(* ========================================================================= *)
(* Properties of real polynomials (not canonically represented).             *)
(* ========================================================================= *)
needs "Library/analysis.ml";;
prioritize_real();;
parse_as_infix("++",(16,"right"));;
parse_as_infix("**",(20,"right"));;
parse_as_infix("##",(20,"right"));;
parse_as_infix("divides",(14,"right"));;
parse_as_infix("exp",(22,"right"));;
do_list override_interface
  ["++",`poly_add:real list->real list->real list`;
   "**",`poly_mul:real list->real list->real list`;
   "##",`poly_cmul:real->real list->real list`;
   "neg",`poly_neg:real list->real list`;
   "exp",`poly_exp:real list -> num -> real list`;
   "diff",`poly_diff:real list->real list`];;
overload_interface ("divides",`poly_divides:real list->real list->bool`);;
(* ------------------------------------------------------------------------- *)
(* Application of polynomial as a real function.                             *)
(* ------------------------------------------------------------------------- *)
let POLY_X = prove
 (`!c x. poly [&0; &1] x = x`,
  REWRITE_TAC[poly] THEN REAL_ARITH_TAC);;
 
let poly_add = new_recursive_definition list_RECURSION
  `([] ++ l2 = l2) /\
   ((CONS h t) ++ l2 =
        (if l2 = [] then CONS h t
                    else CONS (h + HD l2) (t ++ TL l2)))`;;let poly_cmul = new_recursive_definition list_RECURSION
  `(c ## [] = []) /\
   (c ## (CONS h t) = CONS (c * h) (c ## t))`;;
let poly_mul = new_recursive_definition list_RECURSION
  `([] ** l2 = []) /\
   ((CONS h t) ** l2 =
       (if t = [] then h ## l2
                  else (h ## l2) ++ CONS (&0) (t ** l2)))`;;let poly_exp = new_recursive_definition num_RECURSION
  `(p exp 0 = [&1]) /\
   (p exp (SUC n) = p ** p exp n)`;;
let POLY_ADD_CLAUSES = prove
 (`([] ++ p2 = p2) /\
   (p1 ++ [] = p1) /\
   ((CONS h1 t1) ++ (CONS h2 t2) = CONS (h1 + h2) (t1 ++ t2))`,
 
let POLY_MUL_CLAUSES = prove
 (`([] ** p2 = []) /\
   ([h1] ** p2 = h1 ## p2) /\
   ((CONS h1 (CONS k1 t1)) ** p2 = h1 ## p2 ++ CONS (&0) (CONS k1 t1 ** p2))`,
 
let POLY_CMUL = prove
 (`!p c x. poly (c ## p) x = c * poly p x`,
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[poly; 
poly_cmul] THEN
  REAL_ARITH_TAC);;
 
let POLY_DIFF_LEMMA = prove
 (`!l n x. ((\x. (x pow (SUC n)) * poly l x) diffl
                   ((x pow n) * poly (
poly_diff_aux (SUC n) l) x))(x)`,
  LIST_INDUCT_TAC THEN
  REWRITE_TAC[poly; 
poly_diff_aux; 
REAL_MUL_RZERO; 
DIFF_CONST] THEN
  MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN
  REWRITE_TAC[REAL_LDISTRIB; REAL_MUL_ASSOC] THEN
  ONCE_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] (CONJUNCT2 pow))] THEN
  POP_ASSUM(MP_TAC o SPECL [`SUC n`; `x:real`]) THEN
  SUBGOAL_THEN `(((\x. (x pow (SUC n)) * h)) diffl
                        ((x pow n) * &(SUC n) * h))(x)`
  (fun th -> DISCH_THEN(MP_TAC o CONJ th)) THENL
   [REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    MP_TAC(SPEC `\x. x pow (SUC n)` 
DIFF_CMUL) THEN BETA_TAC THEN
    DISCH_THEN MATCH_MP_TAC THEN
    MP_TAC(SPEC `SUC n` 
DIFF_POW) THEN REWRITE_TAC[
SUC_SUB1] THEN
    DISCH_THEN(MATCH_ACCEPT_TAC o ONCE_REWRITE_RULE[REAL_MUL_SYM]);
    DISCH_THEN(MP_TAC o MATCH_MP 
DIFF_ADD) THEN BETA_TAC THEN
    REWRITE_TAC[REAL_MUL_ASSOC]]);;
 
let POLY_DIFF = prove
 (`!l x. ((\x. poly l x) diffl (poly (diff l) x))(x)`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[
POLY_DIFF_CLAUSES] THEN
  ONCE_REWRITE_TAC[SYM(ETA_CONV `\x. poly l x`)] THEN
  REWRITE_TAC[poly; 
DIFF_CONST] THEN
  MAP_EVERY X_GEN_TAC [`x:real`] THEN
  MP_TAC(SPECL [`t:(real)list`; `0`; `x:real`] 
POLY_DIFF_LEMMA) THEN
  REWRITE_TAC[SYM(num_CONV `1`)] THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN
  REWRITE_TAC[
POW_1] THEN
  DISCH_THEN(MP_TAC o CONJ (SPECL [`h:real`; `x:real`] 
DIFF_CONST)) THEN
  DISCH_THEN(MP_TAC o MATCH_MP 
DIFF_ADD) THEN BETA_TAC THEN
  REWRITE_TAC[REAL_ADD_LID]);;
 
let POLY_DIFFERENTIABLE = prove
 (`!l x. (\x. poly l x) differentiable x`,
  REPEAT GEN_TAC THEN REWRITE_TAC[differentiable] THEN
  EXISTS_TAC `poly (diff l) x` THEN
  REWRITE_TAC[
POLY_DIFF]);;
 
let POLY_IVT_POS = prove
 (`!p a b. a < b /\ poly p a < &0 /\ poly p b > &0
           ==> ?x. a < x /\ x < b /\ (poly p x = &0)`,
  REWRITE_TAC[
real_gt] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`\x. poly p x`; `a:real`; `b:real`; `&0`] 
IVT) THEN
  REWRITE_TAC[
POLY_CONT] THEN
  EVERY_ASSUM(fun th -> REWRITE_TAC[MATCH_MP 
REAL_LT_IMP_LE th]) THEN
  DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[
REAL_LT_LE] THEN
  CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
  FIRST_ASSUM SUBST_ALL_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[
REAL_LT_REFL]) THEN
  FIRST_ASSUM CONTR_TAC);;
 
let POLY_IVT_NEG = prove
 (`!p a b. a < b /\ poly p a > &0 /\ poly p b < &0
           ==> ?x. a < x /\ x < b /\ (poly p x = &0)`,
  REPEAT STRIP_TAC THEN MP_TAC(SPEC `
poly_neg p` 
POLY_IVT_POS) THEN
  REWRITE_TAC[
POLY_NEG;
              REAL_ARITH `(--x < &0 <=> x > &0) /\ (--x > &0 <=> x < &0)`] THEN
  DISCH_THEN(MP_TAC o SPECL [`a:real`; `b:real`]) THEN
  ASM_REWRITE_TAC[REAL_ARITH `(--x = &0) <=> (x = &0)`]);;
 
let POLY_MVT = prove
 (`!p a b. a < b ==>
           ?x. a < x /\ x < b /\
              (poly p b - poly p a = (b - a) * poly (diff p) x)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`poly p`; `a:real`; `b:real`] 
MVT) THEN
  ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL 
POLY_CONT);
    CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL 
POLY_DIFFERENTIABLE)] THEN
  DISCH_THEN(X_CHOOSE_THEN `l:real` MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `x:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[] THEN
  AP_TERM_TAC THEN MATCH_MP_TAC 
DIFF_UNIQ THEN
  EXISTS_TAC `poly p` THEN EXISTS_TAC `x:real` THEN
  ASM_REWRITE_TAC[CONV_RULE(DEPTH_CONV ETA_CONV) (SPEC_ALL 
POLY_DIFF)]);;
 
let POLY_MVT_ADD = prove
 (`!p a x. ?y. abs(y) <= abs(x) /\
               (poly p (a + x) = poly p a + x * poly (diff p) (a + y))`,
  REPEAT GEN_TAC THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (SPEC `x:real` 
REAL_LT_NEGTOTAL) THENL
   [EXISTS_TAC `&0` THEN
    ASM_REWRITE_TAC[
REAL_LE_REFL; 
REAL_ADD_RID; 
REAL_MUL_LZERO];
    MP_TAC(SPECL [`p:real list`; `a:real`; `a + x`] 
POLY_MVT) THEN
    ASM_REWRITE_TAC[
REAL_LT_ADDR] THEN
    DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN
    REWRITE_TAC[REAL_ARITH `(x - y = ((a + b) - a) * z) <=>
                            (x = y + b * z)`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[
REAL_EQ_ADD_LCANCEL] THEN
    EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN
    MAP_EVERY UNDISCH_TAC [`&0 < x`; `a < z`; `z < a + x`] THEN
    REAL_ARITH_TAC;
    MP_TAC(SPECL [`p:real list`; `a + x`; `a:real`] 
POLY_MVT) THEN
    ASM_REWRITE_TAC[REAL_ARITH `a + x < a <=> &0 < --x`] THEN
    DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN
    REWRITE_TAC[REAL_ARITH `(x - y = (a - (a + b)) * z) <=>
                            (x = y + b * --z)`] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[
REAL_EQ_ADD_LCANCEL] THEN
    EXISTS_TAC `z - a` THEN REWRITE_TAC[REAL_ARITH `x + (y - x) = y`] THEN
    MAP_EVERY UNDISCH_TAC [`&0 < --x`; `a + x < z`; `z < a`] THEN
    REAL_ARITH_TAC]);;
 
let POLY_DIFF_EXP = prove
 (`!p n. poly (diff (p exp (SUC n))) =
         poly ((&(SUC n) ## (p exp n)) ** diff p)`,
 
let POLY_ROOTS_INDEX_LEMMA = prove
 (`!n. !p. ~(poly p = poly []) /\ (
LENGTH p = n)
           ==> ?i. !x. (poly p (x) = &0) ==> ?m. m <= n /\ (x = i m)`,
  INDUCT_TAC THENL
   [REWRITE_TAC[
LENGTH_EQ_NIL] THEN MESON_TAC[];
    REPEAT STRIP_TAC THEN ASM_CASES_TAC `?a. poly p a = &0` THENL
     [UNDISCH_TAC `?a. poly p a = &0` THEN DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
      GEN_REWRITE_TAC LAND_CONV [
POLY_LINEAR_DIVIDES] THEN
      DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN
      FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
      UNDISCH_TAC `~(poly ([-- a; &1] ** q) = poly [])` THEN
      POP_ASSUM MP_TAC THEN REWRITE_TAC[
POLY_LENGTH_MUL; 
SUC_INJ] THEN
      DISCH_TAC THEN ASM_CASES_TAC `poly q = poly []` THENL
       [ASM_REWRITE_TAC[
POLY_MUL; poly; 
REAL_MUL_RZERO; 
FUN_EQ_THM];
        DISCH_THEN(K ALL_TAC)] THEN
      DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_TAC `i:num->real`) THEN
      EXISTS_TAC `\m. if m = SUC n then (a:real) else i m` THEN
      REWRITE_TAC[
POLY_MUL; 
LE; 
REAL_ENTIRE] THEN
      X_GEN_TAC `x:real` THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
       [DISCH_THEN(fun th -> EXISTS_TAC `SUC n` THEN MP_TAC th) THEN
        REWRITE_TAC[poly] THEN REAL_ARITH_TAC;
        DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
        DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
        EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN
        COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
        UNDISCH_TAC `m:num <= n` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC];
      UNDISCH_TAC `~(?a. poly p a = &0)` THEN
      REWRITE_TAC[
NOT_EXISTS_THM] THEN DISCH_TAC THEN ASM_REWRITE_TAC[]]]);;
 
let FINITE_LEMMA = prove
 (`!i N P. (!x. P x ==> ?n:num. n < N /\ (x = i n))
           ==> ?a. !x. P x ==> x < a`,
  GEN_TAC THEN ONCE_REWRITE_TAC[
RIGHT_IMP_EXISTS_THM] THEN INDUCT_TAC THENL
   [REWRITE_TAC[
LT] THEN MESON_TAC[]; ALL_TAC] THEN
  X_GEN_TAC `P:real->bool` THEN
  POP_ASSUM(MP_TAC o SPEC `\z. P z /\ ~(z = (i:num->real) N)`) THEN
  DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
  EXISTS_TAC `abs(a) + abs(i(N:num)) + &1` THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[
LT] THEN
  MP_TAC(REAL_ARITH `!x v. x < abs(v) + abs(x) + &1`) THEN
  MP_TAC(REAL_ARITH `!u v x. x < v ==> x < abs(v) + abs(u) + &1`) THEN
  MESON_TAC[]);;
 
let POLY_ENTIRE_LEMMA = prove
 (`!p q. ~(poly p = poly []) /\ ~(poly q = poly [])
         ==> ~(poly (p ** q) = poly [])`,
  REPEAT GEN_TAC THEN REWRITE_TAC[
POLY_ROOTS_FINITE] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `N2:num` (X_CHOOSE_TAC `i2:num->real`)) THEN
  DISCH_THEN(X_CHOOSE_THEN `N1:num` (X_CHOOSE_TAC `i1:num->real`)) THEN
  EXISTS_TAC `N1 + N2:num` THEN
  EXISTS_TAC `\n:num. if n < N1 then i1(n):real else i2(n - N1)` THEN
  X_GEN_TAC `x:real` THEN REWRITE_TAC[
REAL_ENTIRE; 
POLY_MUL] THEN
  DISCH_THEN(DISJ_CASES_THEN (ANTE_RES_THEN (X_CHOOSE_TAC `n:num`))) THENL
   [EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
    FIRST_ASSUM(MP_TAC o CONJUNCT1) THEN ARITH_TAC;
    EXISTS_TAC `N1 + n:num` THEN ASM_REWRITE_TAC[
LT_ADD_LCANCEL] THEN
    REWRITE_TAC[ARITH_RULE `~(m + n < m:num)`] THEN
    AP_TERM_TAC THEN ARITH_TAC]);;
 
let POLY_ENTIRE = prove
 (`!p q. (poly (p ** q) = poly []) <=>
         (poly p = poly []) \/ (poly q = poly [])`,
 
let POLY_PRIME_EQ_0 = prove
 (`!a. ~(poly [a ; &1] = poly [])`,
  GEN_TAC THEN REWRITE_TAC[
FUN_EQ_THM; poly] THEN
  DISCH_THEN(MP_TAC o SPEC `&1 - a`) THEN
  REAL_ARITH_TAC);;
 
let POLY_ZERO_LEMMA = prove
 (`!h t. (poly (CONS h t) = poly []) ==> (h = &0) /\ (poly t = poly [])`,
  let lemma = REWRITE_RULE[
FUN_EQ_THM; poly] 
POLY_ROOTS_FINITE in
  REPEAT GEN_TAC THEN REWRITE_TAC[
FUN_EQ_THM; poly] THEN
  ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THENL
   [REWRITE_TAC[REAL_ADD_LID];
    DISCH_THEN(MP_TAC o SPEC `&0`) THEN
    POP_ASSUM MP_TAC THEN REAL_ARITH_TAC] THEN
  CONV_TAC CONTRAPOS_CONV THEN
  DISCH_THEN(MP_TAC o REWRITE_RULE[lemma]) THEN
  DISCH_THEN(X_CHOOSE_THEN `N:num` (X_CHOOSE_TAC `i:num->real`)) THEN
  MP_TAC(SPECL [`i:num->real`; `N:num`; `\x. poly t x = &0`] 
FINITE_LEMMA) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `a:real`) THEN
  DISCH_THEN(MP_TAC o SPEC `abs(a) + &1`) THEN
  REWRITE_TAC[
REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THENL
   [REAL_ARITH_TAC;
    DISCH_THEN(MP_TAC o MATCH_MP (ASSUME `!x. (poly t x = &0) ==> x < a`)) THEN
    REAL_ARITH_TAC]);;
 
let POLY_ZERO = prove
 (`!p. (poly p = poly []) <=> 
ALL (\c. c = &0) p`,
  LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[
ALL] THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o MATCH_MP 
POLY_ZERO_LEMMA) THEN ASM_REWRITE_TAC[];
    POP_ASSUM(SUBST1_TAC o SYM) THEN STRIP_TAC THEN
    ASM_REWRITE_TAC[
FUN_EQ_THM; poly] THEN REAL_ARITH_TAC]);;
 
let POLY_DIFF_ZERO = prove
 (`!p. (poly p = poly []) ==> (poly (diff p) = poly [])`,
  REWRITE_TAC[
POLY_ZERO] THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[
poly_diff; 
NOT_CONS_NIL] THEN
  REWRITE_TAC[
ALL; 
TL] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  SPEC_TAC(`1`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN
  SPEC_TAC(`t:real list`,`t:real list`) THEN
  LIST_INDUCT_TAC THEN REWRITE_TAC[
ALL; 
poly_diff_aux] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[
REAL_MUL_RZERO] THEN
  FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
 
let POLY_PRIMES = prove
 (`!a p q. [a; &1] divides (p ** q) <=>
          [a; &1] divides p \/ [a; &1] divides q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides; 
POLY_MUL; 
FUN_EQ_THM; poly] THEN
  REWRITE_TAC[
REAL_MUL_RZERO; 
REAL_ADD_RID; 
REAL_MUL_RID] THEN EQ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `r:real list` (MP_TAC o SPEC `--a`)) THEN
    REWRITE_TAC[
REAL_ENTIRE; GSYM 
real_sub; 
REAL_SUB_REFL; 
REAL_MUL_LZERO] THEN
    DISCH_THEN DISJ_CASES_TAC THENL [DISJ1_TAC; DISJ2_TAC] THEN
    (POP_ASSUM(MP_TAC o REWRITE_RULE[
POLY_LINEAR_DIVIDES]) THEN
     REWRITE_TAC[
REAL_NEG_NEG] THEN
     DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC
        (X_CHOOSE_THEN `s:real list` SUBST_ALL_TAC)) THENL
      [EXISTS_TAC `[]:real list` THEN REWRITE_TAC[poly; 
REAL_MUL_RZERO];
       EXISTS_TAC `s:real list` THEN GEN_TAC THEN
       REWRITE_TAC[
POLY_MUL; poly] THEN REAL_ARITH_TAC]);
    DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_TAC `s:real list`)) THEN
    ASM_REWRITE_TAC[] THENL
     [EXISTS_TAC `s ** q`; EXISTS_TAC `p ** s`] THEN
    GEN_TAC THEN REWRITE_TAC[
POLY_MUL] THEN REAL_ARITH_TAC]);;
 
let POLY_DIVIDES_TRANS = prove
 (`!p q r. p divides q /\ q divides r ==> p divides r`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN
  EXISTS_TAC `t ** s` THEN
  ASM_REWRITE_TAC[
FUN_EQ_THM; 
POLY_MUL; REAL_MUL_ASSOC]);;
 
let POLY_DIVIDES_ADD = prove
 (`!p q r. p divides q /\ p divides r ==> p divides (q ++ r)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN
  EXISTS_TAC `t ++ s` THEN
  ASM_REWRITE_TAC[
FUN_EQ_THM; 
POLY_ADD; 
POLY_MUL] THEN
  REAL_ARITH_TAC);;
 
let POLY_DIVIDES_SUB = prove
 (`!p q r. p divides q /\ p divides (q ++ r) ==> p divides r`,
  REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `s:real list` ASSUME_TAC) THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real list` ASSUME_TAC) THEN
  EXISTS_TAC `s ++ neg(t)` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
  REWRITE_TAC[
FUN_EQ_THM; 
POLY_ADD; 
POLY_MUL; 
POLY_NEG] THEN
  DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
  REWRITE_TAC[REAL_ADD_LDISTRIB; 
REAL_MUL_RNEG] THEN
  ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);;
 
let POLY_DIVIDES_SUB2 = prove
 (`!p q r. p divides r /\ p divides (q ++ r) ==> p divides q`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC 
POLY_DIVIDES_SUB THEN
  EXISTS_TAC `r:real list` THEN ASM_REWRITE_TAC[] THEN
  UNDISCH_TAC `p divides (q ++ r)` THEN
  REWRITE_TAC[divides; 
POLY_ADD; 
FUN_EQ_THM; 
POLY_MUL] THEN
  DISCH_THEN(X_CHOOSE_TAC `s:real list`) THEN
  EXISTS_TAC `s:real list` THEN
  X_GEN_TAC `x:real` THEN POP_ASSUM(MP_TAC o SPEC `x:real`) THEN
  REAL_ARITH_TAC);;
 
let POLY_ORDER_EXISTS = prove
 (`!a d. !p. (
LENGTH p = d) /\ ~(poly p = poly [])
             ==> ?n. ([--a; &1] exp n) divides p /\
                     ~(([--a; &1] exp (SUC n)) divides p)`,
  GEN_TAC THEN
  (STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION)
    `(!p q. mulexp 0 p q = q) /\
     (!p q n. mulexp (SUC n) p q = p ** (mulexp n p q))` THEN
  SUBGOAL_THEN
   `!d. !p. (
LENGTH p = d) /\ ~(poly p = poly [])
           ==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\
                     ~(poly q a = &0)`
  MP_TAC THENL
   [INDUCT_TAC THENL
     [REWRITE_TAC[
LENGTH_EQ_NIL] THEN MESON_TAC[]; ALL_TAC] THEN
    X_GEN_TAC `p:real list` THEN
    ASM_CASES_TAC `poly p a = &0` THENL
     [STRIP_TAC THEN UNDISCH_TAC `poly p a = &0` THEN
      DISCH_THEN(MP_TAC o REWRITE_RULE[
POLY_LINEAR_DIVIDES]) THEN
      DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
      DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN
      UNDISCH_TAC
       `!p. (
LENGTH p = d) /\ ~(poly p = poly [])
            ==> ?n q. (p = mulexp (n:num) [--a; &1] q) /\
                      ~(poly q a = &0)` THEN
      DISCH_THEN(MP_TAC o SPEC `q:real list`) THEN
      RULE_ASSUM_TAC(REWRITE_RULE[
POLY_LENGTH_MUL; 
POLY_ENTIRE;
        DE_MORGAN_THM; 
SUC_INJ]) THEN
      ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `n:num`
       (X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN
      EXISTS_TAC `SUC n` THEN EXISTS_TAC `s:real list` THEN
      ASM_REWRITE_TAC[];
      STRIP_TAC THEN EXISTS_TAC `0` THEN EXISTS_TAC `p:real list` THEN
      ASM_REWRITE_TAC[]];
    DISCH_TAC THEN REPEAT GEN_TAC THEN
    DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
    DISCH_THEN(X_CHOOSE_THEN `n:num`
       (X_CHOOSE_THEN `s:real list` STRIP_ASSUME_TAC)) THEN
    EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[divides] THEN CONJ_TAC THENL
     [EXISTS_TAC `s:real list` THEN
      SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
      ASM_REWRITE_TAC[
poly_exp; 
FUN_EQ_THM; 
POLY_MUL; poly] THEN
      REAL_ARITH_TAC;
      DISCH_THEN(X_CHOOSE_THEN `r:real list` MP_TAC) THEN
      SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
      ASM_REWRITE_TAC[] THENL
       [UNDISCH_TAC `~(poly s a = &0)` THEN CONV_TAC CONTRAPOS_CONV THEN
        REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
        REWRITE_TAC[poly; 
poly_exp; 
POLY_MUL] THEN REAL_ARITH_TAC;
        REWRITE_TAC[] THEN ONCE_ASM_REWRITE_TAC[] THEN
        ONCE_REWRITE_TAC[
poly_exp] THEN
        REWRITE_TAC[GSYM 
POLY_MUL_ASSOC; 
POLY_MUL_LCANCEL] THEN
        REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL
         [REWRITE_TAC[
FUN_EQ_THM] THEN
          DISCH_THEN(MP_TAC o SPEC `a + &1`) THEN
          REWRITE_TAC[poly] THEN REAL_ARITH_TAC;
          DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN REWRITE_TAC[]]]]]);;
 
let POLY_ORDER = prove
 (`!p a. ~(poly p = poly [])
         ==> ?!n. ([--a; &1] exp n) divides p /\
                      ~(([--a; &1] exp (SUC n)) divides p)`,
 
let ORDER = prove
 (`!p a n. ([--a; &1] exp n) divides p /\
           ~(([--a; &1] exp (SUC n)) divides p) <=>
           (n = order a p) /\
           ~(poly p = poly [])`,
  REPEAT GEN_TAC THEN REWRITE_TAC[order] THEN
  EQ_TAC THEN STRIP_TAC THENL
   [SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
     [FIRST_ASSUM(UNDISCH_TAC o check is_neg o concl) THEN
      CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[divides] THEN
      DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `[]:real list` THEN
      REWRITE_TAC[
FUN_EQ_THM; 
POLY_MUL; poly; 
REAL_MUL_RZERO];
      ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN
      MATCH_MP_TAC 
SELECT_UNIQUE THEN REWRITE_TAC[]];
    ONCE_ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV] THEN
  ASM_MESON_TAC[
POLY_ORDER]);;
 
let ORDER_THM = prove
 (`!p a. ~(poly p = poly [])
         ==> ([--a; &1] exp (order a p)) divides p /\
             ~(([--a; &1] exp (SUC(order a p))) divides p)`,
 
let ORDER_UNIQUE = prove
 (`!p a n. ~(poly p = poly []) /\
           ([--a; &1] exp n) divides p /\
           ~(([--a; &1] exp (SUC n)) divides p)
           ==> (n = order a p)`,
 
let ORDER_ROOT = prove
 (`!p a. (poly p a = &0) <=> (poly p = poly []) \/ ~(order a p = 0)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `poly p = poly []` THEN
  ASM_REWRITE_TAC[poly] THEN EQ_TAC THENL
   [DISCH_THEN(MP_TAC o REWRITE_RULE[
POLY_LINEAR_DIVIDES]) THEN
    ASM_CASES_TAC `p:real list = []` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `q:real list` SUBST_ALL_TAC) THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP 
ORDER_THM) THEN
    ASM_REWRITE_TAC[
poly_exp; DE_MORGAN_THM] THEN DISJ2_TAC THEN
    REWRITE_TAC[divides] THEN EXISTS_TAC `q:real list` THEN
    REWRITE_TAC[
FUN_EQ_THM; 
POLY_MUL; poly] THEN REAL_ARITH_TAC;
    DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `a:real` o MATCH_MP 
ORDER_THM) THEN
    UNDISCH_TAC `~(order a p = 0)` THEN
    SPEC_TAC(`order a p`,`n:num`) THEN
    INDUCT_TAC THEN ASM_REWRITE_TAC[
poly_exp; 
NOT_SUC] THEN
    DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `s:real list` SUBST1_TAC) THEN
    REWRITE_TAC[
POLY_MUL; poly] THEN REAL_ARITH_TAC]);;
 
let ORDER_DIVIDES = prove
 (`!p a n. ([--a; &1] exp n) divides p <=>
           (poly p = poly []) \/ n <= order a p`,
 
let ORDER_DECOMP = prove
 (`!p a. ~(poly p = poly [])
         ==> ?q. (poly p = poly (([--a; &1] exp (order a p)) ** q)) /\
                 ~([--a; &1] divides q)`,
  REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP 
ORDER_THM) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC o SPEC `a:real`) THEN
  DISCH_THEN(X_CHOOSE_TAC `q:real list` o REWRITE_RULE[divides]) THEN
  EXISTS_TAC `q:real list` THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN
  UNDISCH_TAC `~([-- a; &1] exp SUC (order a p) divides p)` THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[divides] THEN
  EXISTS_TAC `r:real list` THEN
  ASM_REWRITE_TAC[
POLY_MUL; 
FUN_EQ_THM; 
poly_exp] THEN
  REAL_ARITH_TAC);;
 
let ORDER_MUL = prove
 (`!a p q. ~(poly (p ** q) = poly []) ==>
           (order a (p ** q) = order a p + order a q)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
  REWRITE_TAC[
POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
  SUBGOAL_THEN `(order a p + order a q = order a (p ** q)) /\
                ~(poly (p ** q) = poly [])`
  MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
  REWRITE_TAC[GSYM 
ORDER] THEN CONJ_TAC THENL
   [MP_TAC(CONJUNCT1 (SPEC `a:real`
      (MATCH_MP 
ORDER_THM (ASSUME `~(poly p = poly [])`)))) THEN
    DISCH_THEN(X_CHOOSE_TAC `r: real list` o REWRITE_RULE[divides]) THEN
    MP_TAC(CONJUNCT1 (SPEC `a:real`
      (MATCH_MP 
ORDER_THM (ASSUME `~(poly q = poly [])`)))) THEN
    DISCH_THEN(X_CHOOSE_TAC `s: real list` o REWRITE_RULE[divides]) THEN
    REWRITE_TAC[divides; 
FUN_EQ_THM] THEN EXISTS_TAC `s ** r` THEN
    ASM_REWRITE_TAC[
POLY_MUL; 
POLY_EXP_ADD] THEN REAL_ARITH_TAC;
    X_CHOOSE_THEN `r: real list` STRIP_ASSUME_TAC
    (SPEC `a:real` (MATCH_MP 
ORDER_DECOMP (ASSUME `~(poly p = poly [])`))) THEN
    X_CHOOSE_THEN `s: real list` STRIP_ASSUME_TAC
    (SPEC `a:real` (MATCH_MP 
ORDER_DECOMP (ASSUME `~(poly q = poly [])`))) THEN
    ASM_REWRITE_TAC[divides; 
FUN_EQ_THM; 
POLY_EXP_ADD; 
POLY_MUL; 
poly_exp] THEN
    DISCH_THEN(X_CHOOSE_THEN `t:real list` STRIP_ASSUME_TAC) THEN
    SUBGOAL_THEN `[--a; &1] divides (r ** s)` MP_TAC THENL
     [ALL_TAC; ASM_REWRITE_TAC[
POLY_PRIMES]] THEN
    REWRITE_TAC[divides] THEN EXISTS_TAC `t:real list` THEN
    SUBGOAL_THEN `poly ([-- a; &1] exp (order a p) ** r ** s) =
                  poly ([-- a; &1] exp (order a p) ** ([-- a; &1] ** t))`
    MP_TAC THENL
     [ALL_TAC; MESON_TAC[
POLY_MUL_LCANCEL; 
POLY_EXP_PRIME_EQ_0]] THEN
    SUBGOAL_THEN `poly ([-- a; &1] exp (order a q) **
                        [-- a; &1] exp (order a p) ** r ** s) =
                  poly ([-- a; &1] exp (order a q) **
                        [-- a; &1] exp (order a p) **
                        [-- a; &1] ** t)`
    MP_TAC THENL
     [ALL_TAC; MESON_TAC[
POLY_MUL_LCANCEL; 
POLY_EXP_PRIME_EQ_0]] THEN
    REWRITE_TAC[
FUN_EQ_THM; 
POLY_MUL; 
POLY_ADD] THEN
    FIRST_ASSUM(UNDISCH_TAC o check is_forall o concl) THEN
    REWRITE_TAC[
REAL_MUL_AC]]);;
 
let ORDER_DIFF = prove
 (`!p a. ~(poly (diff p) = poly []) /\
         ~(order a p = 0)
         ==> (order a p = SUC (order a (diff p)))`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  SUBGOAL_THEN `~(poly p = poly [])` MP_TAC THENL
   [ASM_MESON_TAC[
POLY_DIFF_ZERO]; ALL_TAC] THEN
  DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o
    SPEC `a:real` o MATCH_MP 
ORDER_DECOMP) THEN
  SPEC_TAC(`order a p`,`n:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[
NOT_SUC; 
SUC_INJ] THEN
  STRIP_TAC THEN MATCH_MP_TAC 
ORDER_UNIQUE THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `!r. r divides (diff p) <=>
                    r divides (diff ([-- a; &1] exp SUC n ** q))`
  (fun th -> REWRITE_TAC[th]) THENL
   [GEN_TAC THEN REWRITE_TAC[divides] THEN
    FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP 
POLY_DIFF_WELLDEF th]);
    ALL_TAC] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[divides; 
FUN_EQ_THM] THEN
    EXISTS_TAC `[--a; &1] ** (diff q) ++ &(SUC n) ## q` THEN
    REWRITE_TAC[
POLY_DIFF_MUL; 
POLY_DIFF_EXP_PRIME;
      
POLY_ADD; 
POLY_MUL; 
POLY_CMUL] THEN
    REWRITE_TAC[
poly_exp; 
POLY_MUL] THEN REAL_ARITH_TAC;
    REWRITE_TAC[
FUN_EQ_THM; divides; 
POLY_DIFF_MUL; 
POLY_DIFF_EXP_PRIME;
      
POLY_ADD; 
POLY_MUL; 
POLY_CMUL] THEN
    DISCH_THEN(X_CHOOSE_THEN `r:real list` ASSUME_TAC) THEN
    UNDISCH_TAC `~([-- a; &1] divides q)` THEN
    REWRITE_TAC[divides] THEN
    EXISTS_TAC `inv(&(SUC n)) ## (r ++ neg(diff q))` THEN
    SUBGOAL_THEN
        `poly ([--a; &1] exp n ** q) =
         poly ([--a; &1] exp n ** ([-- a; &1] ** (inv (&(SUC n)) ##
                                   (r ++ neg (diff q)))))`
    MP_TAC THENL
     [ALL_TAC; MESON_TAC[
POLY_MUL_LCANCEL; 
POLY_EXP_PRIME_EQ_0]] THEN
    REWRITE_TAC[
FUN_EQ_THM] THEN X_GEN_TAC `x:real` THEN
    SUBGOAL_THEN
        `!a b. (&(SUC n) * a = &(SUC n) * b) ==> (a = b)`
    MATCH_MP_TAC THENL
     [REWRITE_TAC[
REAL_EQ_MUL_LCANCEL; REAL_OF_NUM_EQ; 
NOT_SUC]; ALL_TAC] THEN
    REWRITE_TAC[
POLY_MUL; 
POLY_CMUL] THEN
    SUBGOAL_THEN `!a b c. &(SUC n) * a * b * inv(&(SUC n)) * c =
                          a * b * c`
    (fun th -> REWRITE_TAC[th]) THENL
      [REPEAT GEN_TAC THEN
       GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
       REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN
       AP_TERM_TAC THEN
       GEN_REWRITE_TAC LAND_CONV [REAL_MUL_SYM] THEN
       GEN_REWRITE_TAC RAND_CONV [GSYM 
REAL_MUL_RID] THEN
       REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN AP_TERM_TAC THEN
       MATCH_MP_TAC 
REAL_MUL_RINV THEN
       REWRITE_TAC[REAL_OF_NUM_EQ; 
NOT_SUC]; ALL_TAC] THEN
    FIRST_ASSUM(MP_TAC o SPEC `x:real`) THEN
    REWRITE_TAC[
poly_exp; 
POLY_MUL; 
POLY_ADD; 
POLY_NEG] THEN
    REAL_ARITH_TAC]);;
 
let POLY_SQUAREFREE_DECOMP_ORDER = prove
 (`!p q d e r s.
        ~(poly (diff p) = poly []) /\
        (poly p = poly (q ** d)) /\
        (poly (diff p) = poly (e ** d)) /\
        (poly d = poly (r ** p ++ s ** diff p))
        ==> !a. order a q = (if order a p = 0 then 0 else 1)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `order a p = order a q + order a d` MP_TAC THENL
   [MATCH_MP_TAC 
EQ_TRANS THEN EXISTS_TAC `order a (q ** d)` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC 
ORDER_POLY THEN ASM_REWRITE_TAC[];
      MATCH_MP_TAC 
ORDER_MUL THEN
      FIRST_ASSUM(fun th ->
        GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SYM th]) THEN
      ASM_MESON_TAC[
POLY_DIFF_ZERO]]; ALL_TAC] THEN
  ASM_CASES_TAC `order a p = 0` THEN ASM_REWRITE_TAC[] THENL
   [ARITH_TAC; ALL_TAC] THEN
  SUBGOAL_THEN `order a (diff p) =
                order a e + order a d` MP_TAC THENL
   [MATCH_MP_TAC 
EQ_TRANS THEN EXISTS_TAC `order a (e ** d)` THEN
    CONJ_TAC THENL
     [ASM_MESON_TAC[
ORDER_POLY]; ASM_MESON_TAC[
ORDER_MUL]]; ALL_TAC] THEN
  SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
   [ASM_MESON_TAC[
POLY_DIFF_ZERO]; ALL_TAC] THEN
  MP_TAC(SPECL [`p:real list`; `a:real`] 
ORDER_DIFF) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC(AP_TERM `
PRE` th)) THEN
  REWRITE_TAC[
PRE] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
  SUBGOAL_THEN `order a (diff p) <= order a d` MP_TAC THENL
   [SUBGOAL_THEN `([--a; &1] exp (order a (diff p))) divides d`
    MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[
POLY_ENTIRE; 
ORDER_DIVIDES]] THEN
    SUBGOAL_THEN
      `([--a; &1] exp (order a (diff p))) divides p /\
       ([--a; &1] exp (order a (diff p))) divides (diff p)`
    MP_TAC THENL
     [REWRITE_TAC[
ORDER_DIVIDES; 
LE_REFL] THEN DISJ2_TAC THEN
      REWRITE_TAC[ASSUME `order a (diff p) = 
PRE (order a p)`] THEN
      ARITH_TAC;
      DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[divides] THEN
      REWRITE_TAC[ASSUME `poly d = poly (r ** p ++ s ** diff p)`] THEN
      POP_ASSUM_LIST(K ALL_TAC) THEN
      DISCH_THEN(X_CHOOSE_THEN `f:real list` ASSUME_TAC) THEN
      DISCH_THEN(X_CHOOSE_THEN `g:real list` ASSUME_TAC) THEN
      EXISTS_TAC `r ** g ++ s ** f` THEN ASM_REWRITE_TAC[] THEN
      ASM_REWRITE_TAC[
FUN_EQ_THM; 
POLY_MUL; 
POLY_ADD] THEN ARITH_TAC];
    ARITH_TAC]);;
 
let RSQUAREFREE_ROOTS = prove
 (`!p. rsquarefree p <=> !a. ~((poly p a = &0) /\ (poly (diff p) a = &0))`,
  GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN
  ASM_CASES_TAC `poly p = poly []` THEN ASM_REWRITE_TAC[] THENL
   [FIRST_ASSUM(SUBST1_TAC o MATCH_MP 
POLY_DIFF_ZERO) THEN
    ASM_REWRITE_TAC[poly; 
NOT_FORALL_THM];
    ASM_CASES_TAC `poly(diff p) = poly []` THEN ASM_REWRITE_TAC[] THENL
     [FIRST_ASSUM(X_CHOOSE_THEN `h:real` MP_TAC o
        MATCH_MP 
POLY_DIFF_ISZERO) THEN
      DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN
      DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP 
ORDER_POLY th]) THEN
      UNDISCH_TAC `~(poly p = poly [])` THEN ASM_REWRITE_TAC[poly] THEN
      REWRITE_TAC[
FUN_EQ_THM; poly; 
REAL_MUL_RZERO; 
REAL_ADD_RID] THEN
      DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
      X_GEN_TAC `a:real` THEN DISJ1_TAC THEN
      MP_TAC(SPECL [`[h:real]`; `a:real`] 
ORDER_ROOT) THEN
      ASM_REWRITE_TAC[
FUN_EQ_THM; poly; 
REAL_MUL_RZERO; 
REAL_ADD_RID];
      ASM_REWRITE_TAC[
ORDER_ROOT; DE_MORGAN_THM; num_CONV `1`] THEN
      ASM_MESON_TAC[
ORDER_DIFF; 
SUC_INJ]]]);;
 
let RSQUAREFREE_DECOMP = prove
 (`!p a. rsquarefree p /\ (poly p a = &0)
         ==> ?q. (poly p = poly ([--a; &1] ** q)) /\
                 ~(poly q a = &0)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[rsquarefree] THEN STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP 
ORDER_DECOMP) THEN
  DISCH_THEN(X_CHOOSE_THEN `q:real list` MP_TAC o SPEC `a:real`) THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [
ORDER_ROOT]) THEN
  FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:real`) THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[ARITH] THEN
  DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
  EXISTS_TAC `q:real list` THEN CONJ_TAC THENL
   [REWRITE_TAC[
FUN_EQ_THM; 
POLY_MUL] THEN GEN_TAC THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV) [num_CONV `1`] THEN
    REWRITE_TAC[
poly_exp; 
POLY_MUL] THEN
    REWRITE_TAC[poly] THEN REAL_ARITH_TAC;
    DISCH_TAC THEN UNDISCH_TAC `~([-- a; &1] divides q)` THEN
    REWRITE_TAC[divides] THEN
    UNDISCH_TAC `poly q a = &0` THEN
    GEN_REWRITE_TAC LAND_CONV [
POLY_LINEAR_DIVIDES] THEN
    ASM_CASES_TAC `q:real list = []` THEN ASM_REWRITE_TAC[] THENL
     [EXISTS_TAC `[] : real list` THEN REWRITE_TAC[
FUN_EQ_THM] THEN
      REWRITE_TAC[
POLY_MUL; poly; 
REAL_MUL_RZERO];
      MESON_TAC[]]]);;
 
let POLY_SQUAREFREE_DECOMP = prove
 (`!p q d e r s.
        ~(poly (diff p) = poly []) /\
        (poly p = poly (q ** d)) /\
        (poly (diff p) = poly (e ** d)) /\
        (poly d = poly (r ** p ++ s ** diff p))
        ==> rsquarefree q /\ (!a. (poly q a = &0) <=> (poly p a = &0))`,
  REPEAT GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
    ASSUME_TAC(MATCH_MP 
POLY_SQUAREFREE_DECOMP_ORDER th)) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  SUBGOAL_THEN `~(poly p = poly [])` ASSUME_TAC THENL
   [ASM_MESON_TAC[
POLY_DIFF_ZERO]; ALL_TAC] THEN
  DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
  UNDISCH_TAC `~(poly p = poly [])` THEN
  DISCH_THEN(fun th -> MP_TAC th THEN MP_TAC th) THEN
  DISCH_THEN(fun th -> ASM_REWRITE_TAC[] THEN ASSUME_TAC th) THEN
  ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[
POLY_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN
  UNDISCH_TAC `poly p = poly (q ** d)` THEN
  DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
  ASM_REWRITE_TAC[rsquarefree; 
ORDER_ROOT] THEN
  CONJ_TAC THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[ARITH]);;
 
let POLY_NORMALIZE = prove
 (`!p. poly (normalize p) = poly p`,
  LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN
  ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; 
FUN_EQ_THM] THEN
  UNDISCH_TAC `poly (normalize t) = poly t` THEN
  DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN
  REWRITE_TAC[
REAL_MUL_RZERO; REAL_ADD_LID]);;
 
let DEGREE_ZERO = prove
 (`!p. (poly p = poly []) ==> (degree p = 0)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[degree] THEN
  SUBGOAL_THEN `normalize p = []` SUBST1_TAC THENL
   [POP_ASSUM MP_TAC THEN SPEC_TAC(`p:real list`,`p:real list`) THEN
    REWRITE_TAC[
POLY_ZERO] THEN
    LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; 
ALL] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `normalize t = []` (fun th -> REWRITE_TAC[th]) THEN
    FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
    REWRITE_TAC[
LENGTH; 
PRE]]);;
 
let pth = prove
   (`normalize (CONS h t) =
      (\n. if n = [] then if h = &0 then [] else [h] else CONS h n)
      (normalize t)`,
    REWRITE_TAC[normalize]) in
  let norm_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 normalize]
  and norm_conv1 = GEN_REWRITE_CONV I [pth]
  and norm_conv2 = GEN_REWRITE_CONV DEPTH_CONV
   [
COND_CLAUSES; 
NOT_CONS_NIL; EQT_INTRO(SPEC_ALL 
EQ_REFL)] in
  let rec POLY_NORMALIZE_CONV tm =
   (norm_conv0 ORELSEC
    (norm_conv1 THENC
     RAND_CONV POLY_NORMALIZE_CONV THENC
     BETA_CONV THENC
     RATOR_CONV(RAND_CONV(RATOR_CONV(LAND_CONV REAL_RAT_EQ_CONV))) THENC
     norm_conv2)) tm in
  POLY_NORMALIZE_CONV;;
 
let POLY_ADD_SYM = prove
 (`!x y . x ++ y = y ++ x`,
  let lem1 = ASSUME `!y . t ++ y = y ++ t` in
  let lem2 = SPEC `t':(real)list` lem1 in
  LIST_INDUCT_TAC THENL
   [LIST_INDUCT_TAC THENL [SIMP_TAC[
poly_add]; SIMP_TAC[
poly_add]];
    LIST_INDUCT_TAC THENL
      [SIMP_TAC[
poly_add];
       SIMP_TAC[
POLY_ADD_CLAUSES] THEN
       ONCE_REWRITE_TAC[lem2] THEN
       SIMP_TAC[SPECL [`h:real`;`h':real`] REAL_ADD_SYM]
      ]
   ]);;
 
let HD_POLY_ADD = prove
 (`!p1 p2. ~(p1 = []) /\ ~(p2 = []) ==> 
HD (p1 ++ p2) = (
HD p1) + (
HD p2)`,
   LIST_INDUCT_TAC THENL
    [SIMP_TAC[];
      LIST_INDUCT_TAC THENL
       [SIMP_TAC[];
        SIMP_TAC[
NOT_CONS_NIL;
poly_add] THEN
        ONCE_REWRITE_TAC[ISPECL [`h':real`;`t':(real)list`] 
NOT_CONS_NIL] THEN
        SIMP_TAC[
HD]
       ]
    ]);;
 
let POLY_ADD_IDENT = prove
 (`neutral (++) = []`,
  let l1 = ASSUME `!x. (!y. x ++ y = y /\ y ++ x = y)
                     ==> (!y. (CONS h t) ++ y = y /\ y ++ (CONS h t) = y)` in
  let l2 = SPEC `[]:(real)list` l1 in
  let l3 = SIMP_RULE[
POLY_ADD_CLAUSES] l2 in
  let l4 = SPEC `[]:(real)list` l3 in
  let l5 = CONJUNCT1 l4 in
  let l6 = SIMP_RULE[
POLY_ADD_CLAUSES;
NOT_CONS_NIL] l5 in
  let l7 = NOT_INTRO (DISCH_ALL l6) in
  ONCE_REWRITE_TAC[neutral] THEN SELECT_ELIM_TAC THEN LIST_INDUCT_TAC THENL
  [SIMP_TAC[];SIMP_TAC[l7]]);;
 
let POLY_MUL_LENGTH = prove
 (`!p h t. 
LENGTH (p ** (CONS h t)) >= 
LENGTH p`,
  let lemma01 = ASSUME `!h t'. 
LENGTH (t ** CONS h t') >= 
LENGTH t` in
  let lemma02 = SPECL [`h':real`;`t':(real)list`] lemma01 in
  let lemma03 = ONCE_REWRITE_RULE[ARITH_RULE `(x:num) >= y <=> SUC x >= SUC y`]
     lemma02 in
  
 
let POLY_SUM_EQUIV = prove
 (`!p x.
     ~(p = []) ==>
     poly p x = sum (0..(
PRE (
LENGTH p))) (\i. (
EL i p)*(x pow i))`,
  let lem000 = ARITH_RULE `0 <= 0 + 1 /\ 0 <= (LENGTH (t:(real)list))` in
  let lem001 = SPECL
                 [`f:num->real`;`0`;`0`;`LENGTH (t:(real)list)`]
                 SUM_COMBINE_R in
  let lem002 = MP lem001 lem000 in
  let lem003 = SPECL
                 [`f:num->real`;`1`;`LENGTH (t:(real)list)`]
                 SUM_OFFSET_0 in
  let lem004 = ASSUME `~((t:(real)list) = [])` in
  let lem005 = ONCE_REWRITE_RULE[GSYM LENGTH_EQ_NIL] lem004 in
  let lem006 = ONCE_REWRITE_RULE[ARITH_RULE `~(x = 0) <=> (1 <= x)`] lem005 in
  let lem007 = MP lem003 lem006 in
  let lem017 = ARITH_RULE `1 <= (LENGTH (t:(real)list))
                       ==> ((LENGTH t) - 1 = PRE (LENGTH t))` in
  let lem018 = MP lem017 lem006 in
  LIST_INDUCT_TAC THENL
    [     SIMP_TAC[NOT_CONS_NIL]
          ;
          ASM_CASES_TAC `(t:(real)list) = []` THENL
     [
          ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE]
     THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`]
     THEN ONCE_REWRITE_TAC[SUM_SING]
     THEN BETA_TAC
     THEN ONCE_REWRITE_TAC[EL]
     THEN ONCE_REWRITE_TAC[HD]
     THEN REAL_ARITH_TAC
     ;
          ASM_SIMP_TAC[POLY_CONST;LENGTH;PRE]
     THEN ONCE_REWRITE_TAC[poly]
     THEN ONCE_REWRITE_TAC[GSYM lem002]
     THEN ONCE_REWRITE_TAC[ARITH_RULE `0 + 1 = 1`]
     THEN ONCE_REWRITE_TAC[NUMSEG_CONV `0..0`]
     THEN ONCE_REWRITE_TAC[SUM_SING]
     THEN BETA_TAC
     THEN SIMP_TAC[EL;HD]
     THEN ONCE_REWRITE_TAC[lem007]
     THEN BETA_TAC
     THEN ONCE_REWRITE_TAC[GSYM ADD1]
     THEN SIMP_TAC[EL;TL]
     THEN ONCE_REWRITE_TAC[real_pow]
     THEN ONCE_REWRITE_TAC[REAL_MUL_RID]
     THEN ONCE_REWRITE_TAC[REAL_ARITH `(A:real) * B * C = B * (A * C)`]
     THEN ONCE_REWRITE_TAC[NSUM_LMUL]
     THEN ONCE_REWRITE_TAC[SUM_LMUL]
     THEN ASM_SIMP_TAC[]
     THEN SIMP_TAC[NOT_CONS_NIL]
     THEN ONCE_REWRITE_TAC[lem018]
     THEN SIMP_TAC[]
    ]]);;