(* =========================================================== *)
(* Formal floating point arithmetic                            *)
(* Author: Alexey Solovyev                                     *)
(* Date: 2012-10-27                                            *)
(* =========================================================== *)

(* Dependencies *)
needs "arith/nat.hl";;
needs "arith/num_exp_theory.hl";;
needs "arith/float_theory.hl";;
needs "arith/interval_arith.hl";;
needs "misc/vars.hl";;

(* FLOOR_DIV_DIV *)
needs "Library/floor.ml";;
(* sqrt and its properties *)
needs "Multivariate/vectors.ml";;

prioritize_real();;

module type Arith_float_sig =
  sig
    val mk_num_exp : term -> term -> term
    val dest_num_exp : term -> (term * term)
    val dest_float : term -> (string * term * term)
    val float_lt0 : term -> thm
    val float_gt0 : term -> thm
    val float_lt : term -> term -> thm
    val float_le0 : term -> thm
    val float_ge0 : term -> thm
    val float_le : term -> term -> thm
    val float_min : term -> term -> thm
    val float_max : term -> term -> thm
    val float_min_max : term -> term -> (thm * thm)
    val float_mul_eq : term -> term -> thm
    val float_mul_lo : int -> term -> term -> thm
    val float_mul_hi : int -> term -> term -> thm
    val float_div_lo : int -> term -> term -> thm
    val float_div_hi : int -> term -> term -> thm
    val float_add_lo : int -> term -> term -> thm
    val float_add_hi : int -> term -> term -> thm
    val float_sub_lo : int -> term -> term -> thm
    val float_sub_hi : int -> term -> term -> thm
    val float_sqrt_lo : int -> term -> thm
    val float_sqrt_hi : int -> term -> thm

    val reset_stat : unit -> unit
    val reset_cache : unit -> unit
    val print_stat : unit -> unit

    val dest_float_interval : term -> term * term * term
    val mk_float_interval_small_num : int -> thm
    val mk_float_interval_num : num -> thm

    val float_lo : int -> term -> thm
    val float_hi : int -> term -> thm

    val float_interval_round : int -> thm -> thm

    val float_interval_neg : thm -> thm
    val float_interval_mul : int -> thm -> thm -> thm
    val float_interval_div : int -> thm -> thm -> thm
    val float_interval_add : int -> thm -> thm -> thm
    val float_interval_sub : int -> thm -> thm -> thm
    val float_interval_sqrt : int -> thm -> thm

    val float_abs : term -> thm
	
    val FLOAT_TO_NUM_CONV : term -> thm
end;;


module Arith_float : Arith_float_sig = struct

open Big_int;;
open Arith_misc;;
open Arith_nat;;
open Num_exp_theory;;
open Float_theory;;
open Interval_arith;;
open Misc_vars;;

(* interval *)

let APPROX_INTERVAL' = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o SPEC_ALL) APPROX_INTERVAL;;

let interval_const = `interval_arith` and
    num_exp_const = `num_exp`;;

let b0_const = (fst o dest_comb o lhand o concl) (Arith_hash.def_array.(0));;
let b0_name = (fst o dest_const) b0_const;;
let base_const = mk_small_numeral Arith_hash.arith_base;;

let NUM_REMOVE = prove(mk_eq(mk_comb(Arith_hash.num_const, n_var_num), n_var_num), 
		       REWRITE_TAC[Arith_hash.num_def; NUMERAL]);;
(* B0 n = base * n *)
let b0_thm = prove(mk_eq(mk_comb(b0_const, n_var_num),
                         mk_binop mul_op_num base_const n_var_num),
                   REWRITE_TAC[Arith_hash.def_array.(0)] THEN
                     TRY ARITH_TAC THEN
                     GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV) [BIT0] THEN
                     ARITH_TAC);;
let dest_num_exp tm = let ltm, e_tm = dest_comb tm in rand ltm, e_tm;; let num_exp_const = `num_exp`;; let mk_num_exp n_tm e_tm = mk_binop num_exp_const n_tm e_tm;; (* float_num s n e -> "s", n, e *) let dest_float tm = let ltm, e_tm = dest_comb tm in let ltm, n_tm = dest_comb ltm in let float_tm, s_tm = dest_comb ltm in if (fst o dest_const) float_tm <> "float_num" then failwith "dest_float: not float" else (fst o dest_const) s_tm, n_tm, e_tm;; (************************************) let NUM_EXP_EXP' = SPEC_ALL NUM_EXP_EXP;; let NUM_EXP_0' = (SPEC_ALL o REWRITE_RULE[NUMERAL]) NUM_EXP_0;; let NUM_EXP_LE' = (UNDISCH_ALL o SPEC_ALL) NUM_EXP_LE;; let NUM_EXP_LT' = (UNDISCH_ALL o SPEC_ALL) NUM_EXP_LT;; (* B0 n = num_exp n bits *)
let normal_lemma1 = prove(mk_eq(mk_comb(b0_const, n_var_num), `num_exp n 1`),
   REWRITE_TAC[Arith_hash.def_array.(0); num_exp] THEN
     TRY ARITH_TAC THEN
     GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV) [BIT0] THEN
     ARITH_TAC);;
let NORMAL_LEMMA1 = NUMERALS_TO_NUM normal_lemma1;;
let normal_lemma2 = prove(mk_eq (mk_comb (b0_const, `num_exp n e`), `num_exp n (SUC e)`),
   REWRITE_TAC[normal_lemma1; NUM_EXP_EXP] THEN ARITH_TAC);;
let rec normalize tm = if (is_comb tm) then let ltm, rtm = dest_comb tm in let lname = (fst o dest_const) ltm in if (lname = b0_name) then let lth = INST[rtm, n_var_num] NORMAL_LEMMA1 in let rth, flag = normalize rtm in if flag then let ltm, lexp = (dest_comb o snd o dest_eq o concl) lth in let ltm, rtm = dest_comb ltm in let rn, rexp = (dest_comb o snd o dest_eq o concl) rth in let rn = rand rn in let th1 = AP_THM (AP_TERM ltm rth) lexp in let th2 = INST[rexp, e1_var_num; lexp, e2_var_num; rn, n_var_num] NUM_EXP_EXP' in let th3 = TRANS lth (TRANS th1 th2) in let ltm, rtm = (dest_comb o snd o dest_eq o concl) th3 in let add_th = raw_add_conv_hash rtm in let th4 = AP_TERM ltm add_th in (TRANS th3 th4, true) else (lth, true) else (REFL tm, false) else (REFL tm, false);; (* Converts a raw numeral to a num_exp expression *) let to_num_exp tm = let x, flag = normalize tm in if flag then x else INST[tm, n_var_num] NUM_EXP_0';; (************************************) let SYM_NUM_EXP_0' = SYM NUM_EXP_0';;
let NUM_EXP_n0 = 
prove(`!e. num_exp 0 e = 0`,
REWRITE_TAC[num_exp; MULT_CLAUSES]);;
let NUM_EXP_n0' = (REWRITE_RULE[NUMERAL] o SPEC_ALL) NUM_EXP_n0;; let NUM_EXP_DENORM = (UNDISCH_ALL o prove) (mk_imp(`e = _0 <=> F`, mk_eq(`num_exp n e`, mk_comb (b0_const, `num_exp n (PRE e)`))), REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SYM (REWRITE_CONV[NUMERAL] `0`)] THEN REWRITE_TAC[num_exp; b0_thm] THEN REWRITE_TAC[ARITH_RULE (mk_eq(mk_binop mul_op_num base_const `n * a:num`, mk_binop mul_op_num `n:num` (mk_binop mul_op_num base_const `a:num`)))] THEN REWRITE_TAC[GSYM EXP] THEN SIMP_TAC[ARITH_RULE `~(e = 0) ==> SUC (PRE e) = e`]);; (* Converts num_exp n e to a numeral by adding e B0's *) let rec denormalize tm = let ltm, etm = dest_comb tm in let ntm = rand ltm in if (etm = zero_const) then INST[ntm, n_var_num] SYM_NUM_EXP_0' else if ntm = zero_const then INST[etm, e_var_num] NUM_EXP_n0' else let e_th = raw_eq0_hash_conv etm in let th0' = INST[etm, e_var_num; ntm, n_var_num] NUM_EXP_DENORM in let th0 = MY_PROVE_HYP e_th th0' in let b0_tm, rtm = dest_comb(rand(concl th0)) in let ltm, pre_tm = dest_comb rtm in let pre_th = raw_pre_hash_conv pre_tm in let th1 = AP_TERM ltm pre_th in let th2 = denormalize (rand(concl th1)) in TRANS th0 (AP_TERM b0_tm (TRANS th1 th2));; (***************************************) let rec comb_number tm n = if (is_comb tm) then comb_number ((snd o dest_comb) tm) (n + 1) else n;; let make_lo_thm i = let th_concl = mk_binop `(<=):num->num->bool` (mk_comb (Arith_hash.const_array.(0), n_var_num)) (mk_comb (Arith_hash.const_array.(i), n_var_num)) in prove(th_concl, REWRITE_TAC[Arith_hash.def_array.(i); Arith_hash.def_array.(0)] THEN REWRITE_TAC[ARITH_LE; LE_REFL] THEN ARITH_TAC);; let lo_thm_array = Array.init Arith_hash.arith_base make_lo_thm;; let lo_thm_table = Hashtbl.create Arith_hash.arith_base;; for i = 0 to Arith_hash.arith_base - 1 do Hashtbl.add lo_thm_table Arith_hash.const_array.(i) lo_thm_array.(i); done;; let make_lo_thm2 i = let th_concl = mk_imp (`n <= m:num`, mk_binop `(<=):num->num->bool` (mk_comb (Arith_hash.const_array.(0), n_var_num)) (mk_comb (Arith_hash.const_array.(i), m_var_num))) in (UNDISCH_ALL o prove) (th_concl, REWRITE_TAC[Arith_hash.def_array.(i); Arith_hash.def_array.(0); ARITH_LE] THEN ARITH_TAC);; let lo_thm2_array = Array.init Arith_hash.arith_base make_lo_thm2;; let lo_thm2_table = Hashtbl.create Arith_hash.arith_base;; for i = 0 to Arith_hash.arith_base - 1 do Hashtbl.add lo_thm2_table Arith_hash.const_array.(i) lo_thm2_array.(i); done;; let make_hi_thm i = let th_concl = mk_imp (`n < m:num`, mk_binop `(<):num->num->bool` (mk_comb (Arith_hash.const_array.(i), n_var_num)) (mk_comb (Arith_hash.const_array.(0), m_var_num))) in (UNDISCH_ALL o prove) (th_concl, REWRITE_TAC[Arith_hash.def_array.(i); Arith_hash.def_array.(0); ARITH_LT] THEN ARITH_TAC);; let hi_thm_array = Array.init Arith_hash.arith_base make_hi_thm;; let hi_thm_table = Hashtbl.create Arith_hash.arith_base;; for i = 0 to Arith_hash.arith_base - 1 do Hashtbl.add hi_thm_table Arith_hash.const_array.(i) hi_thm_array.(i); done;; (***************************************) let LE_REFL' = SPEC_ALL LE_REFL;; let LE_TRANS' = (UNDISCH_ALL o SPEC_ALL o REWRITE_RULE[GSYM IMP_IMP]) LE_TRANS;; let lo_num_conv p tm = let n = comb_number tm 0 in if (n <= p) then INST[tm, n_var_num] LE_REFL' else let rec lo_bound n tm = let btm, rtm = dest_comb tm in let th0 = INST[rtm, n_var_num] (Hashtbl.find lo_thm_table btm) in if n > 1 then let rth = lo_bound (n - 1) rtm in let xtm = rand (rator (concl rth)) in let th1' = INST[xtm, n_var_num; rtm, m_var_num] (Hashtbl.find lo_thm2_table btm) in let th1 = MY_PROVE_HYP rth th1' in th1 else th0 in lo_bound (n - p) tm;;
let N_LT_SUC = ARITH_RULE `n < SUC n`;;
let LT_IMP_LE' = (UNDISCH_ALL o SPEC_ALL) LT_IMP_LE;;
let N_LT_SUC = ARITH_RULE `n < SUC n`;;
let LT_LE_TRANS = (UNDISCH_ALL o ARITH_RULE) `n < e ==> e <= m ==> n < m:num`;; (* Generates a theorem |- n <= m such that m contains at most p non-zero digits *) let hi_num_conv p tm = let n = comb_number tm 0 in if (n <= p) then INST[tm, n_var_num] LE_REFL' else let k = n - p in let rec check_b0s n tm = let btm, rtm = dest_comb tm in if ((fst o dest_const) btm = b0_name) then if n > 1 then check_b0s (n - 1) rtm else true else false in if (check_b0s k tm) then INST[tm, n_var_num] LE_REFL' else let rec hi_bound n tm = if n > 0 then let btm, rtm = dest_comb tm in let r_th = hi_bound (n - 1) rtm in let xtm = rand (concl r_th) in let th0 = INST[rtm, n_var_num; xtm, m_var_num] (Hashtbl.find hi_thm_table btm) in MY_PROVE_HYP r_th th0 else let th0 = INST[tm, n_var_num] N_LT_SUC in let ltm, suc_tm = dest_comb (concl th0) in let suc_th = raw_suc_conv_hash suc_tm in EQ_MP (AP_TERM ltm suc_th) th0 in let th = hi_bound k tm in let m_tm, l_tm = dest_comb (concl th) in MY_PROVE_HYP th (INST[rand m_tm, m_var_num; l_tm, n_var_num] LT_IMP_LE');; (* Generates a theorem |- n < m such that m contains at most p non-zero digits *) let hi_lt_num_conv p tm = let n = comb_number tm 0 in if (n <= p) then let th0 = INST[tm, n_var_num] N_LT_SUC in let ltm, rtm = dest_comb(concl th0) in let suc_th = raw_suc_conv_hash rtm in EQ_MP (AP_TERM ltm suc_th) th0 else let k = n - p in let rec check_b0s n tm = let btm, rtm = dest_comb tm in if ((fst o dest_const) btm = b0_name) then if n > 1 then check_b0s (n - 1) rtm else true else false in if (check_b0s k tm) then let th0 = INST[tm, n_var_num] N_LT_SUC in let ltm, rtm = dest_comb (concl th0) in let suc_th = raw_suc_conv_hash rtm in let suc_tm = rand(concl suc_th) in let th1 = hi_num_conv p suc_tm in let th2 = EQ_MP (AP_TERM ltm suc_th) th0 in let th = INST[tm, n_var_num; suc_tm, e_var_num; rand(concl th1), m_var_num] LT_LE_TRANS in MY_PROVE_HYP th1 (MY_PROVE_HYP th2 th) else let rec hi_bound n tm = if n > 0 then let btm, rtm = dest_comb tm in let r_th = hi_bound (n - 1) rtm in let xtm = rand (concl r_th) in let th0 = INST[rtm, n_var_num; xtm, m_var_num] (Hashtbl.find hi_thm_table btm) in MY_PROVE_HYP r_th th0 else let th0 = INST[tm, n_var_num] N_LT_SUC in let ltm, suc_tm = dest_comb (concl th0) in let suc_th = raw_suc_conv_hash suc_tm in EQ_MP (AP_TERM ltm suc_th) th0 in hi_bound k tm;; (*****************************************) let num_exp_lo p tm = let ltm, e_tm = dest_comb tm in let n_tm = rand ltm in let n_th = lo_num_conv p n_tm in let m_tm = rand (rator (concl n_th)) in let m_norm, flag = normalize m_tm in let th0' = INST[m_tm, m_var_num; n_tm, n_var_num; e_tm, e_var_num] NUM_EXP_LE' in let th0 = MY_PROVE_HYP n_th th0' in if flag then let th1 = AP_THM (AP_TERM (rator ltm) m_norm) e_tm in let m_tm, me_tm = (dest_comb o rand o concl) m_norm in let th2 = INST[me_tm, e1_var_num; e_tm, e2_var_num; rand m_tm, n_var_num] NUM_EXP_EXP' in let th3 = TRANS th1 th2 in let ltm, rtm = (dest_comb o rand o concl) th3 in let th_add = raw_add_conv_hash rtm in let th4 = TRANS th3 (AP_TERM ltm th_add) in EQ_MP (AP_THM (AP_TERM le_op_num th4) tm) th0 else th0;; let num_exp_hi p tm = let ltm, e_tm = dest_comb tm in let n_tm = rand ltm in let n_th = hi_num_conv p n_tm in let m_tm = rand (concl n_th) in let m_norm, flag = normalize m_tm in let th0' = INST[m_tm, n_var_num; n_tm, m_var_num; e_tm, e_var_num] NUM_EXP_LE' in let th0 = MY_PROVE_HYP n_th th0' in if flag then let th1 = AP_THM (AP_TERM (rator ltm) m_norm) e_tm in let m_tm, me_tm = (dest_comb o rand o concl) m_norm in let th2 = INST[me_tm, e1_var_num; e_tm, e2_var_num; rand m_tm, n_var_num] NUM_EXP_EXP' in let th3 = TRANS th1 th2 in let ltm, rtm = (dest_comb o rand o concl) th3 in let th_add = raw_add_conv_hash rtm in let th4 = TRANS th3 (AP_TERM ltm th_add) in EQ_MP (AP_TERM (rator (concl th0)) th4) th0 else th0;; let num_exp_hi_lt p tm = let ltm, e_tm = dest_comb tm in let n_tm = rand ltm in let n_th = hi_lt_num_conv p n_tm in let m_tm = rand (concl n_th) in let m_norm, flag = normalize m_tm in let th0' = INST[m_tm, n_var_num; n_tm, m_var_num; e_tm, e_var_num] NUM_EXP_LT' in let th0 = MY_PROVE_HYP n_th th0' in if flag then let th1 = AP_THM (AP_TERM (rator ltm) m_norm) e_tm in let m_tm, me_tm = (dest_comb o rand o concl) m_norm in let th2 = INST[me_tm, e1_var_num; e_tm, e2_var_num; rand m_tm, n_var_num] NUM_EXP_EXP' in let th3 = TRANS th1 th2 in let ltm, rtm = (dest_comb o rand o concl) th3 in let th_add = raw_add_conv_hash rtm in let th4 = TRANS th3 (AP_TERM ltm th_add) in EQ_MP (AP_TERM (rator (concl th0)) th4) th0 else th0;; (***************************************) (* num_exp_lt, num_exp_le *) let transform = UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o SPEC_ALL;; let NUM_EXP_LT1_EQ' = transform NUM_EXP_LT1_EQ and NUM_EXP_LT2_EQ' = transform NUM_EXP_LT2_EQ;; let NUM_EXP_LE1_EQ' = transform NUM_EXP_LE1_EQ and NUM_EXP_LE2_EQ' = transform NUM_EXP_LE2_EQ;; let num_exp_lt tm1 tm2 = let n1_tm, e1_tm = dest_num_exp tm1 in let n2_tm, e2_tm = dest_num_exp tm2 in let sub_th, le_th = raw_sub_and_le_hash_conv e1_tm e2_tm in let r_tm = rand(concl sub_th) in if (rand(concl le_th) = e1_tm) then let x_expr = mk_num_exp n1_tm r_tm in let x_th = denormalize x_expr in let x_tm = rand(concl x_th) in let th0 = INST[e2_tm, e2_var_num; e1_tm, e1_var_num; r_tm, r_var_num; x_tm, x_var_num; n1_tm, n1_var_num; n2_tm, n2_var_num] NUM_EXP_LT1_EQ' in let th1 = MY_PROVE_HYP x_th (MY_PROVE_HYP sub_th (MY_PROVE_HYP le_th th0)) in let lt_th = raw_lt_hash_conv (rand(concl th1)) in TRANS th1 lt_th else let x_expr = mk_num_exp n2_tm r_tm in let x_th = denormalize x_expr in let x_tm = rand(concl x_th) in let th0 = INST[e2_tm, e2_var_num; e1_tm, e1_var_num; r_tm, r_var_num; x_tm, x_var_num; n1_tm, n1_var_num; n2_tm, n2_var_num] NUM_EXP_LT2_EQ' in let th1 = MY_PROVE_HYP x_th (MY_PROVE_HYP sub_th (MY_PROVE_HYP le_th th0)) in let lt_th = raw_lt_hash_conv (rand(concl th1)) in TRANS th1 lt_th;; let num_exp_le tm1 tm2 = let n1_tm, e1_tm = dest_num_exp tm1 in let n2_tm, e2_tm = dest_num_exp tm2 in let sub_th, le_th = raw_sub_and_le_hash_conv e1_tm e2_tm in let r_tm = rand(concl sub_th) in if (rand(concl le_th) = e1_tm) then let x_expr = mk_num_exp n1_tm r_tm in let x_th = denormalize x_expr in let x_tm = rand(concl x_th) in let th0 = INST[e2_tm, e2_var_num; e1_tm, e1_var_num; r_tm, r_var_num; x_tm, x_var_num; n1_tm, n1_var_num; n2_tm, n2_var_num] NUM_EXP_LE1_EQ' in let th1 = MY_PROVE_HYP x_th (MY_PROVE_HYP sub_th (MY_PROVE_HYP le_th th0)) in let le_th = raw_le_hash_conv (rand(concl th1)) in TRANS th1 le_th else let x_expr = mk_num_exp n2_tm r_tm in let x_th = denormalize x_expr in let x_tm = rand(concl x_th) in let th0 = INST[e2_tm, e2_var_num; e1_tm, e1_var_num; r_tm, r_var_num; x_tm, x_var_num; n1_tm, n1_var_num; n2_tm, n2_var_num] NUM_EXP_LE2_EQ' in let th1 = MY_PROVE_HYP x_th (MY_PROVE_HYP sub_th (MY_PROVE_HYP le_th th0)) in let le_th = raw_le_hash_conv (rand(concl th1)) in TRANS th1 le_th;; (***************************************) (* num_exp_mul *) let NUM_EXP_MUL' = SPEC_ALL NUM_EXP_MUL;; let num_exp_mul tm1 tm2 = let n1_tm, e1_tm = dest_comb tm1 in let n1_tm = rand n1_tm in let n2_tm, e2_tm = dest_comb tm2 in let n2_tm = rand n2_tm in let th0 = INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num] NUM_EXP_MUL' in let ltm, tm_add = dest_comb (rand (concl th0)) in let tm_mul = rand ltm in let th_mul = raw_mul_conv_hash tm_mul in let th_add = raw_add_conv_hash tm_add in TRANS th0 (MK_COMB (AP_TERM (rator ltm) th_mul, th_add));; (**********************************) (* num_exp_add *) let NUM_EXP_ADD' = (UNDISCH_ALL o SPEC_ALL) NUM_EXP_ADD;;
let ADD_COMM = ARITH_RULE `m + n = n + m:num`;;
let num_exp_add tm1 tm2 = let n1_tm, e1_tm = dest_comb tm1 in let n1_tm = rand n1_tm in let n2_tm, e2_tm = dest_comb tm2 in let n2_tm = rand n2_tm in let e_sub, e_le = raw_sub_and_le_hash_conv e1_tm e2_tm in let flag = (rand(concl e_le) = e2_tm) in let th0' = if flag then INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num] NUM_EXP_ADD' else INST[n2_tm, n1_var_num; e2_tm, e1_var_num; n1_tm, n2_var_num; e1_tm, e2_var_num] NUM_EXP_ADD' in let th0 = MY_PROVE_HYP e_le th0' in let ltm, e0_tm = dest_comb(rand(concl th0)) in let exp_tm, add_tm = dest_comb ltm in let ltm, d_tm = dest_comb add_tm in let th1 = AP_TERM (rator d_tm) e_sub in let th2 = denormalize (rand(concl th1)) in let th3 = AP_TERM ltm (TRANS th1 th2) in let th4 = raw_add_conv_hash (rand(concl th3)) in let th5 = AP_THM (AP_TERM exp_tm (TRANS th3 th4)) e0_tm in let th = TRANS th0 th5 in if flag then th else TRANS (INST[tm1, m_var_num; tm2, n_var_num] ADD_COMM) th;; (****************************************) (* num_exp_sub *) let NUM_EXP_SUB1' = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o SPEC_ALL) NUM_EXP_SUB1 and NUM_EXP_SUB2' = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o SPEC_ALL) NUM_EXP_SUB2 and NUM_EXP_LE1' = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o SPEC_ALL) NUM_EXP_LE1 and NUM_EXP_LE2' = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o SPEC_ALL) NUM_EXP_LE2;; (* Returns two theorems: |- tm1 - tm2 = tm, |- tm2 <= tm1 or |- tm2 - tm1 = tm, |- tm1 <= tm2 *) let num_exp_sub tm1 tm2 = let n1_tm, e1_tm = dest_num_exp tm1 in let n2_tm, e2_tm = dest_num_exp tm2 in let e_sub, e_le = raw_sub_and_le_hash_conv e1_tm e2_tm in if rand(concl e_le) = e1_tm then (* e2 <= e1 *) let e1_sub_e2 = rand(concl e_sub) in let a0 = mk_num_exp n1_tm e1_sub_e2 in let b = n2_tm in let a_th = denormalize a0 in let a = rand(concl a_th) in let th_sub, th_le = raw_sub_and_le_hash_conv a b in if rand(concl th_le) = a then (* b <= a *) let a_sub_b = TRANS (AP_THM (AP_TERM sub_op_num a_th) b) th_sub in let b_le_a = EQ_MP (SYM (AP_TERM (rator(concl th_le)) a_th)) th_le in let th0 = AP_THM (AP_TERM num_exp_const a_sub_b) e2_tm in let inst = INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num; e1_sub_e2, r_var_num] in let th1_sub = inst NUM_EXP_SUB1' in let th1_le = inst NUM_EXP_LE1' in let th2_sub = MY_PROVE_HYP e_sub (MY_PROVE_HYP e_le th1_sub) in let th2_le = MY_PROVE_HYP e_sub (MY_PROVE_HYP b_le_a (MY_PROVE_HYP e_le th1_le)) in TRANS th2_sub th0, th2_le else (* a <= b *) let b_sub_a = TRANS (AP_TERM (rator(lhand(concl th_sub))) a_th) th_sub in let a_le_b = EQ_MP (SYM (AP_THM (AP_TERM le_op_num a_th) b)) th_le in let th0 = AP_THM (AP_TERM num_exp_const b_sub_a) e2_tm in let inst = INST[n2_tm, n1_var_num; e2_tm, e1_var_num; n1_tm, n2_var_num; e1_tm, e2_var_num; e1_sub_e2, r_var_num] in let th1_sub = inst NUM_EXP_SUB2' in let th1_le = inst NUM_EXP_LE2' in let th2_sub = MY_PROVE_HYP e_sub (MY_PROVE_HYP e_le th1_sub) in let th2_le = MY_PROVE_HYP e_sub (MY_PROVE_HYP a_le_b (MY_PROVE_HYP e_le th1_le)) in TRANS th2_sub th0, th2_le else (* e1 <= e2 *) let e2_sub_e1 = rand(concl e_sub) in let b0 = mk_num_exp n2_tm e2_sub_e1 in let a = n1_tm in let b_th = denormalize b0 in let b = rand(concl b_th) in let th_sub, th_le = raw_sub_and_le_hash_conv a b in if rand(concl th_le) = a then (* b <= a *) let a_sub_b = TRANS (AP_TERM (rator(lhand(concl th_sub))) b_th) th_sub in let b_le_a = EQ_MP (SYM (AP_THM (AP_TERM le_op_num b_th) a)) th_le in let th0 = AP_THM (AP_TERM num_exp_const a_sub_b) e1_tm in let inst = INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num; e2_sub_e1, r_var_num] in let th1_sub = inst NUM_EXP_SUB2' in let th1_le = inst NUM_EXP_LE2' in let th2_sub = MY_PROVE_HYP e_sub (MY_PROVE_HYP e_le th1_sub) in let th2_le = MY_PROVE_HYP e_sub (MY_PROVE_HYP b_le_a (MY_PROVE_HYP e_le th1_le)) in TRANS th2_sub th0, th2_le else (* a <= b *) let b_sub_a = TRANS (AP_THM (AP_TERM sub_op_num b_th) a) th_sub in let a_le_b = EQ_MP (SYM (AP_TERM (rator(concl th_le)) b_th)) th_le in let th0 = AP_THM (AP_TERM num_exp_const b_sub_a) e1_tm in let inst = INST[n2_tm, n1_var_num; e2_tm, e1_var_num; n1_tm, n2_var_num; e1_tm, e2_var_num; e2_sub_e1, r_var_num] in let th1_sub = inst NUM_EXP_SUB1' in let th1_le = inst NUM_EXP_LE1' in let th2_sub = MY_PROVE_HYP e_sub (MY_PROVE_HYP e_le th1_sub) in let th2_le = MY_PROVE_HYP e_sub (MY_PROVE_HYP a_le_b (MY_PROVE_HYP e_le th1_le)) in TRANS th2_sub th0, th2_le;; (*************************************) (* division *) let NUM_EXP_DIV1' = (UNDISCH_ALL o PURE_REWRITE_RULE[NUMERAL] o PURE_ONCE_REWRITE_RULE[ARITH_RULE `~(x = 0) <=> (x = 0 <=> F)`] o REWRITE_RULE[GSYM IMP_IMP]) NUM_EXP_DIV1;; let NUM_EXP_DIV2' = (UNDISCH_ALL o PURE_REWRITE_RULE[NUMERAL] o PURE_ONCE_REWRITE_RULE[ARITH_RULE `~(x = 0) <=> (x = 0 <=> F)`] o REWRITE_RULE[GSYM IMP_IMP]) NUM_EXP_DIV2;; let num_exp_div tm1 tm2 = let n1_tm, e1_tm = dest_comb tm1 in let n1_tm = rand n1_tm in let n2_tm, e2_tm = dest_comb tm2 in let n2_tm = rand n2_tm in let e_sub, e_le = raw_sub_and_le_hash_conv e1_tm e2_tm in let inst = INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num] in let n2_not_0 = raw_eq0_hash_conv n2_tm in if ((fst o dest_const o rand o concl) n2_not_0 = "T") then failwith "num_exp_div: n2 = 0" else if (rand(concl e_le) = e1_tm) then let th0' = inst NUM_EXP_DIV1' in let th0 = MY_PROVE_HYP n2_not_0 (MY_PROVE_HYP e_le th0') in let ltm, rtm = dest_comb(rand(concl th0)) in let div_tm, rtm2 = dest_comb ltm in let num_exp_tm = rator rtm2 in let th1 = AP_THM (AP_TERM div_tm (AP_TERM num_exp_tm e_sub)) rtm in let ltm, rtm = dest_comb(rand(concl th1)) in let tm1 = rand ltm in let th2 = AP_THM (AP_TERM div_tm (denormalize tm1)) rtm in let th3 = raw_div_hash_conv (rand(concl th2)) in let th = TRANS th0 (TRANS th1 (TRANS th2 th3)) in TRANS th (INST[rand(concl th), n_var_num] NUM_EXP_0') else let th0' = inst NUM_EXP_DIV2' in let th0 = MY_PROVE_HYP n2_not_0 (MY_PROVE_HYP e_le th0') in let ltm, rtm = dest_comb(rand(concl th0)) in let num_exp_tm = rator rtm in let th1 = AP_TERM ltm (AP_TERM num_exp_tm e_sub) in let ltm, rtm = dest_comb(rand(concl th1)) in let th2 = AP_TERM ltm (denormalize rtm) in let th3 = raw_div_hash_conv (rand(concl th2)) in let th = TRANS th0 (TRANS th1 (TRANS th2 th3)) in TRANS th (INST[rand(concl th), n_var_num] NUM_EXP_0');; (*****************************) (* Computes a lower bound for (op tm1 tm2) with p significant digits *) let num_exp_op_lo p op tm1 tm2 = let op_th = op tm1 tm2 in let rtm = rand (concl op_th) in let lo_th = num_exp_lo p rtm in let ltm = rator (concl lo_th) in let th0 = AP_TERM ltm op_th in EQ_MP (SYM th0) lo_th;; (* Computes an upper bound for (op tm1 tm2) with p significant digits *) let num_exp_op_hi p op tm1 tm2 = let op_th = op tm1 tm2 in let rtm = rand (concl op_th) in let hi_th = num_exp_hi p rtm in let tm = rand (concl hi_th) in let th0 = AP_THM (AP_TERM le_op_num op_th) tm in EQ_MP (SYM th0) hi_th;; (* Computes a strict upper bound for (op tm1 tm2) with p significant digits *) let num_exp_op_hi_lt p op tm1 tm2 = let op_th = op tm1 tm2 in let rtm = rand (concl op_th) in let hi_lt_th = num_exp_hi_lt p rtm in let tm = rand (concl hi_lt_th) in let th0 = AP_THM (AP_TERM lt_op_num op_th) tm in EQ_MP (SYM th0) hi_lt_th;; (******************************************) (* float *)
let mod_plus = new_definition `mod_plus s1 s2 = (~(s1 /\ s2) /\ (s1 \/ s2))`;;
(********************) (* Float operations *) (********************) module Float_ops = struct (**********************************) (* FLOAT_LT *)
let FLOAT_LT_FF = 
prove(`float_num F n1 e1 < float_num F n2 e2 <=> num_exp n1 e1 < num_exp n2 e2`,
REWRITE_TAC[float; GSYM REAL_OF_NUM_LT; REAL_MUL_LID; real_div] THEN MATCH_MP_TAC REAL_LT_RMUL_EQ THEN MATCH_MP_TAC REAL_LT_INV THEN REWRITE_TAC[REAL_OF_NUM_LT; LT_NZ; NUM_EXP_EQ_0] THEN ARITH_TAC);;
let FLOAT_LT_TT = 
prove(`float_num T n1 e1 < float_num T n2 e2 <=> num_exp n2 e2 < num_exp n1 e1`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `--a < --b <=> b < a`] THEN REWRITE_TAC[FLOAT_LT_FF]);;
let FLOAT_LT_FT = 
prove(`float_num F n1 e1 < float_num T n2 e2 <=> F`,
MP_TAC (SPECL [`n2:num`; `e2:num`] FLOAT_T_NEG) THEN MP_TAC (SPECL [`n1:num`; `e1:num`] FLOAT_F_POS) THEN REAL_ARITH_TAC);;
let FLOAT_LT_TF_00 = (PURE_REWRITE_RULE[NUMERAL] o prove) (`float_num T 0 e1 < float_num F 0 e2 <=> F`, MP_TAC (SPECL [`T`; `0`; `e1:num`] FLOAT_EQ_0) THEN MP_TAC (SPECL [`F`; `0`; `e2:num`] FLOAT_EQ_0) THEN REWRITE_TAC[] THEN REPLICATE_TAC 2 (DISCH_THEN (fun th -> REWRITE_TAC[th])) THEN REAL_ARITH_TAC);; let FLOAT_LT_TF_1 = (UNDISCH_ALL o PURE_REWRITE_RULE[NUMERAL] o prove) (`(n1 = 0 <=> F) ==> (float_num T n1 e1 < float_num F n2 e2 <=> T)`, DISCH_TAC THEN MATCH_MP_TAC (REAL_ARITH `a < &0 /\ &0 <= b ==> (a < b <=> T)`) THEN REWRITE_TAC[FLOAT_F_POS] THEN MATCH_MP_TAC (REAL_ARITH `~(a = &0) /\ a <= &0 ==> a < &0`) THEN ASM_REWRITE_TAC[FLOAT_T_NEG; FLOAT_EQ_0]);; let FLOAT_LT_TF_2 = (UNDISCH_ALL o PURE_REWRITE_RULE[NUMERAL] o prove) (`(n2 = 0 <=> F) ==> (float_num T n1 e1 < float_num F n2 e2 <=> T)`, DISCH_TAC THEN MATCH_MP_TAC (REAL_ARITH `a <= &0 /\ &0 < b ==> (a < b <=> T)`) THEN REWRITE_TAC[FLOAT_T_NEG] THEN MATCH_MP_TAC (REAL_ARITH `~(a = &0) /\ &0 <= a ==> &0 < a`) THEN ASM_REWRITE_TAC[FLOAT_F_POS; FLOAT_EQ_0]);;
let FLOAT_F_LT_0 = 
prove(`float_num F n e < &0 <=> F`,
MP_TAC (SPEC_ALL FLOAT_F_POS) THEN REAL_ARITH_TAC);;
let FLOAT_T_LT_0 = (CONV_RULE (RAND_CONV (REWRITE_CONV[NUMERAL])) o prove) (`float_num T n e < &0 <=> (0 < n)`, REWRITE_TAC[REAL_ARITH `a < &0 <=> a <= &0 /\ ~(a = &0)`] THEN REWRITE_TAC[FLOAT_T_NEG; FLOAT_EQ_0] THEN ARITH_TAC);; let FLOAT_F_GT_0 = (CONV_RULE (RAND_CONV (REWRITE_CONV[NUMERAL])) o prove) (`&0 < float_num F n e <=> 0 < n`, REWRITE_TAC[REAL_ARITH `&0 < a <=> &0 <= a /\ ~(a = &0)`] THEN REWRITE_TAC[FLOAT_F_POS; FLOAT_EQ_0] THEN ARITH_TAC);;
let FLOAT_T_GT_0 = 
prove(`&0 < float_num T n e <=> F`,
MP_TAC (SPEC_ALL FLOAT_T_NEG) THEN REAL_ARITH_TAC);;
(* float_lt0, float_gt0 *) let float_lt0 f1 = let s, n_tm, e_tm = dest_float f1 in let inst = INST[n_tm, n_var_num; e_tm, e_var_num] in if s = "F" then inst FLOAT_F_LT_0 else let gt_th = raw_gt0_hash_conv n_tm in TRANS (inst FLOAT_T_LT_0) gt_th;; let float_gt0 f1 = let s, n_tm, e_tm = dest_float f1 in let inst = INST[n_tm, n_var_num; e_tm, e_var_num] in if s = "F" then let gt_th = raw_gt0_hash_conv n_tm in TRANS (inst FLOAT_F_GT_0) gt_th else inst FLOAT_T_GT_0;; (* float_lt *) let float_lt f1 f2 = let s1, n1, e1 = dest_float f1 in let s2, n2, e2 = dest_float f2 in let inst = INST[n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] in if s1 = "F" then if s2 = "F" then (* FF *) let th0 = inst FLOAT_LT_FF in let ltm, tm2 = dest_comb (rand (concl th0)) in let lt_th = num_exp_lt (rand ltm) tm2 in TRANS th0 lt_th else (* FT *) inst FLOAT_LT_FT else if s2 = "F" then (* TF *) if (is_const n1 && is_const n2) then (* n1 = _0 and n2 = _0 *) inst FLOAT_LT_TF_00 else let n1_0 = raw_eq0_hash_conv n1 in if (fst o dest_const o rand o concl) n1_0 = "F" then (* n1 <> _0 *) MY_PROVE_HYP n1_0 (inst FLOAT_LT_TF_1) else let n2_0 = raw_eq0_hash_conv n2 in if (fst o dest_const o rand o concl) n2_0 = "F" then (* n2 <> _0 *) MY_PROVE_HYP n2_0 (inst FLOAT_LT_TF_2) else failwith "float_lt: D0 _0 exception" else (* TT *) let th0 = inst FLOAT_LT_TT in let ltm, tm2 = dest_comb (rand (concl th0)) in let lt_th = num_exp_lt (rand ltm) tm2 in TRANS th0 lt_th;; (**********************************) (* FLOAT_LE *)
let FLOAT_LE_FF = 
prove(`float_num F n1 e1 <= float_num F n2 e2 <=> num_exp n1 e1 <= num_exp n2 e2`,
REWRITE_TAC[float; GSYM REAL_OF_NUM_LE; REAL_MUL_LID; real_div] THEN MATCH_MP_TAC REAL_LE_RMUL_EQ THEN MATCH_MP_TAC REAL_LT_INV THEN REWRITE_TAC[REAL_OF_NUM_LT; LT_NZ; NUM_EXP_EQ_0] THEN ARITH_TAC);;
let FLOAT_LE_TT = 
prove(`float_num T n1 e1 <= float_num T n2 e2 <=> num_exp n2 e2 <= num_exp n1 e1`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `--a <= --b <=> b <= a`] THEN REWRITE_TAC[FLOAT_LE_FF]);;
let FLOAT_LE_TF = 
prove(`float_num T n1 e1 <= float_num F n2 e2 <=> T`,
MP_TAC (SPECL [`n1:num`; `e1:num`] FLOAT_T_NEG) THEN MP_TAC (SPECL [`n2:num`; `e2:num`] FLOAT_F_POS) THEN REAL_ARITH_TAC);;
let FLOAT_LE_FT = 
prove(`float_num F n1 e1 <= float_num T n2 e2 <=> n1 = 0 /\ n2 = 0`,
REWRITE_TAC[REAL_LE_LT; FLOAT_LT_FT] THEN EQ_TAC THENL [ DISCH_TAC THEN SUBGOAL_THEN `float_num F n1 e1 = &0 /\ float_num T n2 e2 = &0` MP_TAC THENL [ MP_TAC (SPECL [`n2:num`; `e2:num`] FLOAT_T_NEG) THEN MP_TAC (SPECL [`n1:num`; `e1:num`] FLOAT_F_POS) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC; ALL_TAC ] THEN REWRITE_TAC[FLOAT_EQ_0]; DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[float; NUM_EXP_n0; real_div; REAL_MUL_LZERO; REAL_MUL_RZERO] ]);;
let FLOAT_LE_FT_00 = (PURE_REWRITE_RULE[NUMERAL] o prove) (`float_num F 0 e1 <= float_num T 0 e2 <=> T`, REWRITE_TAC[FLOAT_LE_FT]);; let FLOAT_LE_FT_1 = (UNDISCH_ALL o PURE_REWRITE_RULE[NUMERAL] o prove) (`(n1 = 0 <=> F) ==> (float_num F n1 e1 <= float_num T n2 e2 <=> F)`, DISCH_TAC THEN ASM_REWRITE_TAC[FLOAT_LE_FT]);; let FLOAT_LE_FT_2 = (UNDISCH_ALL o PURE_REWRITE_RULE[NUMERAL] o prove) (`(n2 = 0 <=> F) ==> (float_num F n1 e1 <= float_num T n2 e2 <=> F)`, DISCH_TAC THEN ASM_REWRITE_TAC[FLOAT_LE_FT]);; let FLOAT_F_LE_0 = (CONV_RULE (RAND_CONV (REWRITE_CONV[NUMERAL])) o prove) (`float_num F n e <= &0 <=> n = 0`, REWRITE_TAC[GSYM (SPEC `F` FLOAT_EQ_0)] THEN MP_TAC (SPEC_ALL FLOAT_F_POS) THEN REAL_ARITH_TAC);;
let FLOAT_T_LE_0 = 
prove(`float_num T n e <= &0 <=> T`,
REWRITE_TAC[FLOAT_T_NEG]);;
let FLOAT_F_GE_0 = 
prove(`&0 <= float_num F n e <=> T`,
REWRITE_TAC[FLOAT_F_POS]);;
let FLOAT_T_GE_0 = (CONV_RULE (RAND_CONV (REWRITE_CONV[NUMERAL])) o prove) (`&0 <= float_num T n e <=> n = 0`, REWRITE_TAC[GSYM (SPEC `T` FLOAT_EQ_0)] THEN MP_TAC (SPEC_ALL FLOAT_T_NEG) THEN REAL_ARITH_TAC);; (* float_le0, float_ge0 *) let float_le0 f1 = let s, n_tm, e_tm = dest_float f1 in let inst = INST[n_tm, n_var_num; e_tm, e_var_num] in if s = "T" then inst FLOAT_T_LE_0 else let eq_th = raw_eq0_hash_conv n_tm in TRANS (inst FLOAT_F_LE_0) eq_th;; let float_ge0 f1 = let s, n_tm, e_tm = dest_float f1 in let inst = INST[n_tm, n_var_num; e_tm, e_var_num] in if s = "T" then let eq_th = raw_eq0_hash_conv n_tm in TRANS (inst FLOAT_T_GE_0) eq_th else inst FLOAT_F_GE_0;; (* float_le *) let float_le f1 f2 = let s1, n1, e1 = dest_float f1 in let s2, n2, e2 = dest_float f2 in let inst = INST[n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] in if s2 = "F" then if s1 = "F" then (* FF *) let th0 = inst FLOAT_LE_FF in let ltm, tm2 = dest_comb (rand (concl th0)) in let le_th = num_exp_le (rand ltm) tm2 in TRANS th0 le_th else (* TF *) inst FLOAT_LE_TF else if s1 = "F" then (* FT *) if (is_const n1 && is_const n2) then (* n1 = _0 and n2 = _0 *) inst FLOAT_LE_FT_00 else let n1_0 = raw_eq0_hash_conv n1 in if (fst o dest_const o rand o concl) n1_0 = "F" then (* n1 <> _0 *) MY_PROVE_HYP n1_0 (inst FLOAT_LE_FT_1) else let n2_0 = raw_eq0_hash_conv n2 in if (fst o dest_const o rand o concl) n2_0 = "F" then (* n2 <> _0 *) MY_PROVE_HYP n2_0 (inst FLOAT_LE_FT_2) else failwith "float_lt: D0 _0 exception" else (* TT *) let th0 = inst FLOAT_LE_TT in let ltm, tm2 = dest_comb (rand (concl th0)) in let le_th = num_exp_le (rand ltm) tm2 in TRANS th0 le_th;; (*************************************) (* float_max, float_min *) let FLOAT_MIN_1 = (UNDISCH_ALL o prove)(`(f1 <= f2 <=> T) ==> min f1 f2 = f1`, REAL_ARITH_TAC);; let FLOAT_MIN_2 = (UNDISCH_ALL o prove)(`(f1 <= f2 <=> F) ==> min f1 f2 = f2`, REAL_ARITH_TAC);; let FLOAT_MAX_1 = (UNDISCH_ALL o prove)(`(f1 <= f2 <=> T) ==> max f1 f2 = f2`, REAL_ARITH_TAC);; let FLOAT_MAX_2 = (UNDISCH_ALL o prove)(`(f1 <= f2 <=> F) ==> max f1 f2 = f1`, REAL_ARITH_TAC);; let float_min f1 f2 = let inst = INST[f1, f1_var_real; f2, f2_var_real] in let le_th = float_le f1 f2 in let th0 = if (fst o dest_const o rand o concl) le_th = "T" then inst FLOAT_MIN_1 else inst FLOAT_MIN_2 in MY_PROVE_HYP le_th th0;; let float_max f1 f2 = let inst = INST[f1, f1_var_real; f2, f2_var_real] in let le_th = float_le f1 f2 in let th0 = if (fst o dest_const o rand o concl) le_th = "T" then inst FLOAT_MAX_1 else inst FLOAT_MAX_2 in MY_PROVE_HYP le_th th0;; let float_min_max f1 f2 = let inst = INST[f1, f1_var_real; f2, f2_var_real] in let le_th = float_le f1 f2 in let th_min, th_max = if (fst o dest_const o rand o concl) le_th = "T" then inst FLOAT_MIN_1, inst FLOAT_MAX_1 else inst FLOAT_MIN_2, inst FLOAT_MAX_2 in MY_PROVE_HYP le_th th_min, MY_PROVE_HYP le_th th_max;; (*************************************) (* FLOAT_MUL *)
let FLOAT_MUL = 
prove(`!s1 s2. min_exp <= e /\ num_exp n1 e1 * num_exp n2 e2 = num_exp n e ==> float_num s1 n1 e1 * float_num s2 n2 e2 = float_num (mod_plus s1 s2) n (e - min_exp)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[float] THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b / c) * (d * e / f) = (a * d) * (b * e) / c / f`] THEN SUBGOAL_THEN `(if s1 then -- &1 else &1) * (if s2 then -- &1 else &1) = if mod_plus s1 s2 then -- &1 else &1` MP_TAC THENL [ REWRITE_TAC[mod_plus] THEN COND_CASES_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_ARITH `-- &1 * -- &1 = &1`; REAL_MUL_LID; REAL_MUL_RID]; ALL_TAC ] THEN DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN DISJ2_TAC THEN MP_TAC (SPECL[`n:num`; `e:num`; `min_exp`] NUM_EXP_SUB_lemma) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN ASM_REWRITE_TAC[REAL_OF_NUM_MUL]);;
let FLOAT_MUL_FF = 
prove(`min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 = num_exp n e ==> float_num F n1 e1 * float_num F n2 e2 = float_num F n r`,
SIMP_TAC[FLOAT_MUL; mod_plus]);;
let FLOAT_MUL_FT = 
prove(`min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 = num_exp n e ==> float_num F n1 e1 * float_num T n2 e2 = float_num T n r`,
SIMP_TAC[FLOAT_MUL; mod_plus]);;
let FLOAT_MUL_TF = 
prove(`min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 = num_exp n e ==> float_num T n1 e1 * float_num F n2 e2 = float_num T n r`,
SIMP_TAC[FLOAT_MUL; mod_plus]);;
let FLOAT_MUL_TT = 
prove(`min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 = num_exp n e ==> float_num T n1 e1 * float_num T n2 e2 = float_num F n r`,
SIMP_TAC[FLOAT_MUL; mod_plus]);;
let FLOAT_MUL_0x_hi, FLOAT_MUL_0x_lo, FLOAT_MUL_x0_hi, FLOAT_MUL_x0_lo = let mul_0x_hi = `(n1 = 0 <=> T) ==> float_num s1 n1 e1 * f2 <= float_num F 0 min_exp` in let mul_0x_lo = `(n1 = 0 <=> T) ==> float_num F 0 min_exp <= float_num s1 n1 e1 * f2` in let mul_x0_hi = `(n2 = 0 <=> T) ==> f1 * float_num s2 n2 e2 <= float_num F 0 min_exp` in let mul_x0_lo = `(n2 = 0 <=> T) ==> float_num F 0 min_exp <= f1 * float_num s2 n2 e2` in let proof = MP_TAC (GEN_ALL (SPECL [`s:bool`; `0`] FLOAT_EQ_0)) THEN SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LE_REFL] in prove(mul_0x_hi, proof), prove(mul_0x_lo, proof), prove(mul_x0_hi, proof), prove(mul_x0_lo, proof);; let FLOAT_MUL_FF_hi, FLOAT_MUL_FF_lo = let ff_hi = `min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 <= num_exp n e ==> float_num F n1 e1 * float_num F n2 e2 <= float_num F n r` in let ff_lo = `min_exp <= e /\ e - min_exp = r /\ num_exp n e <= num_exp n1 e1 * num_exp n2 e2 ==> float_num F n r <= float_num F n1 e1 * float_num F n2 e2` in let proof = REPEAT STRIP_TAC THEN POP_ASSUM MP_TAC THEN POP_ASSUM (fun th -> REWRITE_TAC[SYM th]) THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_MUL] THEN DISCH_TAC THEN MAP_EVERY ABBREV_TAC [`z = &(num_exp n e)`; `x = &(num_exp n1 e1)`; `y = &(num_exp n2 e2)`] THEN ASM_REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[REAL_ARITH `a / b * c / d = (a * c) / b / d`] THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN MP_TAC (SPECL [`n:num`; `e:num`; `min_exp`] NUM_EXP_SUB_lemma) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] in prove(ff_hi, proof), prove(ff_lo, proof);; let FLOAT_MUL_TT_hi, FLOAT_MUL_TT_lo = let tt_hi = `min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 <= num_exp n e ==> float_num T n1 e1 * float_num T n2 e2 <= float_num F n r` in let tt_lo = `min_exp <= e /\ e - min_exp = r /\ num_exp n e <= num_exp n1 e1 * num_exp n2 e2 ==> float_num F n r <= float_num T n1 e1 * float_num T n2 e2` in let proof = REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[REAL_ARITH `--a * --b = a * b`] THEN REWRITE_TAC[FLOAT_MUL_FF_hi; FLOAT_MUL_FF_lo] in prove(tt_hi, proof), prove(tt_lo, proof);; let FLOAT_MUL_FT_hi, FLOAT_MUL_FT_lo = let ft_hi = `min_exp <= e /\ e - min_exp = r /\ num_exp n e <= num_exp n1 e1 * num_exp n2 e2 ==> float_num F n1 e1 * float_num T n2 e2 <= float_num T n r` in let ft_lo = `min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 <= num_exp n e ==> float_num T n r <= float_num F n1 e1 * float_num T n2 e2` in let proof = REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[REAL_ARITH `a * --b <= --c <=> c <= a * b`] THEN REWRITE_TAC[REAL_ARITH `--c <= a * --b <=> a * b <= c`] THEN REWRITE_TAC[FLOAT_MUL_FF_hi; FLOAT_MUL_FF_lo] in prove(ft_hi, proof), prove(ft_lo, proof);; let FLOAT_MUL_TF_hi, FLOAT_MUL_TF_lo = let ft_hi = `min_exp <= e /\ e - min_exp = r /\ num_exp n e <= num_exp n1 e1 * num_exp n2 e2 ==> float_num T n1 e1 * float_num F n2 e2 <= float_num T n r` in let ft_lo = `min_exp <= e /\ e - min_exp = r /\ num_exp n1 e1 * num_exp n2 e2 <= num_exp n e ==> float_num T n r <= float_num T n1 e1 * float_num F n2 e2` in let proof = REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[REAL_ARITH `--a * b <= --c <=> c <= a * b`] THEN REWRITE_TAC[REAL_ARITH `--c <= --a * b <=> a * b <= c`] THEN REWRITE_TAC[FLOAT_MUL_FF_hi; FLOAT_MUL_FF_lo] in prove(ft_hi, proof), prove(ft_lo, proof);; (*********************************************) (* float_mul_lo, float_mul_hi *) let transform = UNDISCH_ALL o NUMERALS_TO_NUM o PURE_REWRITE_RULE[min_exp_def; GSYM IMP_IMP];; let FLOAT_MUL_FF_hi' = transform FLOAT_MUL_FF_hi and FLOAT_MUL_FF_lo' = transform FLOAT_MUL_FF_lo and FLOAT_MUL_TT_hi' = transform FLOAT_MUL_TT_hi and FLOAT_MUL_TT_lo' = transform FLOAT_MUL_TT_lo and FLOAT_MUL_FT_hi' = transform FLOAT_MUL_FT_hi and FLOAT_MUL_FT_lo' = transform FLOAT_MUL_FT_lo and FLOAT_MUL_TF_hi' = transform FLOAT_MUL_TF_hi and FLOAT_MUL_TF_lo' = transform FLOAT_MUL_TF_lo and FLOAT_MUL_0x_hi' = transform FLOAT_MUL_0x_hi and FLOAT_MUL_0x_lo' = transform FLOAT_MUL_0x_lo and FLOAT_MUL_x0_hi' = transform FLOAT_MUL_x0_hi and FLOAT_MUL_x0_lo' = transform FLOAT_MUL_x0_lo;; let FLOAT_MUL_FF' = transform FLOAT_MUL_FF and FLOAT_MUL_TT' = transform FLOAT_MUL_TT and FLOAT_MUL_FT' = transform FLOAT_MUL_FT and FLOAT_MUL_TF' = transform FLOAT_MUL_TF;; let float_mul_eq f1 f2 = let s1, n1, e1 = dest_float f1 and s2, n2, e2 = dest_float f2 in let flag = s1 = s2 in let num_exp1 = mk_num_exp n1 e1 and num_exp2 = mk_num_exp n2 e2 in let mul_th = num_exp_mul num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand (concl mul_th)) in let sub_th, le_th = raw_sub_and_le_hash_conv e_tm min_exp_num_const in if (rand(concl le_th) <> e_tm) then failwith "float_mul_eq: underflow" else let r_tm = rand(concl sub_th) in let inst = INST[e_tm, e_var_num; r_tm, r_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] in let th0 = inst (if flag then if s1 = "F" then FLOAT_MUL_FF' else FLOAT_MUL_TT' else if s1 = "F" then FLOAT_MUL_FT' else FLOAT_MUL_TF') in MY_PROVE_HYP sub_th (MY_PROVE_HYP mul_th (MY_PROVE_HYP le_th th0));; let float_mul_lo pp f1 f2 = let s1, n1, e1 = dest_float f1 and s2, n2, e2 = dest_float f2 in (* Multiplication by zero *) let n1_eq0_th = raw_eq0_hash_conv n1 in if (rand o concl) n1_eq0_th = t_const then (MY_PROVE_HYP n1_eq0_th o INST[e1, e1_var_num; f2, f2_var_real; n1, n1_var_num; (if s1 = "T" then t_const else f_const), s1_var_bool]) FLOAT_MUL_0x_lo' else let n2_eq0_th = raw_eq0_hash_conv n2 in if (rand o concl) n2_eq0_th = t_const then (MY_PROVE_HYP n2_eq0_th o INST[e2, e2_var_num; f1, f1_var_real; n2, n2_var_num; (if s2 = "T" then t_const else f_const), s2_var_bool]) FLOAT_MUL_x0_lo' else let flag = s1 = s2 in let num_exp1 = mk_num_exp n1 e1 and num_exp2 = mk_num_exp n2 e2 in let mul_th, n_tm, e_tm = if flag then let th = num_exp_op_lo pp num_exp_mul num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (lhand (concl th)) in th, n_tm, e_tm else let th = num_exp_op_hi pp num_exp_mul num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand (concl th)) in th, n_tm, e_tm in let sub_th, le_th = raw_sub_and_le_hash_conv e_tm min_exp_num_const in if (rand(concl le_th) <> e_tm) then failwith "float_mul_lo: underflow" else let r_tm = rand(concl sub_th) in let inst = INST[e_tm, e_var_num; r_tm, r_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] in let th0 = inst (if flag then if s1 = "F" then FLOAT_MUL_FF_lo' else FLOAT_MUL_TT_lo' else if s1 = "F" then FLOAT_MUL_FT_lo' else FLOAT_MUL_TF_lo') in MY_PROVE_HYP sub_th (MY_PROVE_HYP mul_th (MY_PROVE_HYP le_th th0));; let float_mul_hi pp f1 f2 = let s1, n1, e1 = dest_float f1 and s2, n2, e2 = dest_float f2 in (* Multiplication by zero *) let n1_eq0_th = raw_eq0_hash_conv n1 in if (rand o concl) n1_eq0_th = t_const then (MY_PROVE_HYP n1_eq0_th o INST[e1, e1_var_num; f2, f2_var_real; n1, n1_var_num; (if s1 = "T" then t_const else f_const), s1_var_bool]) FLOAT_MUL_0x_hi' else let n2_eq0_th = raw_eq0_hash_conv n2 in if (rand o concl) n2_eq0_th = t_const then (MY_PROVE_HYP n2_eq0_th o INST[e2, e2_var_num; f1, f1_var_real; n2, n2_var_num; (if s2 = "T" then t_const else f_const), s2_var_bool]) FLOAT_MUL_x0_hi' else let flag = s1 = s2 in let num_exp1 = mk_num_exp n1 e1 and num_exp2 = mk_num_exp n2 e2 in let mul_th, n_tm, e_tm = if flag then let th = num_exp_op_hi pp num_exp_mul num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand (concl th)) in th, n_tm, e_tm else let th = num_exp_op_lo pp num_exp_mul num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (lhand (concl th)) in th, n_tm, e_tm in let sub_th, le_th = raw_sub_and_le_hash_conv e_tm min_exp_num_const in if (rand(concl le_th) <> e_tm) then failwith "float_mul_hi: underflow" else let r_tm = rand(concl sub_th) in let inst = INST[e_tm, e_var_num; r_tm, r_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] in let th0 = inst (if flag then if s1 = "F" then FLOAT_MUL_FF_hi' else FLOAT_MUL_TT_hi' else if s1 = "F" then FLOAT_MUL_FT_hi' else FLOAT_MUL_TF_hi') in MY_PROVE_HYP sub_th (MY_PROVE_HYP mul_th (MY_PROVE_HYP le_th th0));; (*********************************************) (* FLOAT_DIV *)
let DIV_lemma = 
prove(`!x y. ~(y = 0) ==> &(x DIV y) <= &x / &y /\ &x / &y <= &(x DIV y + 1)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC (SPECL [`y:num`; `x:num`] FLOOR_DIV_DIV) THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN SIMP_TAC[FLOOR; REAL_LT_IMP_LE]);;
let FLOAT_DIV_FF = 
prove(`e2 + k <= min_exp + e + e1 /\ ~(n2 = 0) /\ num_exp n1 k DIV num_exp n2 0 = num_exp n e ==> float_num F n ((min_exp + e + e1) - (e2 + k)) <= float_num F n1 e1 / float_num F n2 e2`,
MAP_EVERY ABBREV_TAC [`z = num_exp n e`; `x = num_exp n1 k`; `y = num_exp n2 0`] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV] THEN REWRITE_TAC[REAL_ARITH `(a * b) * c * d = (b * d) * (a * c)`] THEN SUBGOAL_THEN `~(&(num_exp 1 min_exp) = &0)` ASSUME_TAC THENL [ REWRITE_TAC[num_exp; REAL_OF_NUM_EQ; MULT_CLAUSES; EXP_EQ_0] THEN ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN ASM_SIMP_TAC[NUM_EXP_SUB_lemma] THEN SUBGOAL_THEN `&(num_exp n1 e1) * inv(&(num_exp n2 e2)) = (&x / &y) * &(num_exp 1 e1) * inv(&(num_exp 1 (e2 + k)))` MP_TAC THENL [ EXPAND_TAC "x" THEN EXPAND_TAC "y" THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[num_exp; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW] THEN REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL; REAL_INV_1; real_pow; REAL_MUL_RID] THEN REWRITE_TAC[REAL_POW_ADD; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `((a * b) * c) * d * e * f = (b * f) * (a * c * d * e)`] THEN SUBGOAL_THEN (mk_comb(`(~)`, mk_eq(mk_binop `pow` (mk_comb (`&`, base_const)) `k:num`, `&0`))) ASSUME_TAC THENL [ REWRITE_TAC[REAL_POW_EQ_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID] THEN REAL_ARITH_TAC; ALL_TAC ] THEN DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * c = (a * c) * b`] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN ONCE_REWRITE_TAC[NUM_EXP_SUM1] THEN REWRITE_TAC[NUM_EXP_SUM] THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN ASM_REWRITE_TAC[REAL_ARITH `(a * b * c) * d = (d * a) * b * c`] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN MP_TAC (SPEC_ALL DIV_lemma) THEN ANTS_TAC THENL [ EXPAND_TAC "y" THEN REWRITE_TAC[num_exp; MULT_EQ_0; DE_MORGAN_THM] THEN ASM_REWRITE_TAC[EXP] THEN ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[]);;
let FLOAT_DIV_0x_lo = 
prove(`(n1 = 0 <=> T) ==> float_num F 0 min_exp <= float_num s1 n1 e1 / f2`,
SIMP_TAC[real_div; FLOAT_MUL_0x_lo]);;
let FLOAT_DIV_0x_hi = 
prove(`(n1 = 0 <=> T) ==> float_num s1 n1 e1 / f2 <= float_num F 0 min_exp`,
SIMP_TAC[real_div; FLOAT_MUL_0x_hi]);;
let FLOAT_DIV_FF_lo = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n e <= num_exp n1 k DIV num_exp n2 0 ==> float_num F n r <= float_num F n1 e1 / float_num F n2 e2`,
MAP_EVERY ABBREV_TAC [`z = num_exp n e`; `x = num_exp n1 k`; `y = num_exp n2 0`] THEN REPEAT STRIP_TAC THEN REPLICATE_TAC 3 (POP_ASSUM MP_TAC) THEN REPLICATE_TAC 3 (POP_ASSUM (fun th -> REWRITE_TAC[SYM th])) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV] THEN REWRITE_TAC[REAL_ARITH `(a * b) * c * d = (b * d) * (a * c)`] THEN SUBGOAL_THEN `~(&(num_exp 1 min_exp) = &0)` ASSUME_TAC THENL [ REWRITE_TAC[num_exp; REAL_OF_NUM_EQ; MULT_CLAUSES; EXP_EQ_0] THEN ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN ASM_SIMP_TAC[NUM_EXP_SUB_lemma] THEN SUBGOAL_THEN `&(num_exp n1 e1) * inv(&(num_exp n2 e2)) = (&x / &y) * &(num_exp 1 e1) * inv(&(num_exp 1 (e2 + k)))` MP_TAC THENL [ EXPAND_TAC "x" THEN EXPAND_TAC "y" THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[num_exp; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW] THEN REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL; REAL_INV_1; real_pow; REAL_MUL_RID] THEN REWRITE_TAC[REAL_POW_ADD; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `((a * b) * c) * d * e * f = (b * f) * (a * c * d * e)`] THEN SUBGOAL_THEN (mk_comb(`(~)`, mk_eq(mk_binop `pow` (mk_comb (`&`, base_const)) `k:num`, `&0`))) ASSUME_TAC THENL [ REWRITE_TAC[REAL_POW_EQ_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID] THEN REAL_ARITH_TAC; ALL_TAC ] THEN DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * c = (a * c) * b`] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN ONCE_REWRITE_TAC[NUM_EXP_SUM1] THEN REWRITE_TAC[NUM_EXP_SUM] THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN ASM_REWRITE_TAC[REAL_ARITH `(a * b * c) * d = (d * a) * b * c`] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN MP_TAC (SPEC_ALL DIV_lemma) THEN ANTS_TAC THENL [ EXPAND_TAC "y" THEN REWRITE_TAC[num_exp; MULT_EQ_0; DE_MORGAN_THM] THEN ASM_REWRITE_TAC[EXP] THEN ARITH_TAC; ALL_TAC ] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&(x DIV y)` THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE]);;
let FLOAT_DIV_FF_hi = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n1 k DIV num_exp n2 0 < num_exp n e ==> float_num F n1 e1 / float_num F n2 e2 <= float_num F n r`,
MAP_EVERY ABBREV_TAC [`z = num_exp n e`; `x = num_exp n1 k`; `y = num_exp n2 0`] THEN REPEAT STRIP_TAC THEN REPLICATE_TAC 3 (POP_ASSUM MP_TAC) THEN REPLICATE_TAC 3 (POP_ASSUM (fun th -> REWRITE_TAC[SYM th])) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV] THEN REWRITE_TAC[REAL_ARITH `(a * b) * c * d = (b * d) * (a * c)`] THEN SUBGOAL_THEN `~(&(num_exp 1 min_exp) = &0)` ASSUME_TAC THENL [ REWRITE_TAC[num_exp; REAL_OF_NUM_EQ; MULT_CLAUSES; EXP_EQ_0] THEN ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN ASM_SIMP_TAC[NUM_EXP_SUB_lemma] THEN SUBGOAL_THEN `&(num_exp n1 e1) * inv(&(num_exp n2 e2)) = (&x / &y) * &(num_exp 1 e1) * inv(&(num_exp 1 (e2 + k)))` MP_TAC THENL [ EXPAND_TAC "x" THEN EXPAND_TAC "y" THEN REWRITE_TAC[real_div] THEN REWRITE_TAC[num_exp; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW] THEN REWRITE_TAC[REAL_MUL_LID; REAL_INV_MUL; REAL_INV_1; real_pow; REAL_MUL_RID] THEN REWRITE_TAC[REAL_POW_ADD; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `((a * b) * c) * d * e * f = (b * f) * (a * c * d * e)`] THEN SUBGOAL_THEN (mk_comb(`(~)`, mk_eq(mk_binop `pow` (mk_comb (`&`, base_const)) `k:num`, `&0`))) ASSUME_TAC THENL [ REWRITE_TAC[REAL_POW_EQ_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID] THEN REAL_ARITH_TAC; ALL_TAC ] THEN DISCH_THEN (fun th -> REWRITE_TAC[th]) THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * c = (a * c) * b`] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN ONCE_REWRITE_TAC[NUM_EXP_SUM1] THEN REWRITE_TAC[NUM_EXP_SUM] THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN ASM_REWRITE_TAC[REAL_ARITH `(a * b * c) * d = (d * a) * b * c`] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_MUL_LID] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN MP_TAC (SPEC_ALL DIV_lemma) THEN ANTS_TAC THENL [ EXPAND_TAC "y" THEN REWRITE_TAC[num_exp; MULT_EQ_0; DE_MORGAN_THM] THEN ASM_REWRITE_TAC[EXP] THEN ARITH_TAC; ALL_TAC ] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&(x DIV y + 1)` THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE] THEN UNDISCH_TAC `x DIV y < z` THEN ARITH_TAC);;
let FLOAT_DIV_TT_lo = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n e <= num_exp n1 k DIV num_exp n2 0 ==> float_num F n r <= float_num T n1 e1 / float_num T n2 e2`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_NEG_MUL2] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[FLOAT_DIV_FF_lo]);;
let FLOAT_DIV_TT_hi = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n1 k DIV num_exp n2 0 < num_exp n e ==> float_num T n1 e1 / float_num T n2 e2 <= float_num F n r`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_NEG_MUL2] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[FLOAT_DIV_FF_hi]);;
let FLOAT_DIV_FT_lo = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n1 k DIV num_exp n2 0 < num_exp n e ==> float_num T n r <= float_num F n1 e1 / float_num T n2 e2`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REWRITE_TAC[REAL_ARITH `--a <= b * --c <=> b * c <= a`] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[FLOAT_DIV_FF_hi]);;
let FLOAT_DIV_FT_hi = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n e <= num_exp n1 k DIV num_exp n2 0 ==> float_num F n1 e1 / float_num T n2 e2 <= float_num T n r`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REWRITE_TAC[REAL_ARITH `a * --b <= --c <=> c <= a * b`] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[FLOAT_DIV_FF_lo]);;
let FLOAT_DIV_TF_lo = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n1 k DIV num_exp n2 0 < num_exp n e ==> float_num T n r <= float_num T n1 e1 / float_num F n2 e2`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REWRITE_TAC[REAL_ARITH `--a <= --b * c <=> b * c <= a`] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[FLOAT_DIV_FF_hi]);;
let FLOAT_DIV_TF_hi = 
prove(`e2 + k = r1 /\ min_exp + e + e1 = r2 /\ r2 - r1 = r /\ r1 <= r2 /\ ~(n2 = 0) /\ num_exp n e <= num_exp n1 k DIV num_exp n2 0 ==> float_num T n1 e1 / float_num F n2 e2 <= float_num T n r`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REWRITE_TAC[REAL_ARITH `--a * b <= --c <=> c <= a * b`] THEN REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[FLOAT_DIV_FF_lo]);;
(******************************************) (* float_div_lo, float_div_hi *) let transform = UNDISCH_ALL o PURE_REWRITE_RULE[TAUT `~P <=> (P <=> F)`] o NUMERALS_TO_NUM o PURE_REWRITE_RULE[GSYM IMP_IMP; min_exp_def];; let FLOAT_DIV_FF_hi' = transform FLOAT_DIV_FF_hi and FLOAT_DIV_FF_lo' = transform FLOAT_DIV_FF_lo and FLOAT_DIV_TT_hi' = transform FLOAT_DIV_TT_hi and FLOAT_DIV_TT_lo' = transform FLOAT_DIV_TT_lo and FLOAT_DIV_FT_hi' = transform FLOAT_DIV_FT_hi and FLOAT_DIV_FT_lo' = transform FLOAT_DIV_FT_lo and FLOAT_DIV_TF_hi' = transform FLOAT_DIV_TF_hi and FLOAT_DIV_TF_lo' = transform FLOAT_DIV_TF_lo and FLOAT_DIV_0x_hi' = transform FLOAT_DIV_0x_hi and FLOAT_DIV_0x_lo' = transform FLOAT_DIV_0x_lo;; let float_div_lo pp f1 f2 = let s1, n1, e1 = dest_float f1 and s2, n2, e2 = dest_float f2 in let n1_eq0_th = raw_eq0_hash_conv n1 in if (rand o concl) n1_eq0_th = t_const then (MY_PROVE_HYP n1_eq0_th o INST[e1, e1_var_num; f2, f2_var_real; n1, n1_var_num; (if s1 = "T" then t_const else f_const), s1_var_bool]) FLOAT_DIV_0x_lo' else let flag = s1 = s2 in let k_tm = rand (mk_small_numeral_array (2 * pp)) in let num_exp1 = mk_num_exp n1 k_tm and num_exp2 = mk_num_exp n2 zero_const in let div_th, n_tm, e_tm = if flag then let th = num_exp_op_lo pp num_exp_div num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (lhand(concl th)) in th, n_tm, e_tm else let th = num_exp_op_hi_lt pp num_exp_div num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand(concl th)) in th, n_tm, e_tm in let r1_th = raw_add_conv_hash (mk_binop add_op_num e2 k_tm) in let r1_tm = rand(concl r1_th) in let e_plus_e1 = raw_add_conv_hash (mk_binop add_op_num e_tm e1) in let ltm, rtm = dest_comb(concl e_plus_e1) in let r2_th' = raw_add_conv_hash (mk_binop add_op_num min_exp_num_const rtm) in let r2_th = TRANS (AP_TERM (mk_comb (add_op_num, min_exp_num_const)) e_plus_e1) r2_th' in let r2_tm = rand(concl r2_th) in let sub_th, le_th = raw_sub_and_le_hash_conv r2_tm r1_tm in if rand(concl le_th) <> r2_tm then failwith "float_div_lo: underflow" else let r_tm = rand(concl sub_th) in let n2_not_zero = raw_eq0_hash_conv n2 in let inst = INST[r1_tm, r1_var_num; r2_tm, r2_var_num; n1, n1_var_num; e1, e1_var_num; e_tm, e_var_num; k_tm, k_var_num; n2, n2_var_num; e2, e2_var_num; n_tm, n_var_num; r_tm, r_var_num] in let th0 = inst (if flag then if s1 = "F" then FLOAT_DIV_FF_lo' else FLOAT_DIV_TT_lo' else if s1 = "F" then FLOAT_DIV_FT_lo' else FLOAT_DIV_TF_lo') in let th1 = MY_PROVE_HYP n2_not_zero (MY_PROVE_HYP div_th (MY_PROVE_HYP le_th th0)) in MY_PROVE_HYP sub_th (MY_PROVE_HYP r2_th (MY_PROVE_HYP r1_th th1));; let float_div_hi pp f1 f2 = let s1, n1, e1 = dest_float f1 and s2, n2, e2 = dest_float f2 in let n1_eq0_th = raw_eq0_hash_conv n1 in if (rand o concl) n1_eq0_th = t_const then (MY_PROVE_HYP n1_eq0_th o INST[e1, e1_var_num; f2, f2_var_real; n1, n1_var_num; (if s1 = "T" then t_const else f_const), s1_var_bool]) FLOAT_DIV_0x_hi' else let flag = s1 = s2 in let k_tm = rand (mk_small_numeral_array (2 * pp)) in let num_exp1 = mk_num_exp n1 k_tm and num_exp2 = mk_num_exp n2 zero_const in let div_th, n_tm, e_tm = if flag then let th = num_exp_op_hi_lt pp num_exp_div num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand(concl th)) in th, n_tm, e_tm else let th = num_exp_op_lo pp num_exp_div num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (lhand(concl th)) in th, n_tm, e_tm in let r1_th = raw_add_conv_hash (mk_binop add_op_num e2 k_tm) in let r1_tm = rand(concl r1_th) in let e_plus_e1 = raw_add_conv_hash (mk_binop add_op_num e_tm e1) in let ltm, rtm = dest_comb(concl e_plus_e1) in let r2_th' = raw_add_conv_hash (mk_binop add_op_num min_exp_num_const rtm) in let r2_th = TRANS (AP_TERM (mk_comb (add_op_num, min_exp_num_const)) e_plus_e1) r2_th' in let r2_tm = rand(concl r2_th) in let sub_th, le_th = raw_sub_and_le_hash_conv r2_tm r1_tm in if rand(concl le_th) <> r2_tm then failwith "float_div_hi: underflow" else let r_tm = rand(concl sub_th) in let n2_not_zero = raw_eq0_hash_conv n2 in let inst = INST[r1_tm, r1_var_num; r2_tm, r2_var_num; n1, n1_var_num; e1, e1_var_num; e_tm, e_var_num; k_tm, k_var_num; n2, n2_var_num; e2, e2_var_num; n_tm, n_var_num; r_tm, r_var_num] in let th0 = inst (if flag then if s1 = "F" then FLOAT_DIV_FF_hi' else FLOAT_DIV_TT_hi' else if s1 = "F" then FLOAT_DIV_FT_hi' else FLOAT_DIV_TF_hi') in let th1 = MY_PROVE_HYP n2_not_zero (MY_PROVE_HYP div_th (MY_PROVE_HYP le_th th0)) in MY_PROVE_HYP sub_th (MY_PROVE_HYP r2_th (MY_PROVE_HYP r1_th th1));; (***********************************) (* FLOAT_ADD *)
let FLOAT_ADD_FF = 
prove(`num_exp n1 e1 + num_exp n2 e2 = num_exp n e ==> float_num F n1 e1 + float_num F n2 e2 = float_num F n e`,
REPEAT STRIP_TAC THEN REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[REAL_ARITH `a / b + c / b = (a + c) / b`] THEN ASM_REWRITE_TAC[REAL_OF_NUM_ADD]);;
let FLOAT_ADD_TT = 
prove(`num_exp n1 e1 + num_exp n2 e2 = num_exp n e ==> float_num T n1 e1 + float_num T n2 e2 = float_num T n e`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `--a + --b = --c <=> a + b = c`] THEN REWRITE_TAC[FLOAT_ADD_FF]);;
let FLOAT_ADD_FF_lo = 
prove(`num_exp n e <= num_exp n1 e1 + num_exp n2 e2 ==> float_num F n e <= float_num F n1 e1 + float_num F n2 e2`,
REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD] THEN REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`z = &(num_exp n e)`; `x = &(num_exp n1 e1)`; `y = &(num_exp n2 e2)`] THEN ASM_REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[REAL_ARITH `a / b + c / b = (a + c) / b`] THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS]);;
let FLOAT_ADD_FF_hi = 
prove(`num_exp n1 e1 + num_exp n2 e2 <= num_exp n e ==> float_num F n1 e1 + float_num F n2 e2 <= float_num F n e`,
REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD] THEN REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`z = &(num_exp n e)`; `x = &(num_exp n1 e1)`; `y = &(num_exp n2 e2)`] THEN ASM_REWRITE_TAC[float; REAL_MUL_LID] THEN REWRITE_TAC[REAL_ARITH `a / b + c / b = (a + c) / b`] THEN REWRITE_TAC[real_div] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS]);;
let FLOAT_ADD_TT_lo = 
prove(`num_exp n1 e1 + num_exp n2 e2 <= num_exp n e ==> float_num T n e <= float_num T n1 e1 + float_num T n2 e2`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `--a <= --b + --c <=> b + c <= a`] THEN REWRITE_TAC[FLOAT_ADD_FF_hi]);;
let FLOAT_ADD_TT_hi = 
prove(`num_exp n e <= num_exp n1 e1 + num_exp n2 e2 ==> float_num T n1 e1 + float_num T n2 e2 <= float_num T n e`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `--b + --c <= --a <=> a <= b + c`] THEN REWRITE_TAC[FLOAT_ADD_FF_lo]);;
let FLOAT_ADD_FT_F_lo = 
prove(`num_exp n2 e2 <= num_exp n1 e1 ==> num_exp n e <= num_exp n1 e1 - num_exp n2 e2 ==> float_num F n e <= float_num F n1 e1 + float_num T n2 e2`,
MAP_EVERY ABBREV_TAC[`z = num_exp n e`; `x = num_exp n1 e1`; `y = num_exp n2 e2`] THEN ASM_REWRITE_TAC[FLOAT_NEG_T; float; REAL_MUL_LID] THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_SUB] THEN REWRITE_TAC[num_exp; min_exp_def; MULT_CLAUSES; GSYM REAL_OF_NUM_POW] THEN REAL_ARITH_TAC);;
let FLOAT_ADD_FT_T_lo = 
prove(`num_exp n1 e1 <= num_exp n2 e2 ==> num_exp n2 e2 - num_exp n1 e1 <= num_exp n e ==> float_num T n e <= float_num F n1 e1 + float_num T n2 e2`,
MAP_EVERY ABBREV_TAC[`z = num_exp n e`; `x = num_exp n1 e1`; `y = num_exp n2 e2`] THEN ASM_REWRITE_TAC[FLOAT_NEG_T; float; REAL_MUL_LID] THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_SUB] THEN REWRITE_TAC[num_exp; min_exp_def; MULT_CLAUSES; GSYM REAL_OF_NUM_POW] THEN REAL_ARITH_TAC);;
let FLOAT_ADD_FT_F_hi = 
prove(`num_exp n2 e2 <= num_exp n1 e1 ==> num_exp n1 e1 - num_exp n2 e2 <= num_exp n e ==> float_num F n1 e1 + float_num T n2 e2 <= float_num F n e`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `a + --b <= c <=> --c <= b + --a`] THEN REWRITE_TAC[GSYM FLOAT_NEG_T; FLOAT_ADD_FT_T_lo]);;
let FLOAT_ADD_FT_T_hi = 
prove(`num_exp n1 e1 <= num_exp n2 e2 ==> num_exp n e <= num_exp n2 e2 - num_exp n1 e1 ==> float_num F n1 e1 + float_num T n2 e2 <= float_num T n e`,
REWRITE_TAC[FLOAT_NEG_T; REAL_ARITH `a + --b <= --c <=> c <= b + --a`] THEN REWRITE_TAC[GSYM FLOAT_NEG_T; FLOAT_ADD_FT_F_lo]);;
(******************************************) (* float_add_lo, float_add_hi *) let REAL_ADD_COMM = CONJUNCT1 REAL_ADD_AC;; let transform = UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o NUMERALS_TO_NUM;; let FLOAT_ADD_FF_hi' = transform FLOAT_ADD_FF_hi and FLOAT_ADD_FF_lo' = transform FLOAT_ADD_FF_lo and FLOAT_ADD_TT_hi' = transform FLOAT_ADD_TT_hi and FLOAT_ADD_TT_lo' = transform FLOAT_ADD_TT_lo and FLOAT_ADD_FT_F_lo' = transform FLOAT_ADD_FT_F_lo and FLOAT_ADD_FT_T_lo' = transform FLOAT_ADD_FT_T_lo and FLOAT_ADD_FT_F_hi' = transform FLOAT_ADD_FT_F_hi and FLOAT_ADD_FT_T_hi' = transform FLOAT_ADD_FT_T_hi;; let float_add_lo pp f1 f2 = let s1, n1, e1 = dest_float f1 in let s2, n2, e2 = dest_float f2 in if s1 = s2 then let num_exp1 = mk_num_exp n1 e1 in let num_exp2 = mk_num_exp n2 e2 in if s1 = "F" then (* F + F *) let add_th = num_exp_op_lo pp num_exp_add num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (lhand(concl add_th)) in let th0 = INST[e_tm, e_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] FLOAT_ADD_FF_lo' in MY_PROVE_HYP add_th th0 else (* T + T *) let add_th = num_exp_op_hi pp num_exp_add num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand(concl add_th)) in let th0 = INST[e_tm, e_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] FLOAT_ADD_TT_lo' in MY_PROVE_HYP add_th th0 else (* F + T or T + F *) let th0, n1, e1, n2, e2 = if s1 = "T" then INST[f2, m_var_real; f1, n_var_real] REAL_ADD_COMM, n2, e2, n1, e1 else REFL(mk_binop add_op_real f1 f2), n1, e1, n2, e2 in let num_exp1 = mk_num_exp n1 e1 in let num_exp2 = mk_num_exp n2 e2 in let sub_th, le_th = num_exp_sub num_exp1 num_exp2 in let sub_tm = rand(concl sub_th) in if rand(concl le_th) = num_exp1 then let lo_th = num_exp_lo pp sub_tm in let n_tm, e_tm = dest_num_exp (lhand(concl lo_th)) in let lo_sub_th = EQ_MP (AP_TERM (rator(concl lo_th)) (SYM sub_th)) lo_th in let th1 = INST[n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num; n_tm, n_var_num; e_tm, e_var_num] FLOAT_ADD_FT_F_lo' in let th2 = MY_PROVE_HYP lo_sub_th (MY_PROVE_HYP le_th th1) in EQ_MP (AP_TERM (rator(concl th2)) th0) th2 else let hi_th = num_exp_hi pp sub_tm in let n_tm, e_tm = dest_num_exp(rand(concl hi_th)) in let hi_sub_th = EQ_MP (SYM (AP_THM (AP_TERM le_op_num sub_th) (rand(concl hi_th)))) hi_th in let th1 = INST[n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num; n_tm, n_var_num; e_tm, e_var_num] FLOAT_ADD_FT_T_lo' in let th2 = MY_PROVE_HYP hi_sub_th (MY_PROVE_HYP le_th th1) in EQ_MP (AP_TERM (rator(concl th2)) th0) th2;; let float_add_hi pp f1 f2 = let s1, n1, e1 = dest_float f1 in let s2, n2, e2 = dest_float f2 in if s1 = s2 then let num_exp1 = mk_num_exp n1 e1 in let num_exp2 = mk_num_exp n2 e2 in if s1 = "F" then (* F + F *) let add_th = num_exp_op_hi pp num_exp_add num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (rand(concl add_th)) in let th0 = INST[e_tm, e_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] FLOAT_ADD_FF_hi' in MY_PROVE_HYP add_th th0 else (* T + T *) let add_th = num_exp_op_lo pp num_exp_add num_exp1 num_exp2 in let n_tm, e_tm = dest_num_exp (lhand(concl add_th)) in let th0 = INST[e_tm, e_var_num; n_tm, n_var_num; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] FLOAT_ADD_TT_hi' in MY_PROVE_HYP add_th th0 else (* F + T or T + F *) let th0, n1, e1, n2, e2 = if s1 = "T" then INST[f2, m_var_real; f1, n_var_real] REAL_ADD_COMM, n2, e2, n1, e1 else REFL(mk_binop add_op_real f1 f2), n1, e1, n2, e2 in let num_exp1 = mk_num_exp n1 e1 in let num_exp2 = mk_num_exp n2 e2 in let sub_th, le_th = num_exp_sub num_exp1 num_exp2 in let sub_tm = rand(concl sub_th) in if rand(concl le_th) = num_exp1 then let hi_th = num_exp_hi pp sub_tm in let n_tm, e_tm = dest_num_exp (rand(concl hi_th)) in let hi_sub_th = EQ_MP (SYM (AP_THM (AP_TERM le_op_num sub_th) (rand(concl hi_th)))) hi_th in let th1 = INST[n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num; n_tm, n_var_num; e_tm, e_var_num] FLOAT_ADD_FT_F_hi' in let th2 = MY_PROVE_HYP hi_sub_th (MY_PROVE_HYP le_th th1) in EQ_MP (AP_THM (AP_TERM le_op_real th0) (rand(concl th2))) th2 else let lo_th = num_exp_lo pp sub_tm in let n_tm, e_tm = dest_num_exp(lhand(concl lo_th)) in let lo_sub_th = EQ_MP (AP_TERM (rator(concl lo_th)) (SYM sub_th)) lo_th in let th1 = INST[n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num; n_tm, n_var_num; e_tm, e_var_num] FLOAT_ADD_FT_T_hi' in let th2 = MY_PROVE_HYP lo_sub_th (MY_PROVE_HYP le_th th1) in EQ_MP (AP_THM (AP_TERM le_op_real th0) (rand(concl th2))) th2;; (******************************************) (* float_sub_lo, float_sub_hi *) let FLOAT_SUB_F_EQ_ADD = (SYM o prove)(`f1 - float_num F n2 e2 = f1 + float_num T n2 e2`, REWRITE_TAC[FLOAT_NEG_T] THEN REAL_ARITH_TAC);; let FLOAT_SUB_T_EQ_ADD = (SYM o prove)(`f1 - float_num T n2 e2 = f1 + float_num F n2 e2`, REWRITE_TAC[FLOAT_NEG_T] THEN REAL_ARITH_TAC);; let float_sub_lo pp f1 f2 = let s2, n2, e2 = dest_float f2 in let th0 = INST[f1, f1_var_real; n2, n2_var_num; e2, e2_var_num] (if s2 = "F" then FLOAT_SUB_F_EQ_ADD else FLOAT_SUB_T_EQ_ADD) in let ltm,f2_tm = dest_comb(lhand(concl th0)) in let f1_tm = rand ltm in let lo_th = float_add_lo pp f1_tm f2_tm in EQ_MP (AP_TERM (rator(concl lo_th)) th0) lo_th;; let float_sub_hi pp f1 f2 = let s2, n2, e2 = dest_float f2 in let th0 = INST[f1, f1_var_real; n2, n2_var_num; e2, e2_var_num] (if s2 = "F" then FLOAT_SUB_F_EQ_ADD else FLOAT_SUB_T_EQ_ADD) in let ltm, f2_tm = dest_comb(lhand(concl th0)) in let f1_tm = rand ltm in let hi_th = float_add_hi pp f1_tm f2_tm in EQ_MP (AP_THM (AP_TERM le_op_real th0) (rand(concl hi_th))) hi_th;; (*******************************************) (* FLOAT_SQRT *) (* float_num F m e = float_num F (B0 m) (PRE e) *)
let FLOAT_PRE_EXP = prove(mk_imp(`~(e = 0) /\ PRE e = e1`,
				 mk_eq(`float_num F m e`,
				       mk_comb(mk_comb(`float_num F`, mk_comb(b0_const, m_var_num)), `e1:num`))),
   STRIP_TAC THEN POP_ASSUM (fun th -> REWRITE_TAC[SYM th]) THEN
     REWRITE_TAC[float; REAL_MUL_LID; real_div; REAL_EQ_MUL_RCANCEL] THEN
     DISJ1_TAC THEN
     REWRITE_TAC[num_exp; b0_thm; REAL_OF_NUM_EQ] THEN
     SUBGOAL_THEN `e = SUC (PRE e)` MP_TAC THENL
     [
       POP_ASSUM MP_TAC THEN ARITH_TAC;
       ALL_TAC
     ] THEN
     DISCH_THEN (fun th -> CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV[th]))) THEN
     REWRITE_TAC[EXP] THEN
     ARITH_TAC);;
let DIV2_EVEN_lemma = 
prove(`!n. EVEN n ==> 2 * (n DIV 2) = n`,
GEN_TAC THEN REWRITE_TAC[EVEN_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC (ARITH_RULE `x = y ==> 2 * x = 2 * y`) THEN MATCH_MP_TAC DIV_MULT THEN ARITH_TAC);;
let FLOAT_SQRT_EVEN_lo = 
prove(`f1 * f1 = f2 /\ f2 <= x /\ num_exp m (2 * p) = x /\ f1 = num_exp n1 e1 /\ EVEN e /\ e DIV 2 = e2 /\ e1 + e2 + (min_exp DIV 2) = r /\ p <= r /\ r - p = r2 ==> float_num F n1 r2 <= sqrt (float_num F m e)`,
STRIP_TAC THEN UNDISCH_TAC `f2 <= x:num` THEN UNDISCH_TAC `num_exp m (2 * p) = x` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN UNDISCH_TAC `f1 * f1 = f2:num` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN UNDISCH_TAC `e1 + e2 + min_exp DIV 2 = r` THEN UNDISCH_TAC `e DIV 2 = e2` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN REPEAT (POP_ASSUM MP_TAC) THEN REWRITE_TAC[num_exp; float; REAL_MUL_LID; GSYM REAL_OF_NUM_MUL] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `r - p = r2:num` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN MATCH_MP_TAC REAL_LE_RSQRT THEN REWRITE_TAC[GSYM REAL_OF_NUM_POW; REAL_POW_DIV] THEN REWRITE_TAC[REAL_POW_2; real_div; REAL_INV_MUL] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_ARITH `(((a * b) * a) * b) * c = (a * a) * (b * b) * c:real`] THEN REWRITE_TAC[GSYM REAL_POW_ADD] THEN REWRITE_TAC[ARITH_RULE `r - p + r - p = 2 * r - 2 * p`] THEN MP_TAC (SPECL[mk_comb(amp_op_real, base_const); `2 * r`; `2 * p`] REAL_DIV_POW2) THEN ANTS_TAC THENL [ REAL_ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[ARITH_RULE `p <= r ==> 2 * p <= 2 * r`] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th; real_div]) THEN SUBGOAL_THEN `2 * r = (e1 + e1) + min_exp + e` (fun th -> REWRITE_TAC[th]) THENL [ EXPAND_TAC "r" THEN REWRITE_TAC[ARITH_RULE `2 * (e1 + b + c) = (e1 + e1) + 2 * c + 2 * b`] THEN MATCH_MP_TAC (ARITH_RULE `b1 = b2 /\ c1 = c2 ==> a + b1 + c1 = a + b2 + c2:num`) THEN SUBGOAL_THEN `EVEN min_exp` ASSUME_TAC THENL [ REWRITE_TAC[min_exp_def] THEN ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[DIV2_EVEN_lemma]; ALL_TAC ] THEN REWRITE_TAC[REAL_POW_ADD] THEN REWRITE_TAC[REAL_ARITH `(n * n) * (((e * e) * x * y) * z) * u = (n * e) * (n * e) * (x * u) * z * y:real`] THEN SUBGOAL_THEN `~(&(num_exp 1 min_exp) = &0)` MP_TAC THENL [ REWRITE_TAC[REAL_OF_NUM_EQ; NUM_EXP_EQ_0] THEN ARITH_TAC; ALL_TAC ] THEN REWRITE_TAC[num_exp; REAL_MUL_LID; GSYM REAL_OF_NUM_POW; GSYM REAL_OF_NUM_MUL] THEN DISCH_THEN (fun th -> SIMP_TAC[th; REAL_MUL_RINV; REAL_MUL_LID]) THEN FIRST_X_ASSUM (MP_TAC o check(fun th -> (fst o dest_var o lhand o concl) th = "f1")) THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL [ SUBGOAL_THEN `!x y z. &0 < x /\ y <= z * x ==> y * inv x <= z` MP_TAC THENL [ REPEAT STRIP_TAC THEN MP_TAC (SPECL [`y * inv x`; `z:real`; `x:real`] REAL_LE_RMUL_EQ) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th; GSYM REAL_MUL_ASSOC]) THEN ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> ~(x = &0)`; REAL_MUL_LINV; REAL_MUL_RID]; ALL_TAC ] THEN DISCH_THEN (MP_TAC o SPECL[`&(num_exp 1 (2 * p))`; `&(f1 * f1)`; `&m`]) THEN REWRITE_TAC[num_exp; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW; REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_POW; REAL_OF_NUM_LE] THEN REWRITE_TAC[REAL_OF_NUM_LT; EXP_LT_0] THEN ARITH_TAC; ALL_TAC ] THEN MATCH_MP_TAC REAL_POW_LE THEN ARITH_TAC; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_INV THEN MATCH_MP_TAC REAL_POW_LE THEN ARITH_TAC);;
let FLOAT_SQRT_EVEN_hi = 
prove(`f1 * f1 = f2 /\ x <= f2 /\ num_exp m (2 * p) = x /\ f1 = num_exp n1 e1 /\ EVEN e /\ e DIV 2 = e2 /\ e1 + e2 + (min_exp DIV 2) = r /\ p <= r /\ r - p = r2 ==> sqrt (float_num F m e) <= float_num F n1 r2`,
STRIP_TAC THEN UNDISCH_TAC `x <= f2:num` THEN UNDISCH_TAC `num_exp m (2 * p) = x` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN UNDISCH_TAC `f1 * f1 = f2:num` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN UNDISCH_TAC `e1 + e2 + min_exp DIV 2 = r` THEN UNDISCH_TAC `e DIV 2 = e2` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN REPEAT (POP_ASSUM MP_TAC) THEN REWRITE_TAC[num_exp; float; REAL_MUL_LID; GSYM REAL_OF_NUM_MUL] THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `r - p = r2:num` THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN MATCH_MP_TAC REAL_LE_LSQRT THEN REPEAT CONJ_TAC THENL [ REWRITE_TAC[REAL_OF_NUM_MUL; real_div] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN MATCH_MP_TAC REAL_LE_INV THEN REWRITE_TAC[REAL_POS]; REWRITE_TAC[REAL_OF_NUM_MUL; real_div] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN MATCH_MP_TAC REAL_LE_INV THEN REWRITE_TAC[REAL_POS]; ALL_TAC ] THEN REWRITE_TAC[GSYM REAL_OF_NUM_POW; REAL_POW_DIV] THEN REWRITE_TAC[REAL_POW_2; real_div; REAL_INV_MUL] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_ARITH `(((a * b) * a) * b) * c = (a * a) * (b * b) * c:real`] THEN REWRITE_TAC[GSYM REAL_POW_ADD] THEN REWRITE_TAC[ARITH_RULE `r - p + r - p = 2 * r - 2 * p`] THEN MP_TAC (SPECL[mk_comb(amp_op_real, base_const); `2 * r`; `2 * p`] REAL_DIV_POW2) THEN ANTS_TAC THENL [ REAL_ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[ARITH_RULE `p <= r ==> 2 * p <= 2 * r`] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th; real_div]) THEN SUBGOAL_THEN `2 * r = (e1 + e1) + min_exp + e` (fun th -> REWRITE_TAC[th]) THENL [ EXPAND_TAC "r" THEN REWRITE_TAC[ARITH_RULE `2 * (e1 + b + c) = (e1 + e1) + 2 * c + 2 * b`] THEN MATCH_MP_TAC (ARITH_RULE `b1 = b2 /\ c1 = c2 ==> a + b1 + c1 = a + b2 + c2:num`) THEN SUBGOAL_THEN `EVEN min_exp` ASSUME_TAC THENL [ REWRITE_TAC[min_exp_def] THEN ARITH_TAC; ALL_TAC ] THEN ASM_SIMP_TAC[DIV2_EVEN_lemma]; ALL_TAC ] THEN REWRITE_TAC[REAL_POW_ADD] THEN REWRITE_TAC[REAL_ARITH `(n * n) * (((e * e) * x * y) * z) * u = (n * e) * (n * e) * (x * u) * z * y:real`] THEN SUBGOAL_THEN `~(&(num_exp 1 min_exp) = &0)` MP_TAC THENL [ REWRITE_TAC[REAL_OF_NUM_EQ; NUM_EXP_EQ_0] THEN ARITH_TAC; ALL_TAC ] THEN REWRITE_TAC[num_exp; REAL_MUL_LID; GSYM REAL_OF_NUM_POW; GSYM REAL_OF_NUM_MUL] THEN DISCH_THEN (fun th -> SIMP_TAC[th; REAL_MUL_RINV; REAL_MUL_LID]) THEN FIRST_X_ASSUM (MP_TAC o check(fun th -> (fst o dest_var o lhand o concl) th = "f1")) THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th]) THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN CONJ_TAC THENL [ SUBGOAL_THEN `!x y z. &0 < x /\ z * x <= y ==> z <= y * inv x` MP_TAC THENL [ REPEAT STRIP_TAC THEN MP_TAC (SPECL [`z:real`; `y * inv x`; `x:real`] REAL_LE_RMUL_EQ) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN (fun th -> REWRITE_TAC[SYM th; GSYM REAL_MUL_ASSOC]) THEN ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> ~(x = &0)`; REAL_MUL_LINV; REAL_MUL_RID]; ALL_TAC ] THEN DISCH_THEN (MP_TAC o SPECL[`&(num_exp 1 (2 * p))`; `&(f1 * f1)`; `&m`]) THEN REWRITE_TAC[num_exp; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW; REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_POW; REAL_OF_NUM_LE] THEN REWRITE_TAC[REAL_OF_NUM_LT; EXP_LT_0] THEN ARITH_TAC; ALL_TAC ] THEN MATCH_MP_TAC REAL_POW_LE THEN ARITH_TAC; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_INV THEN MATCH_MP_TAC REAL_POW_LE THEN ARITH_TAC);;
(******************) let transform = UNDISCH_ALL o PURE_ONCE_REWRITE_RULE[TAUT `EVEN e <=> (EVEN e <=> T)`] o NUMERALS_TO_NUM o CONV_RULE (DEPTH_CONV NUM_DIV_CONV) o REWRITE_RULE[GSYM IMP_IMP; min_exp_def];; let FLOAT_SQRT_EVEN_lo' = transform FLOAT_SQRT_EVEN_lo and FLOAT_SQRT_EVEN_hi' = transform FLOAT_SQRT_EVEN_hi and FLOAT_PRE_EXP' = (UNDISCH_ALL o PURE_ONCE_REWRITE_RULE[TAUT `~(e = _0) <=> ((e = _0) <=> F)`] o REWRITE_RULE[GSYM IMP_IMP; NUMERAL]) FLOAT_PRE_EXP;; let even_const = `EVEN` and pre_const = `PRE` and two_num = rand(mk_small_numeral_array 2) and min_exp_div2 = rand(mk_small_numeral_array (min_exp / 2)) and f2_var_num = `f2:num` and f1_var_num = `f1:num` and p_var_num = `p:num`;; (* Returns the list of digits of the given Big_int n in the base b *) let rec get_big_int_digits b n = let bb = big_int_of_int b in if le_big_int n zero_big_int then [] else let q, r = quomod_big_int n bb in r :: get_big_int_digits b q;; (* [1;2;3] -> 123 (base = 10) *) let rec big_int_from_list b list = let rec proc acc list = match list with [] -> acc | h::t -> proc (add_big_int h (mult_int_big_int b acc)) t in proc zero_big_int list;; (* Returns n first elements of the list *) let rec take n list = match list with x :: xs -> if n > 0 then x :: take (n - 1) xs else [] | [] -> [];; (* Returns an integer number that contains at most pp significant digits in the given base b *) let big_int_round_lo base pp n = let digits = rev (get_big_int_digits base n) in let n_digits = length digits in if n_digits <= pp then n else let m = big_int_from_list base (take pp digits) in mult_big_int (power_int_positive_int base (n_digits - pp)) m;; let big_int_round_hi base pp n = let digits = rev (get_big_int_digits base n) in let n_digits = length digits in if n_digits <= pp then n else let l1, l2 = chop_list pp digits in if forall (eq_big_int zero_big_int) l2 then n else let m = succ_big_int (big_int_from_list base l1) in mult_big_int (power_int_positive_int base (n_digits - pp)) m;; (******************) let rec float_sqrt_lo pp tm = let s, m_tm, e_tm = dest_float tm in let p_tm = rand (mk_small_numeral_array pp) in if s <> "F" then failwith "float_sqrt_lo: negative argument" else let even_th = raw_even_hash_conv (mk_comb (even_const, e_tm)) in if (fst o dest_const o rand o concl) even_th <> "T" then (* ODD e *) let pre_e = raw_pre_hash_conv (mk_comb (pre_const, e_tm)) in let e_neq_0 = raw_eq0_hash_conv e_tm in let e1_tm = rand (concl pre_e) in let th0 = INST[e1_tm, e1_var_num; e_tm, e_var_num; m_tm, m_var_num] FLOAT_PRE_EXP' in let th1 = MY_PROVE_HYP pre_e (MY_PROVE_HYP e_neq_0 th0) in let th2 = float_sqrt_lo pp (rand(concl th1)) in let ltm, rtm = dest_comb (concl th2) in EQ_MP (SYM (AP_TERM ltm (AP_TERM (rator rtm) th1))) th2 else (* EVEN e *) let p2_tm = mk_binop mul_op_num two_num p_tm in let p2_th = raw_mul_conv_hash p2_tm in let f1_1 = AP_TERM (mk_comb(num_exp_const, m_tm)) p2_th in let f1_2 = TRANS f1_1 (denormalize (rand (concl f1_1))) in let x_tm = rand(concl f1_2) in let x = raw_dest_hash x_tm in let f1' = Big_int.sqrt_big_int (big_int_of_num x) in let f1 = num_of_big_int (big_int_round_lo Arith_hash.arith_base pp f1') in let f1_tm = rand(mk_numeral_array f1) in let f1_num_exp = to_num_exp f1_tm in let n1_tm, e1_tm = dest_num_exp (rand (concl f1_num_exp)) in let f1f1_eq_f2 = raw_mul_conv_hash (mk_binop mul_op_num f1_tm f1_tm) in let f2_tm = rand(concl f1f1_eq_f2) in let f2_le_x = EQT_ELIM (raw_le_hash_conv (mk_binop le_op_num f2_tm x_tm)) in let e_div2_eq_e2 = raw_div_hash_conv (mk_binop div_op_num e_tm two_num) in let e2_tm = rand(concl e_div2_eq_e2) in let r_th1 = raw_add_conv_hash (mk_binop add_op_num e2_tm min_exp_div2) in let r_th2 = AP_TERM (mk_comb(add_op_num, e1_tm)) r_th1 in let r_th = TRANS r_th2 (raw_add_conv_hash (rand (concl r_th2))) in let r_tm = rand(concl r_th) in let r_sub_p, p_le_r = raw_sub_and_le_hash_conv p_tm r_tm in let r2_tm = rand(concl r_sub_p) in if (rand(concl p_le_r) <> r_tm) then failwith "float_sqrt_lo: underflow" else let th0 = INST[f2_tm, f2_var_num; x_tm, x_var_num; p_tm, p_var_num; r_tm, r_var_num; f1_tm, f1_var_num; n1_tm, n1_var_num; e1_tm, e1_var_num; e2_tm, e2_var_num; e_tm, e_var_num; m_tm, m_var_num; r2_tm, r2_var_num] FLOAT_SQRT_EVEN_lo' in MY_PROVE_HYP f1_2 ( MY_PROVE_HYP e_div2_eq_e2 ( MY_PROVE_HYP r_sub_p ( MY_PROVE_HYP r_th ( MY_PROVE_HYP f1f1_eq_f2 ( MY_PROVE_HYP f1_num_exp ( MY_PROVE_HYP even_th ( MY_PROVE_HYP f2_le_x ( MY_PROVE_HYP p_le_r th0 ))))))));; let rec float_sqrt_hi pp tm = let s, m_tm, e_tm = dest_float tm in let p_tm = rand (mk_small_numeral_array pp) in if s <> "F" then failwith "float_sqrt_lo: negative argument" else let even_th = raw_even_hash_conv (mk_comb (even_const, e_tm)) in if (fst o dest_const o rand o concl) even_th <> "T" then (* ODD e *) let pre_e = raw_pre_hash_conv (mk_comb (pre_const, e_tm)) in let e_neq_0 = raw_eq0_hash_conv e_tm in let e1_tm = rand (concl pre_e) in let th0 = INST[e1_tm, e1_var_num; e_tm, e_var_num; m_tm, m_var_num] FLOAT_PRE_EXP' in let th1 = MY_PROVE_HYP pre_e (MY_PROVE_HYP e_neq_0 th0) in let th2 = float_sqrt_hi pp (rand(concl th1)) in let ltm, rtm = dest_comb (concl th2) in let ltm2, rtm2 = dest_comb ltm in let th3 = AP_THM (AP_TERM ltm2 (AP_TERM (rator rtm2) th1)) rtm in EQ_MP (SYM th3) th2 else (* EVEN e *) let p2_tm = mk_binop mul_op_num two_num p_tm in let p2_th = raw_mul_conv_hash p2_tm in let f1_1 = AP_TERM (mk_comb(num_exp_const, m_tm)) p2_th in let f1_2 = TRANS f1_1 (denormalize (rand (concl f1_1))) in let x_tm = rand(concl f1_2) in let x = raw_dest_hash x_tm in let x' = big_int_of_num x in let f1' = sqrt_big_int x' in let f1 = (num_of_big_int o big_int_round_hi Arith_hash.arith_base pp) (if eq_big_int (mult_big_int f1' f1') x' then f1' else succ_big_int f1') in let f1_tm = rand(mk_numeral_array f1) in let f1_num_exp = to_num_exp f1_tm in let n1_tm, e1_tm = dest_num_exp (rand (concl f1_num_exp)) in let f1f1_eq_f2 = raw_mul_conv_hash (mk_binop mul_op_num f1_tm f1_tm) in let f2_tm = rand(concl f1f1_eq_f2) in let x_le_f2 = EQT_ELIM (raw_le_hash_conv (mk_binop le_op_num x_tm f2_tm)) in let e_div2_eq_e2 = raw_div_hash_conv (mk_binop div_op_num e_tm two_num) in let e2_tm = rand(concl e_div2_eq_e2) in let r_th1 = raw_add_conv_hash (mk_binop add_op_num e2_tm min_exp_div2) in let r_th2 = AP_TERM (mk_comb(add_op_num, e1_tm)) r_th1 in let r_th = TRANS r_th2 (raw_add_conv_hash (rand (concl r_th2))) in let r_tm = rand(concl r_th) in let r_sub_p, p_le_r = raw_sub_and_le_hash_conv p_tm r_tm in let r2_tm = rand(concl r_sub_p) in if (rand(concl p_le_r) <> r_tm) then failwith "float_sqrt_lo: underflow" else let th0 = INST[f2_tm, f2_var_num; x_tm, x_var_num; p_tm, p_var_num; r_tm, r_var_num; f1_tm, f1_var_num; n1_tm, n1_var_num; e1_tm, e1_var_num; e2_tm, e2_var_num; e_tm, e_var_num; m_tm, m_var_num; r2_tm, r2_var_num] FLOAT_SQRT_EVEN_hi' in MY_PROVE_HYP f1_2 ( MY_PROVE_HYP e_div2_eq_e2 ( MY_PROVE_HYP r_sub_p ( MY_PROVE_HYP r_th ( MY_PROVE_HYP f1f1_eq_f2 ( MY_PROVE_HYP f1_num_exp ( MY_PROVE_HYP even_th ( MY_PROVE_HYP x_le_f2 ( MY_PROVE_HYP p_le_r th0 ))))))));; end;; (* Float_ops module *) (************************************) (* Cached floating point operations *) (************************************) (* Counters for collecting stats *) let lt0_c = ref 0 and gt0_c = ref 0 and lt_c = ref 0 and le0_c = ref 0 and ge0_c = ref 0 and le_c = ref 0 and min_c = ref 0 and max_c = ref 0 and min_max_c = ref 0 and mul_lo_c = ref 0 and mul_hi_c = ref 0 and div_lo_c = ref 0 and div_hi_c = ref 0 and add_lo_c = ref 0 and add_hi_c = ref 0 and sub_lo_c = ref 0 and sub_hi_c = ref 0 and sqrt_lo_c = ref 0 and sqrt_hi_c = ref 0;; (* Hash tables *) let cache_size = if !Arith_options.float_cached then !Arith_options.init_cache_size else 1;; let my_add h key v = if Hashtbl.length h >= !Arith_options.max_cache_size then Hashtbl.clear h (* let _ = Hashtbl.clear h in print_string "Clearing a float hash table" *) else (); Hashtbl.add h key v;; let mul_table = Hashtbl.create cache_size and div_table = Hashtbl.create cache_size and add_table = Hashtbl.create cache_size and sub_table = Hashtbl.create cache_size and sqrt_table = Hashtbl.create cache_size and le_table = Hashtbl.create cache_size and max_table = Hashtbl.create cache_size;; let reset_cache () = Hashtbl.clear mul_table; Hashtbl.clear div_table; Hashtbl.clear add_table; Hashtbl.clear sub_table; Hashtbl.clear sqrt_table; Hashtbl.clear le_table; Hashtbl.clear max_table;; let reset_stat () = lt0_c := 0; gt0_c := 0; lt_c := 0; le0_c := 0; ge0_c := 0; le_c := 0; min_c := 0; max_c := 0; min_max_c := 0; mul_lo_c := 0; mul_hi_c := 0; div_lo_c := 0; div_hi_c := 0; add_lo_c := 0; add_hi_c := 0; sub_lo_c := 0; sub_hi_c := 0; sqrt_lo_c := 0; sqrt_hi_c := 0;; let print_stat () = let len = Hashtbl.length in let cmp_str1 = sprintf "lt0 = %d\ngt0 = %d\nlt = %d\n" !lt0_c !gt0_c !lt_c and cmp_str2 = sprintf "le0 = %d\nge0 = %d\n" !le0_c !ge0_c and cmp_str3 = sprintf "min = %d\nmin_max = %d\n" !min_c !min_max_c and le_str = sprintf "le = %d (le_hash = %d)\n" !le_c (len le_table) and max_str = sprintf "max = %d (max_hash = %d)\n" !max_c (len max_table) and mul_str = sprintf "mul_lo = %d, mul_hi = %d (mul_hash = %d)\n" !mul_lo_c !mul_hi_c (len mul_table) and div_str = sprintf "div_lo = %d, div_hi = %d (div_hash = %d)\n" !div_lo_c !div_hi_c (len div_table) and add_str = sprintf "add_lo = %d, add_hi = %d (add_hash = %d)\n" !add_lo_c !add_hi_c (len add_table) and sub_str = sprintf "sub_lo = %d, sub_hi = %d (sub_hash = %d)\n" !sub_lo_c !sub_hi_c (len sub_table) and sqrt_str = sprintf "sqrt_lo = %d, sqrt_hi = %d (sqrt_hash = %d)\n" !sqrt_lo_c !sqrt_hi_c (len sqrt_table) in print_string (cmp_str1 ^ cmp_str2 ^ cmp_str3 ^ le_str ^ max_str ^ mul_str ^ div_str ^ add_str ^ sub_str ^ sqrt_str);; (* lt0 *) let float_lt0 = if !Arith_options.float_cached then fun tm -> let _ = lt0_c := !lt0_c + 1 in Float_ops.float_lt0 tm else Float_ops.float_lt0;; (* gt0 *) let float_gt0 = if !Arith_options.float_cached then fun tm -> let _ = gt0_c := !gt0_c + 1 in Float_ops.float_gt0 tm else Float_ops.float_gt0;; (* lt *) let float_lt = if !Arith_options.float_cached then fun tm1 tm2 -> let _ = lt_c := !lt_c + 1 in Float_ops.float_lt tm1 tm2 else Float_ops.float_lt;; (* le0 *) let float_le0 = if !Arith_options.float_cached then fun tm -> let _ = le0_c := !le0_c + 1 in Float_ops.float_le0 tm else Float_ops.float_le0;; (* ge0 *) let float_ge0 = if !Arith_options.float_cached then fun tm -> let _ = ge0_c := !ge0_c + 1 in Float_ops.float_ge0 tm else Float_ops.float_ge0;; (* min *) let float_min = if !Arith_options.float_cached then fun tm1 tm2 -> let _ = min_c := !min_c + 1 in Float_ops.float_min tm1 tm2 else Float_ops.float_min;; (* min_max *) let float_min_max = if !Arith_options.float_cached then fun tm1 tm2 -> let _ = min_max_c := !min_max_c + 1 in Float_ops.float_min_max tm1 tm2 else Float_ops.float_min_max;; (***************) let float_hash tm = let s, n_tm, e_tm = dest_float tm in s ^ (Arith_cache.num_tm_hash n_tm) ^ "e" ^ (Arith_cache.num_tm_hash e_tm);; let float_op_hash pp tm1 tm2 = string_of_int pp ^ float_hash tm1 ^ "x" ^ float_hash tm2;; let float_op_hash1 pp tm = string_of_int pp ^ float_hash tm;; (* le *) let float_le = if !Arith_options.float_cached then fun tm1 tm2 -> let _ = le_c := !le_c + 1 in let hash = float_op_hash 0 tm1 tm2 in try Hashtbl.find le_table hash with Not_found -> let result = Float_ops.float_le tm1 tm2 in let _ = my_add le_table hash result in result else Float_ops.float_le;; (* max *) let float_max = if !Arith_options.float_cached then fun tm1 tm2 -> let _ = max_c := !max_c + 1 in let hash = float_op_hash 0 tm1 tm2 in try Hashtbl.find max_table hash with Not_found -> let result = Float_ops.float_max tm1 tm2 in let _ = my_add max_table hash result in result else Float_ops.float_max;; (* mul_eq *) let float_mul_eq = Float_ops.float_mul_eq;; (* mul_lo *) let float_mul_lo = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = mul_lo_c := !mul_lo_c + 1 in let hash = "lo" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find mul_table hash with Not_found -> let result = Float_ops.float_mul_lo pp tm1 tm2 in let _ = my_add mul_table hash result in result else Float_ops.float_mul_lo;; (* mul_hi *) let float_mul_hi = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = mul_hi_c := !mul_hi_c + 1 in let hash = "hi" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find mul_table hash with Not_found -> let result = Float_ops.float_mul_hi pp tm1 tm2 in let _ = my_add mul_table hash result in result else Float_ops.float_mul_hi;; (* div_lo *) let float_div_lo = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = div_lo_c := !div_lo_c + 1 in let hash = "lo" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find div_table hash with Not_found -> let result = Float_ops.float_div_lo pp tm1 tm2 in let _ = my_add div_table hash result in result else Float_ops.float_div_lo;; (* div_hi *) let float_div_hi = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = div_hi_c := !div_hi_c + 1 in let hash = "hi" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find div_table hash with Not_found -> let result = Float_ops.float_div_hi pp tm1 tm2 in let _ = my_add div_table hash result in result else Float_ops.float_div_hi;; (* add_lo *) let float_add_lo = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = add_lo_c := !add_lo_c + 1 in let hash = "lo" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find add_table hash with Not_found -> let result = Float_ops.float_add_lo pp tm1 tm2 in let _ = my_add add_table hash result in result else Float_ops.float_add_lo;; (* add_hi *) let float_add_hi = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = add_hi_c := !add_hi_c + 1 in let hash = "hi" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find add_table hash with Not_found -> let result = Float_ops.float_add_hi pp tm1 tm2 in let _ = my_add add_table hash result in result else Float_ops.float_add_hi;; (* sub_lo *) let float_sub_lo = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = sub_lo_c := !sub_lo_c + 1 in let hash = "lo" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find sub_table hash with Not_found -> let result = Float_ops.float_sub_lo pp tm1 tm2 in let _ = my_add sub_table hash result in result else Float_ops.float_sub_lo;; (* sub_hi *) let float_sub_hi = if !Arith_options.float_cached then fun pp tm1 tm2 -> let _ = sub_hi_c := !sub_hi_c + 1 in let hash = "hi" ^ float_op_hash pp tm1 tm2 in try Hashtbl.find sub_table hash with Not_found -> let result = Float_ops.float_sub_hi pp tm1 tm2 in let _ = my_add sub_table hash result in result else Float_ops.float_sub_hi;; (* sqrt_lo *) let float_sqrt_lo = if !Arith_options.float_cached then fun pp tm -> let _ = sqrt_lo_c := !sqrt_lo_c + 1 in let hash = "lo" ^ float_op_hash1 pp tm in try Hashtbl.find sqrt_table hash with Not_found -> let result = Float_ops.float_sqrt_lo pp tm in let _ = my_add sqrt_table hash result in result else Float_ops.float_sqrt_lo;; (* sqrt_hi *) let float_sqrt_hi = if !Arith_options.float_cached then fun pp tm -> let _ = sqrt_hi_c := !sqrt_hi_c + 1 in let hash = "hi" ^ float_op_hash1 pp tm in try Hashtbl.find sqrt_table hash with Not_found -> let result = Float_ops.float_sqrt_hi pp tm in let _ = my_add sqrt_table hash result in result else Float_ops.float_sqrt_hi;; (******************************************) (* float intervals *) let FLOAT_OF_NUM' = (SPEC_ALL o REWRITE_RULE[min_exp_def]) FLOAT_OF_NUM;; let FLOAT_INTERVAL_OF_NUM = (NUMERALS_TO_NUM o REWRITE_RULE[min_exp_def] o prove)(`interval_arith (&n) (float_num F n min_exp, float_num F n min_exp)`, REWRITE_TAC[FLOAT_OF_NUM; CONST_INTERVAL]);; let FLOAT_F_bound' = (UNDISCH_ALL o SPEC_ALL) FLOAT_F_bound;; let FLOAT_T_bound' = (UNDISCH_ALL o SPEC_ALL) FLOAT_T_bound;; (* interval_arith x (float_num s1 n1 e1, float_num s2 n2 e2) -> x, float_num s1 n1 e1, float_num s2 n2 e2 *) let dest_float_interval tm = let ltm, rtm = dest_comb tm in let f1, f2 = dest_pair rtm in rand ltm, f1, f2;; let mk_float_interval_small_num n = let n_tm0 = mk_small_numeral n in let n_th = NUMERAL_TO_NUM_CONV n_tm0 in let n_tm = rand(rand(concl n_th)) in let n_th1 = TRANS n_th (INST[n_tm, n_var_num] NUM_REMOVE) in let th1 = AP_TERM amp_op_real n_th1 in let int_th = INST[n_tm, n_var_num] FLOAT_INTERVAL_OF_NUM in let rtm = rand(concl int_th) in EQ_MP (SYM (AP_THM (AP_TERM interval_const th1) rtm)) int_th;; let mk_float_interval_num n = let n_tm0 = mk_numeral n in let n_th = NUMERAL_TO_NUM_CONV n_tm0 in let n_tm = rand(rand(concl n_th)) in let n_th1 = TRANS n_th (INST[n_tm, n_var_num] NUM_REMOVE) in let th1 = AP_TERM amp_op_real n_th1 in let int_th = INST[n_tm, n_var_num] FLOAT_INTERVAL_OF_NUM in let rtm = rand(concl int_th) in EQ_MP (SYM (AP_THM (AP_TERM interval_const th1) rtm)) int_th;; (* Returns the lower bound for the given float *) let float_lo p tm = let s, n_tm, e_tm = dest_float tm in if s = "F" then let num_exp_tm = mk_num_exp n_tm e_tm in let th0 = num_exp_lo p num_exp_tm in let ltm, e1_tm = dest_comb(lhand(concl th0)) in let n1_tm = rand ltm in let th1 = INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n_tm, n2_var_num; e_tm, e2_var_num] FLOAT_F_bound' in MY_PROVE_HYP th0 th1 else let num_exp_tm = mk_num_exp n_tm e_tm in let th0 = num_exp_hi p num_exp_tm in let ltm, e1_tm = dest_comb(rand(concl th0)) in let n1_tm = rand ltm in let th1 = INST[n_tm, n1_var_num; e_tm, e1_var_num; n1_tm, n2_var_num; e1_tm, e2_var_num] FLOAT_T_bound' in MY_PROVE_HYP th0 th1;; (* Returns the upper bound for the given float *) let float_hi p tm = let s, n_tm, e_tm = dest_float tm in if s = "F" then let num_exp_tm = mk_num_exp n_tm e_tm in let th0 = num_exp_hi p num_exp_tm in let ltm, e2_tm = dest_comb(rand(concl th0)) in let n2_tm = rand ltm in let th1 = INST[n_tm, n1_var_num; e_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num] FLOAT_F_bound' in MY_PROVE_HYP th0 th1 else let num_exp_tm = mk_num_exp n_tm e_tm in let th0 = num_exp_lo p num_exp_tm in let ltm, e1_tm = dest_comb(lhand(concl th0)) in let n1_tm = rand ltm in let th1 = INST[n1_tm, n1_var_num; e1_tm, e1_var_num; n_tm, n2_var_num; e_tm, e2_var_num] FLOAT_T_bound' in MY_PROVE_HYP th0 th1;; (* Approximates the given interval with p-digits floating point numbers *) let float_interval_round p th = let x_tm, f1, f2 = dest_float_interval (concl th) in let lo_th = float_lo p f1 in let hi_th = float_hi p f2 in let lo_tm = lhand(concl lo_th) in let hi_tm = rand(concl hi_th) in let th0 = INST[x_tm, x_var_real; f1, lo_var_real; f2, hi_var_real; lo_tm, a_var_real; hi_tm, b_var_real] APPROX_INTERVAL' in MY_PROVE_HYP lo_th (MY_PROVE_HYP hi_th (MY_PROVE_HYP th th0));; (****************************************) (* float_interval_lt *)
let FLOAT_INTERVAL_LT = 
prove(`interval_arith x (lo1, hi1) /\ interval_arith y (lo2, hi2) /\ hi1 < lo2 ==> x < y`,
REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);;
(****************************************) (* float_interval_neg *)
let FLOAT_INTERVAL_NEG = 
prove(`!s1 s2. interval_arith x (float_num s1 n1 e1, float_num s2 n2 e2) ==> interval_arith (--x) (float_num (~s2) n2 e2, float_num (~s1) n1 e1)`,
REPEAT GEN_TAC THEN DISCH_THEN (fun th -> MP_TAC (MATCH_MP INTERVAL_NEG th)) THEN SIMP_TAC[FLOAT_NEG]);;
let FLOAT_INTERVAL_NEG_FF = (UNDISCH_ALL o REWRITE_RULE[] o SPECL[`F`; `F`]) FLOAT_INTERVAL_NEG;; let FLOAT_INTERVAL_NEG_FT = (UNDISCH_ALL o REWRITE_RULE[] o SPECL[`F`; `T`]) FLOAT_INTERVAL_NEG;; let FLOAT_INTERVAL_NEG_TF = (UNDISCH_ALL o REWRITE_RULE[] o SPECL[`T`; `F`]) FLOAT_INTERVAL_NEG;; let FLOAT_INTERVAL_NEG_TT = (UNDISCH_ALL o REWRITE_RULE[] o SPECL[`T`; `T`]) FLOAT_INTERVAL_NEG;; (* |- interval x (float s1 n1 e1, float s2 n2 e2) -> |- interval (--x) (float ~s2 n2 e2, float ~s1 n1 e1 *) let float_interval_neg th = let x_tm, f1, f2 = dest_float_interval (concl th) in let s1, n1_tm, e1_tm = dest_float f1 in let s2, n2_tm, e2_tm = dest_float f2 in let inst = INST[x_tm, x_var_real; n1_tm, n1_var_num; e1_tm, e1_var_num; n2_tm, n2_var_num; e2_tm, e2_var_num] in let th0 = if s1 = "F" then if s2 = "F" then inst FLOAT_INTERVAL_NEG_FF else inst FLOAT_INTERVAL_NEG_FT else if s2 = "F" then inst FLOAT_INTERVAL_NEG_TF else inst FLOAT_INTERVAL_NEG_TT in MY_PROVE_HYP th th0;; (***********************************************) (* float_interval_mul *) let f1_1_var = `f1_1:real` and f1_2_var = `f1_2:real` and f2_1_var = `f2_1:real` and f2_2_var = `f2_2:real`;;
let FLOAT_INTERVAL_FT_IMP_0 = 
prove(`interval_arith x (float_num F n1 e1, float_num T n2 e2) ==> x = &0`,
REWRITE_TAC[interval_arith] THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [ EXISTS_TAC `float_num T n2 e2` THEN ASM_REWRITE_TAC[FLOAT_T_NEG]; EXISTS_TAC `float_num F n1 e1` THEN ASM_REWRITE_TAC[FLOAT_F_POS] ]);;
(* FT_xx *) let FLOAT_INTERVAL_MUL_FT_xx = (UNDISCH_ALL o NUMERALS_TO_NUM o REWRITE_RULE[GSYM IMP_IMP; min_exp_def] o prove)( `interval_arith x (float_num F n1 e1, float_num T n2 e2) ==> interval_arith (x * y) (float_num F 0 min_exp, float_num F 0 min_exp)`, STRIP_TAC THEN FIRST_X_ASSUM (fun th -> REWRITE_TAC[MATCH_MP FLOAT_INTERVAL_FT_IMP_0 th]) THEN REWRITE_TAC[REAL_MUL_LZERO; interval_arith] THEN MP_TAC (GEN_ALL (SPECL [`s:bool`; `0`] FLOAT_EQ_0)) THEN SIMP_TAC[REAL_LE_REFL]);; (* xx_FT *) let FLOAT_INTERVAL_MUL_xx_FT = (UNDISCH_ALL o NUMERALS_TO_NUM o REWRITE_RULE[GSYM IMP_IMP; min_exp_def] o prove)( `interval_arith y (float_num F m1 r1, float_num T m2 r2) ==> interval_arith (x * y) (float_num F 0 min_exp, float_num F 0 min_exp)`, STRIP_TAC THEN FIRST_X_ASSUM (fun th -> REWRITE_TAC[MATCH_MP FLOAT_INTERVAL_FT_IMP_0 th]) THEN REWRITE_TAC[REAL_MUL_RZERO; interval_arith] THEN MP_TAC (GEN_ALL (SPECL [`s:bool`; `0`] FLOAT_EQ_0)) THEN SIMP_TAC[REAL_LE_REFL]);; (* FF_FF *) let FLOAT_INTERVAL_MUL_FF_FF = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num F n1 e1, float_num F n2 e2) /\ interval_arith y (float_num F m1 r1, float_num F m2 r2) /\ f1 <= float_num F n1 e1 * float_num F m1 r1 /\ float_num F n2 e2 * float_num F m2 r2 <= f2 ==> interval_arith (x * y) (f1, f2)`, MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` MP_TAC THENL [ MAP_EVERY EXPAND_TAC ["a"; "b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN REPEAT (POP_ASSUM (fun th -> ALL_TAC)) THEN REWRITE_TAC[interval_arith] THEN REPEAT STRIP_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * c:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [ EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[]; EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] ] ]);; (* TT_TT *) let FLOAT_INTERVAL_MUL_TT_TT = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num T n1 e1, float_num T n2 e2) /\ interval_arith y (float_num T m1 r1, float_num T m2 r2) /\ f1 <= float_num T n2 e2 * float_num T m2 r2 /\ float_num T n1 e1 * float_num T m1 r1 <= f2 ==> interval_arith (x * y) (f1, f2)`, REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[interval_arith] THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` MP_TAC THENL [ MAP_EVERY EXPAND_TAC ["a"; "b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN REWRITE_TAC[REAL_NEG_MUL2] THEN REPEAT STRIP_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `a <= x * y <=> a <= --x * --y`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `b <= --x <=> x <= --b`] THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * c:real` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * y <= a <=> --x * --y <= a`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= c <=> --c <= x`] THEN ASM_REWRITE_TAC[] THEN ASSUME_TAC (REAL_ARITH `!b x. &0 <= b /\ x <= --b ==> &0 <= --x`) THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THENL [ EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[]; EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] ] ]);; (* FF_TT *) let FLOAT_INTERVAL_MUL_FF_TT = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num F n1 e1, float_num F n2 e2) /\ interval_arith y (float_num T m1 r1, float_num T m2 r2) /\ f1 <= float_num F n2 e2 * float_num T m1 r1 /\ float_num F n1 e1 * float_num T m2 r2 <= f2 ==> interval_arith (x * y) (f1, f2)`, REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[interval_arith] THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` MP_TAC THENL [ MAP_EVERY EXPAND_TAC ["a"; "b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN REPEAT STRIP_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * --c` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `b * --c <= x * y <=> x * --y <= b * c`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--y <= c <=> --c <= y`] THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THENL [ EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[]; EXISTS_TAC `d:real` THEN ONCE_REWRITE_TAC[REAL_ARITH `d <= --y <=> y <= --d`] THEN ASM_REWRITE_TAC[] ]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * --d` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * y <= a * --d <=> a * d <= x * --y`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `d <= --y <=> y <= --d`] THEN ASM_REWRITE_TAC[] ]);; (* TT_FF *) let FLOAT_INTERVAL_MUL_TT_FF = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num T n1 e1, float_num T n2 e2) /\ interval_arith y (float_num F m1 r1, float_num F m2 r2) /\ f1 <= float_num T n1 e1 * float_num F m2 r2 /\ float_num T n2 e2 * float_num F m1 r1 <= f2 ==> interval_arith (x * y) (f1, f2)`, STRIP_TAC THEN MP_TAC ((GEN_ALL o DISCH_ALL) FLOAT_INTERVAL_MUL_FF_TT) THEN DISCH_THEN (MP_TAC o SPECL[`n1:num`; `e1:num`; `n2:num`; `e2:num`; `m1:num`; `r1:num`; `m2:num`; `r2:num`]) THEN DISCH_THEN (MP_TAC o SPECL[`y:real`; `x:real`; `f1:real`; `f2:real`]) THEN REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC[REAL_MUL_AC]);; (* TF_FF *) let FLOAT_INTERVAL_MUL_TF_FF = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num T n1 e1, float_num F n2 e2) /\ interval_arith y (float_num F m1 r1, float_num F m2 r2) /\ f1 <= float_num T n1 e1 * float_num F m2 r2 /\ float_num F n2 e2 * float_num F m2 r2 <= f2 ==> interval_arith (x * y) (f1, f2)`, REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[interval_arith] THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN STRIP_TAC THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` ASSUME_TAC THENL [ MAP_EVERY EXPAND_TAC ["a"; "b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN SUBGOAL_THEN `&0 <= y` ASSUME_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN CONJ_TAC THENL [ DISJ_CASES_TAC (REAL_ARITH `&0 <= x \/ &0 <= --x`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * d` THEN ASM_REWRITE_TAC[REAL_ARITH `--a * d <= &0 <=> &0 <= a * d`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] ]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * d` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `--a * d <= x * y <=> --x * y <= a * d`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= a <=> --a <= x`] THEN ASM_REWRITE_TAC[]; DISJ_CASES_TAC (REAL_ARITH `&0 <= --x \/ &0 <= x`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_ARITH `x * y <= &0 <=> &0 <= --x * y`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] ]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[] ]);; (* TF_TT *) let FLOAT_INTERVAL_MUL_TF_TT = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num T n1 e1, float_num F n2 e2) /\ interval_arith y (float_num T m1 r1, float_num T m2 r2) /\ f1 <= float_num F n2 e2 * float_num T m1 r1 /\ float_num T n1 e1 * float_num T m1 r1 <= f2 ==> interval_arith (x * y) (f1, f2)`, REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[interval_arith] THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN STRIP_TAC THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` ASSUME_TAC THENL [ MAP_EVERY EXPAND_TAC ["a"; "b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN SUBGOAL_THEN `&0 <= --y` ASSUME_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `d:real` THEN ONCE_REWRITE_TAC[REAL_ARITH `d <= --y <=> y <= --d`] THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN CONJ_TAC THENL [ DISJ_CASES_TAC (REAL_ARITH `&0 <= --x \/ &0 <= x`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * --c` THEN ASM_REWRITE_TAC[REAL_ARITH `b * --c <= &0 <=> &0 <= b * c`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[REAL_ARITH `x * y = --x * --y`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] ]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * --c` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `b * --c <= x * y <=> x * --y <= b * c`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--y <= c <=> --c <= y`] THEN ASM_REWRITE_TAC[]; DISJ_CASES_TAC (REAL_ARITH `&0 <= x \/ &0 <= --x`) THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_ARITH `x * y <= &0 <=> &0 <= x * --y`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * --c` THEN ASM_REWRITE_TAC[REAL_NEG_MUL2] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] ]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * --c` THEN ASM_REWRITE_TAC[REAL_NEG_MUL2] THEN ONCE_REWRITE_TAC[REAL_ARITH `x * y <= a * c <=> --x * --y <= a * c`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= a <=> --a <= x`] THEN ASM_REWRITE_TAC[] ]);; (* FF_TF *) let FLOAT_INTERVAL_MUL_FF_TF = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num F n1 e1, float_num F n2 e2) /\ interval_arith y (float_num T m1 r1, float_num F m2 r2) /\ f1 <= float_num F n2 e2 * float_num T m1 r1 /\ float_num F n2 e2 * float_num F m2 r2 <= f2 ==> interval_arith (x * y) (f1, f2)`, STRIP_TAC THEN MP_TAC ((SPECL [`n1:num`; `e1:num`; `n2:num`; `e2:num`; `m1:num`; `r1:num`; `m2:num`; `r2:num`; `y:real`; `x:real`; `f1:real`; `f2:real`] o GEN_ALL o DISCH_ALL) FLOAT_INTERVAL_MUL_TF_FF) THEN ASM_REWRITE_TAC[REAL_MUL_SYM] THEN DISCH_THEN MATCH_MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; (* TT_TF *) let FLOAT_INTERVAL_MUL_TT_TF = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num T n1 e1, float_num T n2 e2) /\ interval_arith y (float_num T m1 r1, float_num F m2 r2) /\ f1 <= float_num T n1 e1 * float_num F m2 r2 /\ float_num T n1 e1 * float_num T m1 r1 <= f2 ==> interval_arith (x * y) (f1, f2)`, STRIP_TAC THEN MP_TAC ((SPECL [`n1:num`; `e1:num`; `n2:num`; `e2:num`; `m1:num`; `r1:num`; `m2:num`; `r2:num`; `y:real`; `x:real`; `f1:real`; `f2:real`] o GEN_ALL o DISCH_ALL) FLOAT_INTERVAL_MUL_TF_TT) THEN ASM_REWRITE_TAC[REAL_MUL_SYM] THEN POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN SIMP_TAC[REAL_MUL_SYM]);; (* TF_TF *) let FLOAT_INTERVAL_MUL_TF_TF = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (float_num T n1 e1, float_num F n2 e2) /\ interval_arith y (float_num T m1 r1, float_num F m2 r2) /\ f1_1 <= float_num T n1 e1 * float_num F m2 r2 /\ f1_2 <= float_num F n2 e2 * float_num T m1 r1 /\ min f1_1 f1_2 = f1 /\ float_num T n1 e1 * float_num T m1 r1 <= f2_1 /\ float_num F n2 e2 * float_num F m2 r2 <= f2_2 /\ max f2_1 f2_2 = f2 ==> interval_arith (x * y) (f1, f2)`, REWRITE_TAC[EQ_SYM_EQ; FLOAT_NEG_T] THEN REWRITE_TAC[interval_arith] THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN STRIP_TAC THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` ASSUME_TAC THENL [ MAP_EVERY EXPAND_TAC ["a"; "b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= x \/ &0 <= --x`) THENL [ DISJ_CASES_TAC (REAL_ARITH `&0 <= y \/ &0 <= --y`) THENL [ CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f1_1:real` THEN ASM_REWRITE_TAC[REAL_MIN_MIN] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * d` THEN ASM_REWRITE_TAC[REAL_ARITH `--a * d <= &0 <=> &0 <= a * d`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d` THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f2_2:real` THEN ASM_REWRITE_TAC[REAL_MAX_MAX]; ALL_TAC ] THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f1_2:real` THEN ASM_REWRITE_TAC[REAL_MIN_MIN] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * --c` THEN ONCE_REWRITE_TAC[REAL_ARITH `b * --c <= x * y <=> x * --y <= b * c`] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--y <= c <=> --c <= y`] THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_ARITH `x * y <= &0 <=> &0 <= x * --y`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f2_2:real` THEN ASM_REWRITE_TAC[REAL_MAX_MAX] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= y \/ &0 <= --y`) THENL [ CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f1_1:real` THEN ASM_REWRITE_TAC[REAL_MIN_MIN] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * d` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[REAL_ARITH `--a * d <= x * y <=> --x * y <= a * d`] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= a <=> --a <= x`] THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ REWRITE_TAC[REAL_ARITH `x * y <= &0 <=> &0 <= --x * y`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f2_2:real` THEN ASM_REWRITE_TAC[REAL_MAX_MAX] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * d` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f1_1:real` THEN ASM_REWRITE_TAC[REAL_MIN_MIN] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * d` THEN ASM_REWRITE_TAC[REAL_ARITH `--a * d <= &0 <=> &0 <= a * d`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN ONCE_REWRITE_TAC[GSYM REAL_NEG_MUL2] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a * --c` THEN CONJ_TAC THENL [ ONCE_REWRITE_TAC[GSYM REAL_NEG_MUL2] THEN REWRITE_TAC[REAL_NEG_NEG] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= a <=> --a <= x`] THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `f2_1:real` THEN ASM_REWRITE_TAC[REAL_MAX_MAX]);; (****************************) let float_interval_mul = let mul_ft_xx th1 x y n1 e1 n2 e2 = let th0 = INST[x, x_var_real; y, y_var_real; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] FLOAT_INTERVAL_MUL_FT_xx in MY_PROVE_HYP th1 th0 in let mul_xx_ft th2 x y m1 r1 m2 r2 = let th0 = INST[x, x_var_real; y, y_var_real; m1, m1_var_num; r1, r1_var_num; m2, m2_var_num; r2, r2_var_num] FLOAT_INTERVAL_MUL_xx_FT in MY_PROVE_HYP th2 th0 in fun pp th1 th2 -> let x, l_lo, l_hi = dest_float_interval (concl th1) and y, r_lo, r_hi = dest_float_interval (concl th2) in let s1, n1, e1 = dest_float l_lo and s2, n2, e2 = dest_float l_hi and s3, m1, r1 = dest_float r_lo and s4, m2, r2 = dest_float r_hi in (* Special case 1 *) if s1 <> s2 && s1 = "F" then mul_ft_xx th1 x y n1 e1 n2 e2 else if s3 <> s4 && s3 = "F" then mul_xx_ft th2 x y m1 r1 m2 r2 else (* Special case 2 *) if s1 <> s2 && s3 <> s4 then let lo1, lo2 = float_mul_lo pp l_lo r_hi, float_mul_lo pp l_hi r_lo and hi1, hi2 = float_mul_hi pp l_lo r_lo, float_mul_hi pp l_hi r_hi in let f1_1 = (lhand o concl) lo1 and f1_2 = (lhand o concl) lo2 and f2_1 = (rand o concl) hi1 and f2_2 = (rand o concl) hi2 in let min_th = float_min f1_1 f1_2 and max_th = float_max f2_1 f2_2 in let f1_tm = (rand o concl) min_th and f2_tm = (rand o concl) max_th in let th0 = INST[x, x_var_real; n1, n1_var_num; e1, e1_var_num; y, y_var_real; n2, n2_var_num; e2, e2_var_num; m1, m1_var_num; r1, r1_var_num; m2, m2_var_num; r2, r2_var_num; f1_tm, f1_var_real; f2_tm, f2_var_real; f1_1, f1_1_var; f1_2, f1_2_var; f2_1, f2_1_var; f2_2, f2_2_var] FLOAT_INTERVAL_MUL_TF_TF in (MY_PROVE_HYP min_th o MY_PROVE_HYP max_th o MY_PROVE_HYP lo1 o MY_PROVE_HYP lo2 o MY_PROVE_HYP hi1 o MY_PROVE_HYP hi2 o MY_PROVE_HYP th1 o MY_PROVE_HYP th2) th0 else let lo_th, hi_th, th0 = if s1 <> s2 then if s3 = "F" then float_mul_lo pp l_lo r_hi, float_mul_hi pp l_hi r_hi, FLOAT_INTERVAL_MUL_TF_FF else float_mul_lo pp l_hi r_lo, float_mul_hi pp l_lo r_lo, FLOAT_INTERVAL_MUL_TF_TT else if s3 <> s4 then if s1 = "F" then float_mul_lo pp l_hi r_lo, float_mul_hi pp l_hi r_hi, FLOAT_INTERVAL_MUL_FF_TF else float_mul_lo pp l_lo r_hi, float_mul_hi pp l_lo r_lo, FLOAT_INTERVAL_MUL_TT_TF else if s1 = "F" then if s3 = "F" then float_mul_lo pp l_lo r_lo, float_mul_hi pp l_hi r_hi, FLOAT_INTERVAL_MUL_FF_FF else float_mul_lo pp l_hi r_lo, float_mul_hi pp l_lo r_hi, FLOAT_INTERVAL_MUL_FF_TT else if s3 = "F" then float_mul_lo pp l_lo r_hi, float_mul_hi pp l_hi r_lo, FLOAT_INTERVAL_MUL_TT_FF else float_mul_lo pp l_hi r_hi, float_mul_hi pp l_lo r_lo, FLOAT_INTERVAL_MUL_TT_TT in let f1_tm = lhand(concl lo_th) and f2_tm = rand(concl hi_th) in let th = INST[x, x_var_real; n1, n1_var_num; e1, e1_var_num; y, y_var_real; n2, n2_var_num; e2, e2_var_num; m1, m1_var_num; r1, r1_var_num; m2, m2_var_num; r2, r2_var_num; f1_tm, f1_var_real; f2_tm, f2_var_real] th0 in MY_PROVE_HYP lo_th (MY_PROVE_HYP hi_th (MY_PROVE_HYP th1 (MY_PROVE_HYP th2 th)));; (*************************************) (* float_interval_div *) (* FT_xx *)
let FLOAT_INTERVAL_DIV_FT_xx = 
prove( `interval_arith x (float_num F n1 e1, float_num T n2 e2) ==> interval_arith (x / y) (float_num F 0 min_exp, float_num F 0 min_exp)`,
REWRITE_TAC[real_div] THEN DISCH_THEN (MP_TAC o MATCH_MP FLOAT_INTERVAL_FT_IMP_0) THEN SIMP_TAC[REAL_MUL_LZERO; interval_arith] THEN MP_TAC (GEN_ALL (SPECL [`s:bool`; `0`] FLOAT_EQ_0)) THEN SIMP_TAC[REAL_LE_REFL]);;
(* FF_FF *)
let FLOAT_INTERVAL_DIV_FF_FF = 
prove( `~(m1 = 0) /\ interval_arith x (float_num F n1 e1, float_num F n2 e2) /\ interval_arith y (float_num F m1 r1, float_num F m2 r2) /\ f1 <= float_num F n1 e1 / float_num F m2 r2 /\ float_num F n2 e2 / float_num F m1 r1 <= f2 ==> interval_arith (x / y) (f1, f2)`,
MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN REWRITE_TAC[real_div] THEN STRIP_TAC THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` MP_TAC THENL [ MAP_EVERY EXPAND_TAC ["a";
"b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN SUBGOAL_THEN `~(c = &0)` ASSUME_TAC THENL [ EXPAND_TAC "c" THEN ASM_REWRITE_TAC[FLOAT_EQ_0]; ALL_TAC ] THEN STRIP_TAC THEN SUBGOAL_THEN `~(d = &0)` MP_TAC THENL [ MATCH_MP_TAC (REAL_ARITH `~(c = &0) /\ &0 <= c /\ c <= d ==> ~(d = &0)`) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interval_arith y (c,d)` THEN REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC; ALL_TAC ] THEN REPLICATE_TAC 10 (POP_ASSUM MP_TAC) THEN REPEAT (POP_ASSUM (fun th -> ALL_TAC)) THEN REWRITE_TAC[interval_arith] THEN REPEAT STRIP_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a * inv d` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < c <=> ~(c = &0) /\ &0 <= c`]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b * inv c` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ] THEN REPEAT CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `a:real` THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_ARITH `&0 < c <=> ~(c = &0) /\ &0 <= c`] ]);; (* TT_TT *)
let FLOAT_INTERVAL_DIV_TT_TT = 
prove( `~(m2 = 0) /\ interval_arith x (float_num T n1 e1, float_num T n2 e2) /\ interval_arith y (float_num T m1 r1, float_num T m2 r2) /\ f1 <= float_num T n2 e2 / float_num T m1 r1 /\ float_num T n1 e1 / float_num T m2 r2 <= f2 ==> interval_arith (x / y) (f1,f2)`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_NEG_MUL2] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[interval_arith] THEN REWRITE_TAC[REAL_ARITH `--a <= x /\ x <= --b <=> b <= --x /\ --x <= a`] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[GSYM interval_arith] THEN STRIP_TAC THEN MP_TAC ((SPECL[`n2:num`; `e2:num`; `m1:num`; `r1:num`; `n1:num`; `e1:num`; `m2:num`; `r2:num`; `--x`; `--y`] o GEN_ALL) FLOAT_INTERVAL_DIV_FF_FF) THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_NEG_MUL2] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);;
(* FF_TT *)
let FLOAT_INTERVAL_DIV_FF_TT = 
prove( `~(m2 = 0) /\ interval_arith x (float_num F n1 e1, float_num F n2 e2) /\ interval_arith y (float_num T m1 r1, float_num T m2 r2) /\ f1 <= float_num F n2 e2 / float_num T m2 r2 /\ float_num F n1 e1 / float_num T m1 r1 <= f2 ==> interval_arith (x / y) (f1,f2)`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REWRITE_TAC[REAL_ARITH `a * --b <= c <=> --c <= a * b`] THEN REWRITE_TAC[REAL_ARITH `c <= a * --b <=> a * b <= --c`] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[interval_arith] THEN REWRITE_TAC[REAL_ARITH `--a <= x /\ x <= --b <=> b <= --x /\ --x <= a`] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[GSYM interval_arith] THEN STRIP_TAC THEN MP_TAC ((SPECL[`n1:num`; `e1:num`; `m1:num`; `r1:num`; `n2:num`; `e2:num`; `m2:num`; `r2:num`; `x:real`; `--y`; `--f2`; `--f1`] o GEN_ALL) FLOAT_INTERVAL_DIV_FF_FF) THEN ANTS_TAC THENL [ ASM_REWRITE_TAC[real_div]; ALL_TAC ] THEN REWRITE_TAC[real_div; REAL_INV_NEG; interval_arith] THEN REAL_ARITH_TAC);;
(* TT_FF *)
let FLOAT_INTERVAL_DIV_TT_FF = 
prove( `~(m1 = 0) /\ interval_arith x (float_num T n1 e1, float_num T n2 e2) /\ interval_arith y (float_num F m1 r1, float_num F m2 r2) /\ f1 <= float_num T n1 e1 / float_num F m1 r1 /\ float_num T n2 e2 / float_num F m2 r2 <= f2 ==> interval_arith (x / y) (f1,f2)`,
REWRITE_TAC[FLOAT_NEG_T] THEN REWRITE_TAC[real_div; REAL_INV_NEG] THEN REWRITE_TAC[REAL_ARITH `--a * b <= c <=> --c <= a * b`] THEN REWRITE_TAC[REAL_ARITH `c <= --a * b <=> a * b <= --c`] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[interval_arith] THEN REWRITE_TAC[REAL_ARITH `--a <= x /\ x <= --b <=> b <= --x /\ --x <= a`] THEN GEN_REWRITE_TAC (LAND_CONV o DEPTH_CONV)[GSYM interval_arith] THEN STRIP_TAC THEN MP_TAC ((SPECL[`n2:num`; `e2:num`; `m2:num`; `r2:num`; `n1:num`; `e1:num`; `m1:num`; `r1:num`; `--x:real`; `y:real`; `--f2`; `--f1`] o GEN_ALL) FLOAT_INTERVAL_DIV_FF_FF) THEN ANTS_TAC THENL [ ASM_REWRITE_TAC[real_div]; ALL_TAC ] THEN REWRITE_TAC[real_div; REAL_INV_NEG; interval_arith] THEN REAL_ARITH_TAC);;
let FLOAT_0 = 
prove(`!s e. float_num s 0 e = &0`,
REWRITE_TAC[FLOAT_EQ_0]);;
(* TF_FF *)
let FLOAT_INTERVAL_DIV_TF_FF = 
prove( `~(m1 = 0) /\ interval_arith x (float_num T n1 e1, float_num F n2 e2) /\ interval_arith y (float_num F m1 r1, float_num F m2 r2) /\ f1 <= float_num T n1 e1 / float_num F m1 r1 /\ float_num F n2 e2 / float_num F m1 r1 <= f2 ==> interval_arith (x / y) (f1,f2)`,
REWRITE_TAC[FLOAT_NEG_T] THEN STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` ASSUME_TAC THENL [ MAP_EVERY EXPAND_TAC ["a";
"b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `&0 <= x \/ x <= &0`) THENL [ SUBGOAL_THEN `interval_arith x (float_num F 0 0, b)` ASSUME_TAC THENL [ UNDISCH_TAC `interval_arith x (--a, b)` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[interval_arith; FLOAT_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN MP_TAC ((SPEC_ALL o SPECL [`0`; `0`] o GEN_ALL) FLOAT_INTERVAL_DIV_FF_FF) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN REWRITE_TAC[real_div] THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a / c` THEN ASM_REWRITE_TAC[real_div; ARITH_RULE `--a * b <= &0 <=> &0 <= a * b`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ; FLOAT_F_POS]; ALL_TAC ] THEN SUBGOAL_THEN `interval_arith x (--a, float_num T 0 0)` ASSUME_TAC THENL [ UNDISCH_TAC `interval_arith x (--a, b)` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[interval_arith; FLOAT_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN MP_TAC ((INST[`0`, `n2:num`; `0`, `e2:num`]) FLOAT_INTERVAL_DIV_TT_FF) THEN ASM_REWRITE_TAC[FLOAT_NEG_T] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[GSYM FLOAT_NEG_T] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN REWRITE_TAC[real_div] THEN CONJ_TAC THENL [ REWRITE_TAC[FLOAT_0; REAL_MUL_LZERO; REAL_LE_REFL]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b / c` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_DIV THEN ASM_REWRITE_TAC[]);; (* TF_TT *)
let FLOAT_INTERVAL_DIV_TF_TT = 
prove( `~(m2 = 0) /\ interval_arith x (float_num T n1 e1, float_num F n2 e2) /\ interval_arith y (float_num T m1 r1, float_num T m2 r2) /\ f1 <= float_num F n2 e2 / float_num T m2 r2 /\ float_num T n1 e1 / float_num T m2 r2 <= f2 ==> interval_arith (x / y) (f1,f2)`,
REWRITE_TAC[FLOAT_NEG_T] THEN STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`a = float_num F n1 e1`; `b = float_num F n2 e2`; `c = float_num F m1 r1`; `d = float_num F m2 r2`] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 <= d` ASSUME_TAC THENL [ MAP_EVERY EXPAND_TAC ["a";
"b"; "c"; "d"] THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN DISJ_CASES_TAC (REAL_ARITH `x <= &0 \/ &0 <= x`) THENL [ SUBGOAL_THEN `interval_arith x (--a, float_num T 0 0)` ASSUME_TAC THENL [ UNDISCH_TAC `interval_arith x (--a, b)` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[interval_arith; FLOAT_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN MP_TAC ((SPEC_ALL o SPECL [`0`; `0`] o GEN_ALL) FLOAT_INTERVAL_DIV_TT_TT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[FLOAT_NEG_T] THEN ASM_REWRITE_TAC[GSYM FLOAT_NEG_T] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN REWRITE_TAC[real_div] THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `b / --d` THEN ASM_REWRITE_TAC[real_div; REAL_INV_NEG; REAL_ARITH `b * --d <= &0 <=> &0 <= b * d`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ]; ALL_TAC ] THEN REWRITE_TAC[FLOAT_0; REAL_MUL_LZERO; REAL_LE_REFL]; ALL_TAC ] THEN SUBGOAL_THEN `interval_arith x (float_num F 0 0, b)` ASSUME_TAC THENL [ UNDISCH_TAC `interval_arith x (--a, b)` THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[interval_arith; FLOAT_0] THEN REAL_ARITH_TAC; ALL_TAC ] THEN MP_TAC ((INST[`0`, `n1:num`; `0`, `e1:num`]) FLOAT_INTERVAL_DIV_FF_TT) THEN ASM_REWRITE_TAC[FLOAT_NEG_T] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `&0` THEN REWRITE_TAC[real_div] THEN CONJ_TAC THENL [ REWRITE_TAC[FLOAT_0; REAL_MUL_LZERO; REAL_LE_REFL]; ALL_TAC ] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `--a / --d` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_NEG_MUL2] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ]);; let transform = UNDISCH_ALL o PURE_REWRITE_RULE[TAUT `~P <=> (P <=> F)`] o NUMERALS_TO_NUM o REWRITE_RULE[GSYM IMP_IMP; min_exp_def];; let FLOAT_INTERVAL_DIV_FT_xx' = transform FLOAT_INTERVAL_DIV_FT_xx and FLOAT_INTERVAL_DIV_FF_FF' = transform FLOAT_INTERVAL_DIV_FF_FF and FLOAT_INTERVAL_DIV_TT_TT' = transform FLOAT_INTERVAL_DIV_TT_TT and FLOAT_INTERVAL_DIV_FF_TT' = transform FLOAT_INTERVAL_DIV_FF_TT and FLOAT_INTERVAL_DIV_TT_FF' = transform FLOAT_INTERVAL_DIV_TT_FF and FLOAT_INTERVAL_DIV_TF_FF' = transform FLOAT_INTERVAL_DIV_TF_FF and FLOAT_INTERVAL_DIV_TF_TT' = transform FLOAT_INTERVAL_DIV_TF_TT;; let float_interval_div pp th1 th2 = let x, l_lo, l_hi = dest_float_interval (concl th1) and y, r_lo, r_hi = dest_float_interval (concl th2) in let s1, n1, e1 = dest_float l_lo and s2, n2, e2 = dest_float l_hi and s3, m1, r1 = dest_float r_lo and s4, m2, r2 = dest_float r_hi in if s1 <> s2 && s1 = "F" then let th0 = INST[x, x_var_real; y, y_var_real; n1, n1_var_num; e1, e1_var_num; n2, n2_var_num; e2, e2_var_num] FLOAT_INTERVAL_DIV_FT_xx' in MY_PROVE_HYP th1 th0 else if s3 <> s4 then failwith "float_interval_div: division by an interval containing 0" else let lo_th, hi_th, th0, zero_th = if s1 = s2 then if s1 = "F" then if s3 = "F" then float_div_lo pp l_lo r_hi, float_div_hi pp l_hi r_lo, FLOAT_INTERVAL_DIV_FF_FF', raw_eq0_hash_conv m1 else float_div_lo pp l_hi r_hi, float_div_hi pp l_lo r_lo, FLOAT_INTERVAL_DIV_FF_TT', raw_eq0_hash_conv m2 else if s3 = "F" then float_div_lo pp l_lo r_lo, float_div_hi pp l_hi r_hi, FLOAT_INTERVAL_DIV_TT_FF', raw_eq0_hash_conv m1 else float_div_lo pp l_hi r_lo, float_div_hi pp l_lo r_hi, FLOAT_INTERVAL_DIV_TT_TT', raw_eq0_hash_conv m2 else if s3 = "F" then float_div_lo pp l_lo r_lo, float_div_hi pp l_hi r_lo, FLOAT_INTERVAL_DIV_TF_FF', raw_eq0_hash_conv m1 else float_div_lo pp l_hi r_hi, float_div_hi pp l_lo r_hi, FLOAT_INTERVAL_DIV_TF_TT', raw_eq0_hash_conv m2 in let f1_tm = lhand(concl lo_th) and f2_tm = rand(concl hi_th) in let th = INST[x, x_var_real; n1, n1_var_num; e1, e1_var_num; y, y_var_real; n2, n2_var_num; e2, e2_var_num; m1, m1_var_num; r1, r1_var_num; m2, m2_var_num; r2, r2_var_num; f1_tm, f1_var_real; f2_tm, f2_var_real] th0 in (MY_PROVE_HYP lo_th o MY_PROVE_HYP hi_th o MY_PROVE_HYP th1 o MY_PROVE_HYP th2 o MY_PROVE_HYP zero_th) th;; (*****************************************) (* float_interval_add, float_interval_sub *) let n1_var_real = `n1:real` and n2_var_real = `n2:real` and m1_var_real = `m1:real` and m2_var_real = `m2:real` and n_var_real = `n:real` and m_var_real = `m:real`;; let INTERVAL_ADD = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (n1, m1) /\ interval_arith y (n2, m2) /\ n <= n1 + n2 /\ m1 + m2 <= m ==> interval_arith (x + y) (n, m)`, REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);; let INTERVAL_SUB = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP] o prove)( `interval_arith x (n1, m1) /\ interval_arith y (n2, m2) /\ n <= n1 - m2 /\ m1 - n2 <= m ==> interval_arith (x - y) (n, m)`, REWRITE_TAC[interval_arith] THEN REAL_ARITH_TAC);; let float_interval_add pp th1 th2 = let x, n1, m1 = dest_float_interval (concl th1) in let y, n2, m2 = dest_float_interval (concl th2) in let lo_th = float_add_lo pp n1 n2 in let hi_th = float_add_hi pp m1 m2 in let n_tm = lhand (concl lo_th) in let m_tm = rand (concl hi_th) in let th0 = INST[x, x_var_real; n1, n1_var_real; m1, m1_var_real; y, y_var_real; n2, n2_var_real; m2, m2_var_real; n_tm, n_var_real; m_tm, m_var_real] INTERVAL_ADD in MY_PROVE_HYP lo_th (MY_PROVE_HYP hi_th (MY_PROVE_HYP th2 (MY_PROVE_HYP th1 th0)));; let float_interval_sub pp th1 th2 = let x, n1, m1 = dest_float_interval (concl th1) in let y, n2, m2 = dest_float_interval (concl th2) in let lo_th = float_sub_lo pp n1 m2 in let hi_th = float_sub_hi pp m1 n2 in let n_tm = lhand(concl lo_th) in let m_tm = rand(concl hi_th) in let th0 = INST[x, x_var_real; n1, n1_var_real; m1, m1_var_real; y, y_var_real; n2, n2_var_real; m2, m2_var_real; n_tm, n_var_real; m_tm, m_var_real] INTERVAL_SUB in MY_PROVE_HYP lo_th (MY_PROVE_HYP hi_th (MY_PROVE_HYP th2 (MY_PROVE_HYP th1 th0)));; (********************************************) (* FLOAT_ABS *) let s_var_bool = `s:bool`;;
let FLOAT_ABS = 
prove(`abs (float_num s n e) = float_num F n e`,
BOOL_CASES_TAC `s:bool` THEN REWRITE_TAC[FLOAT_NEG_T; REAL_ABS_NEG; REAL_ABS_REFL; FLOAT_F_POS]);;
let float_abs tm = let ltm, rtm = dest_comb tm in if ((fst o dest_const) ltm <> "real_abs") then failwith "float_abs: no abs" else let ltm, e_tm = dest_comb rtm in let ltm, n_tm = dest_comb ltm in let s_tm = rand ltm in INST[s_tm, s_var_bool; n_tm, n_var_num; e_tm, e_var_num] FLOAT_ABS;; (*******************************) (* float_interval_sqrt *)
let FLOAT_INTERVAL_SQRT = 
prove(`interval_arith x (float_num F n1 e1, hi) /\ f1 <= sqrt (float_num F n1 e1) /\ sqrt hi <= f2 ==> interval_arith (sqrt x) (f1, f2)`,
ABBREV_TAC `lo = float_num F n1 e1` THEN REWRITE_TAC[interval_arith] THEN STRIP_TAC THEN SUBGOAL_THEN `&0 <= lo /\ &0 <= hi` ASSUME_TAC THENL [ EXPAND_TAC "lo" THEN REWRITE_TAC[FLOAT_F_POS] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `lo:real` THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "lo" THEN REWRITE_TAC[FLOAT_F_POS]; ALL_TAC ] THEN SUBGOAL_THEN `&0 <= x` ASSUME_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `lo:real` THEN ASM_REWRITE_TAC[]; ALL_TAC ] THEN CONJ_TAC THENL [ MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sqrt lo` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SQRT_MONO_LE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sqrt hi` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SQRT_MONO_LE THEN ASM_REWRITE_TAC[] ]);;
let FLOAT_INTERVAL_SQRT' = (UNDISCH_ALL o REWRITE_RULE[GSYM IMP_IMP]) FLOAT_INTERVAL_SQRT;; let float_interval_sqrt pp th = let x_tm, lo_tm, hi_tm = dest_float_interval (concl th) in let s1, n1_tm, e1_tm = dest_float lo_tm in if s1 <> "F" then failwith "float_interval_sqrt: negative low bound" else let lo_th = float_sqrt_lo pp lo_tm in let hi_th = float_sqrt_hi pp hi_tm in let f1_tm = lhand (concl lo_th) in let f2_tm = rand (concl hi_th) in let th0 = INST[x_tm, x_var_real; n1_tm, n1_var_num; e1_tm, e1_var_num; hi_tm, hi_var_real; f1_tm, f1_var_real; f2_tm, f2_var_real] FLOAT_INTERVAL_SQRT' in MY_PROVE_HYP lo_th (MY_PROVE_HYP hi_th (MY_PROVE_HYP th th0));; (******************************************) (* FLOAT_TO_NUM_CONV *) let FLOAT_TO_NUM_CONV tm = let ltm, e_tm = dest_comb tm in let f_tm, n_tm = dest_comb ltm in if (fst o dest_const o rator) f_tm <> "float_num" then failwith "FLOAT_TO_NUM_CONV" else let n_th' = SYM (INST[n_tm, n_var_num] Arith_hash.NUM_THM) in let e_th' = SYM (INST[e_tm, n_var_num] Arith_hash.NUM_THM) in let n_th = TRANS n_th' (NUM_TO_NUMERAL_CONV (mk_comb(Arith_hash.num_const, n_tm))) in let e_th = TRANS e_th' (NUM_TO_NUMERAL_CONV (mk_comb(Arith_hash.num_const, e_tm))) in let th0 = MK_COMB (AP_TERM f_tm n_th, e_th) in let tm0 = rand(concl th0) in let th1 = REWRITE_CONV[float; num_exp; REAL_MUL_LID; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_POW; min_exp_def] tm0 in let th2 = REAL_RAT_REDUCE_CONV (rand(concl th1)) in TRANS th0 (TRANS th1 th2);; end;; (**************************************) (* Printer for floating-point numbers *) (**************************************) let print_float tm= try let s, m_tm, e_tm = Arith_float.dest_float tm in let m = Arith_hash.raw_dest_hash m_tm and e = Arith_hash.raw_dest_hash e_tm -/ Num.num_of_int Float_theory.min_exp in let s_str = if s = "T" then "-" else "" in let m_str = Num.string_of_num m in let e_str = if e = num_0 then "" else "*" ^ string_of_int Arith_hash.arith_base ^ "^" ^ Num.string_of_num e in let str = "##" ^ s_str ^ m_str ^ e_str in Format.print_string str with _ -> failwith "print_float";; install_user_printer ("float_num", print_float);;