(* ========================================================================= *)
(* Definability in arithmetic of important notions.                          *)
(* ========================================================================= *)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Pairing operation.                                                        *)
(* ------------------------------------------------------------------------- *)

let NPAIR = new_definition
  `NPAIR x y = (x + y) EXP 2 + x + 1`;;
let NPAIR_NONZERO = 
prove (`!x y. ~(NPAIR x y = 0)`,
REWRITE_TAC[NPAIR; ADD_EQ_0; ARITH]);;
let NPAIR_INJ_LEMMA = 
prove (`x1 + y1 < x2 + y2 ==> NPAIR x1 y1 < NPAIR x2 y2`,
STRIP_TAC THEN REWRITE_TAC[NPAIR; EXP_2] THEN REWRITE_TAC[ARITH_RULE `x + y + 1 < u + v + 1 <=> x + y < u + v`] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `SUC(x1 + y1) * SUC(x1 + y1)` THEN CONJ_TAC THENL [ARITH_TAC; ASM_MESON_TAC[LE_TRANS; LE_ADD; LE_MULT2; LE_SUC_LT]]);;
let NPAIR_INJ = 
prove (`(NPAIR x y = NPAIR x' y') <=> (x = x') /\ (y = y')`,
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `x' + y' = x + y` ASSUME_TAC THENL [ASM_MESON_TAC[LT_CASES; NPAIR_INJ_LEMMA; LT_REFL]; UNDISCH_TAC `NPAIR x y = NPAIR x' y'` THEN UNDISCH_TAC `x' + y' = x + y` THEN SIMP_TAC[NPAIR; EXP_2] THEN ARITH_TAC]);;
(* ------------------------------------------------------------------------- *) (* Decreasingness. *) (* ------------------------------------------------------------------------- *)
let NPAIR_LT = 
prove (`!x y. x < NPAIR x y /\ y < NPAIR x y`,
REPEAT GEN_TAC THEN REWRITE_TAC[NPAIR] THEN REWRITE_TAC[ARITH_RULE `x < a + x + 1`] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `(x + y) + x + 1` THEN REWRITE_TAC[LE_ADD_RCANCEL; EXP_2; LE_SQUARE_REFL] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *) (* Auxiliary concepts needed. NB: these are Delta so can be negated freely. *) (* ------------------------------------------------------------------------- *)
let primepow = new_definition
  `primepow p x <=> prime(p) /\ ?n. x = p EXP n`;;
let divides_DELTA = 
prove (`m divides n <=> ?x. x <= n /\ n = m * x`,
REWRITE_TAC[divides] THEN ASM_CASES_TAC `m = 0` THENL [ASM_REWRITE_TAC[MULT_CLAUSES] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `~(m = 0) ==> 1 <= m`)) THEN SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN MESON_TAC[]);;
let prime_DELTA = 
prove (`prime(p) <=> 2 <= p /\ !n. n < p ==> n divides p ==> n = 1`,
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[ARITH; PRIME_0] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[ARITH; PRIME_1] THEN EQ_TAC THENL [ASM_MESON_TAC[prime; LT_REFL; PRIME_GE_2]; ASM_MESON_TAC[prime; DIVIDES_LE; LE_LT]]);;
let primepow_DELTA = 
prove (`primepow p x <=> prime(p) /\ ~(x = 0) /\ !z. z <= x ==> z divides x ==> z = 1 \/ p divides z`,
REWRITE_TAC[primepow; TAUT `a ==> b \/ c <=> a /\ ~b ==> c`] THEN ASM_CASES_TAC `prime(p)` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN ASM_REWRITE_TAC[EXP_EQ_0] THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `z:num` o MATCH_MP PRIME_COPRIME) THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `p divides z` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP COPRIME_EXP) THEN ASM_MESON_TAC[COPRIME; DIVIDES_REFL]; SPEC_TAC(`x:num`,`x:num`) THEN MATCH_MP_TAC num_WF THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `x = 1` THENL [EXISTS_TAC `0` THEN ASM_REWRITE_TAC[EXP]; ALL_TAC] THEN FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN STRIP_TAC THEN UNDISCH_TAC `!z. z <= x ==> z divides x /\ ~(z = 1) ==> p divides z` THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o SPEC `q:num`) THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `q = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `q <= x` ASSUME_TAC THENL [ASM_MESON_TAC[DIVIDES_LE]; ASM_REWRITE_TAC[]] THEN SUBGOAL_THEN `p divides x` MP_TAC THENL [ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_TAC `y:num`) THEN SUBGOAL_THEN `y < x` (ANTE_RES_THEN MP_TAC) THENL [MATCH_MP_TAC PRIME_FACTOR_LT THEN EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `y = 0` THENL [UNDISCH_TAC `x = p * y` THEN ASM_REWRITE_TAC[MULT_CLAUSES]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!z. z <= y ==> z divides y /\ ~(z = 1) ==> p divides z` (fun th -> REWRITE_TAC[th]) THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [IMP_IMP]) THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `y:num` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `y = 1 * y`] THEN REWRITE_TAC[LE_MULT_RCANCEL] THEN ASM_REWRITE_TAC[GSYM NOT_LT] THEN REWRITE_TAC[num_CONV `1`; LT; DE_MORGAN_THM] THEN ASM_MESON_TAC[PRIME_0; PRIME_1]; ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_LMUL THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST1_TAC) THEN EXISTS_TAC `SUC n` THEN ASM_REWRITE_TAC[EXP]]]);;
(* ------------------------------------------------------------------------- *) (* Sigma-representability of reflexive transitive closure. *) (* ------------------------------------------------------------------------- *)
let PSEQ = new_recursive_definition num_RECURSION
  `(PSEQ p f m 0 = 0) /\
   (PSEQ p f m (SUC n) = f m + p * PSEQ p f (SUC m) n)`;;
let PSEQ_SPLIT = 
prove (`!f p n m r. PSEQ p f m (n + r) = PSEQ p f m n + p EXP n * PSEQ p f (m + n) r`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; EXP; MULT_CLAUSES; PSEQ] THEN ASM_REWRITE_TAC[GSYM ADD_ASSOC; EQ_ADD_LCANCEL] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_AC; ADD_CLAUSES]);;
let PSEQ_1 = 
prove (`PSEQ p f m 1 = f m`,
REWRITE_TAC[num_CONV `1`; ADD_CLAUSES; MULT_CLAUSES; PSEQ]);;
let PSEQ_BOUND = 
prove (`!n. ~(p = 0) /\ (!i. i < n ==> f i < p) ==> PSEQ p f 0 n < p EXP n`,
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN INDUCT_TAC THENL [REWRITE_TAC[PSEQ; EXP; ARITH]; ALL_TAC] THEN DISCH_TAC THEN MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`] PSEQ_SPLIT) THEN SIMP_TAC[ADD1; ADD_CLAUSES] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `p EXP n + p EXP n * PSEQ p f n 1` THEN ASM_SIMP_TAC[LT_ADD_RCANCEL; ARITH_RULE `i < n ==> i < SUC n`] THEN REWRITE_TAC[ARITH_RULE `p + p * q = p * (q + 1)`] THEN ASM_REWRITE_TAC[EXP_ADD; LE_MULT_LCANCEL; EXP_EQ_0] THEN MATCH_MP_TAC(ARITH_RULE `x < p ==> x + 1 <= p`) THEN ASM_SIMP_TAC[EXP_1; PSEQ_1; LT]);;
let RELPOW_LEMMA_1 = 
prove (`(f 0 = x) /\ (f n = y) /\ (!i. i < n ==> R (f i) (f(SUC i))) ==> ?p. (?i. i <= n /\ p <= SUC(FACT(f i))) /\ prime p /\ (?m. m < p EXP (SUC n) /\ x < p /\ y < p /\ (?qx. m = x + p * qx) /\ (?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\ !q. q < p EXP n ==> primepow p q ==> ?r. r < q /\ ?a. a < p /\ ?b. b < p /\ R a b /\ ?s. s <= m /\ (m = r + q * (a + p * (b + p * s))))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `?j. j <= n /\ !i. i <= n ==> f i <= f j` MP_TAC THENL [SPEC_TAC(`n:num`,`n:num`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN INDUCT_TAC THENL [SIMP_TAC[LE] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN FIRST_ASSUM(X_CHOOSE_THEN `j:num` STRIP_ASSUME_TAC) THEN DISJ_CASES_TAC(ARITH_RULE `f(SUC n) <= f(j) \/ f(j) <= f(SUC n)`) THENL [EXISTS_TAC `j:num` THEN ASM_SIMP_TAC[ARITH_RULE `j <= n ==> j <= SUC n`] THEN REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]; EXISTS_TAC `SUC n` THEN REWRITE_TAC[LE_REFL] THEN REWRITE_TAC[LE] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LE_REFL] THEN ASM_MESON_TAC[LE_TRANS]]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `ibig:num` STRIP_ASSUME_TAC) THEN MP_TAC(SPEC `(f:num->num) ibig` EUCLID_BOUND) THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `p:num` THEN CONJ_TAC THENL [EXISTS_TAC `ibig:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN CONJ_TAC THENL [FIRST_ASSUM ACCEPT_TAC; ALL_TAC] THEN SUBGOAL_THEN `!i. i <= n ==> f i < p` ASSUME_TAC THENL [ASM_MESON_TAC[LET_TRANS]; ALL_TAC] THEN EXISTS_TAC `PSEQ p f 0 (SUC n)` THEN CONJ_TAC THENL [MATCH_MP_TAC PSEQ_BOUND THEN ASM_SIMP_TAC[LT_SUC_LE]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[LE_0]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[LE_REFL]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[PSEQ] THEN MESON_TAC[]; MP_TAC(SPECL [`f:num->num`; `p:num`; `n:num`; `0`; `1`] PSEQ_SPLIT) THEN ASM_SIMP_TAC[ADD1; ADD_CLAUSES] THEN DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f 0 n` THEN ASM_SIMP_TAC[PSEQ_BOUND; PSEQ_1; LT_IMP_LE]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> b ==> a ==> c`] THEN ASM_SIMP_TAC[primepow; LEFT_IMP_EXISTS_THM] THEN GEN_TAC THEN X_GEN_TAC `i:num` THEN DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[LT_EXP] THEN STRIP_TAC THEN MP_TAC(SPECL [`f:num->num`; `p:num`; `i:num`; `0`; `SUC n - i`] PSEQ_SPLIT) THEN ASM_SIMP_TAC[ARITH_RULE `i < n ==> (i + SUC n - i = SUC n)`] THEN DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f 0 i` THEN REWRITE_TAC[EQ_ADD_LCANCEL] THEN ASM_REWRITE_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; ADD_CLAUSES] THEN CONJ_TAC THENL [ASM_MESON_TAC[PSEQ_BOUND; LT_TRANS; LT_IMP_LE]; ALL_TAC] THEN MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i:num`; `n - i`] PSEQ_SPLIT) THEN ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i = SUC n - i)`] THEN DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f i 1` THEN ASM_REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL; EXP_1] THEN ASM_SIMP_TAC[PSEQ_1; LT_IMP_LE] THEN MP_TAC(SPECL [`f:num->num`; `p:num`; `1`; `i + 1`; `n - i - 1`] PSEQ_SPLIT) THEN ASM_SIMP_TAC[ARITH_RULE `i < n ==> (1 + n - i - 1 = n - i)`] THEN DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `PSEQ p f (i + 1) 1` THEN ASM_REWRITE_TAC[EQ_ADD_LCANCEL; EQ_MULT_LCANCEL; EXP_1] THEN ASM_SIMP_TAC[PSEQ_1; ARITH_RULE `i < n ==> i + 1 <= n`] THEN ASM_SIMP_TAC[GSYM ADD1] THEN REWRITE_TAC[ADD1] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM1] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_ASSOC; ADD_ASSOC] THEN MATCH_MP_TAC(ARITH_RULE `1 * a <= c ==> a <= b + c`) THEN REWRITE_TAC[LE_MULT_RCANCEL] THEN DISJ1_TAC THEN ASM_REWRITE_TAC[ARITH_RULE `1 <= x <=> ~(x = 0)`; MULT_EQ_0; EXP_EQ_0]);;
let RELPOW_LEMMA_2 = 
prove (`prime p /\ x < p /\ y < p /\ (?qx. m = x + p * qx) /\ (?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\ (!q. q < p EXP n ==> primepow p q ==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\ r < q /\ a < p /\ b < p /\ R a b) ==> RELPOW n R x y`,
STRIP_TAC THEN REWRITE_TAC[RELPOW_SEQUENCE] THEN EXISTS_TAC `\i. (m DIV (p EXP i)) MOD p` THEN SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN REWRITE_TAC[EXP; DIV_1] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `qx:num` THEN ASM_REWRITE_TAC[ADD_AC; MULT_AC]; MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN REWRITE_TAC[ASSUME `y < p`; MULT_CLAUSES; ADD_CLAUSES] THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `ry:num` THEN REWRITE_TAC[ASSUME `m = ry + p EXP n * y`] THEN ASM_REWRITE_TAC[ADD_AC; MULT_AC]; ALL_TAC] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `p EXP i`) THEN ASM_SIMP_TAC[LT_EXP; PRIME_GE_2] THEN ASM_REWRITE_TAC[primepow] THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(REPEAT_TCL CHOOSE_THEN MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC STRIP_ASSUME_TAC) THEN UNDISCH_TAC `(R:num->num->bool) a b` THEN MATCH_MP_TAC(TAUT `(b <=> a) ==> a ==> b`) THEN BINOP_TAC THENL [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `b + p * s` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `r:num` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[ADD_AC; MULT_AC]; MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `s:num` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `r + a * p EXP i` THEN CONJ_TAC THENL [REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB] THEN REWRITE_TAC[ADD_AC; MULT_AC]; ALL_TAC] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `p EXP i + a * p EXP i` THEN ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN REWRITE_TAC[ARITH_RULE `p + q * p = (q + 1) * p`] THEN ASM_REWRITE_TAC[LE_MULT_RCANCEL; EXP_EQ_0] THEN UNDISCH_TAC `a < p` THEN ARITH_TAC]);;
let RELPOW_LEMMA = 
prove (`RELPOW n R x y <=> ?m p. prime p /\ x < p /\ y < p /\ (?qx. m = x + p * qx) /\ (?ry. ry < p EXP n /\ (m = ry + p EXP n * y)) /\ !q. q < p EXP n ==> primepow p q ==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\ r < q /\ a < p /\ b < p /\ R a b`,
EQ_TAC THENL [ALL_TAC; REWRITE_TAC[RELPOW_LEMMA_2; LEFT_IMP_EXISTS_THM]] THEN REWRITE_TAC[RELPOW_SEQUENCE] THEN DISCH_THEN(CHOOSE_THEN(MP_TAC o GEN_ALL o MATCH_MP RELPOW_LEMMA_1)) THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN MESON_TAC[]);;
let RTC_SIGMA = 
prove (`RTC R x y <=> ?m p Q. primepow p Q /\ x < p /\ y < p /\ (?s. m = x + p * s) /\ (?r. r < Q /\ (m = r + Q * y)) /\ !q. q < Q ==> primepow p q ==> ?r a b s. (m = r + q * (a + p * (b + p * s))) /\ r < q /\ a < p /\ b < p /\ R a b`,
REWRITE_TAC[RTC_RELPOW] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN REWRITE_TAC[RELPOW_LEMMA] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `p EXP n` THEN ASM_REWRITE_TAC[primepow] THEN MESON_TAC[]; REWRITE_TAC[primepow] THEN ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[GSYM primepow] THEN GEN_REWRITE_TAC (LAND_CONV o funpow 3 BINDER_CONV) [LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM RELPOW_LEMMA]]);;
(* ------------------------------------------------------------------------- *) (* Partially automate actual definability in object language. *) (* ------------------------------------------------------------------------- *)
let arith_pair = new_definition
  `arith_pair s t = (s ++ t) ** (s ++ t) ++ s ++ Suc Z`;;
let ARITH_PAIR = 
prove (`!s t v. termval v (arith_pair s t) = NPAIR (termval v s) (termval v t)`,
REWRITE_TAC[termval; arith_pair; NPAIR; EXP_2; ARITH_SUC]);;
let FVT_PAIR = 
prove (`FVT(arith_pair s t) = FVT(s) UNION FVT(t)`,
REWRITE_TAC[arith_pair; FVT] THEN SET_TAC[]);;
let OBJECTIFY = let is_add = is_binop `(+):num->num->num` and is_mul = is_binop `(*):num->num->num` and is_le = is_binop `(<=):num->num->bool` and is_lt = is_binop `(<):num->num->bool` and zero_tm = `0` and suc_tm = `SUC` and osuc_tm = `Suc` and oz_tm = `Z` and ov_tm = `V` and oadd_tm = `(++)` and omul_tm = `(**)` and oeq_tm = `(===)` and ole_tm = `(<<=)` and olt_tm = `(<<)` and oiff_tm = `(<->)` and oimp_tm = `(-->)` and oand_tm = `(&&)` and oor_tm = `(||)` and onot_tm = `Not` and oall_tm = `!!` and oex_tm = `??` and numeral_tm = `numeral` and assign_tm = `(|->):num->term->(num->term)->(num->term)` and term_ty = `:term` and form_ty = `:form` and num_ty = `:num` and formsubst_tm = `formsubst` and holdsv_tm = `holds v` and v_tm = `v:num->num` in let objectify1 fn op env tm = mk_comb(op,fn env (rand tm)) in let objectify2 fn op env tm = mk_comb(mk_comb(op,fn env (lhand tm)),fn env (rand tm)) in fun defs -> let defs' = [TERMVAL_NUMERAL; ARITH_PAIR] @ defs in let rec objectify_term env tm = if is_var tm then mk_comb(ov_tm,apply env tm) else if tm = zero_tm then oz_tm else if is_numeral tm then mk_comb(numeral_tm,tm) else if is_add tm then objectify2 objectify_term oadd_tm env tm else if is_mul tm then objectify2 objectify_term omul_tm env tm else if is_comb tm & rator tm = suc_tm then objectify1 objectify_term osuc_tm env tm else let f,args = strip_comb tm in let args' = map (objectify_term env) args in try let dth = find (fun th -> fst(strip_comb(rand(snd(strip_forall(concl th))))) = f) defs' in let l,r = dest_eq(snd(strip_forall(concl dth))) in list_mk_comb(fst(strip_comb(rand l)),args') with Failure _ -> let ty = itlist (mk_fun_ty o type_of) args' form_ty in let v = mk_var(fst(dest_var f),ty) in list_mk_comb(v,args') in let rec objectify_formula env fm = if is_forall fm then let x,bod = dest_forall fm in let n = mk_small_numeral (itlist (max o dest_small_numeral) (ran env) 0 + 1) in mk_comb(mk_comb(oall_tm,n),objectify_formula ((x |-> n) env) bod) else if is_exists fm then let x,bod = dest_exists fm in let n = mk_small_numeral (itlist (max o dest_small_numeral) (ran env) 0 + 1) in mk_comb(mk_comb(oex_tm,n),objectify_formula ((x |-> n) env) bod) else if is_iff fm then objectify2 objectify_formula oiff_tm env fm else if is_imp fm then objectify2 objectify_formula oimp_tm env fm else if is_conj fm then objectify2 objectify_formula oand_tm env fm else if is_disj fm then objectify2 objectify_formula oor_tm env fm else if is_neg fm then objectify1 objectify_formula onot_tm env fm else if is_le fm then objectify2 objectify_term ole_tm env fm else if is_lt fm then objectify2 objectify_term olt_tm env fm else if is_eq fm then objectify2 objectify_term oeq_tm env fm else objectify_term env fm in fun nam th -> let ptm,tm = dest_eq(snd(strip_forall(concl th))) in let vs = filter (fun v -> type_of v = num_ty) (snd(strip_comb ptm)) in let ns = 1--(length vs) in let env = itlist2 (fun v n -> v |-> mk_small_numeral n) vs ns undefined in let otm = objectify_formula env tm in let vs' = map (fun v -> mk_var(fst(dest_var v),term_ty)) vs in let stm = itlist2 (fun v n a -> mk_comb(mk_comb(mk_comb(assign_tm,mk_small_numeral n),v),a)) vs' ns ov_tm in let rside = mk_comb(mk_comb(formsubst_tm,stm),otm) in let vs'' = subtract (frees rside) vs' @ vs' in let lty = itlist (mk_fun_ty o type_of) vs'' (type_of rside) in let lside = list_mk_comb(mk_var(nam,lty),vs'') in let def = mk_eq(lside,rside) in
let dth = new_definition def in
     let clside = lhs(snd(strip_forall(concl dth))) in
     let etm = mk_comb(holdsv_tm,clside) in
     let thm =
       (REWRITE_CONV ([dth; holds; HOLDS_FORMSUBST] @ defs') THENC
        REWRITE_CONV [termval; ARITH_EQ; o_THM; valmod] THENC
        GEN_REWRITE_CONV I [GSYM th]) etm in
     dth,DISCH_ALL (GENL (v_tm::vs') thm);;
(* ------------------------------------------------------------------------- *) (* Some sort of common tactic for free variables. *) (* ------------------------------------------------------------------------- *) let FV_TAC ths = let ths' = ths @ [FV; FORMSUBST_FV; FVT; TERMSUBST_FVT; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION; IN_DELETE; IN_SING] and tac = REWRITE_TAC[DISJ_ACI; TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`] THEN REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; UNWIND_THM2; ARITH_EQ] THEN REWRITE_TAC[valmod; ARITH_EQ; FVT] THEN REWRITE_TAC[DISJ_ACI] in REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN ASM_REWRITE_TAC ths' THEN tac THEN ASM_SIMP_TAC ths' THEN tac;; (* ------------------------------------------------------------------------- *) (* So do the formula-level stuff (more) automatically. *) (* ------------------------------------------------------------------------- *) let arith_divides,ARITH_DIVIDES = OBJECTIFY [] "arith_divides" divides_DELTA;;
let FV_DIVIDES = 
prove (`!s t. FV(arith_divides s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_divides]);;
let arith_prime,ARITH_PRIME = OBJECTIFY [ARITH_DIVIDES] "arith_prime" prime_DELTA;;
let FV_PRIME = 
prove (`!t. FV(arith_prime t) = FVT(t)`,
FV_TAC[arith_prime; FVT_NUMERAL; FV_DIVIDES]);;
let arith_primepow,ARITH_PRIMEPOW = OBJECTIFY [ARITH_PRIME; ARITH_DIVIDES] "arith_primepow" primepow_DELTA;;
let FV_PRIMEPOW = 
prove (`!s t. FV(arith_primepow s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_primepow; FVT_NUMERAL; FV_DIVIDES; FV_PRIME]);;
let arith_rtc,ARITH_RTC = OBJECTIFY [ARITH_PRIMEPOW; ASSUME `!v s t. holds v (R s t) <=> r (termval v s) (termval v t)`] "arith_rtc" RTC_SIGMA;;
let FV_RTC = 
prove (`!R. (!s t. FV(R s t) = FVT(s) UNION FVT(t)) ==> !s t. FV(arith_rtc R s t) = FVT(s) UNION FVT(t)`,
FV_TAC[arith_rtc; FV_PRIMEPOW]);;
(* ------------------------------------------------------------------------- *) (* Automate RTC constructions, including parametrized ones. *) (* ------------------------------------------------------------------------- *) let OBJECTIFY_RTC =
let pth = 
prove (`(!v x y. holds v (f x y) <=> f' (termval v x) (termval v y)) ==> !g. (!n. g n = formsubst ((0 |-> n) V) (arith_rtc f (numeral 0) (arith_pair (V 0) (numeral 0)))) ==> !v n. holds v (g n) <=> RTC f' 0 (NPAIR (termval v n) 0)`,
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN SIMP_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; o_DEF; ARITH_EQ; valmod; ARITH_PAIR; TERMVAL_NUMERAL]) in fun def nam th -> let th1 = MATCH_MP pth def in let v = fst(dest_forall(concl th1)) in let th2 = SPEC (mk_var(nam,type_of v)) th1 in
let dth = new_definition (fst(dest_imp(concl th2))) in
    dth,ONCE_REWRITE_RULE[GSYM th] (MATCH_MP th2 dth);;
let RTCP = new_definition
  `RTCP R m x y <=> RTC (R m) x y`;;
let RTCP_SIGMA = REWRITE_RULE[GSYM RTCP] (INST [`(R:num->num->num->bool) m`,`R:num->num->bool`] RTC_SIGMA);; let arith_rtcp,ARITH_RTCP = OBJECTIFY [ARITH_PRIMEPOW; ASSUME `!v m s t. holds v (R m s t) <=> r (termval v m) (termval v s) (termval v t)`] "arith_rtcp" RTCP_SIGMA;; let ARITH_RTC_PARAMETRIZED = REWRITE_RULE[RTCP] ARITH_RTCP;;
let FV_RTCP = 
prove (`!R. (!s t u. FV(R s t u) = FVT(s) UNION FVT(t) UNION FVT(u)) ==> !s t u. FV(arith_rtcp R s t u) = FVT(s) UNION FVT(t) UNION FVT(u)`,
FV_TAC[arith_rtcp; FV_PRIMEPOW]);;
let OBJECTIFY_RTCP =
let pth = 
prove (`(!v m x y. holds v (f m x y) <=> f' (termval v m) (termval v x) (termval v y)) ==> !g. (!m n. g m n = formsubst ((1 |-> m) ((0 |-> n) V)) (arith_rtcp f (V 1) (numeral 0) (arith_pair (V 0) (numeral 0)))) ==> !v m n. holds v (g m n) <=> RTC (f' (termval v m)) 0 (NPAIR (termval v n) 0)`,
DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC_PARAMETRIZED) THEN SIMP_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; o_DEF; ARITH_EQ; valmod; ARITH_PAIR; TERMVAL_NUMERAL]) in fun def nam th -> let th1 = MATCH_MP pth def in let v = fst(dest_forall(concl th1)) in let th2 = SPEC (mk_var(nam,type_of v)) th1 in
let dth = new_definition (fst(dest_imp(concl th2))) in
    dth,ONCE_REWRITE_RULE[GSYM th] (MATCH_MP th2 dth);;
(* ------------------------------------------------------------------------- *) (* Generic result about primitive recursion. *) (* ------------------------------------------------------------------------- *)
let PRIMREC_SIGMA = 
prove (`(fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n) ==> !x y. RTC (\x y. ?n r. (x = NPAIR n r) /\ (y = NPAIR (SUC n) (f r n))) (NPAIR 0 e) (NPAIR x y) <=> (fn(x) = y)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_L] THEN ASM_REWRITE_TAC[NPAIR_INJ; NOT_SUC] THEN REWRITE_TAC[SUC_INJ; RIGHT_AND_EXISTS_THM] THEN GEN_TAC THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN ASM_REWRITE_TAC[UNWIND_THM2] THEN ASM_MESON_TAC[]);;
let arith_primrecstep = new_definition
 `arith_primrecstep R s t =
        (formsubst ((0 |-> s) ((1 |-> t) V))
                  (?? 2 (?? 3 (?? 4
                  (V 0 === arith_pair (V 2) (V 3) &&
                   V 1 === arith_pair (Suc(V 2)) (V 4) &&
                   R (V 3) (V 2) (V 4))))))`;;
let ARITH_PRIMRECSTEP = 
prove (`(!v x y z. holds v (R x y z) <=> (f (termval v x) (termval v y) = termval v z)) ==> !v s t. holds v (arith_primrecstep R s t) <=> ?n r. (termval v s = NPAIR n r) /\ (termval v t = NPAIR (SUC n) (f r n))`,
STRIP_TAC THEN ASM_REWRITE_TAC[arith_primrecstep; holds; HOLDS_FORMSUBST] THEN ASM_REWRITE_TAC[termval; valmod; o_DEF; ARITH_EQ; ARITH_PAIR] THEN MESON_TAC[]);;
let FV_PRIMRECSTEP = 
prove (`!R. (!s t u. FV(R s t u) SUBSET (FVT(s) UNION FVT(t) UNION FVT(u))) ==> !s t. FV(arith_primrecstep R s t) = FVT(s) UNION FVT(t)`,
REWRITE_TAC[SUBSET; IN_UNION] THEN FV_TAC[arith_primrecstep; FVT_PAIR] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `~a ==> (a \/ b <=> b)`) THEN DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2(ANTE_RES_THEN MP_TAC) ASSUME_TAC)) THEN ASM_REWRITE_TAC[FVT; IN_SING]);;
let arith_primrec = new_definition
  `arith_primrec R c s t =
        arith_rtc (arith_primrecstep R)
            (arith_pair Z c) (arith_pair s t)`;;
let ARITH_PRIMREC = 
prove (`!fn e f R c. (fn 0 = e) /\ (!n. fn (SUC n) = f (fn n) n) /\ (!v. termval v c = e) /\ (!v x y z. holds v (R x y z) <=> (f (termval v x) (termval v y) = termval v z)) ==> !v s t. holds v (arith_primrec R c s t) <=> (fn(termval v s) = termval v t)`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PRIMRECSTEP) THEN DISCH_THEN(MP_TAC o MATCH_MP ARITH_RTC) THEN CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN SIMP_TAC[arith_primrec; ARITH_PAIR; termval] THEN ASM_SIMP_TAC[PRIMREC_SIGMA]);;
let FV_PRIMREC = 
prove (`!R c. (FVT c = {}) /\ (!s t u. FV(R s t u) SUBSET (FVT(s) UNION FVT(t) UNION FVT(u))) ==> !s t. FV(arith_primrec R c s t) = FVT(s) UNION FVT(t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[arith_primrec] THEN ASM_SIMP_TAC[FV_RTC; FVT_PAIR; FV_PRIMRECSTEP; UNION_EMPTY; UNION_ACI; FVT]);;