(* ========================================================================= *) (* Borsuk-Ulam theorem for an ordinary 2-sphere in real^3. *) (* From Andrew Browder's article, AMM vol. 113 (2006), pp. 935-6 *) (* ========================================================================= *) needs "Multivariate/realanalysis.ml";; (* ------------------------------------------------------------------------- *) (* The Borsuk-Ulam theorem for the unit sphere. *) (* ------------------------------------------------------------------------- *)"g"] THEN REWRITE_TAC[COMPLEX_RING `x - y = Cx(&0) <=> y = x`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[NORM_EQ_1; DOT_3; VECTOR_3]] THEN REWRITE_TAC[GSYM REAL_POW_2; COMPLEX_SQNORM] THEN REWRITE_TAC[REAL_ARITH `r + i + s = &1 <=> s = &1 - (r + i)`] THEN MATCH_MP_TAC SQRT_POW_2 THEN REWRITE_TAC[GSYM COMPLEX_SQNORM] THEN ASM_SIMP_TAC[REAL_SUB_LE; ABS_SQUARE_LE_1; REAL_ABS_NORM]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `h:complex->complex` STRIP_ASSUME_TAC) THEN ABBREV_TAC `m = \z:complex. (h(z) - h(--z)) / (Cx pi * ii)` THEN SUBGOAL_THEN `!z:complex. norm(z) = &1 ==> cexp(Cx pi * ii * m z) = cexp(Cx pi * ii)` MP_TAC THENL [EXPAND_TAC "m" THEN REWRITE_TAC[COMPLEX_SUB_LDISTRIB; complex_div; COMPLEX_SUB_RDISTRIB] THEN SIMP_TAC[CX_INJ; PI_NZ; CEXP_SUB; COMPLEX_FIELD `~(p = Cx(&0)) ==> p * ii * h * inv(p * ii) = h`] THEN X_GEN_TAC `z:complex` THEN DISCH_TAC THEN SUBGOAL_THEN `cexp(h z) = k z /\ cexp(h(--z:complex)) = k(--z)` (CONJUNCTS_THEN SUBST1_TAC) THENL [CONJ_TAC THEN CONV_TAC SYM_CONV THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[dist; IN_CBALL; COMPLEX_SUB_LZERO; NORM_NEG; REAL_LE_REFL]; ALL_TAC] THEN REWRITE_TAC[EULER; RE_MUL_CX; IM_MUL_CX; RE_II; IM_II; COMPLEX_ADD_RID; REAL_MUL_RZERO; REAL_MUL_RID; SIN_PI; COS_PI; REAL_EXP_0; COMPLEX_MUL_RZERO; COMPLEX_MUL_LID] THEN MATCH_MP_TAC(COMPLEX_FIELD `~(y = Cx(&0)) /\ x = -- y ==> x / y = Cx(-- &1)`) THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[dist; IN_CBALL; COMPLEX_SUB_LZERO; NORM_NEG; REAL_LE_REFL]; MAP_EVERY EXPAND_TAC ["k"; "g"] THEN REWRITE_TAC[COMPLEX_NEG_SUB] THEN BINOP_TAC THEN AP_TERM_TAC THEN SIMP_TAC[CART_EQ; FORALL_3; VECTOR_3; VECTOR_NEG_COMPONENT; DIMINDEX_3; ARITH; RE_NEG; IM_NEG; NORM_NEG; REAL_NEG_NEG] THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SQRT_0; REAL_NEG_0]]; ALL_TAC] THEN REWRITE_TAC[CEXP_EQ; CX_MUL] THEN SIMP_TAC[CX_INJ; PI_NZ; COMPLEX_FIELD `~(p = Cx(&0)) ==> (p * ii * m = p * ii + (t * n * p) * ii <=> m = t * n + Cx(&1))`] THEN REWRITE_TAC[GSYM CX_ADD; GSYM CX_MUL] THEN DISCH_THEN(LABEL_TAC "*") THEN SUBGOAL_THEN `?n. !z. z IN {z | norm(z) = &1} ==> (m:complex->complex)(z) = n` MP_TAC THENL [MATCH_MP_TAC CONTINUOUS_DISCRETE_RANGE_CONSTANT THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[NORM_ARITH `norm z = dist(vec 0,z)`] THEN SIMP_TAC[GSYM sphere; CONNECTED_SPHERE; DIMINDEX_2; LE_REFL]; ALL_TAC] THEN CONJ_TAC THENL [EXPAND_TAC "m" THEN MATCH_MP_TAC CONTINUOUS_ON_COMPLEX_DIV THEN SIMP_TAC[CONTINUOUS_ON_CONST; COMPLEX_ENTIRE; II_NZ; CX_INJ; PI_NZ] THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_ON_COMPOSE) THEN CONJ_TAC THENL [MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN REWRITE_TAC[linear] THEN CONJ_TAC THEN VECTOR_ARITH_TAC; REWRITE_TAC[GSYM IMAGE_o]]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_SUBSET)) THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; NORM_NEG; IN_CBALL; COMPLEX_SUB_LZERO; dist; IN_ELIM_THM; REAL_LE_REFL]; ALL_TAC] THEN X_GEN_TAC `z:complex` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN X_GEN_TAC `w:complex` THEN STRIP_TAC THEN REMOVE_THEN "*" (fun th -> MP_TAC(SPEC `w:complex` th) THEN MP_TAC(SPEC `z:complex` th)) THEN ASM_REWRITE_TAC[] THEN REPEAT(DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC))) THEN REWRITE_TAC[GSYM CX_SUB; COMPLEX_NORM_CX] THEN MATCH_MP_TAC(REAL_ARITH `~(abs(x - y) < &1) ==> &1 <= abs((&2 * x + &1) - (&2 * y + &1))`) THEN ASM_SIMP_TAC[GSYM REAL_EQ_INTEGERS] THEN ASM_MESON_TAC[]; REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `v:complex`)] THEN SUBGOAL_THEN `?n. integer n /\ !z:complex. norm z = &1 ==> m z = Cx(&2 * n + &1)` MP_TAC THENL [REMOVE_THEN "*" (MP_TAC o SPEC `Cx(&1)`) THEN ASM_SIMP_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `n:real` MP_TAC) THEN EXPAND_TAC "m" THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `--Cx(&1)` th) THEN MP_TAC(SPEC `Cx(&1)` th)) THEN REWRITE_TAC[NORM_NEG; COMPLEX_NORM_CX; REAL_ABS_NUM; COMPLEX_NEG_NEG] THEN REWRITE_TAC[complex_div; COMPLEX_SUB_RDISTRIB] THEN MATCH_MP_TAC(COMPLEX_RING `~(z = Cx(&0)) ==> a - b = z ==> ~(b - a = z)`) THEN REWRITE_TAC[CX_INJ; REAL_ARITH `&2 * n + &1 = &0 <=> n = --(&1 / &2)`] THEN UNDISCH_TAC `integer n` THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN SIMP_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[integer] THEN REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_DIV; REAL_ABS_NUM] THEN REWRITE_TAC[REAL_ARITH `a / &2 = n <=> a = &2 * n`] THEN REWRITE_TAC[NOT_EXISTS_THM; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN REWRITE_TAC[EVEN_MULT; ARITH]);; (* ------------------------------------------------------------------------- *) (* The Borsuk-Ulam theorem for a general sphere. *) (* ------------------------------------------------------------------------- *)let THEOREM_1 =prove (`!f:real^3->real^2. f continuous_on {x | norm(x) = &1} ==> ?x. norm(x) = &1 /\ f(--x) = f(x)`,let BORSUK_ULAM =prove (`!f:real^3->real^2 a r. &0 <= r /\ f continuous_on {z | norm(z - a) = r} ==> ?x. norm(x) = r /\ f(a + x) = f(a - x)`,