(* ========================================================================= *) (* FLYSPECK - BOOK FORMALIZATION *) (* *) (* Authour : VU KHAC KY *) (* Book lemma: EMNWUUS *) (* Chaper : Packing (Marchal Cells) *) (* Date : October 3, 2010 *) (* *) (* ========================================================================= *) (* #use "/usr/programs/hollight/hollight-svn75/hol.ml";; loads "Multivariate/flyspeck.ml";; #use "/home/ky/flyspeck/working/boot.hl";; flyspeck_needs "trigonometry/trig1.hl";; flyspeck_needs "trigonometry/trig2.hl";; flyspeck_needs "trigonometry/trigonometry.hl";; (* ================= Loaded files ======================================== *) flyspeck_needs "leg/collect_geom.hl";; flyspeck_needs "fan/fan_defs.hl";; flyspeck_needs "fan/introduction.hl";; flyspeck_needs "fan/topology.hl";; flyspeck_needs "fan/fan_misc.hl";; flyspeck_needs "fan/HypermapAndFan.hl";; flyspeck_needs "packing/pack_defs.hl";; flyspeck_needs "packing/pack_concl.hl";; flyspeck_needs "packing/pack1.hl";; flyspeck_needs "packing/pack2.hl";; flyspeck_needs "packing/pack3.hl";; flyspeck_needs "packing/Rogers.hl";; flyspeck_needs "nonlinear/vukhacky_tactics.hl";; *) (* ====================== Open appropriate files ============================ *) flyspeck_needs "packing/marchal_cells.hl";; module Emnwuus = struct open Rogers;; open Prove_by_refinement;; open Vukhacky_tactics;; open Pack_defs;; open Pack_concl;; open Pack1;; open Sphere;; open Marchal_cells;; let seans_fn () = let (tms,tm) = top_goal () in let vss = map frees (tm::tms) in let vs = setify (flat vss) in map dest_var vs;; (* ======================= Begin working ==================================== *) (* ========================================================================= *)(* ========================================================================= *)let EMNWUUS1 = prove_by_refinement ( EMNWUUS1_concl, [ (REWRITE_TAC[mcell4] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN COND_CASES_TAC); (REPEAT STRIP_TAC); (NEW_GOAL `set_of_list (ul:(real^3)list) = {}`); (ASM_MESON_TAC[CONVEX_HULL_EQ_EMPTY]); (NEW_GOAL `ul:(real^3)list = []`); (NEW_GOAL `~(?h t. ul:(real^3)list = CONS h t)`); STRIP_TAC; (NEW_GOAL `(h:real^3) IN set_of_list ul`); (REWRITE_TAC [ASSUME `ul = CONS (h:real^3) t`; IN_SET_OF_LIST;MEM]); (ASM_SET_TAC[]); (ASM_MESON_TAC[list_CASES]); (UNDISCH_TAC `barV V 3 (ul:(real^3)list)`); (REWRITE_TAC[BARV]); STRIP_TAC; (NEW_GOAL `LENGTH (ul:(real^3)list) = 0`); (ASM_MESON_TAC[ASSUME `ul:(real^3)list =[]`;LENGTH]); (ASM_ARITH_TAC); (MESON_TAC[]); (MESON_TAC[]); (MESON_TAC[]) ]);;end;;let EMNWUUS2 = prove_by_refinement (EMNWUUS2_concl, [ (REPEAT GEN_TAC THEN STRIP_TAC); (EQ_TAC); (REPEAT STRIP_TAC); (* Break into 4 cases *) (* =============== Case 1 ================================ *) (REWRITE_TAC[mcell0]); (REWRITE_TAC[SET_RULE `x DIFF y = {} <=> (!a. a IN x ==> a IN y)`]); (REWRITE_TAC[ROGERS;IMAGE;IN;ball;SUBSET;IN_ELIM_THM]); GEN_TAC; (MATCH_MP_TAC BALL_CONVEX_HULL_LEMMA); (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM]); (STRIP_TAC); (* New_subgoal 1.1 *) (NEW_GOAL `hl (truncate_simplex x' (ul:(real^3)list)) <= hl (truncate_simplex (LENGTH ul - 1) ul)`); (ASM_CASES_TAC `x' < LENGTH (ul:(real^3)list) - 1`); (MATCH_MP_TAC (REAL_ARITH `a < b ==> a <= b`)); (NEW_GOAL `x' < (LENGTH (ul:(real^3)list) - 1) /\ LENGTH ul - 1 <= 3`); (ASM_REWRITE_TAC[] THEN UNDISCH_TAC `barV V 3 ul`); (REWRITE_TAC[BARV] THEN ARITH_TAC); (UP_ASM_TAC); (NEW_GOAL `ul IN barV V 3`); (ASM_MESON_TAC[IN]); (ASM_MESON_TAC[XNHPWAB4; ARITH_RULE `3 <= 3`]); (MATCH_MP_TAC (REAL_ARITH `a = b ==> a <= b`)); (REWRITE_WITH `LENGTH (ul:(real^3)list) - 1 = x'`); (ASM_ARITH_TAC); (* End subgoal 1.1 *) (* New subgoal 1.2 *) (NEW_GOAL `hl (truncate_simplex (LENGTH ul - 1) ul) = hl (ul:(real^3)list)`); (AP_TERM_TAC); (REWRITE_TAC[TRUNCATE_SIMPLEX]); (MATCH_MP_TAC SELECT_UNIQUE); (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM;INITIAL_SUBLIST] THEN EQ_TAC); STRIP_TAC; (NEW_GOAL `LENGTH (ul:(real^3)list) = LENGTH (y:(real^3)list) + LENGTH (yl:(real^3)list)`); (ASM_MESON_TAC[LENGTH_APPEND]); (NEW_GOAL `LENGTH (yl:(real^3)list) = 0`); (ASM_ARITH_TAC); (NEW_GOAL `(yl:(real^3)list) = []`); (ASM_MESON_TAC[LENGTH_EQ_NIL]); (ASM_MESON_TAC[APPEND_NIL]); (REPEAT STRIP_TAC); (ASM_REWRITE_TAC[]); (ASM_ARITH_TAC); (EXISTS_TAC `[]:(real^3)list`); (ASM_MESON_TAC[APPEND_NIL]); (* End subgoal 1.2 *) (* New subgoal 1.3 *) (NEW_GOAL `?u0 u1 u2 u3:real^3. ul = [u0;u1;u2;u3]`); (ASM_MESON_TAC[BARV_3_EXPLICIT]); (REPEAT (FIRST_X_ASSUM CHOOSE_TAC)); (REWRITE_TAC[ASSUME `ul = [u0:real^3; u1; u2; u3]`; HD]); (* ---------------------------------------------- *) (* Consider case x' = 0 *) (ASM_CASES_TAC `x' = 0`); (REWRITE_WITH `x:real^3 = u0`); (MP_TAC (ASSUME `x:real^3 = omega_list_n V ul x'`)); (ASM_MESON_TAC[OMEGA_LIST_0_EXPLICIT; GSYM IN]); (ASM_REWRITE_TAC[DIST_REFL]); (MESON_TAC[SQRT_LT_0;REAL_ARITH `&0 <= &2 /\ &0 < &2`]); (* ---------------------------------------------- *) (* Consider case x' = 1 *) (ASM_CASES_TAC `x' = 1`); (REWRITE_WITH `x:real^3 = circumcenter {u0, u1}`); (MP_TAC (ASSUME `x:real^3 = omega_list_n V ul x'`)); (ASM_MESON_TAC[OMEGA_LIST_1_EXPLICIT; GSYM IN]); (ONCE_REWRITE_TAC[DIST_SYM]); (REWRITE_WITH `dist (circumcenter {u0:real^3, u1},u0) = hl (truncate_simplex x' (ul:(real^3)list))`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_1;HL;radV]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC SELECT_UNIQUE); (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM; MESON[set_of_list] `set_of_list [u0:real^3;u1] = {u0, u1}`] THEN EQ_TAC); (DISCH_TAC THEN (FIRST_ASSUM MATCH_MP_TAC)); (SUBGOAL_THEN `(u0:real^3) IN {u0, u1}` ASSUME_TAC); (SET_TAC[]); (ASM_MESON_TAC[IN]); (REPEAT STRIP_TAC); (NEW_GOAL `w IN {u0,u1:real^3}`); (UP_ASM_TAC THEN MESON_TAC[IN]); (NEW_GOAL `(!w. w IN {u0,u1:real^3} ==> radV {u0,u1} = dist (circumcenter {u0,u1},w))`); (MATCH_MP_TAC OAPVION2); (REWRITE_TAC[AFFINE_INDEPENDENT_2]); (ASM_REWRITE_TAC[]); (NEW_GOAL `(radV {u0,u1:real^3} = dist (circumcenter {u0,u1},w))`); (ASM_SIMP_TAC[]); (NEW_GOAL `(radV {u0,u1:real^3} = dist (circumcenter {u0,u1},u0))`); (FIRST_ASSUM MATCH_MP_TAC); (SET_TAC[]); (ASM_MESON_TAC[]); (ASM_REAL_ARITH_TAC); (* ---------------------------------------------- *) (* Consider case x' = 2 *) (ASM_CASES_TAC `x' = 2`); (REWRITE_WITH `x:real^3 = circumcenter {u0, u1, u2}`); (MP_TAC (ASSUME `x:real^3 = omega_list_n V ul x'`)); (ASM_MESON_TAC[OMEGA_LIST_2_EXPLICIT; GSYM IN]); (ONCE_REWRITE_TAC[DIST_SYM]); (REWRITE_WITH `dist (circumcenter {u0:real^3, u1, u2},u0) = hl (truncate_simplex x' (ul:(real^3)list))`); (ASM_REWRITE_TAC[TRUNCATE_SIMPLEX_EXPLICIT_2;HL;radV]); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC SELECT_UNIQUE); (GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM; MESON[set_of_list] `set_of_list [u0:real^3;u1;u2] = {u0, u1, u2}`] THEN EQ_TAC); (DISCH_TAC THEN (FIRST_ASSUM MATCH_MP_TAC)); (SUBGOAL_THEN `(u0:real^3) IN {u0, u1, u2}` ASSUME_TAC); (SET_TAC[]); (ASM_MESON_TAC[IN]); (REPEAT STRIP_TAC); (NEW_GOAL `w IN {u0,u1:real^3,u2}`); (UP_ASM_TAC THEN MESON_TAC[IN]); (NEW_GOAL `(!w. w IN {u0,u1:real^3, u2} ==> radV {u0,u1,u2} = dist (circumcenter {u0,u1,u2},w))`); (MATCH_MP_TAC OAPVION2); (MATCH_MP_TAC AFFINE_INDEPENDENT_SUBSET); (EXISTS_TAC `{u0, u1, u2, u3:real^3}`); (REWRITE_TAC[SET_RULE `{a, b:A, c} SUBSET {a, b , c, d:A}`]); (REWRITE_TAC[AFFINE_INDEPENDENT_IFF_CARD]); STRIP_TAC; (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]); (NEW_GOAL `aff_dim {u0,u1,u2,u3:real^3} = &3`); (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]); (MATCH_MP_TAC MHFTTZN1); (EXISTS_TAC `V:real^3->bool`); (ASM_MESON_TAC[ARITH_RULE `3 <= 3`]); (ONCE_ASM_REWRITE_TAC[]); (NEW_GOAL `FINITE {u1, u2, u3:real^3}`); (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u1, u2,u3} = set_of_list [u1;u2:real^3;u3]`]); (MATCH_MP_TAC (ARITH_RULE `(a = int_of_num 4) ==> (int_of_num 3 = a - int_of_num 1)`)); (MATCH_MP_TAC (ARITH_RULE `a = b ==> int_of_num a = int_of_num b`)); (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1, u2, u3} then CARD {u1, u2, u3} else SUC (CARD {u1, u2, u3} ))`); (UP_ASM_TAC THEN REWRITE_TAC[CARD_CLAUSES]); (UP_ASM_TAC THEN COND_CASES_TAC); (DISCH_TAC); (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < &3`); (REWRITE_WITH `{u0,u1,u2,u3:real^3} = {u1, u2,u3}`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (NEW_GOAL `CARD {u1, u2, u3} = CARD {u0, u1, u2, u3} <=> {u1, u2, u3:real^3} = {u0, u1, u2, u3}`); (MATCH_MP_TAC SUBSET_CARD_EQ); (STRIP_TAC); (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (SET_TAC[]); (ASM_MESON_TAC[]); (REWRITE_TAC[MESON[set_of_list] `{u1:real^3,u2, u3} = set_of_list [u1;u2;u3]`]); (MATCH_MP_TAC AFF_DIM_LE_LENGTH); (REWRITE_TAC[LENGTH]); (ARITH_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[ARITH_RULE `a = int_of_num 3 /\ a < int_of_num 3 ==> F`]); (ASM_MESON_TAC[]); STRIP_TAC; (NEW_GOAL `CARD {u1:real^3, u2, u3} = 3`); (NEW_GOAL `CARD {u1,u2,u3:real^3} <= 3`); (MATCH_MP_TAC (ARITH_RULE `a <= LENGTH [u1;u2;u3:real^3] /\ LENGTH [u1;u2;u3:real^3] <= b ==> a <= b`)); STRIP_TAC; (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;CARD_SET_OF_LIST_LE]); (REWRITE_TAC[LENGTH] THEN ARITH_TAC); (ASM_CASES_TAC `CARD {u1:real^3, u2, u3} <= 2`); (NEW_GOAL `CARD {u0,u1,u2,u3:real^3} <= 3`); (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1,u2,u3} then CARD {u1,u2,u3} else SUC (CARD {u1,u2,u3}))`); (NEW_GOAL `FINITE {u1,u2,u3:real^3}`); (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;FINITE_SET_OF_LIST]); (ASM_REWRITE_TAC[CARD_CLAUSES]); (UP_ASM_TAC THEN COND_CASES_TAC); (ASM_ARITH_TAC); (ASM_ARITH_TAC); (ABBREV_TAC `xl = list_of_set {u0, u1, u2, u3:real^3}`); (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < int_of_num (CARD {u0, u1, u2, u3})`); (REWRITE_WITH `{u0,u1,u2,u3:real^3} = set_of_list (xl:(real^3)list)`); (EXPAND_TAC "xl"); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC SET_OF_LIST_OF_SET); (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (MATCH_MP_TAC AFF_DIM_LE_LENGTH); (REWRITE_WITH `set_of_list (xl:(real^3)list) = {u0, u1, u2, u3:real^3}`); (EXPAND_TAC "xl"); (MATCH_MP_TAC SET_OF_LIST_OF_SET); (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (EXPAND_TAC "xl"); (MATCH_MP_TAC LENGTH_LIST_OF_SET); (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (NEW_GOAL `F`); (ASM_ARITH_TAC); (ASM_MESON_TAC[]); (ASM_ARITH_TAC); ASM_ARITH_TAC; (MATCH_MP_TAC (REAL_ARITH `radV {u0,u1,u2:real^3} = a /\ radV {u0,u1,u2} = b ==> a = b`)); STRIP_TAC; (ASM_REWRITE_TAC[]); (FIRST_ASSUM MATCH_MP_TAC); (SET_TAC[]); (FIRST_ASSUM MATCH_MP_TAC); (ASM_REWRITE_TAC[]); (ASM_REAL_ARITH_TAC); (* ---------------------------------------------- *) (* Consider case x' = 3 *) (ASM_CASES_TAC `x' = 3`); (REWRITE_WITH `x = circumcenter {u0,u1,u2,u3:real^3}`); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC OMEGA_LIST_3_EXPLICIT); (ASM_MESON_TAC[GSYM IN]); (NEW_GOAL `dist (u0,circumcenter {u0:real^3, u1, u2, u3}) = hl (ul:(real^3)list)`); (ASM_REWRITE_TAC[HL]); (REWRITE_WITH `set_of_list [u0:real^3; u1; u2; u3] = {u0,u1,u2,u3}`); (MESON_TAC[set_of_list]); (NEW_GOAL `(!w. w IN {u0,u1:real^3, u2,u3} ==> radV {u0,u1,u2,u3} = dist (circumcenter {u0,u1,u2,u3},w))`); (MATCH_MP_TAC OAPVION2); (REWRITE_TAC[AFFINE_INDEPENDENT_IFF_CARD]); STRIP_TAC; (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]); (NEW_GOAL `aff_dim {u0,u1,u2,u3:real^3} = &3`); (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2,u3} = set_of_list [u0;u1;u2:real^3;u3]`]); (MATCH_MP_TAC MHFTTZN1); (EXISTS_TAC `V:real^3->bool`); (ASM_MESON_TAC[ARITH_RULE `3 <= 3`]); (ONCE_ASM_REWRITE_TAC[]); (MATCH_MP_TAC (ARITH_RULE `(a = int_of_num 4) ==> (int_of_num 3 = a - int_of_num 1)`)); (MATCH_MP_TAC (ARITH_RULE `a = b ==> int_of_num a = int_of_num b`)); (NEW_GOAL `FINITE {u1, u2, u3:real^3}`); (REWRITE_TAC[FINITE_SET_OF_LIST; MESON[set_of_list] `{u1, u2,u3} = set_of_list [u1;u2:real^3;u3]`]); (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1, u2, u3} then CARD {u1, u2, u3} else SUC (CARD {u1, u2, u3} ))`); (UP_ASM_TAC THEN REWRITE_TAC[CARD_CLAUSES]); (UP_ASM_TAC THEN COND_CASES_TAC); (DISCH_TAC); (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < &3`); (REWRITE_WITH `{u0,u1,u2,u3:real^3} = {u1, u2,u3}`); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (NEW_GOAL `CARD {u1, u2, u3} = CARD {u0, u1, u2, u3} <=> {u1, u2, u3:real^3} = {u0, u1, u2, u3}`); (MATCH_MP_TAC SUBSET_CARD_EQ); (STRIP_TAC); (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (SET_TAC[]); (* check *) (ASM_MESON_TAC[]); (REWRITE_TAC[MESON[set_of_list] `{u1:real^3,u2, u3} = set_of_list [u1;u2;u3]`]); (MATCH_MP_TAC AFF_DIM_LE_LENGTH); (REWRITE_TAC[LENGTH]); (ARITH_TAC); (NEW_GOAL `F`); (ASM_MESON_TAC[ARITH_RULE `a = int_of_num 3 /\ a < int_of_num 3 ==> F`]); (ASM_MESON_TAC[]); STRIP_TAC; (NEW_GOAL `CARD {u1:real^3, u2, u3} = 3`); (NEW_GOAL `CARD {u1,u2,u3:real^3} <= 3`); (MATCH_MP_TAC (ARITH_RULE `a <= LENGTH [u1;u2;u3:real^3] /\ LENGTH [u1;u2;u3:real^3] <= b ==> a <= b`)); STRIP_TAC; (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;CARD_SET_OF_LIST_LE]); (REWRITE_TAC[LENGTH] THEN ARITH_TAC); (ASM_CASES_TAC `CARD {u1:real^3, u2, u3} <= 2`); (NEW_GOAL `CARD {u0,u1,u2,u3:real^3} <= 3`); (NEW_GOAL `CARD {u0:real^3, u1, u2, u3} = (if u0 IN {u1,u2,u3} then CARD {u1,u2,u3} else SUC (CARD {u1,u2,u3}))`); (NEW_GOAL `FINITE {u1,u2,u3:real^3}`); (REWRITE_TAC[MESON[set_of_list] `{u1,u2,u3:real^3} = set_of_list [u1;u2;u3]`;FINITE_SET_OF_LIST]); (ASM_REWRITE_TAC[CARD_CLAUSES]); (UP_ASM_TAC THEN COND_CASES_TAC); (ASM_ARITH_TAC); (ASM_ARITH_TAC); (ABBREV_TAC `xl = list_of_set {u0, u1, u2, u3:real^3}`); (NEW_GOAL `aff_dim {u0:real^3, u1, u2, u3} < int_of_num (CARD {u0, u1, u2, u3})`); (REWRITE_WITH `{u0,u1,u2,u3:real^3} = set_of_list (xl:(real^3)list)`); (EXPAND_TAC "xl"); (ONCE_REWRITE_TAC[EQ_SYM_EQ]); (MATCH_MP_TAC SET_OF_LIST_OF_SET); (REWRITE_TAC[MESON[set_of_list] `{u0, u1, u2, u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (MATCH_MP_TAC AFF_DIM_LE_LENGTH); (REWRITE_WITH `set_of_list (xl:(real^3)list) = {u0, u1, u2, u3:real^3}`); (EXPAND_TAC "xl"); (MATCH_MP_TAC SET_OF_LIST_OF_SET); (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (EXPAND_TAC "xl"); (MATCH_MP_TAC LENGTH_LIST_OF_SET); (REWRITE_TAC[MESON[set_of_list] `{u0,u1,u2,u3:real^3} = set_of_list [u0;u1;u2;u3]`;FINITE_SET_OF_LIST]); (NEW_GOAL `F`); (ASM_ARITH_TAC); (ASM_MESON_TAC[]); (ASM_ARITH_TAC); ASM_ARITH_TAC; (MATCH_MP_TAC (REAL_ARITH `radV {u0,u1,u2:real^3,u3} = a /\ radV {u0,u1,u2,u3} = b ==> a = b`)); STRIP_TAC; (ONCE_REWRITE_TAC[DIST_SYM] THEN FIRST_ASSUM MATCH_MP_TAC); (SET_TAC[]); (MESON_TAC[]); (ASM_MESON_TAC[]); (* --------------------------------------------- *) (UNDISCH_TAC `barV V 3 (ul:(real^3)list)`); (REWRITE_TAC[BARV]); (STRIP_TAC); (NEW_GOAL `F`); (ASM_ARITH_TAC); (ASM_MESON_TAC[]); (* Here we have finished the first part `mcell0 V ul = {}`;there are 3 parts left: mcell1 V ul = {} mcell2 V ul = {} mcell3 V ul = {} *) (* =============== Case 2 =================================== *) (REWRITE_TAC[mcell1]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[]); (* =============== Case 3 =================================== *) (REWRITE_TAC[mcell2]); (COND_CASES_TAC); (NEW_GOAL `F`); (UP_ASM_TAC THEN UP_ASM_TAC THEN REAL_ARITH_TAC); (UP_ASM_TAC THEN MESON_TAC[]); (REWRITE_TAC[]); (* =============== Case 4 =================================== *) (REWRITE_TAC[mcell3]); (COND_CASES_TAC); (NEW_GOAL `F`); (ASM_REAL_ARITH_TAC); (ASM_MESON_TAC[]); (MESON_TAC[]); (* =============== Reverse part =============================== *) (REPEAT STRIP_TAC); (ASM_CASES_TAC `hl (ul:(real^3)list) >= sqrt (&2)`); (NEW_GOAL `omega_list V (ul:(real^3)list) IN mcell0 V ul`); (REWRITE_TAC[mcell0; IN_DIFF;ROGERS]); (STRIP_TAC); (NEW_GOAL`LENGTH (ul:(real^3)list) = 4`); (NEW_GOAL `?u0 u1 u2 u3:real^3. ul = [u0; u1; u2; u3]`); (MATCH_MP_TAC BARV_3_EXPLICIT); (EXISTS_TAC `V:real^3->bool`); (ASM_REWRITE_TAC[]); (FIRST_X_ASSUM CHOOSE_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (FIRST_X_ASSUM CHOOSE_TAC); (ASM_REWRITE_TAC[LENGTH]); (ARITH_TAC); (ASM_REWRITE_TAC[OMEGA_LIST; ARITH_RULE `4 - 1 = 3`]); (REWRITE_TAC[IMAGE; CONVEX_HULL_EXPLICIT; IN; IN_ELIM_THM]); (EXISTS_TAC `{omega_list_n V (ul:(real^3)list) 3}`); (ABBREV_TAC `u = (\x:real^3. &1 )`); (EXISTS_TAC `(\x:real^3. &1)`); (REPEAT STRIP_TAC); (MESON_TAC[FINITE_SING]); (REWRITE_TAC[SUBSET;IN;IN_ELIM_THM; Geomdetail.IN_ACT_SING]); (GEN_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]); (EXISTS_TAC `3`); (ASM_REWRITE_TAC[ARITH_RULE `3 < 4`]); (REWRITE_TAC[BETA_THM]); (REAL_ARITH_TAC); (REWRITE_TAC[SUM_SING]); (REWRITE_TAC[VSUM_SING]); (VECTOR_ARITH_TAC); (REWRITE_TAC[IN; ball; IN_ELIM_THM]); (ONCE_REWRITE_TAC[DIST_SYM]); (MATCH_MP_TAC (REAL_ARITH `x <= y ==> ~(y < x)`)); (MATCH_MP_TAC (REAL_ARITH `hl (ul:(real^3)list) >= x /\ hl ul <= z ==> x <= z`)); (ASM_REWRITE_TAC[]); (MATCH_MP_TAC WAUFCHE1); (EXISTS_TAC `3`); (ASM_REWRITE_TAC[IN]); (NEW_GOAL `F`); (UP_ASM_TAC THEN UNDISCH_TAC `mcell0 V (ul:(real^3)list) = {}`); (SET_TAC[]); (UP_ASM_TAC THEN MESON_TAC[]); (UP_ASM_TAC THEN REAL_ARITH_TAC)]);;