(* ========================================================================= *)
(* Basic theory of divisibility, gcd, coprimality and primality (over N). *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* HOL88 compatibility (since all this is a port of old HOL88 stuff). *)
(* ------------------------------------------------------------------------- *)
let LESS_THM = ARITH_RULE `!m n. m < (SUC n) <=> (m = n) \/ m < n`;;
(* ------------------------------------------------------------------------- *)
(* General arithmetic lemmas. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* Properties of the exponential function. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* More ad-hoc arithmetic lemmas unlikely to be useful elsewhere. *)
(* ------------------------------------------------------------------------- *)
let DIFF_LEMMA = prove(
`!a b. a < b ==> (a = 0) \/ (a + (b - a)) < (a + b)`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC(SPEC `a:num`
LESS_0_CASES) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(CHOOSE_THEN SUBST1_TAC o MATCH_MP
LESS_ADD_1) THEN
DISJ2_TAC THEN REWRITE_TAC[ONCE_REWRITE_RULE[
ADD_SYM]
ADD_SUB] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM (CONJUNCT1
ADD_CLAUSES)] THEN
REWRITE_TAC[
ADD_ASSOC] THEN
REPEAT(MATCH_MP_TAC
LESS_MONO_ADD) THEN POP_ASSUM ACCEPT_TAC);;
let EVEN_SQUARE = prove(
`!n.
EVEN(n) ==> ?x. n
EXP 2 = 4 * x`,
GEN_TAC THEN REWRITE_TAC[
EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN
EXISTS_TAC `m * m` THEN REWRITE_TAC[
EXP_2] THEN
REWRITE_TAC[SYM(REWRITE_CONV[ARITH] `2 * 2`)] THEN
REWRITE_TAC[
MULT_AC]);;
let ADD_IMP_SUB = prove(
`!x y z. (x + y = z) ==> (x = z - y)`,
REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[
ADD_SUB]);;
let ADD_SUM_DIFF = prove(
`!v w. v <= w ==> ((w + v) - (w - v) = 2 * v) /\
((w + v) + (w - v) = 2 * w)`,
(* ------------------------------------------------------------------------- *)
(* Elementary theory of divisibility *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_ONE = prove(
`!x. (x
divides 1) <=> (x = 1)`,
GEN_TAC THEN REWRITE_TAC[
divides] THEN
CONV_TAC(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) THEN
REWRITE_TAC[
MULT_EQ_1] THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN REFL_TAC);;
let DIVIDES_ANTISYM = prove
(`!x y. x
divides y /\ y
divides x <=> (x = y)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[
divides] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (CHOOSE_THEN SUBST1_TAC)) THEN
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
CONV_TAC(LAND_CONV SYM_CONV) THEN
REWRITE_TAC[GSYM
MULT_ASSOC;
MULT_FIX;
MULT_EQ_1] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[
DIVIDES_REFL]]);;
let DIVIDES_DIV = prove
(`!n x. 0 < n /\ (x MOD n = 0) ==> n
divides x`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `x:num` o MATCH_MP
DIVISION o
MATCH_MP (ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN
ASM_REWRITE_TAC[
ADD_CLAUSES] THEN DISCH_TAC THEN
REWRITE_TAC[
divides] THEN EXISTS_TAC `x DIV n` THEN
ONCE_REWRITE_TAC[
MULT_SYM] THEN FIRST_ASSUM MATCH_ACCEPT_TAC);;
let DIVIDES_MOD = prove
(`!m n. ~(m = 0) ==> (m
divides n <=> (n MOD m = 0))`,
REWRITE_TAC[
divides] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL
[ASM_MESON_TAC[MOD_MULT]; DISCH_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP
DIVISION) THEN
ASM_REWRITE_TAC[
ADD_CLAUSES] THEN MESON_TAC[
MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* The Bezout theorem is a bit ugly for N; it'd be easier for Z *)
(* ------------------------------------------------------------------------- *)
let IND_EUCLID = prove(
`!P. (!a b. P a b <=> P b a) /\
(!a. P a 0) /\
(!a b. P a b ==> P a (a + b)) ==>
!a b. P a b`,
REPEAT STRIP_TAC THEN
W(fun (asl,w) -> SUBGOAL_THEN `!n a b. (a + b = n) ==> P a b`
MATCH_MP_TAC) THENL
[ALL_TAC; EXISTS_TAC `a + b` THEN REFL_TAC] THEN
MATCH_MP_TAC
num_WF THEN
REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN MP_TAC
(SPECL [`a:num`; `b:num`]
LESS_LESS_CASES) THENL
[DISCH_THEN SUBST1_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM
ADD_0] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[];
ALL_TAC; ALL_TAC] THEN
DISCH_THEN(fun
th -> SUBST1_TAC(SYM(MATCH_MP
SUB_ADD
(MATCH_MP
LT_IMP_LE th))) THEN
DISJ_CASES_THEN MP_TAC (MATCH_MP
DIFF_LEMMA th)) THENL
[DISCH_THEN SUBST1_TAC THEN
FIRST_ASSUM (CONV_TAC o REWR_CONV) THEN
FIRST_ASSUM MATCH_ACCEPT_TAC;
REWRITE_TAC[ASSUME `a + b = n`] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[
ADD_SYM] THEN
FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `a + b - a < n` THEN
DISCH_THEN(ANTE_RES_THEN MATCH_MP_TAC);
DISCH_THEN SUBST1_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
REWRITE_TAC[ONCE_REWRITE_RULE[
ADD_SYM] (ASSUME `a + b = n`)] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[
ADD_SYM] THEN
FIRST_ASSUM (CONV_TAC o REWR_CONV) THEN
FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `b + a - b < n` THEN
DISCH_THEN(ANTE_RES_THEN MATCH_MP_TAC)] THEN
REWRITE_TAC[]);;
let BEZOUT_LEMMA = prove(
`!a b. (?d x y. (d
divides a /\ d
divides b) /\
((a * x = (b * y) + d) \/
(b * x = (a * y) + d)))
==> (?d x y. (d
divides a /\ d
divides (a + b)) /\
((a * x = ((a + b) * y) + d) \/
((a + b) * x = (a * y) + d)))`,
REPEAT STRIP_TAC THEN EXISTS_TAC `d:num` THENL
[MAP_EVERY EXISTS_TAC [`x + y`; `y:num`];
MAP_EVERY EXISTS_TAC [`x:num`; `x + y`]] THEN
ASM_REWRITE_TAC[] THEN
(CONJ_TAC THENL [MATCH_MP_TAC
DIVIDES_ADD; ALL_TAC]) THEN
ASM_REWRITE_TAC[
LEFT_ADD_DISTRIB;
RIGHT_ADD_DISTRIB] THEN
REWRITE_TAC[
ADD_ASSOC] THEN DISJ1_TAC THEN
REWRITE_TAC[
ADD_AC]);;
let BEZOUT_ADD = prove(
`!a b. ?d x y. (d
divides a /\ d
divides b) /\
((a * x = (b * y) + d) \/
(b * x = (a * y) + d))`,
W(fun (asl,w) -> MP_TAC(SPEC (list_mk_abs([`a:num`; `b:num`],
snd(strip_forall w)))
IND_EUCLID)) THEN BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN
REPEAT CONJ_TAC THENL
[REPEAT GEN_TAC THEN REPEAT
(AP_TERM_TAC THEN GEN_REWRITE_TAC I [
FUN_EQ_THM] THEN
GEN_TAC THEN BETA_TAC) THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [
DISJ_SYM] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [
CONJ_SYM] THEN REFL_TAC;
GEN_TAC THEN MAP_EVERY EXISTS_TAC [`a:num`; `1`; `0`] THEN
REWRITE_TAC[
MULT_CLAUSES;
ADD_CLAUSES;
DIVIDES_0;
DIVIDES_REFL];
MATCH_ACCEPT_TAC
BEZOUT_LEMMA]);;
let BEZOUT = prove(
`!a b. ?d x y. (d
divides a /\ d
divides b) /\
(((a * x) - (b * y) = d) \/
((b * x) - (a * y) = d))`,
REPEAT GEN_TAC THEN REPEAT_TCL STRIP_THM_THEN ASSUME_TAC
(SPECL [`a:num`; `b:num`]
BEZOUT_ADD) THEN
REPEAT(W(EXISTS_TAC o fst o dest_exists o snd)) THEN
ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[
ADD_SYM] THEN REWRITE_TAC[
ADD_SUB]);;
(* ------------------------------------------------------------------------- *)
(* We can get a stronger version with a nonzeroness assumption. *)
(* ------------------------------------------------------------------------- *)
let BEZOUT_ADD_STRONG = prove
(`!a b. ~(a = 0)
==> ?d x y. d
divides a /\ d
divides b /\ (a * x = b * y + d)`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`a:num`; `b:num`]
BEZOUT_ADD) THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[
EXISTS_OR_THM; GSYM
CONJ_ASSOC] THEN
MATCH_MP_TAC(TAUT `(b ==> a) ==> a \/ b ==> a`) THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` (X_CHOOSE_THEN `x:num`
(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC))) THEN
FIRST_X_ASSUM(MP_TAC o SYM) THEN
ASM_CASES_TAC `b = 0` THENL
[ASM_SIMP_TAC[
MULT_CLAUSES;
ADD_EQ_0;
MULT_EQ_0;
ADD_CLAUSES] THEN
STRIP_TAC THEN UNDISCH_TAC `d
divides a` THEN
ASM_REWRITE_TAC[
DIVIDES_ZERO]; ALL_TAC] THEN
MP_TAC(SPECL [`d:num`; `b:num`]
DIVIDES_LE) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[
LE_LT] THEN STRIP_TAC THENL
[ALL_TAC;
DISCH_TAC THEN EXISTS_TAC `b:num` THEN EXISTS_TAC `b:num` THEN
EXISTS_TAC `a - 1` THEN
UNDISCH_TAC `d
divides a` THEN ASM_SIMP_TAC[
DIVIDES_REFL] THEN
REWRITE_TAC[ARITH_RULE `b * x + b = (x + 1) * b`] THEN
ASM_SIMP_TAC[ARITH_RULE `~(a = 0) ==> ((a - 1) + 1 = a)`]] THEN
ASM_CASES_TAC `x = 0` THENL
[ASM_SIMP_TAC[
MULT_CLAUSES;
ADD_EQ_0;
MULT_EQ_0] THEN STRIP_TAC THEN
UNDISCH_TAC `d
divides a` THEN ASM_REWRITE_TAC[
DIVIDES_ZERO]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o AP_TERM `( * ) (b - 1)`) THEN
DISCH_THEN(MP_TAC o AP_TERM `(+) (d:num)`) THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV)
[
LEFT_ADD_DISTRIB] THEN
REWRITE_TAC[ARITH_RULE `d + bay + b1 * d = (1 + b1) * d + bay`] THEN
ASM_SIMP_TAC[ARITH_RULE `~(b = 0) ==> (1 + (b - 1) = b)`] THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(a + b = c + d) ==> a <= d ==> (b = (d - a) + c:num)`)) THEN
ANTS_TAC THENL
[ONCE_REWRITE_TAC[AC
MULT_AC `(b - 1) * b * x = b * (b - 1) * x`] THEN
REWRITE_TAC[
LE_MULT_LCANCEL] THEN DISJ2_TAC THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `d = d * 1`] THEN
MATCH_MP_TAC
LE_MULT2 THEN
MAP_EVERY UNDISCH_TAC [`d < b:num`; `~(x = 0)`] THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(fun
th ->
MAP_EVERY EXISTS_TAC [`d:num`; `y * (b - 1)`; `(b - 1) * x - d`] THEN
MP_TAC
th) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV) [
LEFT_SUB_DISTRIB] THEN
REWRITE_TAC[
MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* Greatest common divisor. *)
(* ------------------------------------------------------------------------- *)
let BEZOUT_GCD = prove(
`!a b. ?x y. ((a * x) - (b * y) = gcd(a,b)) \/
((b * x) - (a * y) = gcd(a,b))`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`a:num`; `b:num`]
BEZOUT) THEN
DISCH_THEN(EVERY_TCL (map X_CHOOSE_THEN [`d:num`; `x:num`; `y:num`])
(CONJUNCTS_THEN ASSUME_TAC)) THEN
SUBGOAL_THEN `d
divides gcd(a,b)` MP_TAC THENL
[MATCH_MP_TAC(last(CONJUNCTS(SPEC_ALL
GCD))) THEN ASM_REWRITE_TAC[];
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[
divides]) THEN
MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN
ASM_REWRITE_TAC[GSYM
RIGHT_SUB_DISTRIB;
MULT_ASSOC] THEN
FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);;
let BEZOUT_GCD_STRONG = prove
(`!a b. ~(a = 0) ==> ?x y. a * x = b * y + gcd(a,b)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `b:num` o MATCH_MP
BEZOUT_ADD_STRONG) THEN
REWRITE_TAC[
LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`d:num`; `x:num`; `y:num`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `d
divides gcd(a,b)` MP_TAC THENL
[ASM_MESON_TAC[
GCD]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[
divides]) THEN
MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN
ASM_REWRITE_TAC[GSYM
RIGHT_ADD_DISTRIB;
MULT_ASSOC]);;
let GCD_RMUL = prove(
`!a b c. gcd(a * c, b * c) = c * gcd(a,b)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [
MULT_SYM] THEN
MATCH_ACCEPT_TAC
GCD_LMUL);;
let GCD_BEZOUT = prove(
`!a b d. (?x y. ((a * x) - (b * y) = d) \/ ((b * x) - (a * y) = d)) <=>
gcd(a,b)
divides d`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[STRIP_TAC THEN POP_ASSUM(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC
DIVIDES_SUB THEN CONJ_TAC THEN
MATCH_MP_TAC
DIVIDES_RMUL THEN REWRITE_TAC[
GCD];
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[
divides]) THEN
STRIP_ASSUME_TAC(SPECL [`a:num`; `b:num`]
BEZOUT_GCD) THEN
MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN
ASM_REWRITE_TAC[GSYM
RIGHT_SUB_DISTRIB;
MULT_ASSOC] THEN
FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);;
let GCD_ZERO = prove(
`!a b. (gcd(a,b) = 0) <=> (a = 0) /\ (b = 0)`,
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[
GCD_0] THEN
MP_TAC(SPECL [`a:num`; `b:num`]
GCD) THEN
ASM_REWRITE_TAC[
DIVIDES_ZERO] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let GCD_1 = prove(
`!a. gcd(1,a) = 1`,
GEN_TAC THEN CONV_TAC SYM_CONV THEN
ONCE_REWRITE_TAC[GSYM
GCD_UNIQUE] THEN
REWRITE_TAC[
DIVIDES_1] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);;
let GCD_ADD = prove
(`(!a b. gcd(a + b,b) = gcd(a,b)) /\
(!a b. gcd(b + a,b) = gcd(a,b)) /\
(!a b. gcd(a,a + b) = gcd(a,b)) /\
(!a b. gcd(a,b + a) = gcd(a,b))`,
let GCD_SUB = prove
(`(!a b. b <= a ==> gcd(a - b,b) = gcd(a,b)) /\
(!a b. a <= b ==> gcd(a,b - a) = gcd(a,b))`,
(* ------------------------------------------------------------------------- *)
(* Coprimality *)
(* ------------------------------------------------------------------------- *)
let COPRIME = prove(
`!a b.
coprime(a,b) <=> !d. d
divides a /\ d
divides b <=> (d = 1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
coprime] THEN
REPEAT(EQ_TAC ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[
DIVIDES_1] THENL
[FIRST_ASSUM MATCH_MP_TAC;
FIRST_ASSUM(CONV_TAC o REWR_CONV o GSYM) THEN CONJ_TAC] THEN
ASM_REWRITE_TAC[]);;
let GCD_COPRIME = prove
(`!a b a' b'. ~(gcd(a,b) = 0) /\ a = a' * gcd(a,b) /\ b = b' * gcd(a,b)
==>
coprime(a',b')`,
NUMBER_TAC);;
let GCD_COPRIME_EXISTS = prove(
`!a b. ~(gcd(a,b) = 0) ==>
?a' b'. (a = a' * gcd(a,b)) /\
(b = b' * gcd(a,b)) /\
coprime(a',b')`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(SPECL [`a:num`; `b:num`]
GCD) THEN
DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[
divides] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a':num` o GSYM)
(X_CHOOSE_TAC `b':num` o GSYM)) THEN
MAP_EVERY EXISTS_TAC [`a':num`; `b':num`] THEN
ONCE_REWRITE_TAC[
MULT_SYM] THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
GCD_COPRIME THEN
MAP_EVERY EXISTS_TAC [`a:num`; `b:num`] THEN
ONCE_REWRITE_TAC[
MULT_SYM] THEN ASM_REWRITE_TAC[]);;
let BEZOUT_GCD_POW = prove(
`!n a b. ?x y. (((a
EXP n) * x) - ((b
EXP n) * y) = gcd(a,b)
EXP n) \/
(((b
EXP n) * x) - ((a
EXP n) * y) = gcd(a,b)
EXP n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL
[STRUCT_CASES_TAC(SPEC `n:num`
num_CASES) THEN
ASM_REWRITE_TAC[
EXP;
MULT_CLAUSES] THENL
[MAP_EVERY EXISTS_TAC [`1`; `0`] THEN REWRITE_TAC[
SUB_0];
REPEAT(EXISTS_TAC `0`) THEN REWRITE_TAC[
MULT_CLAUSES;
SUB_0]];
MP_TAC(SPECL [`a:num`; `b:num`]
GCD) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN REWRITE_TAC[
divides] THEN
DISCH_THEN(X_CHOOSE_THEN `b':num` ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `a':num` ASSUME_TAC) THEN
MP_TAC(SPECL [`a:num`; `b:num`; `a':num`; `b':num`]
GCD_COPRIME) THEN
RULE_ASSUM_TAC GSYM THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[
MULT_SYM]) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o GSYM) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP
COPRIME_EXP_IMP) THEN
REWRITE_TAC[
COPRIME_BEZOUT] THEN
DISCH_THEN(X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `y:num` MP_TAC)) THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN
DISCH_THEN (MP_TAC o AP_TERM `(*) (gcd(a,b) EXP n)`) THEN
REWRITE_TAC[MULT_CLAUSES; LEFT_SUB_DISTRIB] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
MAP_EVERY EXISTS_TAC [`x:num`; `y:num`] THEN
REWRITE_TAC[MULT_ASSOC; GSYM MULT_EXP] THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[MULT_SYM]) THEN
ASM_REWRITE_TAC[]]);;
let GCD_EXP = prove(
`!n a b. gcd(a EXP n,b EXP n) = gcd(a,b) EXP n`,
REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN
ONCE_REWRITE_TAC[GSYM GCD_UNIQUE] THEN REPEAT CONJ_TAC THENL
[MATCH_MP_TAC DIVIDES_EXP THEN REWRITE_TAC[GCD];
MATCH_MP_TAC DIVIDES_EXP THEN REWRITE_TAC[GCD];
X_GEN_TAC `d:num` THEN STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `a:num`; `b:num`] BEZOUT_GCD_POW) THEN
DISCH_THEN(REPEAT_TCL CHOOSE_THEN (DISJ_CASES_THEN
(SUBST1_TAC o SYM))) THEN
MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN
MATCH_MP_TAC DIVIDES_RMUL THEN ASM_REWRITE_TAC[]]);;
let DIVISION_DECOMP = prove(
`!a b c. a divides (b * c) ==>
?b' c'. (a = b' * c') /\ b' divides b /\ c' divides c`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
EXISTS_TAC `gcd(a,b)` THEN REWRITE_TAC[GCD] THEN
MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN
ASM_CASES_TAC `gcd(a,b) = 0` THENL
[ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN
RULE_ASSUM_TAC(REWRITE_RULE[GCD_ZERO]) THEN
ASM_REWRITE_TAC[MULT_CLAUSES; DIVIDES_1];
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `a':num` (X_CHOOSE_THEN `b':num`
(STRIP_ASSUME_TAC o GSYM o ONCE_REWRITE_RULE[MULT_SYM]))) THEN
EXISTS_TAC `a':num` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `a divides (b * c)` THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC
(LAND_CONV o LAND_CONV) [GSYM th]) THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV)
[GSYM th]) THEN REWRITE_TAC[MULT_ASSOC] THEN
DISCH_TAC THEN MATCH_MP_TAC COPRIME_DIVPROD THEN
EXISTS_TAC `b':num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC DIVIDES_CMUL2 THEN EXISTS_TAC `gcd(a,b)` THEN
REWRITE_TAC[MULT_ASSOC] THEN CONJ_TAC THEN
FIRST_ASSUM MATCH_ACCEPT_TAC]);;
let DIVIDES_EXP2_REV = prove
(`!n a b. (a EXP n) divides (b EXP n) /\ ~(n = 0) ==> a divides b`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL
[ASM_MESON_TAC[GCD_ZERO; DIVIDES_REFL]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP GCD_COPRIME_EXISTS) THEN
STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[MULT_EXP] THEN
ASM_SIMP_TAC[EXP_EQ_0; DIVIDES_RMUL2_EQ] THEN
DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
`a divides b ==> coprime(a,b) ==> a divides 1`)) THEN
ASM_SIMP_TAC[COPRIME_EXP2; DIVIDES_ONE; DIVIDES_1; EXP_EQ_1]);;
let DIVIDES_EXP2_EQ = prove
(`!n a b. ~(n = 0) ==> ((a EXP n) divides (b EXP n) <=> a divides b)`,
MESON_TAC[DIVIDES_EXP2_REV; DIVIDES_EXP]);;
let DIVIDES_MUL = prove
(`!m n r. m divides r /\ n divides r /\ coprime(m,n) ==> (m * n) divides r`,
NUMBER_TAC);;
(* ------------------------------------------------------------------------- *)
(* A binary form of the Chinese Remainder Theorem. *)
(* ------------------------------------------------------------------------- *)
let CHINESE_REMAINDER = prove
(`!a b u v. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0)
==> ?x q1 q2. (x = u + q1 * a) /\ (x = v + q2 * b)`,
let lemma = prove
(`(?d x y. (d = 1) /\ P x y d) <=> (?x y. P x y 1)`,
MESON_TAC[]) in
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_ADD_STRONG) THEN
MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD_STRONG) THEN
ASM_REWRITE_TAC[CONJ_ASSOC] THEN
SUBGOAL_THEN `!d. d divides a /\ d divides b <=> (d = 1)`
(fun th -> REWRITE_TAC[th; ONCE_REWRITE_RULE[CONJ_SYM] th])
THENL
[UNDISCH_TAC `coprime(a,b)` THEN
SIMP_TAC[GSYM DIVIDES_GCD; COPRIME_GCD; DIVIDES_ONE]; ALL_TAC] THEN
REWRITE_TAC[lemma] THEN
DISCH_THEN(X_CHOOSE_THEN `x1:num` (X_CHOOSE_TAC `y1:num`)) THEN
DISCH_THEN(X_CHOOSE_THEN `x2:num` (X_CHOOSE_TAC `y2:num`)) THEN
EXISTS_TAC `v * a * x1 + u * b * x2:num` THEN
EXISTS_TAC `v * x1 + u * y2:num` THEN
EXISTS_TAC `v * y1 + u * x2:num` THEN CONJ_TAC THENL
[SUBST1_TAC(ASSUME `b * x2 = a * y2 + 1`);
SUBST1_TAC(ASSUME `a * x1 = b * y1 + 1`)] THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC]);;
(* ------------------------------------------------------------------------- *)
(* Primality *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* A few useful theorems about primes *)
(* ------------------------------------------------------------------------- *)
let PRIME_2 = prove(
`
prime(2)`,
REWRITE_TAC[
prime; ARITH] THEN
REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
DIVIDES_LE) THEN
REWRITE_TAC[ARITH] THEN REWRITE_TAC[
LE_LT] THEN
REWRITE_TAC[num_CONV `2`; num_CONV `1`;
LESS_THM;
NOT_LESS_0] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST_ALL_TAC) THEN
REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[
DIVIDES_ZERO] THEN
REWRITE_TAC[ARITH] THEN REWRITE_TAC[]);;
let PRIME_FACTOR = prove(
`!n. ~(n = 1) ==> ?p.
prime(p) /\ p
divides n`,
MATCH_MP_TAC
num_WF THEN
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `
prime(n)` THENL
[EXISTS_TAC `n:num` THEN ASM_REWRITE_TAC[
DIVIDES_REFL];
UNDISCH_TAC `~prime(n)` THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[
prime]) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[
NOT_FORALL_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_THEN MP_TAC o MATCH_MP
DIVIDES_LE) THENL
[ASM_REWRITE_TAC[
LE_LT] THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC
DIVIDES_TRANS THEN EXISTS_TAC `m:num` THEN
ASM_REWRITE_TAC[];
DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `2` THEN
REWRITE_TAC[
PRIME_2;
DIVIDES_0]]]);;
let PRIME_FACTOR_INDUCT = prove
(`!P. P 0 /\ P 1 /\
(!p n.
prime p /\ ~(n = 0) /\ P n ==> P(p * n))
==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN
MATCH_MP_TAC
num_WF THEN X_GEN_TAC `n:num` THEN
DISCH_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `n = 1`] THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num`
STRIP_ASSUME_TAC o MATCH_MP
PRIME_FACTOR) THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o
GEN_REWRITE_RULE I [
divides]) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `d:num`]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[
MULT_EQ_0; DE_MORGAN_THM]) THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[
PRIME_FACTOR_LT;
MULT_EQ_0]);;
(* ------------------------------------------------------------------------- *)
(* Infinitude of primes. *)
(* ------------------------------------------------------------------------- *)
let COPRIME_PRIME_EQ = prove(
`!a b.
coprime(a,b) <=> !p. ~(
prime(p) /\ p
divides a /\ p
divides b)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(fun
th -> REWRITE_TAC[MATCH_MP
COPRIME_PRIME th]);
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[
coprime] THEN
ONCE_REWRITE_TAC[
NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(X_CHOOSE_TAC `p:num` o MATCH_MP
PRIME_FACTOR) THEN
EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
MATCH_MP_TAC
DIVIDES_TRANS THEN EXISTS_TAC `d:num` THEN
ASM_REWRITE_TAC[]]);;
let PRIME_COPRIME = prove(
`!n p.
prime(p) ==> (n = 1) \/ p
divides n \/
coprime(p,n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[
prime;
COPRIME_GCD] THEN
STRIP_ASSUME_TAC(SPECL [`p:num`; `n:num`]
GCD) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o SPEC `gcd(p,n)`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(DISJ_CASES_THEN SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[]);;
let PRIME_DIVEXP = prove(
`!n p x.
prime(p) /\ p
divides (x
EXP n) ==> p
divides x`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[
EXP;
DIVIDES_ONE] THENL
[DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN REWRITE_TAC[
DIVIDES_1];
DISCH_THEN(fun
th -> ASSUME_TAC(CONJUNCT1
th) THEN MP_TAC
th) THEN
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP
PRIME_DIVPROD) THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* One property of coprimality is easier to prove via prime factors. *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* More useful lemmas. *)
(* ------------------------------------------------------------------------- *)
let PRIME_EXP = prove
(`!p n.
prime(p
EXP n) <=>
prime(p) /\ (n = 1)`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[
EXP;
PRIME_1;
ARITH_EQ] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`n:num`,`n:num`) THEN
ASM_CASES_TAC `p = 0` THENL
[ASM_REWRITE_TAC[
PRIME_0;
EXP;
MULT_CLAUSES]; ALL_TAC] THEN
INDUCT_TAC THEN REWRITE_TAC[ARITH;
EXP_1;
EXP;
MULT_CLAUSES] THEN
REWRITE_TAC[ARITH_RULE `~(SUC(SUC n) = 1)`] THEN
REWRITE_TAC[
prime; DE_MORGAN_THM] THEN
ASM_REWRITE_TAC[
MULT_EQ_1;
EXP_EQ_1] THEN ASM_CASES_TAC `p = 1` THEN
ASM_REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN
CONJ_TAC THENL [MESON_TAC[
EXP;
divides]; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `p < pn:num ==> ~(p = pn)`) THEN
GEN_REWRITE_TAC LAND_CONV [GSYM
EXP_1] THEN
REWRITE_TAC[GSYM(CONJUNCT2
EXP)] THEN
ASM_REWRITE_TAC[
LT_EXP;
ARITH_EQ] THEN
MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC);;
let PRIME_POWER_MULT = prove
(`!k x y p.
prime p /\ (x * y = p
EXP k)
==> ?i j. (x = p
EXP i) /\ (y = p
EXP j)`,
INDUCT_TAC THEN REWRITE_TAC[
EXP;
MULT_EQ_1] THENL
[MESON_TAC[
EXP]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `p
divides x \/ p
divides y` MP_TAC THENL
[ASM_MESON_TAC[
PRIME_DIVPROD;
divides;
MULT_AC]; ALL_TAC] THEN
REWRITE_TAC[
divides] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[
PRIME_0]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THENL
[UNDISCH_TAC `(p * d) * y = p * p
EXP k`;
UNDISCH_TAC `x * p * d = p * p
EXP k` THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [
MULT_SYM]] THEN
REWRITE_TAC[GSYM
MULT_ASSOC] THEN
ASM_REWRITE_TAC[
EQ_MULT_LCANCEL] THEN DISCH_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `y:num`; `p:num`]);
FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `x:num`; `p:num`])] THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[
EXP]);;
(* ------------------------------------------------------------------------- *)
(* Induction principle for multiplicative functions etc. *)
(* ------------------------------------------------------------------------- *)
let INDUCT_COPRIME = prove
(`!P. (!a b. 1 < a /\ 1 < b /\
coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\
(!p k.
prime p ==> P(p
EXP k))
==> !n. 1 < n ==> P n`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC
num_WF THEN
X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 1)`)) THEN
DISCH_THEN(X_CHOOSE_TAC `p:num` o MATCH_MP
PRIME_FACTOR) THEN
MP_TAC(SPECL [`n:num`; `p:num`]
FACTORIZATION_INDEX) THEN
ASM_SIMP_TAC[
PRIME_GE_2; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN
REWRITE_TAC[
divides;
LEFT_IMP_EXISTS_THM;
LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`k:num`; `m:num`] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_CASES_TAC `m = 1` THEN ASM_SIMP_TAC[
MULT_CLAUSES] THEN
FIRST_X_ASSUM(CONJUNCTS_THEN2 MATCH_MP_TAC MP_TAC) THEN
ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
MATCH_MP_TAC(TAUT
`!p. (a /\ b /\ ~p) /\ c /\ (a /\ ~p ==> b ==> d)
==> a /\ b /\ c /\ d`) THEN
EXISTS_TAC `m = 0` THEN
SUBGOAL_THEN `~(k = 0)` ASSUME_TAC THENL
[DISCH_THEN SUBST_ALL_TAC THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `0 < 1`)) THEN
FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN
REWRITE_TAC[
EXP;
EXP_1;
MULT_CLAUSES;
divides];
ALL_TAC] THEN
CONJ_TAC THENL
[UNDISCH_TAC `1 < p
EXP k * m` THEN
ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN
ASM_REWRITE_TAC[
EXP_EQ_0;
EXP_EQ_1;
MULT_EQ_0;
MULT_EQ_1] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP
PRIME_GE_2 o CONJUNCT1) THEN
ASM_ARITH_TAC;
ALL_TAC] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `k < k + 1`)) THEN
REWRITE_TAC[
EXP_ADD;
EXP_1; GSYM
MULT_ASSOC;
EQ_MULT_LCANCEL] THEN
ASM_SIMP_TAC[
EXP_EQ_0;
PRIME_IMP_NZ; GSYM
divides] THEN DISCH_TAC THEN
ONCE_REWRITE_TAC[
COPRIME_SYM] THEN MATCH_MP_TAC
COPRIME_EXP THEN
ASM_MESON_TAC[
PRIME_COPRIME;
COPRIME_SYM];
DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m = 1 * m`] THEN
ASM_REWRITE_TAC[
LT_MULT_RCANCEL]]);;
let INDUCT_COPRIME_STRONG = prove
(`!P. (!a b. 1 < a /\ 1 < b /\
coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\
(!p k.
prime p /\ ~(k = 0) ==> P(p
EXP k))
==> !n. 1 < n ==> P n`,
GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a ==> b`] THEN
MATCH_MP_TAC
INDUCT_COPRIME THEN CONJ_TAC THENL
[ASM_MESON_TAC[];
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN ASM_CASES_TAC `k = 0` THEN
ASM_REWRITE_TAC[
LT_REFL;
EXP] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* A conversion for divisibility. *)
(* ------------------------------------------------------------------------- *)
let DIVIDES_CONV =
let pth_0 = SPEC `b:num` DIVIDES_ZERO
and pth_1 = prove
(`~(a = 0) ==> (a divides b <=> (b MOD a = 0))`,
REWRITE_TAC[DIVIDES_MOD])
and a_tm = `a:num` and b_tm = `b:num` and zero_tm = `0`
and dest_divides = dest_binop `(divides)` in
fun tm ->
let a,b = dest_divides tm in
if a = zero_tm then
CONV_RULE (RAND_CONV NUM_EQ_CONV) (INST [b,b_tm] pth_0)
else
let th1 = INST [a,a_tm; b,b_tm] pth_1 in
let th2 = MP th1 (EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1))))) in
CONV_RULE (RAND_CONV (LAND_CONV NUM_MOD_CONV THENC NUM_EQ_CONV)) th2;;
(* ------------------------------------------------------------------------- *)
(* A conversion for coprimality. *)
(* ------------------------------------------------------------------------- *)
let COPRIME_CONV =
let pth_yes_l = prove
(`(m * x = n * y + 1) ==> (
coprime(m,n) <=> T)`,
MESON_TAC[
coprime;
DIVIDES_RMUL;
DIVIDES_ADD_REVR;
DIVIDES_ONE])
and pth_yes_r = prove
(`(m * x = n * y + 1) ==> (
coprime(n,m) <=> T)`,
MESON_TAC[
coprime;
DIVIDES_RMUL;
DIVIDES_ADD_REVR;
DIVIDES_ONE])
and pth_no = prove
(`(m = x * d) /\ (n = y * d) /\ ~(d = 1) ==> (
coprime(m,n) <=> F)`,
REWRITE_TAC[
coprime;
divides] THEN MESON_TAC[
MULT_AC])
and pth_oo = prove
(`
coprime(0,0) <=> F`,
MESON_TAC[
coprime;
DIVIDES_REFL; NUM_REDUCE_CONV `1 = 0`])
and m_tm = `m:num` and n_tm = `n:num`
and x_tm = `x:num` and y_tm = `y:num`
and d_tm = `d:num` and coprime_tm = `
coprime` in
let rec bezout (m,n) =
if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0)
else if m <=/ n then
let q = quo_num n m and r = mod_num n m in
let (x,y) = bezout(m,r) in
(x -/ q */ y,y)
else let (x,y) = bezout(n,m) in (y,x) in
fun tm ->
let pop,ptm = dest_comb tm in
if pop <> coprime_tm then failwith "COPRIME_CONV" else
let l,r = dest_pair ptm in
let m = dest_numeral l and n = dest_numeral r in
if m =/ Int 0 & n =/ Int 0 then pth_oo else
let (x,y) = bezout(m,n) in
let d = x */ m +/ y */ n in
let
th =
if d =/ Int 1 then
if x >/ Int 0 then
INST [l,m_tm; r,n_tm; mk_numeral x,x_tm;
mk_numeral(minus_num y),y_tm]
pth_yes_l
else
INST [r,m_tm; l,n_tm; mk_numeral(minus_num x),y_tm;
mk_numeral y,x_tm] pth_yes_r
else
INST [l,m_tm; r,n_tm; mk_numeral d,d_tm;
mk_numeral(m // d),x_tm; mk_numeral(n // d),y_tm] pth_no in
MP
th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl
th))));;
(* ------------------------------------------------------------------------- *)
(* More general (slightly less efficiently coded) GCD_CONV. *)
(* ------------------------------------------------------------------------- *)
let GCD_CONV =
let pth0 = prove(`gcd(0,0) = 0`,
REWRITE_TAC[
GCD_0]) in
let pth1 = prove
(`!m n x y d m' n'.
(m * x = n * y + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[GSYM GCD_UNIQUE] THEN
ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL;
DIVIDES_ADD_REVR; DIVIDES_REFL]) in
let pth2 = prove
(`!m n x y d m' n'.
(n * y = m * x + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`,
MESON_TAC[pth1; GCD_SYM]) in
let gcd_tm = `gcd` in
let rec bezout (m,n) =
if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0)
else if m <=/ n then
let q = quo_num n m and r = mod_num n m in
let (x,y) = bezout(m,r) in
(x -/ q */ y,y)
else let (x,y) = bezout(n,m) in (y,x) in
fun tm -> let gt,lr = dest_comb tm in
if gt <> gcd_tm then failwith "GCD_CONV" else
let mtm,ntm = dest_pair lr in
let m = dest_numeral mtm and n = dest_numeral ntm in
if m =/ Int 0 & n =/ Int 0 then pth0 else
let x0,y0 = bezout(m,n) in
let x = abs_num x0 and y = abs_num y0 in
let xtm = mk_numeral x and ytm = mk_numeral y in
let d = abs_num(x */ m -/ y */ n) in
let dtm = mk_numeral d in
let m' = m // d and n' = n // d in
let mtm' = mk_numeral m' and ntm' = mk_numeral n' in
let th = SPECL [mtm;ntm;xtm;ytm;dtm;mtm';
ntm']
(if m */ x =/ n */ y +/ d then pth1 else pth2) in
MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;