needs "../formal_lp/hypermap/arith_link.hl";;
needs "arith/nat.hl";;
needs "misc/misc.hl";;
needs "misc/vars.hl";;

(* Based on the code of calc_int.ml *)

module Arith_int :
  sig
    val my_mk_realintconst : num -> term
    val my_dest_realintconst : term -> num
    val my_real_int_neg_conv : term -> thm
    val my_real_int_add_conv : term -> thm
    val my_real_int_sub_conv : term -> thm
    val my_real_int_mul_conv : term -> thm
  end
  = struct

open Misc_vars;;

let test = Arith_misc.test;;

let to_numeral = Arith_nat.NUM_TO_NUMERAL_CONV;;
let from_numeral = Arith_nat.NUMERAL_TO_NUM_CONV;;
let mk_num = Arith_nat.mk_numeral_array;;
let dest_num = Arith_hash.dest_numeral_hash;;
let num_suc = Arith_nat.NUM_SUC_HASH_CONV;;
let num_add = Arith_nat.NUM_ADD_HASH_CONV;;
let num_mul = Arith_nat.NUM_MULT_HASH_CONV;;
let num_gt0 = Arith_nat.NUM_GT0_HASH_CONV;;


let my_mk_realintconst n =
  if n >=/ Int 0 then mk_comb(amp_op_real, mk_num n)
  else mk_comb(neg_op_real, mk_comb(amp_op_real, mk_num (minus_num n)));;


let my_dest_realintconst tm =
  let ltm, rtm = dest_comb tm in
    if (ltm = neg_op_real) then
      let amp_tm, n_tm = dest_comb rtm in
        if (amp_tm = amp_op_real) then
          minus_num (dest_num n_tm)
        else
          failwith "my_dest_realintconst: --(&n) expected"
    else
      if (ltm = amp_op_real) then
        dest_num rtm
      else
        failwith "my_dest_realintconst: &n expected";;



let is_neg_comb tm = is_comb tm && rator tm = neg_op_real;;


let replace_numerals = (rand o concl o DEPTH_CONV from_numeral);;
let REPLACE_NUMERALS = CONV_RULE (DEPTH_CONV from_numeral);;


let zero_const = replace_numerals `&0`;;


(***************************************)

(* NEG *)

let neg_0 = (REPLACE_NUMERALS o prove)(`-- &0 = &0`, REAL_ARITH_TAC) and
    neg_neg = prove(`--(--(&n)) = &n`, REAL_ARITH_TAC);;


let my_real_int_neg_conv tm =
  let neg_tm, rtm = dest_comb tm in
    if (neg_tm = neg_op_real) then
      if (rtm = zero_const) then
        neg_0
      else
        let neg_tm, rtm = dest_comb rtm in
        let amp_tm, n_tm = dest_comb rtm in
          if (neg_tm = neg_op_real && amp_tm = amp_op_real) then
            INST[n_tm, n_var_num] neg_neg
          else
            failwith "my_real_int_neg_conv: --(--(&n)) expected"
    else
      failwith "my_real_int_neg_conv: --x expected";;


(*
let tm = `-- -- &12241`;;

(* 1.880 *)
test 100000 REAL_INT_NEG_CONV tm;;
(* 0.292 *)
test 100000 my_real_int_neg_conv tm;;
*)



(***************************************)

(* ADD *)

let pth1 = 
prove(`(--(&m) + --(&n) = --(&(m + n)))`,
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_NEG_ADD]) and pth2 = prove(`(--(&m) + &(m + n) = &n)`, REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC) and pth3 = prove(`(--(&(m + n)) + &m = --(&n))`, REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC) and pth4 = prove(`(&(m + n) + --(&m) = &n)`, REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC) and pth5 = prove(`(&m + --(&(m + n)) = --(&n))`, REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC) and pth6 = prove(`(&m + &n = &(m + n))`, REWRITE_TAC[GSYM REAL_OF_NUM_ADD]);;
let my_real_int_add_conv = let dest = dest_binop add_op_real in (fun tm -> try let l,r = dest tm in if rator l = neg_op_real then if rator r = neg_op_real then let th1 = INST [rand(rand l), m_var_num; rand(rand r), n_var_num] pth1 in let tm1 = rand(rand(rand(concl th1))) in let th2 = AP_TERM neg_op_real (AP_TERM amp_op_real (num_add tm1)) in TRANS th1 th2 else let m = rand(rand l) and n = rand r in let m' = dest_num m and n' = dest_num n in if m' <=/ n' then let p = mk_num (n' -/ m') in let th1 = INST [m,m_var_num; p,n_var_num] pth2 in let th2 = num_add (rand(rand(lhand(concl th1)))) in let th3 = AP_TERM (rator tm) (AP_TERM amp_op_real (SYM th2)) in TRANS th3 th1 else let p = mk_num (m' -/ n') in let th1 = INST [n,m_var_num; p,n_var_num] pth3 in let th2 = num_add (rand(rand(lhand(lhand(concl th1))))) in let th3 = AP_TERM neg_op_real (AP_TERM amp_op_real (SYM th2)) in let th4 = AP_THM (AP_TERM add_op_real th3) (rand tm) in TRANS th4 th1 else if rator r = neg_op_real then let m = rand l and n = rand(rand r) in let m' = dest_num m and n' = dest_num n in if n' <=/ m' then let p = mk_num (m' -/ n') in let th1 = INST [n,m_var_num; p,n_var_num] pth4 in let th2 = num_add (rand(lhand(lhand(concl th1)))) in let th3 = AP_TERM add_op_real (AP_TERM amp_op_real (SYM th2)) in let th4 = AP_THM th3 (rand tm) in TRANS th4 th1 else let p = mk_num (n' -/ m') in let th1 = INST [m,m_var_num; p,n_var_num] pth5 in let th2 = num_add (rand(rand(rand(lhand(concl th1))))) in let th3 = AP_TERM neg_op_real (AP_TERM amp_op_real (SYM th2)) in let th4 = AP_TERM (rator tm) th3 in TRANS th4 th1 else let th1 = INST [rand l,m_var_num; rand r,n_var_num] pth6 in let tm1 = rand(rand(concl th1)) in let th2 = AP_TERM amp_op_real (num_add tm1) in TRANS th1 th2 with Failure _ -> failwith "my_real_int_add_conv");; (* let tm = `&3252375395 + --(&3454570237434)`;; let tm' = replace_numerals tm;; (* 1.192 *) test 1000 REAL_INT_ADD_CONV tm;; (* 0.224 *) test 1000 my_real_int_add_conv tm';; *) (****************************************) (* SUB *) let real_sub' = SPEC_ALL real_sub;; let my_real_int_sub_conv tm = let x_tm, y_tm = dest_binop sub_op_real tm in let th0 = INST[x_tm, x_var_real; y_tm, y_var_real] real_sub' in if (is_neg_comb y_tm) then let ltm, rtm = dest_comb(rand(concl th0)) in let neg_th = my_real_int_neg_conv rtm in let th1 = AP_TERM ltm neg_th in let th2 = my_real_int_add_conv (rand(concl th1)) in TRANS th0 (TRANS th1 th2) else let th1 = my_real_int_add_conv (rand(concl th0)) in TRANS th0 th1;; (* let tm = `-- &35252352362346236236 - (-- &12236236363523)`;; let tm' = replace_numerals tm;; (* 1.860 *) test 1000 REAL_INT_SUB_CONV tm;; (* 0.348 *) test 1000 my_real_int_sub_conv tm';; *) (****************************************) (* MUL *)
let mul_pp = 
prove(`&m * &n = &(m * n)`,
REWRITE_TAC[REAL_OF_NUM_MUL]);;
let mul_nn = 
prove(`--(&m) * --(&n) = &(m * n)`,
REWRITE_TAC[REAL_NEG_MUL2; mul_pp]) and mul_np = prove(`--(&m) * &n = --(&(m * n))`, REWRITE_TAC[REAL_MUL_LNEG; mul_pp]) and mul_pn = prove(`&m * --(&n) = --(&(m * n))`, REWRITE_TAC[REAL_MUL_RNEG; mul_pp]);;
let my_real_int_mul_conv tm = let l, r = dest_binop mul_op_real tm in if rator l = neg_op_real then if rator r = neg_op_real then let th1 = INST [rand(rand l), m_var_num; rand(rand r), n_var_num] mul_nn in let tm1 = rand(rand(concl th1)) in let th2 = AP_TERM amp_op_real (num_mul tm1) in TRANS th1 th2 else let th1 = INST [rand(rand l), m_var_num; rand r, n_var_num] mul_np in let tm1 = rand(rand(rand(concl th1))) in let th2 = AP_TERM neg_op_real (AP_TERM amp_op_real (num_mul tm1)) in TRANS th1 th2 else if rator r = neg_op_real then let th1 = INST[rand l, m_var_num; rand(rand r), n_var_num] mul_pn in let tm1 = rand(rand(rand(concl th1))) in let th2 = AP_TERM neg_op_real (AP_TERM amp_op_real (num_mul tm1)) in TRANS th1 th2 else let th1 = INST[rand l, m_var_num; rand r, n_var_num] mul_pp in let tm1 = rand(rand(concl th1)) in let th2 = AP_TERM amp_op_real (num_mul tm1) in TRANS th1 th2;; (* let amp x = mk_comb(amp_op_real, x);; let negate x = mk_comb(neg_op_real, x);; let x = num_of_string "398537263103485";; let y = num_of_string "243089539573957";; let xx = amp (mk_num x) and yy = amp (mk_num y);; let xxx = amp (mk_numeral x) and yyy = amp (mk_numeral y);; (* 1.800 *) test 100 REAL_INT_MUL_CONV (mk_binop mul_op_real (negate xxx) yyy);; (* 0.108 *) test 100 my_real_int_mul_conv (mk_binop mul_op_real (negate xx) yy);; (DEPTH_CONV NUM_TO_NUMERAL_CONV) (concl(REAL_BITS_MUL_CONV (mk_binop mul_op_real xx yy))) *) end;;