EXISTS_TAC `(!!z (formsubst ((v |-> s) ((u |-> V z) i)) p)) --> (!!z (formsubst ((v |-> t) ((u |-> V z) i)) p))` THEN CONJ_TAC THENL [MATCH_MP_TAC imp_trans THEN EXISTS_TAC `!!z (formsubst ((v |-> s) ((u |-> V z) i)) p --> formsubst ((v |-> t) ((u |-> V z) i)) p)` THEN REWRITE_TAC[axiom_allimp] THEN ASM_SIMP_TAC[complexity; LE_REFL; FV; IN_UNION; gen_right]; ALL_TAC] THEN FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP VALMOD_SWAP th]) THEN ASM_MESON_TAC[imp_mono_th; modusponens]] THEN MP_TAC(SPEC `FVT(s) UNION FVT(t) UNION FV(formsubst ((u |-> V x) ((v |-> s) i)) p) UNION FV(formsubst ((u |-> V y) ((v |-> t) i)) p)` VARIANT_FINITE) THEN REWRITE_TAC[FINITE_UNION; FV_FINITE; FVT_FINITE] THEN W(fun (_,w) -> ABBREV_TAC(mk_comb(`(=) (z:num)`,lhand(rand(lhand w))))) THEN REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN STRIP_TAC THEN EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC subalpha THEN ASM_SIMP_TAC[LE_REFL] THENL [ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(x IN FV (formsubst ((v |-> s) i) (!! u p)))`; ASM_CASES_TAC `z:num = y` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `~(y IN FV (formsubst ((v |-> t) i) (!! u p)))`] THEN ASM_REWRITE_TAC[FORMSUBST_FV; FV; IN_ELIM_THM; IN_DELETE] THEN MATCH_MP_TAC MONO_NOT THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `w:num` THEN ASM_CASES_TAC `w:num = u` THEN ASM_REWRITE_TAC[VALMOD_BASIC; FVT; IN_SING] THEN ASM_REWRITE_TAC[valmod; FVT; IN_SING]);;
let isubst = 
prove (`!A p x s t. A |-- s === t --> formsubst (x |=> s) p --> formsubst (x |=> t) p`,
REWRITE_TAC[assign; isubst_general]);;
let isubst_var = 
prove (`!A p x t. A |-- V x === t --> p --> formsubst (x |=> t) p`,
let alpha = 
prove (`!A x z p. ~(z IN FV p) ==> A |-- (!!x p) --> !!z (formsubst (x |=> V z) p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC subalpha THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[isubst_var]] THEN REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN ASM_MESON_TAC[IN_SING; FVT]);;
(* ------------------------------------------------------------------------- *) (* To conclude cleanly, useful to have all variables. *) (* ------------------------------------------------------------------------- *)
let VARS = new_recursive_definition form_RECURSION
 `(VARS False = {}) /\
  (VARS True = {}) /\
  (VARS (s === t) = FVT s UNION FVT t) /\
  (VARS (s << t) = FVT s UNION FVT t) /\
  (VARS (s <<= t) = FVT s UNION FVT t) /\
  (VARS (Not p) = VARS p) /\
  (VARS (p && q) = VARS p UNION VARS q) /\
  (VARS (p || q) = VARS p UNION VARS q) /\
  (VARS (p --> q) = VARS p UNION VARS q) /\
  (VARS (p <-> q) = VARS p UNION VARS q) /\
  (VARS (!! x p) = x INSERT VARS p) /\
  (VARS (?? x p) = x INSERT VARS p)`;;
let VARS_FINITE = 
prove (`!p. FINITE(VARS p)`,
MATCH_MP_TAC form_INDUCT THEN ASM_SIMP_TAC[VARS; FINITE_RULES; FVT_FINITE; FINITE_UNION; FINITE_DELETE]);;
let FV_SUBSET_VARS = 
prove (`!p. FV(p) SUBSET VARS(p)`,
REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[FV; VARS] THEN REWRITE_TAC[IN_INSERT; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;
let TERMSUBST_TWICE_GENERAL = 
prove (`!x z t v s. ~(z IN FVT s) ==> (termsubst ((x |-> t) v) s = termsubst ((z |-> t) v) (termsubst (x |=> V z) s))`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst; ASSIGN; valmod; FVT; IN_SING; IN_UNION] THEN MESON_TAC[termsubst; ASSIGN]);;
let TERMSUBST_TWICE = 
prove (`!x z t s. ~(z IN FVT s) ==> (termsubst (x |=> t) s = termsubst (z |=> t) (termsubst (x |=> V z) s))`,
let FORMSUBST_TWICE_GENERAL = 
prove (`!z p x t v. ~(z IN VARS p) ==> (formsubst ((z |-> t) v) (formsubst (x |=> V z) p) = formsubst ((x |-> t) v) p)`,
GEN_TAC THEN MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[CONJ_ASSOC] THEN GEN_REWRITE_TAC I [GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [REWRITE_TAC[formsubst; ASSIGN; VARS; IN_UNION; DE_MORGAN_THM] THEN MESON_TAC[TERMSUBST_TWICE_GENERAL]; ALL_TAC] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`y:num`; `p:form`] THEN (REWRITE_TAC[VARS; IN_INSERT; DE_MORGAN_THM] THEN DISCH_THEN(fun th -> REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [formsubst] THEN COND_CASES_TAC THENL [FIRST_X_ASSUM(CHOOSE_THEN MP_TAC) THEN REWRITE_TAC[ASSIGN; FV; IN_DELETE] THEN ASM_MESON_TAC[FVT; IN_SING]; ALL_TAC] THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN ASM_CASES_TAC `x:num = y` THENL [ASM_REWRITE_TAC[assign; VALMOD_VALMOD_BASIC; VALMOD_REPEAT; FORMSUBST_TRIV] THEN MATCH_MP_TAC FORMSUBST_EQ THEN ASM_REWRITE_TAC[valmod; FV; IN_DELETE] THEN ASM_MESON_TAC[FV_SUBSET_VARS; SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `(!t. (y |-> V y) (x |=> t) = x |=> t) /\ (!t. (y |-> V y) (z |=> t) = z |=> t)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[assign] THEN ASM_MESON_TAC[VALMOD_SWAP; VALMOD_REPEAT]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC BINOP_CONV [formsubst] THEN ASM_REWRITE_TAC[FV] THEN SUBGOAL_THEN `(?u. u IN (FV(formsubst (x |=> V z) p) DELETE y) /\ y IN FVT ((z |-> t) v u)) = (?u. u IN (FV p DELETE y) /\ y IN FVT ((x |-> t) v u))` SUBST1_TAC THENL [REWRITE_TAC[FV; FORMSUBST_FV; IN_ELIM_THM; IN_DELETE; valmod; ASSIGN] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[FVT; IN_SING] THEN ASM_MESON_TAC[SUBSET; FV_SUBSET_VARS; FVT; IN_SING]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN ASM_MESON_TAC[VALMOD_SWAP]] THEN REWRITE_TAC[LET_DEF; LET_END_DEF; form_INJ] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [ALL_TAC; DISCH_THEN SUBST1_TAC] THEN REPEAT AP_TERM_TAC THEN ASM_MESON_TAC[VALMOD_SWAP]));;
let FORMSUBST_TWICE = 
prove (`!z p x t. ~(z IN VARS p) ==> (formsubst (z |=> t) (formsubst (x |=> V z) p) = formsubst (x |=> t) p)`,
let ispec_lemma = 
prove (`!A x p t. ~(x IN FVT(t)) ==> A |-- !!x p --> formsubst (x |=> t) p`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC subspec THEN EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[isubst_var] THEN ASM_REWRITE_TAC[FORMSUBST_FV; IN_ELIM_THM; ASSIGN] THEN ASM_MESON_TAC[FVT; IN_SING]);;
let ispec = 
prove (`!A x p t. A |-- !!x p --> formsubst (x |=> t) p`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `x IN FVT(t)` THEN ASM_SIMP_TAC[ispec_lemma] THEN ABBREV_TAC `z = VARIANT (FVT t UNION VARS p)` THEN MATCH_MP_TAC imp_trans THEN EXISTS_TAC `!!z (formsubst (x |=> V z) p)` THEN CONJ_TAC THENL [MATCH_MP_TAC alpha THEN EXPAND_TAC "z" THEN MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION] THEN MESON_TAC[SUBSET; FVT_FINITE; VARS_FINITE; FV_SUBSET_VARS]; SUBGOAL_THEN `formsubst (x |=> t) p = formsubst (z |=> t) (formsubst (x |=> V z) p)` SUBST1_TAC THENL [MATCH_MP_TAC(GSYM FORMSUBST_TWICE); MATCH_MP_TAC ispec_lemma] THEN EXPAND_TAC "z" THEN MATCH_MP_TAC NOT_IN_VARIANT THEN REWRITE_TAC[VARS_FINITE; FVT_FINITE; FINITE_UNION] THEN SIMP_TAC[SUBSET; IN_UNION]]);;
let spec = 
prove (`!A x p t. A |-- !!x p ==> A |-- formsubst (x |=> t) p`,
MESON_TAC[ispec; modusponens]);;
(* ------------------------------------------------------------------------- *) (* Monotonicity and the deduction theorem. *) (* ------------------------------------------------------------------------- *)
let PROVES_MONO = 
prove (`!A B p. A SUBSET B /\ A |-- p ==> B |-- p`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN ASM_MESON_TAC[proves_RULES; SUBSET]);;
let DEDUCTION_LEMMA = 
prove (`!A p q. p INSERT A |-- q /\ closed p ==> A |-- p --> q`,
GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC proves_INDUCT THEN REPEAT CONJ_TAC THEN X_GEN_TAC `r:form` THENL [REWRITE_TAC[IN_INSERT] THEN MESON_TAC[proves_RULES; add_assum; imp_refl]; MESON_TAC[modusponens; axiom_distribimp]; ASM_MESON_TAC[gen_right; closed; NOT_IN_EMPTY]]);;
let DEDUCTION = 
prove (`!A p q. closed p ==> (A |-- p --> q <=> p INSERT A |-- q)`,